

Cloud Orchestration for Optimized Computing

Efficiency: The Case of Wind Resource Modelling

Marios Touloupou1*, Evgenia Kapassa2, Stamatia Rizou3

1,* Europen Projects Department, Singular Logic S.A, Athens, Greece, mtouloupou@ep.singularlogic.eu; Department of Digital Innovation,

University of Nicosia, Cyprus, touloupos.m@unic.ac.cy
2 Europen Projects Department, Singular Logic S.A, Athens, Greece, ekapassa@ep.singularlogic.eu; Department of Digital Innovation,

University of Nicosia, Cyprus, kapassa.e@unic.ac.cy
3 Europen Projects Department, Singular Logic S.A, Athens, Greece, srizou@singularlogic.eu

Abstract— The Weather Research and Forecasting (WRF)

model is a multi-purpose open source weather model, which is

widely used by the wind energy community. However, the state

of the art applications that use the WRF model for wind

resources do not always meet the sector's needs. The

fundamental challenge is the massive quantity of data required

for accurate modelling, as well as the expenses associated with

the computing of such massive volumes of data, implying that

state-of-the-art approaches are not appropriate. Our work

tackles this issue with the use of a novel orchestration

framework relying on cloud computing infrastructure. Cloud

computing platforms provide robust infrastructure that allows

for the deployment of production-level services as well as

extended processing and storage capacity. This paper presents

the overall software architecture of a Cloud Orchestration

System, enabling the dynamic and flexible cloud deployment of

containerized wind resource model chains. Moreover, a set of

performance, functional and operational criteria are presented

and evaluated, using a real use case of a wind resource model.

Keywords—cloud, orchestration, optimal deployment,

computing efficiency, wind resources

I. INTRODUCTION

Wind power accounts for around 4% of the worldwide

renewable energy mix (12% in Europe) [3], which is

insufficient to limit temperature rises and reduce carbon

emissions. One of the reasons for the low amount of energy

generated by wind is the gap in automated tools to wind farm

developers and their investors/lenders to generate quick,

accurate, and financially sustainable wind site yield

estimates, which hinder the sector's efficiency [4].

Notably, every year, the wind energy sector loses vast

amounts of wind power generating capacity and earnings, as

a result of errors made in wind resource and yield estimations,

as well as ineffective modelling of the wind plants. [1]. For

wind farm design and construction, the rapidly expanding

wind sector demands accurate and efficient wind resource

evaluation across varied topography configurations [2].

Typically, winds vary according to the location and time in

daily, yearly and seasonal patterns all around the world.

Assessing the wind power potential at any particular site or

area is critical in determining the efficiency of wind resource

for energy production within the available time constraint of

wind duration [3]. Commercially successful wind modelling

solutions that tackle this problem by analysing the selected

regions and assessing resource capacity, necessitates

extensive processing as well as advanced modelling

approaches to achieve bankable accuracy, low error, and high

predictability [4]. The main issue is the large amount of data

necessary for effective modelling, as well as the costs

associated with computing and storing such massive amounts

of data, meaning that current methodologies are resource

consuming [5].

Automation is necessary to significantly enhance the

process and minimize the time and money required for new

wind farm resource evaluation. The present paper presents a

Cloud Orchestration solution, that allows scaling up the

computation, increasing the computing efficiency and,

potentially, reducing the computing costs. More specifically,

the paper presents a cloud orchestrator for the flexible

deployment of models assessing wind farm yields that is

suited to the demands of wind power plant developers.

Modern solutions use high-performance computing (HPC)

infrastructures which have considerable limitations in terms

of scalability and flexibility of HPC centres [27]. These

limitations have consequently a significant impact on

operational costs and restrict the upscaling possibilities of

wind resource modelling as a commercial service [6]. As an

alternative, this work tackles this issue with the use of a cloud

orchestrator. Cloud computing systems provide an

infrastructure that enables the development of production-

level services, as well as processing and storage capacity. The

proposed approach uses containers, a lightweight, OS-level

virtualization technology that dramatically decreases the time

required to launch an application. The system also includes

an optimization module for continual adjustment of the

containerized deployment to reduce costs while maintaining

performance requirements. The implementation description

of the optimization process, however, will not be disclosed in

this work, and it will be treated as a "black box." In summary,

the following contributions are made by this paper:

• Design of the overall software architecture, namely
Cloud Orchestrator, enabling the dynamic, flexible
cloud deployment of containerized wind resource
model chains and WRF jobs [29].

• Interconnect appropriate monitoring tools, by
enabling the processing of monitoring data, extracted
from the cloud instances.

• Define a set of specific, measurable, achievable and
relevant key performance indicators (KPIs) to test and
evaluate the proposed architecture.

• Evaluate the technical aspects of the proposed Cloud
Orchestrator including performance, functional and
operational criteria. The testing and evaluation of the
proposed architecture is based on the case of a real
wind resource model.

The remaining parts of the paper are organized as follows. In

Section 2, we discuss a set of related work of microservices

orchestration in the cloud computing. Section 3 provides the

description of our proposed architecture as well as the

description of its APIs. Section 4 presents an overview of the

use case under which the proposed Cloud Orchestrator was

tested and evaluated. Section 5 presents how we conducted

the evaluation to show the usefulness of the proposed

solution. Finally, Section 6 concludes this paper and outlines

future work.

II. RELATED WORK

Cloud computing has drastically altered the way

computing is delivered to both consumers and commercial

users. Since its debut, cloud services adoption has increased,

and it is anticipated that global public cloud service revenues

would increase from 266.4 billion dollars in 2020 to 354.6

billion dollars in 2022 [7]. Thus, there are many (industrial

and academic) systems and tools that can be considered as

related work to our approach, due to the similarities in

functionality with cloud orchestrators.

To begin with, Swarm [8], Kubernetes [9], and Apache

Mesos [10] are container orchestration technologies that

execute orchestration at the container level on previously

existent resources. On the other hand, multi-cloud

programming libraries such as jClouds [11], libclouds [12]

and boto [13] are suitable for abstracting cloud APIs, but they

are not designed to orchestrate sophisticated virtual

infrastructure. Such services offer low-level APIs for

accessing cloud environments, so they may be integrated as

plugins into the proposed Cloud Orchestrator to enable access

to even more cloud resources. Closer to our approach,

Cloudify [14] is another example of an orchestrator, having

been released in 2014. It is an open source cloud orchestration

framework that allows users to design services and automate

their complete lifecycle, including deployment on any cloud,

monitoring, detecting issues and failures, manually or

automatically resolving them and managing maintenance

actions. Moreover, Openstack Heat [15] is a template-based

orchestration, that supports auto-scaling via Telemetry

integration. Although Openstack Heat has its own template

format, it can also handle CloudFormation templates. Heat is

open source; however, it only works with OpenStack clouds.

In addition, there is a lot of academic research in this topic

[16,17]. The authors of [18] conducted a thorough study and

comparison of the most important cloud resource

orchestration frameworks, as well as emphasized the multi-

cloud computing open challenges that the scientific

community must solve in the coming years.

The authors in [19] developed an extended mixed power

spectral density kernel as a prediction approach that

appropriately dealt with the complexity in resource usage for

cloud computing. Furthermore, the authors of [20] suggested

a solution that uses a prediction approach and a convex

optimization methodology to minimize energy usage in cloud

computing.

Despite these efforts and to the best of our knowledge, the

aforementioned solutions do not address the cost-efficient

and scalable execution of numerical simulations, e.g. in the

case of wind resource modelling, in cloud environments to

reduce costs and increase flexibility and resource efficiency

compared with the traditional HPC systems. Therefore, our

proposed approach aims to address this gap by introducing a

cloud orchestrator solution tailored to the needs of increased

computing capacity and flexibility to support efficient and

accurate wind energy modelling, while integrating it in a real

wind resource model use case.

III. CLOUD ORCHESTRATOR OVERVIEW

The proposed Cloud Orchestrator is a system responsible

for managing the life-cycle of the deployed services (i.e.

containers) that require cost-effective HPC. The Cloud

Orchestrator should also handle the dynamic orchestration of

the infrastructure that is used to host the services.

Specifically, the proposed orchestrator provides a system

which manages container-based applications consistently on

cloud. This system makes the physical resources (e.g. CPUs,

storage devices) transparent to the wind resource model chain

services. The services’ requirements are provided from a

third-party component and include the following: (a)

maximum allowed costs and (b) completion time for a

specific service. The Cloud Orchestrator serves as an

abstraction layer over computing infrastructures, physical

hardware, virtual hardware, private and public clouds. This

abstraction allows the developing of computing, networking

and storage management algorithms which can work on a

unified system, rather than dealing with the complexity of a

distributed system.
The proposed Cloud Orchestrator is a container-based

system. The authors of this work have chosen the logic of a
container-based application to minimize any installation
dependencies while also provide a cross platform application.
Moreover, the Cloud Orchestrator’s responsibilities are i) to
promote the deployment requests for the wind resource model
chain services, namely Weather Research and Forecasting
(WRF) jobs, ii) Manage the lifecycle of a running job (Stop,
Delete, Restart) and iii) Manage the functional requirements
of the jobs (total cost, total execution time etc.). The proposed
architecture of the Cloud Orchestrator is depicted in Figure 1.
Currently, the Cloud Orchestrator is deployed on top of an
Amazon Elastic Compute Cloud (Amazon EC2) instance. Yet,
the solution can be extended to other cloud providers. Amazon
EC2 and the internal components of the Cloud Orchestrator
are going to be described in the following sections.

A. Cloud Computing Infrastructure

Cloud computing is the on-demand distribution of

information technology (IT) resources through the Internet at

a pay-as-you-go model. Instead of purchasing, operating, and

maintaining physical data centers and servers, cloud

providers like Amazon Web Services (AWS) and Microsoft

Azure can be used to obtain technological services such as

processing power, storage, and databases. For the reference

implementation of the proposed cloud orchestrator, we used

Amazon Elastic Compute Cloud (Amazon EC2), which

provides scalable computing power. The usage of cloud

computing eliminates the need to invest in hardware upfront,

facilitating the creation and rapid deployment of applications.

In addition, the proposed Cloud Orchestrator is making use

of spot instances provided as an alternative of the on-demand

instances, aiming at minimizing the cost [25].

B. APIs Gateway

The APIs Gateway component performs all activities

involved in receiving and handling concurrent API calls from

the third-party services. On the one hand, the API Gateway

interacts with the Model Chain Controller, (i.e. a third-party

service responsible for all the WRF jobs capabilities) in order

to get and post deployment requests and stop or start the

deployment of different tasks. Moreover, the API Gateway

interacts with a third-party service for the realization of the

proposed optimal configurations in a cloud environment. The

APIs are available in Swagger (a readable and structured

format) [21].

Fig. 1. Cloud Orchestrator Architecture Diagram

C. Infrastructure Manager

The Infrastructure Manager is the core component of the

Cloud Orchestrator. It is the recipient of all the job requests,

while making sure that all tasks associated with a specific job

are executed in the correct order. It is also responsible for the

reporting of the deployment results back to the initiator of the

request (i.e. the Model Chain Controller).

1) Launch Templates:

In the context of our reference implementation, it is important

to highlight that within EC2, an Amazon Machine Image

(AMI) is a template that contains a software configuration

(e.g. an operating system, an application server, and

applications). From an AMI, an instance is launched, which

is a copy of the AMI running as a virtual server in the cloud.

Whithin Cloud Orchestrator we are leveraging the capability

of Launch Templates. A launch template, specifies instance

configuration information and contains the AMI ID, the

instance type (e.g. c5.4xlarge, m4.10xlarge etc.), a key pair,

security groups, and other EC2 instance-launching

information. Defining a launch template allows you to have

numerous variations of configuration, optimizing the

deployment of jobs.

2) Queueing System:

In the current case of wind resource modelling, in order

to optimize computing efficiency, the proposed system

foresees that multiple WRF jobs could be submitted at the

same time. In order to ensure that all jobs would run without

interupptions e.t.c, the Cloud Orchestrator contains a custom

queueing system which aims for the optimized management

of parallel deployment requests. Jobs are submitted to the

queueing system where they reside until they can be

scheduled to run in a compute environment. The Cloud

Orchestrator takes advantage of spot instances in order to

deploy the WRF jobs. Moreover, the Queueing System

provides a deployment priority to the submitted WRF jobs,

that is used by the Infrastructure Abstraction, to determine

which jobs in which order should be evaluated for execution

first (i.e. the earliest job creation date will always have the

highest priority).

3) Monitoring System:

 Whithin the Cloud Orchestrator a Monitoring System has

also been enabled at VM level monitoring (machine logs,

CPU usage, memory, etc.). The established monitoring

system in the orchestrator was enabled to better debug and

understand failure of tasks due to issues identified at the VM

level. The implemented Monitoring System is based on

Amazon CloudWatch. Amazon CloudWatch is a monitoring

and observability service designed specifically for DevOps

engineers, developers, and IT administrators. CloudWatch

delivers data and actionable insights to facilitate monitoring

of the running services, responding to system-wide

performance changes and optimizing resource use by

providing a single picture of operational health. Within the

proposed architecture, CloudWatch is used to identify

abnormal activity in the deployed WRF jobs and the running

instances, display logs and metrics side by side, take

automatic actions and uncover insights to keep the Cloud

Orchestrator operating smoothly. Moreover, pricing

monitoring is also integrated, to enable the monitoring of the

costs per wrf job in specific periods of time.

D. Infrastructure Abstraction

The infrastructure abstraction is a subsystem of the Cloud

Orchestrator, located in the lower layer that enables the

communication between the Cloud Orchestrator components

and the dockerized services (i.e. WRF tasks). Moreover, the

Infrastructure Abstraction is responsible to build, deploy,

serve, and orchestrate the jobs (i.e. a “chain” of tasks)

identified by the Infrastructure Manager, which are running

in the form of docker containers. As it is depicted in the

Figure 1, the Infrastructure Abstraction is targeting to enable

multiple instances whenever needed, towards an optimal

cloud environment.

IV. WIND RESOURCE MODEL-CHAIN USE CASE

 The proposed cloud orchestration was tested in a wind
resource model-chain use case, in the scope of the WindSider
project [22]. WindSider aims to upend the paradigm by
bringing to market a cloud-based tool to radically improve the
assessment of new wind farm sites in two ways: (a) By
significantly reducing the wind-resource and yield assessment
error and (b) by reducing the prospecting and development
time through automation. The current use case integrates the

fully-automated wind resource assessment and data
generation based on an innovative model-chain (i.e. Model
Chain Service by 3E [28]) and utilizes cloud computing to
enable processing towards optimization of results accuracy
from very large data-sets and subsequently reduce costs and
delivery time.

 The Model Chain Service provides information to the
Cloud Orchestrator, related to the WRF Job that is going to be
deployed on top of the infrastructure. Specifically, the Model
Chain Service provides the WRF Job id, tasks ids, max cost
etc. to the Cloud Orchestrator through API communication.
Then, a request towards the Cloud Optimizer is triggered,
requesting the fleet of instances (a set of different instance
types are used trying to minimize the probability of
interruptions while using spot instances) to run the job.
Furthermore, since the proposed system supports the parallel
deployment of multiple jobs, a deployment priority is given to
the tasks, in case they enter the queue. As soon as all tasks are
completed, the Cloud Orchestrator reports back to the Model
Chain Service the status of the WRF Job, as well as the results
of the mesoscale model.

V. EVALUATION

The evaluation environment is an isolated part of a private
Amazon cloud. Specifically, Amazon EC2 resources in the
Europe (Ireland) region are used. The Cloud Orchestrator VM
is deployed in a a1.large instance, with the following
characteristics: (a) Custom built AWS Graviton Processor
with 64-bit Arm cores, (b) 2 vCPUs, (c) 4 GB memory, (d) up
to 10 Gbps network performance.

A. Evaluation Criteria

As mentioned in Section III, the Cloud Orchestrator is taking

advantage of the Launch Templates feature of Amazon EC2

to deploy the WRF jobs on spot instances. Taking into

consideration the Cloud Orchestrator architecture, we

classified the evaluation criteria into three sub-categories (a)

Performance criteria, (b) Functional criteria and (c)

Operational criteria.

The following criteria (Table I) define relevant performance

requirements for the Cloud Orchestrator, that are based on

prior benchmarks of WRF job deployments.

TABLE I. PERFORMANCE CRITERIA

KPI Description Goal

Latency

Latency is defined as the time of a Cloud Orchestrator

APIs to respond.

API to return the cost spent of a

completed job

<=5s response

time

APIs to return the application and

container level logs of a specific
task

<=5s response

time

All the rest available APIs [21] <=1s response

time

Completion

time

Completion time is defined as the

time a WRF job needs to be

completed with exit code ‘0’

<=24h

competition

time

Deployment
time

Deployment time is defined as the
time an on-spot instance needs to be

ready for a job deployment

<=5m
deployment

time

TABLE II. FUNCTIONAL CRITERIA

KPI Description Goal

Number of

concurrent
deployment

requests

How many requests can be handled at

the same time through the Cloud
Orchestrator (concurrency is referred

to the number of requests that can be

entered in the queue)

unlimited

Table II defines relevant functional requirements for the

Cloud Orchestrator.

Finally, in regards to the operational criteria, the Cloud

Orchestrator should be able to compete available HPC

solutions and minimize the computing costs comparing to

them.

B. Evaluation Results

For a full run of a real WRF job, 122 tasks have been

deployed on c5.4xlarge instances in the eu-west-1 AWS

region. Several variabilities in the duration of each task have

been observed.

The next sub-sections provide more details on the evaluation

criteria.

1) Performance Metrics:

• Latency: The latency of Cloud Orchestrator is

defined as the time of the developed APIs to respond

and the goal set is less than 1000ms (i.e. 1 second).

For measuring purposes of the KPI 1 we are

generating requests to all APIs of the Cloud

Orchestrator using Postman [23]. The evaluation of

the results of this experimentation was found

promising, as presented in Figure 3.

• Deployment Time: The deployment time KPI of

Cloud Orchestrator is defined as the time needed for

an Amazon EC2 instance to be ready for deployment

of a WRF Job. The goal was set to 5 minutes, and

the mean for measuring is through the established

logging system (i.e. Dozzle [24]). The deployment

time was 4 minutes, which is acceptable since the

target goal is maximum 5 minutes.

• Completion Time: The completion time KPI of

Cloud Orchestrator is defined as the time a WRF job

needs to be succefully completed. Even though

several variations have been observed, the WRF job

was completed within the target of 24 hours.

2) Functional Metrics:

The main functional requirement that was set, was the

number of concurrent deployment requests, aiming at

handling an unlimited number towards the Cloud

Orchestrator. For that purpose, we set up a Queueing System,

managing the targeted KPI. With the implemented Queueing

System multiple requests are getting deployed in parallel

whenever there is free space in our predefined virtual cluster.

Currently, the Cloud Orchestrator can handle an unlimited

number of requests, of which 122 VMs are running

concurrently (on average), and the rest are waiting within the

queue.

Fig. 3. Response time of cloud orchestrator APIs

3) Operational Metrics:

The total cost of this run has been successfully reached

our expectations minimizing the computing costs. During the

evaluation we took under consideration the tasks that were

successfully deployed and we concluded that the operational

cost to run a WRF job on top of the Cloud Orchestrator is less

comparing to other solutions.

VI. CONCLUSIONS

Within this article we presented a Cloud Orchestration

architecture which enables the dynamic and flexible cloud

deployment of containerized wind resource model chains.

The proposed architecture promotes the deployment

automation and minimizes the time and cost required for a

new wind farm resource evaluation. The Cloud Orchestrator

is responsible for acquiring the deployment requests for the

wind resource model chain services, namely the Weather

Research and Forecasting (WRF) jobs, as well as for more

application specific tasks such as stopping a running job,

checking its status, automatically restart a job, request costs

etc. The proposed system is based in a wind resource model-

chain use case, in the scope of WindSider [22] and is built on

top of Amazon EC2, which was used to build and host the

proposed system.

Considering the massive dimension that resources have

attained, as well as the proliferation of diverse cloud

providers supplying resources at different levels of the cloud

stack, resource orchestration is seen as a difficult

undertaking. Thus, future work could evolve the proposed

architecture in order to support multi-cloud deployment of

containerized model chains. Specifically, we envision our

approach to be more cloud-native in the future, using Cloud-

native container orchestration services (e.g. Amazon

Managed Kubernetes Service). The use of Amazon Managed

Kubernetes Service (EKS) could help also to support multi-

clouds through the EKS anywhere, which is an emerging

multi-cloud container management service.

ACKNOWLEDGMENT

This work has been partially supported by the WindSider

project, funded by the European Commission under Grant

Agreement number: 878788.

REFERENCES

[1] Sadorsky, Perry. "Wind energy for sustainable development: Driving
factors and future outlook." Journal of Cleaner Production 289 (2021):
125779.

[2] Dykes, Katherine. "Optimization of wind farm design for objectives
beyond LCOE." Journal of Physics: Conference Series. Vol. 1618. No.
4. IOP Publishing, 2020.

[3] Ortega-Izquierdo, Margarita, and Pablo del Río. "An analysis of the
socioeconomic and environmental benefits of wind energy deployment
in Europe." Renewable Energy 160 (2020): 1067-1080.

[4] Kashem, Saad Bin Abul, et al. "Wind Power Integration with Smart
Grid and Storage System: Prospects and Limitations." International
Journal of Advanced Computer Science and Applications 11 (2020):
552.

[5] Peters, Jared L., et al. "A systematic review and meta-analysis of GIS
use to reveal trends in offshore wind energy research and offer insights
on best practices." Renewable and Sustainable Energy Reviews 128
(2020): 109916.

[6] Dorrell, John, and Keunjae Lee. "The cost of wind: Negative economic
effects of global wind energy development." Energies 13.14 (2020):
3667.

[7] "Gartner forecasts worldwide public cloud revenue to grow 17% in
2020" (2019). Available at: https://www.gartner.com/
en/newsroom/press-releases/2019-11-13-gartner-forecastsworldwide-
public-cloud-revenue-to-grow-17-percent-in-2020

[8] “Docker swarm container orchestration tool” Available at:
https://docs.docker.com/engine/swarm/

[9] “Kubernetes: Production-Grade Container Orchestration”, Available
at: https://kubernetes.io/

[10] “Apache Mesos: An open-source project to manage computer
clusters”, Available at: http://mesos.apache.org/

[11] “Apache jclouds toolkit”, Available at: https://jclouds.apache.org/

[12] “Apache Libcloud library”, Available at: https://libcloud.apache.org/

[13] “Boto3 SDK for Amazon Web Services”, Available at:
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html

[14] “Cloudify Orchestration Platform”, Available at: https://cloudify.co/

[15] “OpenStack Heat Orchestration program”, Available at:
https://wiki.openstack.org/wiki/Heat

[16] Tom-Ata, Jean-Didier Totow, and Dimosthenis Kyriazis. Real-time
adaptable resource allocation for distributed data-intensive
applications over cloud and edge environments. No. 4459. EasyChair,
2020.

[17] Kousiouris, George, and Dimosthenis Kyriazis. "Functionalities,
Challenges and Enablers for a Generalized FaaS based Architecture as
the Realizer of Cloud/Edge Continuum Interplay." CLOSER. 2021.

[18] https://journalofcloudcomputing.springeropen.com/track/pdf/10.1186/
s13677-020-00194-7.pdf

[19] Energy efciency in cloud computing based on mixture power spectral
density prediction

[20] Optimizing Power Consumption in Cloud Computing based on
Optimization and Predictive Analysis

[21] “Windsider: API Specification”, Available at:
http://54.247.160.180:8080/api/v1/

[22] “WindSider: AI-Powered Wind Data Platform”, Available at:
https://www.windsider.io/

[23] “Postman API Platform”, Available at: https://www.postman.com/

[24] “Dozzle is a real-time log viewer for docker containers.”, Available at:
https://dozzle.dev/

[25] “Amazon Spot Instances”, Available at:
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-
instances.html

[26] “Hybrid Cloud with AWS”, Available at:
https://aws.amazon.com/hybrid/

[27] Al-Jody, Taha, Hamza Aagela, and Violeta Holmes. "Inspiring the
Next Generation of HPC Engineers with Reconfigurable, Multi-Tenant
Resources for Teaching and Research." Sustainability 13.21 (2021):
11782.

[28] “3E - Digitalise Your Renewable Energy and Maximise Your Asset
Value”, Available at: https://3e.eu/

[29] Witha, Björn, Hahmann, Andrea, Sile, Tija, Dörenkämper, Martin,
Ezber, Yasemin, García-Bustamante, Elena, González-Rouco, J. Fidel,
Leroy, Grégoire, & Navarro, Jorge. (2019). WRF model sensitivity
studies and specifications for the NEWA mesoscale wind atlas
production runs. Zenodo. https://doi.org/10.5281/zenodo.2682604

