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Abstract— The Weather Research and Forecasting (WRF) 

model is a multi-purpose open source weather model, which is 

widely used by the wind energy community. However, the state 

of the art applications that use the WRF model for wind 

resources do not always meet the sector's needs. The 

fundamental challenge is the massive quantity of data required 

for accurate modelling, as well as the expenses associated with 

the computing of such massive volumes of data, implying that 

state-of-the-art approaches are not appropriate. Our work 

tackles this issue with the use of a novel orchestration 

framework relying on cloud computing infrastructure. Cloud 

computing platforms provide robust infrastructure that allows 

for the deployment of production-level services as well as 

extended processing and storage capacity. This paper presents 

the overall software architecture of a Cloud Orchestration 

System, enabling the dynamic and flexible cloud deployment of 

containerized wind resource model chains. Moreover, a set of 

performance, functional and operational criteria are presented 

and evaluated, using a real use case of a wind resource model. 

Keywords—cloud, orchestration, optimal deployment, 

computing efficiency, wind resources 

 

I. INTRODUCTION 

Wind power accounts for around 4% of the worldwide 

renewable energy mix (12% in Europe) [3], which is 

insufficient to limit temperature rises and reduce carbon 

emissions. One of the reasons for the low amount of energy 

generated by wind is the gap in automated tools to wind farm 

developers and their investors/lenders to generate quick, 

accurate, and financially sustainable wind site yield 

estimates, which hinder the sector's efficiency [4].  

Notably, every year, the wind energy sector loses vast 

amounts of wind power generating capacity and earnings, as 

a result of errors made in wind resource and yield estimations, 

as well as ineffective modelling of the wind plants.  [1]. For 

wind farm design and construction, the rapidly expanding 

wind sector demands accurate and efficient wind resource 

evaluation across varied topography configurations [2]. 

Typically, winds vary according to the location and time in 

daily, yearly and seasonal patterns all around the world. 

Assessing the wind power potential at any particular site or 

area is critical in determining the efficiency of wind resource 

for energy production within the available time constraint of 

wind duration [3]. Commercially successful wind modelling 

solutions that tackle this problem by analysing the selected 

regions and assessing resource capacity, necessitates 

extensive processing as well as advanced modelling 

approaches to achieve bankable accuracy, low error, and high 

predictability [4]. The main issue is the large amount of data 

necessary for effective modelling, as well as the costs 

associated with computing and storing such massive amounts 

of data, meaning that current methodologies are resource 

consuming [5]. 

Automation is necessary to significantly enhance the 

process and minimize the time and money required for new 

wind farm resource evaluation. The present paper presents a 

Cloud Orchestration solution, that allows scaling up the 

computation, increasing the computing efficiency and, 

potentially, reducing the computing costs.  More specifically, 

the paper presents a cloud orchestrator for the flexible 

deployment of models assessing wind farm yields that is 

suited to the demands of wind power plant developers. 

Modern solutions use high-performance computing (HPC) 

infrastructures which have considerable limitations in terms 

of scalability and flexibility of HPC centres [27]. These 

limitations have consequently a significant impact on 



operational costs and restrict the upscaling possibilities of 

wind resource modelling as a commercial service [6]. As an 

alternative, this work tackles this issue with the use of a cloud 

orchestrator. Cloud computing systems provide an 

infrastructure that enables the development of production-

level services, as well as processing and storage capacity. The 

proposed approach uses containers, a lightweight, OS-level 

virtualization technology that dramatically decreases the time 

required to launch an application. The system also includes 

an optimization module for continual adjustment of the 

containerized deployment to reduce costs while maintaining 

performance requirements. The implementation description 

of the optimization process, however, will not be disclosed in 

this work, and it will be treated as a "black box." In summary, 

the following contributions are made by this paper: 

 

• Design of the overall software architecture, namely 
Cloud Orchestrator, enabling the dynamic, flexible 
cloud deployment of containerized wind resource 
model chains and WRF jobs [29].  

• Interconnect appropriate monitoring tools, by 
enabling the processing of monitoring data, extracted 
from the cloud instances. 

• Define a set of specific, measurable, achievable and 
relevant key performance indicators (KPIs) to test and 
evaluate the proposed architecture. 

• Evaluate the technical aspects of the proposed Cloud 
Orchestrator including performance, functional and 
operational criteria. The testing and evaluation of the 
proposed architecture is based on the case of a real 
wind resource model. 

The remaining parts of the paper are organized as follows. In 

Section 2, we discuss a set of related work of microservices 

orchestration in the cloud computing. Section 3 provides the 

description of our proposed architecture as well as the 

description of its APIs. Section 4 presents an overview of the 

use case under which the proposed Cloud Orchestrator was 

tested and evaluated. Section 5 presents how we conducted 

the evaluation to show the usefulness of the proposed 

solution. Finally, Section 6 concludes this paper and outlines 

future work. 

 

II. RELATED WORK 

Cloud computing has drastically altered the way 

computing is delivered to both consumers and commercial 

users. Since its debut, cloud services adoption has increased, 

and it is anticipated that global public cloud service revenues 

would increase from 266.4 billion dollars in 2020 to 354.6 

billion dollars in 2022 [7]. Thus, there are many (industrial 

and academic) systems and tools that can be considered as 

related work to our approach, due to the similarities in 

functionality with cloud orchestrators.  

To begin with, Swarm [8], Kubernetes [9], and Apache 

Mesos [10] are container orchestration technologies that 

execute orchestration at the container level on previously 

existent resources. On the other hand, multi-cloud 

programming libraries such as jClouds [11], libclouds [12] 

and boto [13] are suitable for abstracting cloud APIs, but they 

are not designed to orchestrate sophisticated virtual 

infrastructure. Such services offer low-level APIs for 

accessing cloud environments, so they may be integrated as 

plugins into the proposed Cloud Orchestrator to enable access 

to even more cloud resources. Closer to our approach, 

Cloudify [14] is another example of an orchestrator, having 

been released in 2014. It is an open source cloud orchestration 

framework that allows users to design services and automate 

their complete lifecycle, including deployment on any cloud, 

monitoring, detecting issues and failures, manually or 

automatically resolving them and managing maintenance 

actions. Moreover, Openstack Heat [15] is a template-based 

orchestration, that supports auto-scaling via Telemetry 

integration. Although Openstack Heat has its own template 

format, it can also handle CloudFormation templates. Heat is 

open source; however, it only works with OpenStack clouds. 

In addition, there is a lot of academic research in this topic 

[16,17]. The authors of [18] conducted a thorough study and 

comparison of the most important cloud resource 

orchestration frameworks, as well as emphasized the multi-

cloud computing open challenges that the scientific 

community must solve in the coming years.   

The authors in [19] developed an extended mixed power 

spectral density kernel as a prediction approach that 

appropriately dealt with the complexity in resource usage for 

cloud computing. Furthermore, the authors of [20] suggested 

a solution that uses a prediction approach and a convex 

optimization methodology to minimize energy usage in cloud 

computing. 

Despite these efforts and to the best of our knowledge, the 

aforementioned solutions do not address the cost-efficient 

and scalable execution of numerical simulations, e.g. in the 

case of wind resource modelling, in cloud environments to 

reduce costs and increase flexibility and resource efficiency 

compared with the traditional HPC systems. Therefore, our 

proposed approach aims to address this gap by introducing a 

cloud orchestrator solution tailored to the needs of increased 

computing capacity and flexibility to support efficient and 

accurate wind energy modelling, while integrating it in a real 

wind resource model use case. 

 

III. CLOUD ORCHESTRATOR OVERVIEW 

The proposed Cloud Orchestrator is a system responsible 

for managing the life-cycle of the deployed services (i.e. 

containers) that require cost-effective HPC. The Cloud 

Orchestrator should also handle the dynamic orchestration of 

the infrastructure that is used to host the services. 

Specifically, the proposed orchestrator provides a system 

which manages container-based applications consistently on 

cloud. This system makes the physical resources (e.g. CPUs, 

storage devices) transparent to the wind resource model chain 

services. The services’ requirements are provided from a 

third-party component and include the following: (a) 



maximum allowed costs and (b) completion time for a 

specific service. The Cloud Orchestrator serves as an 

abstraction layer over computing infrastructures, physical 

hardware, virtual hardware, private and public clouds. This 

abstraction allows the developing of computing, networking 

and storage management algorithms which can work on a 

unified system, rather than dealing with the complexity of a 

distributed system.  
The proposed Cloud Orchestrator is a container-based 

system. The authors of this work have chosen the logic of a 
container-based application to minimize any installation 
dependencies while also provide a cross platform application. 
Moreover, the Cloud Orchestrator’s responsibilities are i) to 
promote the deployment requests for the wind resource model 
chain services, namely Weather Research and Forecasting 
(WRF) jobs, ii) Manage the lifecycle of a running job (Stop, 
Delete, Restart) and iii) Manage the functional requirements 
of the jobs (total cost, total execution time etc.). The proposed 
architecture of the Cloud Orchestrator is depicted in Figure 1. 
Currently, the Cloud Orchestrator is deployed on top of an 
Amazon Elastic Compute Cloud (Amazon EC2) instance. Yet, 
the solution can be extended to other cloud providers. Amazon 
EC2 and the internal components of the Cloud Orchestrator 
are going to be described in the following sections.  

 

A. Cloud Computing Infrastructure 

Cloud computing is the on-demand distribution of 

information technology (IT) resources through the Internet at 

a pay-as-you-go model. Instead of purchasing, operating, and 

maintaining physical data centers and servers, cloud 

providers like Amazon Web Services (AWS) and Microsoft 

Azure can be used to obtain technological services such as 

processing power, storage, and databases. For the reference 

implementation of the proposed cloud orchestrator, we used 

Amazon Elastic Compute Cloud (Amazon EC2), which 

provides scalable computing power. The usage of cloud 

computing eliminates the need to invest in hardware upfront, 

facilitating the creation and rapid deployment of applications. 

In addition, the proposed Cloud Orchestrator is making use 

of spot instances provided as an alternative of the on-demand 

instances, aiming at minimizing the cost [25]. 

 

B. APIs Gateway 

The APIs Gateway component performs all activities 

involved in receiving and handling concurrent API calls from 

the third-party services. On the one hand, the API Gateway 

interacts with the Model Chain Controller, (i.e. a third-party  

service responsible for all the WRF jobs capabilities) in order 

to get and post deployment requests and stop or start the 

deployment of different tasks. Moreover, the API Gateway 

interacts with a third-party service for the realization of the 

proposed optimal configurations in a cloud environment. The 

APIs are available in Swagger (a readable and structured 

format) [21]. 

 

 

 

Fig. 1. Cloud Orchestrator Architecture Diagram 

 

C. Infrastructure Manager 

The Infrastructure Manager is the core component of the 

Cloud Orchestrator. It is the recipient of all the job requests, 

while making sure that all tasks associated with a specific job 

are executed in the correct order. It is also responsible for the 

reporting of the deployment results back to the initiator of the 

request (i.e. the Model Chain Controller). 

 

1) Launch Templates:  

In the context of our reference implementation, it is important 

to highlight that within EC2, an Amazon Machine Image 

(AMI) is a template that contains a software configuration 

(e.g. an operating system, an application server, and 

applications). From an AMI, an instance is launched, which 

is a copy of the AMI running as a virtual server in the cloud. 

Whithin Cloud Orchestrator we are leveraging the capability 

of Launch Templates. A launch template, specifies instance 

configuration information and contains the AMI ID, the 

instance type (e.g. c5.4xlarge, m4.10xlarge etc.), a key pair, 

security groups, and other EC2 instance-launching 

information. Defining a launch template allows you to have 

numerous variations of configuration, optimizing the 

deployment of jobs. 

 

2) Queueing System:  

In the current case of wind resource modelling, in order 

to optimize computing efficiency, the proposed system 

foresees that multiple WRF jobs could be submitted at the 

same time. In order to ensure that all jobs would run without 

interupptions e.t.c, the Cloud Orchestrator contains a custom 

queueing system which aims for the optimized management 

of parallel deployment requests. Jobs are submitted to the 



queueing system where they reside until they can be 

scheduled to run in a compute environment. The Cloud 

Orchestrator takes advantage of spot instances in order to 

deploy the WRF jobs. Moreover, the Queueing System 

provides a deployment priority to the submitted WRF jobs, 

that is used by the Infrastructure Abstraction, to determine 

which jobs in which order should be evaluated for execution 

first (i.e. the earliest job creation date will always have the 

highest priority). 

 

3) Monitoring System: 

 Whithin the Cloud Orchestrator a Monitoring System has 

also been enabled at VM level monitoring (machine logs, 

CPU usage, memory, etc.). The established monitoring 

system in the orchestrator was enabled to better debug and 

understand failure of tasks due to issues identified at the VM 

level. The implemented Monitoring System is based on 

Amazon CloudWatch. Amazon CloudWatch is a monitoring 

and observability service designed specifically for DevOps 

engineers, developers, and IT administrators. CloudWatch 

delivers data and actionable insights to facilitate monitoring 

of the running services, responding to system-wide 

performance changes and optimizing resource use by 

providing a single picture of operational health. Within the 

proposed architecture, CloudWatch is used to identify 

abnormal activity in the deployed WRF jobs and the running 

instances, display logs and metrics side by side, take 

automatic actions and uncover insights to keep the Cloud 

Orchestrator operating smoothly. Moreover, pricing 

monitoring is also integrated, to enable the monitoring of the 

costs per wrf job in specific periods of time. 

 

D. Infrastructure Abstraction 

The infrastructure abstraction is a subsystem of the Cloud 

Orchestrator, located in the lower layer that enables the 

communication between the Cloud Orchestrator components 

and the dockerized services (i.e. WRF tasks). Moreover, the 

Infrastructure Abstraction is responsible to build, deploy, 

serve, and orchestrate the jobs (i.e. a “chain” of tasks) 

identified by the Infrastructure Manager, which are running 

in the form of docker containers. As it is depicted in the 

Figure 1, the Infrastructure Abstraction is targeting to enable 

multiple instances whenever needed, towards an optimal 

cloud environment. 

 

IV. WIND RESOURCE MODEL-CHAIN USE CASE 

 The proposed cloud orchestration was tested in a wind 
resource model-chain use case, in the scope of the WindSider 
project [22]. WindSider aims to upend the paradigm by 
bringing to market a cloud-based tool to radically improve the 
assessment of new wind farm sites in two ways: (a) By 
significantly reducing the wind-resource and yield assessment 
error and (b) by reducing the prospecting and development 
time through automation. The current use case integrates the 

fully-automated wind resource assessment and data 
generation based on an innovative model-chain (i.e. Model 
Chain Service by  3E [28]) and utilizes cloud computing to 
enable processing towards optimization of results accuracy 
from very large data-sets and subsequently reduce costs and 
delivery time.  

 The Model Chain Service provides information to the 
Cloud Orchestrator, related to the WRF Job that is going to be 
deployed on top of the infrastructure. Specifically, the Model 
Chain Service provides the WRF Job id, tasks ids, max cost 
etc. to the Cloud Orchestrator through API communication. 
Then, a request towards the Cloud Optimizer is triggered, 
requesting the fleet of instances (a set of different instance 
types are used trying to minimize the probability of 
interruptions while using spot instances) to run the job. 
Furthermore, since the proposed system supports the parallel 
deployment of multiple jobs, a deployment priority is given to 
the tasks, in case they enter the queue. As soon as all tasks are 
completed, the Cloud Orchestrator reports back to the Model 
Chain Service the status of the WRF Job, as well as the results 
of the mesoscale model.  

 

V. EVALUATION 

The evaluation environment is an isolated part of a private 
Amazon cloud. Specifically, Amazon EC2 resources in the 
Europe (Ireland) region are used. The Cloud Orchestrator VM 
is deployed in a a1.large instance, with the following 
characteristics: (a) Custom built AWS Graviton Processor 
with 64-bit Arm cores, (b) 2 vCPUs, (c) 4 GB memory, (d) up 
to 10 Gbps network performance. 

A. Evaluation Criteria 

As mentioned in Section III, the Cloud Orchestrator is taking 

advantage of the Launch Templates feature of Amazon EC2 

to deploy the WRF jobs on spot instances. Taking into 

consideration the Cloud Orchestrator architecture, we 

classified the evaluation criteria into three sub-categories (a) 

Performance criteria, (b) Functional criteria and (c) 

Operational criteria.  

The following criteria (Table I) define relevant performance 

requirements for the Cloud Orchestrator, that are based on 

prior benchmarks of WRF job deployments. 

TABLE I.  PERFORMANCE CRITERIA  

KPI Description Goal 

Latency 

Latency is defined as the time of a Cloud Orchestrator 

APIs to respond. 

API to return the cost spent of a 

completed job 

<=5s response 

time 

APIs to return the application and 

container level logs of a specific 
task 

<=5s response 

time 

All the rest available APIs [21] <=1s response 

time 

Completion 

time 

Completion time is defined as the 

time a WRF job needs to be 

completed with exit code ‘0’  

<=24h 

competition  

time 

Deployment 
time 

Deployment time is defined as the 
time an on-spot instance needs to be 

ready for a job deployment 

<=5m  
deployment  

time 



TABLE II.  FUNCTIONAL CRITERIA 

KPI Description Goal 

Number of  

concurrent  
deployment  

requests 

How many requests can be handled at  

the same time through the Cloud 
Orchestrator (concurrency is referred 

to the number of requests that can be 

entered in the queue) 

unlimited 

 

Table II defines relevant functional requirements for the 

Cloud Orchestrator.  

Finally, in regards to the operational criteria, the Cloud 

Orchestrator should be able to compete available HPC 

solutions and minimize the computing costs comparing to 

them.  

 

B. Evaluation Results 

For a full run of a real WRF job, 122 tasks have been 

deployed on c5.4xlarge instances in the eu-west-1 AWS 

region. Several variabilities in the duration  of each task have 

been observed. 

The next sub-sections provide more details on the evaluation 

criteria. 

1) Performance Metrics:  

• Latency: The latency of Cloud Orchestrator is 

defined as the time of the developed APIs to respond 

and the goal set is less than 1000ms (i.e. 1 second). 

For measuring purposes of the KPI 1 we are 

generating requests to all APIs of the Cloud 

Orchestrator using Postman [23]. The evaluation of 

the results of this experimentation was found 

promising, as presented in Figure 3.  

• Deployment Time: The deployment time KPI of 

Cloud Orchestrator is defined as the time needed for 

an Amazon EC2 instance to be ready for deployment 

of a WRF Job. The goal was set to 5 minutes, and 

the mean for measuring is through the established 

logging system (i.e. Dozzle [24]). The deployment 

time was 4 minutes, which is acceptable since the 

target goal is maximum 5 minutes. 

• Completion Time: The completion time KPI of 

Cloud Orchestrator is defined as the time a WRF job 

needs to be succefully completed. Even though 

several variations have been observed, the WRF job 

was completed within the target of 24 hours.  

2) Functional Metrics:  

The main functional requirement that was set, was the 

number of concurrent deployment requests, aiming at 

handling an unlimited number towards the Cloud 

Orchestrator. For that purpose, we set up a Queueing System, 

managing the targeted KPI. With the implemented Queueing 

System multiple requests are getting deployed in parallel 

whenever there is free space in our predefined virtual cluster. 

Currently, the Cloud Orchestrator can handle an unlimited 

number of requests, of which 122 VMs are running 

concurrently (on average), and the rest are waiting within the 

queue.  

 

 
Fig. 3. Response time of cloud orchestrator APIs 

 

3) Operational Metrics:  

The total cost of this run has been successfully reached 

our expectations minimizing the computing costs. During the 

evaluation we took under consideration the tasks that were 

successfully deployed and we concluded that the operational 

cost to run a WRF job on top of the Cloud Orchestrator is less 

comparing to other solutions.   

 

VI. CONCLUSIONS 

Within this article we presented a Cloud Orchestration 

architecture which enables the dynamic and flexible cloud 

deployment of containerized wind resource model chains. 

The proposed architecture promotes the deployment 

automation and minimizes the time and cost required for a 

new wind farm resource evaluation. The Cloud Orchestrator 

is responsible for acquiring the deployment requests for the 

wind resource model chain services, namely the Weather 

Research and Forecasting (WRF) jobs, as well as for more 

application specific tasks such as stopping a running job, 

checking its status, automatically restart a job, request costs 

etc. The proposed system is based in a wind resource model-

chain use case, in the scope of WindSider [22] and is built on 

top of Amazon EC2, which was used to build and host the 

proposed system. 

Considering the massive dimension that resources have 

attained, as well as the proliferation of diverse cloud 

providers supplying resources at different levels of the cloud 

stack, resource orchestration is seen as a difficult 

undertaking. Thus, future work could evolve the proposed 

architecture in order to support multi-cloud deployment of 

containerized model chains. Specifically, we envision our 

approach to be more cloud-native in the future, using Cloud-

native container orchestration services (e.g. Amazon 

Managed Kubernetes Service). The use of Amazon Managed 

Kubernetes Service (EKS) could help also to support multi-

clouds through the EKS anywhere, which is an emerging 

multi-cloud container management service. 
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