
International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

DOI : 10.5121/ijesa.2015.5102 19

A NOVEL METHODOLOGY FOR TASK DISTRIBUTION

IN HETEROGENEOUS RECONFIGURABLE COMPUTING

SYSTEM

Mahendra Vucha
1
 and Arvind Rajawat

2

1,2
Department of Electronics & Communication Engineering, MANIT, Bhopal, India.

1
Department of Electronics & Communication Engineering, Christ University,

Bangalore, India.

ABSTRACT

Modern embedded systems are being modeled as Heterogeneous Reconfigurable Computing Systems

(HRCS) where Reconfigurable Hardware i.e. Field Programmable Gate Array (FPGA) and soft core

processors acts as computing elements. So, an efficient task distribution methodology is essential for

obtaining high performance in modern embedded systems. In this paper, we present a novel methodology

for task distribution called Minimum Laxity First (MLF) algorithm that takes the advantage of runtime

reconfiguration of FPGA in order to effectively utilize the available resources. The MLF algorithm is a list

based dynamic scheduling algorithm that uses attributes of tasks as well computing resources as cost

function to distribute the tasks of an application to HRCS. In this paper, an on chip HRCS computing

platform is configured on Virtex 5 FPGA using Xilinx EDK. The real time applications JPEG, OFDM

transmitters are represented as task graph and then the task are distributed, statically as well dynamically,

to the platform HRCS in order to evaluate the performance of the designed task distribution model. Finally,

the performance of MLF algorithm is compared with existing static scheduling algorithms. The comparison

shows that the MLF algorithm outperforms in terms of efficient utilization of resources on chip and also

speedup an application execution.

KEYWORDS

Heterogeneous Reconfigurable Computing Systems, FPGA, parallel processing, concurrency, Directed

Acyclic Graph.

1. INTRODUCTION

Modern embedded systems are used for highly integrated handheld devices such as mobile

phones, digital cameras, and multimedia devices. Hardware Software Co-design supports mixed

hardware and software implementation to satisfy the given timing and cost constraints. Co-

design is a flexible solution for the applications when hardware realization satisfies the timing but

not the cost constraints whereas software solution is not fast enough. So, the hardware software

co-design provides intensive solution for the modern embedded systems which are modeled with

flexible computing platform like Field Programmable Gate Arrays (FPGA). The FPGA is flexible

hardware that offers cost effective solution through reuse and also accelerate many multimedia

applications by adopting their hardware at runtime. In real time, the tasks of parallel application

must share the resources of FPGA effectively in order to enhance application execution speed and

it can be achieved through effective scheduling mechanism. The aim of this paper is to introduce

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

 20

a disciplined approach to utilize the resources of embedded system, which are having reusable

architectures, and also that meets the requirements of variety real time applications. Diverse set of

resources like Reconfigurable Logic Units (RLUs) and soft core processors are interconnected

together, with a high speed communication network, on a single chip FPGA that describes a new

computing platform called Heterogeneous Reconfigurable Computing Systems (HRCS). The

HRCS requires an efficient application scheduling methodology to share their resources in order

to achieve high performance and also utilize the resources effectively. There are many researchers

[3] [6] [7] [9] presented techniques for mapping multiple tasks to High Speed Computing

Systems [26] with the aim of “minimizing execution time of an application” and also “efficient

utilization of resources”. In this paper, first we would describe review of the various existing task

distribution methodologies for platforms like HRCS and proposed a novel task distribution

methodology. In general, task distribution i.e. scheduling models are two types called static and

dynamic. Static Scheduling: All information needed for scheduling such as the structure of the

parallel application, execution time of individual tasks and communication cost between the tasks

must be known in advance and they are described in [10] [11] [12] [13] [14]. Dynamic

scheduling: The scheduling decisions made at runtime are demonstrated in [8] [20] [22] [24] [26]

and their aim is not only enhancing the execution time and also minimize the communication

overheads. The static and dynamic scheduling heuristic approaches, proposed by various

researches, are classified into four categories: List scheduling algorithms [20], clustering

algorithms [11], Duplication Algorithms [22], and genetic algorithms. The list scheduling

algorithms [20] provides good quality of task distribution and their performance would be

compatible with all real time categories. So, in this paper we have been motivated to develop list

scheduling algorithm and generally it has three steps: task selection, processor selection and

status update. In this paper, we have developed a list based task distribution model which is based

on the attributes of the tasks of an application and computing platform. The remaining paper is

organized as the literature review in chapter 2, problem formulation in chapter 3, task distribution

methodology in chapter 4, implementation scheme in chapter 5, and results discussion in chapter

6 and finally paper is concluded in chapter 7.

2. LITERATURE REVIEW

The task distribution problems for CPU as well as for reconfigurable hardware have been

addressed by many researchers in academic and industry. However, research in this paper is

targeted to CPU – FPGA environment. The articles discussed in this session describe various task

scheduling methodologies for heterogeneous computing systems. A computing platform called

MOLEN Polymorphic processor described in [26] which is incorporated with both general

purpose and custom computing processing elements. The MOLEN processor is designed with

arbitrary number of programmable units to support both hardware and software tasks. An

efficient multi task scheduler in [9] proposed for runtime reconfigurable systems and also it has

introduced a new parameter called Time-Improvement as cost function for compiler assisted

scheduling models. The Time-Improvement parameter described based on reduction-in-task-

execution time and distance-to-next-call of the tasks in an application. The scheduling system in

[9], targeted to MOLEN Polymorphic processor [26] and in which the scheduler assigns control

of tasks and less computing intensive tasks to General Purpose Processor (GPP) whereas

computing intensive tasks are assigned to FPGA. The task scheduler in [9] outperforms previous

existing algorithms and accelerates task execution 4% to 20%. In [6], an online scheduling is

demonstrated for CPU-FPGA platform where tasks are described into three categories such as

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

 21

Software Tasks executes only on CPU, Hardware Tasks executes only on FPGA and Hybrid

Tasks executes on both CPU & FPGA. The scheduling model [6] is integration of task allocation,

placement and task migration modules and considers the reserved time of tasks as cost function to

schedule the tasks of an application. An On-line HW/SW partitioning and co-scheduling

algorithm [3] proposed for GPP and Reconfigurable Processing Unit (RPU) environment in

which Hardware Earliest Finish Time (HEFT) and Software Earliest Finish Time (SEFT) are

estimated for tasks of an application. The difference between HEFT and SEFT imply to partition

the tasks and EFT used to define scheduled tasks list for GPP and RPU as well. An overview of

tasks co-scheduling [7] [31] is described to µP and FPGA environment and it have been defined

from different research communities like Embedded Computing (EC), Heterogeneous Computing

(HC) and Reconfigurable Hardware (RH). The Reconfigurable Computing Co-scheduler (ReCoS)

[7] integrates the strengths of HC and RH scheduling policies in order to effectively handle the

RC system constraints such as the number of FFs, LUTs, Multiplexers, CLBs, communication

overheads, reconfiguration overheads, throughputs and power constraints. The ReCoS, as

compared with EC, RC and RH scheduling algorithms, shows improvement in optimal schedule

search time and execution time of an application. Hardware supported task scheduling is

proposed in [15] for Dynamically Reconfigurable SoC (RSoC) to utilize the resources effectively

for execution of multi task applications. The RSoC architecture comprises a general purpose

embedded processor along with two L1 data and instruction cache and number of reconfigurable

logic units on a single chip. In [15], task systems are represented as Modified Directed Acyclic

Graph (MDAG) and the MDAG defined as tuple G = (V, E
d
, E

c
, P), where V is set of nodes, E

d

and E
c
 are the set of directed data edges and control edges respectively and P represents the set of

probabilities associated with E
c
. The conclusion of the paper [15] states that Dynamic Scheduling

(DS) does not degrade as the complexity of the problem increase whereas the performance of

Static Scheduling (SS) decline. Finally, the DS outperforms the SS when both task system

complexity and degree of dynamism increases. Compiler assisted runtime scheduler [16] is

designed for MOLEN architecture where the run time application is described as Configuration

Call Graph (CCG). The CCG assigns two parameters called the distance to the next call and

frequency of calls in future to the tasks in an application and these parameters acts as cost

function to schedule the tasks. Communication aware online task scheduling for partially

reconfigurable systems [17] distributes the tasks of an application to 2D area of computing

architecture and where communication time of tasks acts as cost function to schedule the tasks.

The scheduler in [17] describes the tasks expected end time as �� = ������� + ��
��
� + ��
��� +
���� + ��
���	, where ������� is completion time of already scheduled task, ��
��
� is task

configuration time, ��
��� is data/memory read time, ���� is task execution time and ��
��� is

data/memory write time and it could run on host processor. HW/SW co-design techniques [18]

are described for dynamically reconfigurable architectures with the aim of deciding execution

order of the event at run time based on their EDF. Here they have demonstrated a HW/SW

partitioning algorithm, a co-design methodology with dynamic scheduling for discrete event

systems along with a dynamic reconfigurable computing multi-context scheduling algorithm.

These three co-design techniques [18] minimize the application execution time by paralleling

events execution and it could be controlled by host processor for both shared memory and local

memory based Dynamic Reconfigurable Logic (DRL) architectures. When number of DRL cells

is equal or more than three, the techniques in [18] brings better optimization for shared memory

architecture compared to the local memory architectures. A HW/SW partitioning algorithm

presented in [30] to partition the tasks as software tasks and hardware tasks based on their waiting

time. A layer model in [20] provides systematic use of dynamically reconfigurable hardware and

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

 22

also reduces the error-proneness of the system components. A methodology in [34] presented for

building real time reconfigurable systems and they ensure that all the constraints of the

applications are met. In [34, the Compulsory-Reuse (CR) tasks in an application are found and

they are used to calculate the Loading-Back factor that support the reuse of resources. The

various research articles addressed in this section describes task distribution of non real time

systems in order to achieve optimized performance and throughput but they may miss deadlines

in real time. In this article, we also focused on non real time systems with the objective to meet

dead line requirements at runtime.

3. TASK DISTRIBUTION PROBLEM

Generally, a task distribution methodology consists of an application, targeted architecture and

criteria to task distribution. So this chapter is intended to brief about task graph of an application,

targeted architecture, performance criteria, motivation to the research and some necessary

assumption.

3.1 Targeted architecture

Heterogeneous reconfigurable hardware is an emerging technology [1] [26] [32] [33] due to their

high performance, flexibility, area reuse and also provides faster time-to-market solutions [1] [33]

for real time applications compared to ASIC solutions. In this research, a computing platform is

modeled on a single chip FPGA which consists of a soft core processor (i.e. microprocessor is

configured on core of FPGA) and multiple Reconfigurable Logic Unit (RLU) as processing

elements shown in figure 1. The soft core processor is static core in nature and it would execute

software version of tasks in an application. The reconfigurable units RLU1, RLU2, RLU3, RLU4

and RLU5 support dynamic reconfiguration at runtime for hardware tasks of an application. The

Cache memory is dedicated for soft core processor to store the instructions and input/output data

while task execution. The shared memory stores the task executables and input/output data for

both soft core and hard core (i.e. RLU computing elements) processing elements.

Figure 1. Target heterogeneous architecture

The soft core and hard core Processing Elements (PEs) in the targeted architecture are wrapped

with communication interface so that provides interface between memory and PEs for data

interchange. The hardware reconfiguration and tasks execution is managed by a task distribution

model which would be the objective of this research and it can be demonstrated in coming

FPGA

Soft core

Processor

Cache

Memory

Shared

Memory
RLU 1 RLU 2

RLU 4

RLU 5

RLU 3
Communication Interface

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

 23

chapters. The RLUs independently execute the tasks and communicate with each other. The

targeted platform can be implemented on Xilinx Virtex-5 and Virtex-6 or Altera FPGA devices.

The FPGA Vendors provide specific design tools to develop custom computing platforms where

as the Xilinx EDK development tool is used to develop a processor based reconfigurable system

called Heterogeneous Reconfigurable Systems.

3.2 Application as Task Graph

An application is represented by a waited Directed Acyclic Graph (DAG) G = (V, E), where V

represents set of tasks � = {��, ��, �� 	…	��}	and E represents set of edges E = {e11, e12 …., e21

,e22, .…., eMN} between the tasks. Each edge �
��	� represents precedence constraint such that

task �
 should complete its execution before ��. In a DAG, task without any predecessor is an

entry task and task without successor is an exit task. Generally, the tasks execution of an

application is non – preemptive but in this research we have considered that the tasks behavior

would be either preemptive or non-preemptive. In this research, the tasks of an application, i.e.

DAG, are waited with their attributes (stated as parameters in rest of the paper) like	
 task arrival

time, 	!
 task deadline, 	"
 task area in terms of number of bit slices required, #$
 task

reconfiguration time, 	ℎ�
 task execution time on FPGA and 	&�
 task execution time on soft core

processor, where i = 1, 2, 3 N and N is equal to number of tasks in DAG. Task arrival

time	
 	is the starting time of task execution and task deadline	!
 would be maximum time

allowed to complete the task. The tasks area 	"
 is described as the number of logic gates required

for task execution on FPGA. The task configuration time #$
 is the time taken by FPGA to adopt

their hardware to execute the task. In this paper, we have assumed that the configuration time is

fixed for all tasks, since all RLUs configuration time is fixed in FPGA. The task execution time is

the time taken by task to complete their execution either on µP called 	&�
 or FPGA called	ℎ�
.

3.3 Performance Criteria

In this research, we intended to represent parallel applications as DAG and also they carry task

parameters. The one or more task parameters may acts as cost function to distribute applications

to the resources of computing architecture. Initially, the tasks of parallel applications have been

executed on soft core processor as well on hard core FPGA in order to acquire their parameters.

The acquired parameters like area (number of slices on FPGA), execution time are maintained in

the form of cost matrix'()�×�. The order of the execution time cost matrix is N×2, since there are

N tasks assumed in an application and each task is executed on 2 processing elements i.e. soft

core processor and FPGA. The cost matrixes of an application plays crucial role while

distributing the tasks to the targeted architecture. In practical, the execution time of an application

depends on Finish Time (FT) of the exit task and called as scheduled length of an application. In

this research, the objective of task distribution model is to minimize the scheduled length of an

application and also efficient utilization of Heterogeneous architecture resources. The FT of task

depends on nature of resources used for computation and also on tasks arrival time. The FT of the

task, FT	(�
) = 	
 + �
, where �
 is an execution time of a task ti on soft core processor or FPGA

i.e. �
 	 ∈ 	 '()�×�. The arrival time of task �
 is depends on finish time of the task �
0� i.e.

 (�
) = 	 FT(�
0�) and so on.

3.4 Motivational Example

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

 24

The task graph shown in figure 2 is an example taken form [20] [35] and it is targeted to a

heterogeneous reconfigurable platform having one CPU and three RLUs as computing elements.

Figure 2 Task graph and its attribute table on soft core processor and FPGA

Generally, execution time of task graph depends on the processing elements on which their tasks

are executed. In this research, the reconfiguration latency is assumed as constant and equal to

zero. The task graph, in figure 2, is executed on different configurations of targeted platform as

shown in figure 3. In the figure 3, along the x-axis represents execution time in millisecond and

the y-axis represents platform configurations used for task graph execution. An application,

shown in figure 2, is scheduled to single microprocessor and FPGA with single RLU and the

execution time in the both cases are shown in figure 3(a) and 3(b) respectively. The application

ideal schedulable length on CPU, figure 3(a), is 127 µsec. and it would be 101 µsec., when the

application is mapped to FPGA with single RLU, figure 3(b). So, schedulable length of an

application can be minimized when and only RLU acts as computing element. Since FPGA

support partial reconfiguration, we could cluster the FPGA into multiple RLUs to support parallel

task execution and it further reduces the schedulable length of an application. Application

scheduled to multiple RLUs platform where tasks found the required area and the execution time

is 65µs as shown in figure 3(c).

Task

(Node)

Area on

FPGA

Execution Time in

µsec

Soft core

processor

FPGA

T1 200 14 12

T2 180 13 10

T3 120 11 9

T4 180 13 10

T5 150 12 9

T6 170 13 11

T7 90 7 5

T8 70 5 3

T9 250 18 15

T10 300 21 17

T9 T8 T7

T10

T1

T6 T5 T4 T3 T2

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

 25

Figure 3. Scheduled length of task graph on heterogeneous Reconfigurable Computing Systems

In real time, tasks may require hardware area which could not available on FPGA and they can be

called as critical tasks. The critical tasks may leads to infinite schedulable length (i.e. application

could not fully executed) and such critical tasks can be executed on microprocessor due to

microprocessor flexibility for software tasks. In this article, tasks which do not find the required

area on FPGA can be treated as critical tasks. For example, when we consider RLUs area on

FPGA is less than 200 then the tasks T1, T9 and T10 in task graph (Figure 2) becomes critical

tasks and the application could not execute on RLUs of FPGA. The scenario of scheduling critical

tasks to the platform where tasks do not find required area and its execution time is infinite as

shown in figure 3(d). The execution time infinite indicates that the application is partially

executed (i.e. tasks 9 and 10 are not completely executed) due to lack of resources and it can be

(a) Task schedule for Microprocessor

 (b) Task schedule for

(c) Task schedule for FPGA with three partially reconfigurable RLU

(d) Task schedule with critical tasks for FPGA with three partially

(e) Task schedule with critical tasks for Heterogeneous Reconfigurable

(f) Dynamic task schedule for FPGA with three partially reconfigurable RLU

(g) Dynamic task schedule for Heterogeneous Reconfigurable Computing

Systems

 T7 CPU T1 T2 T3 T4 T5 T6 T8 T9 T10

 FPGA T1 T2 T3 T4 T5 T6 T7 T9 T9

 T3

 T6 T7

 T8

 T10

 CPU

 T1

 T2

 T4

T5

 T9

 T3

 T6 T7

 CPU

 T1

 T8

 T10

 T2

 T4

 T5

 T9

 0 20 40 60 80 100 120

 T3

 T6 T7

 T8

 T10

 CPU

 T1

 T2

 T4

 T5

 T9

 T3
 T7

 T1 T6

 T8

 T10

 CPU

 T2

 T4

 T5

 T9

T8 T5

T2

 T6

 CPU T1

T4

 T9

T3

 T7

 T10

Task execution on CPU

Task execution on FPGA

No Task execution on CPU

No Task execution on FPGA

Non schedulable tasks on FPGA

Task execution time difference

between CPU & FPGA

Task execution time difference

between SS & DS

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

 26

addressed effectively by introducing a soft core processor along with FPGA, where as the

processor acts as a flexible computing element for critical tasks. The task schedule for such

HRCS platform is shown in figure 3(e) and the execution time is 74 µs which is more than 3(c)

but application is executed successfully. The dynamic task schedule of the application to the

platform with multiple RLUs only is shown in figure 3(f) and its execution time is 63µs.

Similarly, the dynamic task schedule of the application to the platform HRCS is shown in 3(g)

and its execution time is 71 µs. From the figures 3 (c), (e), (f), (g), it is clear that the dynamic

schedule enhances the application execution speed compared to static schedule. The idle time of

RLUs and processors is used for execution of task of parallel applications. In this paper, we are

intended to address dynamic scheduling techniques for real time applications.

3.5 problem statement and assumptions

An overview of different steps in scheduling of real time application to HRCS platform is

described in figure 4. An application would be represented as weighted DAG and it is passed to

task prioritization and HW/SW partitioning modules. The prioritization modules assigns priorities

to the tasks of DAG based on their attributes and then the partitioning module partition the tasks

into hardware and software tasks.

Figure 4. Flow chart of task distribution methodology

Task prioritization assigns priority to each task in such a way that meets the deadlines of an

application. The HW/SW partitioner partition the tasks based on the resources availability and

nature of task and the scheduler prepares the scheduled task list to either CPU or FPGA based on

task parameters stated in section 3.2. These three sequential steps plays major role in distribution

of tasks to HRCS i.e. the task graphs are distributed sequentially not concurrently. In this

Input DAG and its

parameters

HW/SW Partitioner

Application scheduler

 Task schedule to

CPU

Task Schedule to

FPGA

Scheduled task

list for HRCS

Task Prioritization

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

 27

research, tasks would be scheduled to CPU and FPGA concurrently i.e. task graphs are executed

concurrently based on availability of the HRCS resources. Each processing element in HRCS

intended to run only one task at a time and each task may be loaded to either CPU or FPGA. In

HRCS, data among the tasks can be exchanged by shared memory and the tasks nature is

assumed as either preemption or non preemption. Let’s assume that the set of tasks 1 =
	{��, ��, ……	, ��} of an application are represented as weighted DAG and task arrival time would

be stochastic in nature. The tasks set T in DAG would be partitioned into three types called

software tasks (ST), hardware tasks (HT) and hybrid tasks (HST) based on their area (i.e.

resources width in terms of number of bit slices) 	"
 and preemption nature, as stated below.

1. The set of tasks, which are preempted in nature and could not find required area on RC of

HRCS, can be treated as software task set (ST). 21 = 	 {&��	, &��, …… , &��}, &�
 ∈
	ST,	(1 ≤ 5 ≤ 6), having the parameters	
, !
	and 	&�
 and run only on µP.

2. The set of tasks, which are non-preempted in nature and could find required area on RC of

HRCS, can be treated as hardware task set (HT). 71 = 	 {ℎ��	, ℎ��, …… , ℎ��}, ℎ�
 ∈
	7T,(1 ≤ 5 ≤ 8), having parameters	
 , !
 , "
	, $
	 and ℎ�
 and run only run on FPGA.

3. The set of tasks, which are preempted in nature and could find required area on RC of

HRCS, can be treated as hybrid task set (HST). 721 = 	 9ℎ&��, ℎ&��, …… , ℎ&�:;,	ℎ&�
 	 ∈
	72T (1 ≤ 5 ≤ <), having parameters 	
, !
 , "
	, $
, 	&�
	 and ℎ�
	and run either on µP or

FPGA.

In this research, the task parameters are estimated to the platform HRCS statically by different

techniques. Task area width "
	 is estimated with the help of synthesis tools like XILINX ISE,

Synopsys Design Compiler. Task hardware configuration parameters like	$
,	ℎ�
	are estimated by

configuring them to hard core processor i.e. FPGA, whereas software execution time &�
	is

estimated by executing the task on soft core processor i.e. µP. The partitioned tasks are prioritized

based on the level of tasks and then scheduled them to either to soft core processor or hard core

processor. In this article, we made decision to direct software tasks to µP and hardware tasks to

FPGA permanently but the hybrid tasks are directed to either µP or FPGA based on resources

availability at that instant of time.

4.PROPOSED METHODOLOGY FOR TASK DISTRIBUTION TO

HETEROGENEOUS COMPUTING SYSTEMS

The execution time of real time applications always depends on targeted platform and its

computing elements. Distribution of the tasks of real time applications becomes complex when

there are multiple heterogeneous computing elements present in computing platform and it has

been addressed by many researchers for various computing platforms. In this article, we intended

to describe a task distribution methodology to the platform where CPU and FPGA would be

computing elements. Usually task distribution takes place in three steps task prioritization,

HW/SW partition and application schedule as shown in figure 4. In our research, the task

prioritization generates the priorities for the tasks based on their level in task graph. Task

partitioner partition the tasks into software tasks, hardware tasks and hybrid tasks based on the

resources required and availability. The scheduler prepares task distribution list to the hard core

processor and soft core processor based on tasks dead line. The behavior and Pseudocode for

these three steps are described in the following sub sections.

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

 28

4.1 Task prioritization

Initially task graph is represented as adjacency matrix which shows dependency of tasks in a task

graph. The adjacency matrix is used to find Level of individual tasks in the task graph. The Level

of tasks in task graph acts as cost function for task prioritization. In any task graph, source task

gets highest priority and sink task gets lowest priority in order to maintain dependency between

tasks. The Pseudocode for task prioritization is described in algorithm 1.

Algorithm 1: Pseudocode for Task prioritization

1 for each task_graph, no_tasks, no_next_task do

2 Compute adjacent Matrix

3 Compute Level of task

4 while ((Level)i > 0)

5 Assign_Priority (task, Level);

6 Sort (priority_list)

7 end

8 end

Tasks may have equal priority since more than one task may exist at same level in a task graph.

The tasks T2, T3, T4, T5 and T6 in task graph, shown in figure 2, are at same level and they have

equal priority according to algorithm 1. In the task graph (figure 2), task T1 has first priority,

tasks T2, T3, T4, T5 and T6 assigned with second priority, tasks T7, T8 and T9 assigned with

third priority and finally task T10 assigned with forth priority. The prioritized tasks are sorted

according to their priority increasing order and then moved for HW/SW partition module.

4.2 Task Partition

The prioritized tasks are partitioned into software task, hardware tasks and hybrid tasks based on

resources available and preemption nature of the task. The pseudocode for task partition is

described in algorithm 2.

Algorithm 2: Pseudocode for Task Partition

1 for initial prioritized task_graph, no_tasks do

2 HT_queue = 0; HST_queue = 0; ST_Queue = 0;

3 if ((area (Ti) < available_RLU) & preemption_nature = false) then

4 HT_queue = Ti

5 else if ((area (Ti) < available_RLU) & preemption_nature = true) then

6 HST_queue = Ti

7 else

8 ST_Queue = Ti

9 end

10 end

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

 29

The initial prioritized tasks of task graph would be accepted by the task partition module as input.

The ST_Queue, HT_Queue and HST_Queues are used to store software tasks, hardware tasks and

hybrid tasks respectively. Initially these queues would be empty and intended to store partitioned

tasks in their priority increasing order. The tasks which are non-preempted in nature and could

find reconfigurable area on HRCS are sent to HT_Queue, tasks which are preempted in nature

and could find reconfigurable area on HRCS are sent to HST_Queue, and tasks which are

preempted in nature and could not find reconfigurable area on HRCS are sent ST_Queue. Finally,

these partitioned tasks are available in their respective queues and they could be distributed to

computing platform HRCS by tasks scheduling module.

 4.3 Task Scheduling

The pseudocode in section 4.1 and 4.2 depict the behavior of prioritization and partition

methodologies. These methodologies receive task graphs as well as their attributes as input and

prepares initial schedule portioned task list. In this section, the dynamic task scheduling policy is

demonstrated as combination of prioritization and resource management. The initial scheduled

tasks in algorithm 1 &2 are further prioritized based on the cost function called Minimum Laxity

First (MLF) and availability of the resources. The pseudocode of task scheduling model is

described in algorithm 3.

Algorithm 3: Pseudo code for Task scheduling

1 while (no_task graphs >0)

2 for initial scheduled and partitioned task graph, no_tasks do

3 Compute MLF of individual tasks in task graph

4 Assign_Priority (task, MLF)

5 Sort (priority_list)

6 end

7 RLU_Impementation_Queue = 0; CPU_Impementation_Queue = 0;

8 for prioritized tasks, no_tasks do

9 if (Ti � HT_Queue) then

10 Ti -> RLU_Implementation Queue

11 else if ((Ti � HST_Queue) &(RLU_available) then

12 Ti -> RLU_Implentation Queue

13 else

14 Ti -> CPU_Implementation Queue

15 end

16 end

17 while (RLU_Implementation_Queue != empty)

18 Wait for RLU

19 Assign task to available RLU

20 end

21 while (CPU_Implementation_Queue != empty)

22 Wait for CPU

23 Assign task to CPU

24 end

25 end

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

 30

The task scheduler accepts the partitioned tasks as input and computes a parameter called

Minimum Laxity First (MLF) for all the individual tasks which are in same level of the task

graph. The expression for MLF is =>?@ = AB − DB − EB. The MLF acts as cost function to

prioritize parallel tasks and then prioritized tasks are scheduled as their priority increasing order.

The RLU_Implementation Queue and CPU_impementation Queue are used to store the task for

execution on hard core processor and soft core processor respectively. The RLU_Implementation

Queue stores the tasks which could execute on hardcore processor (RLUs) and the

CPU_Implementation queue stores the tasks which could execute on softcore processor (CPU).

Tasks in HT_Queue and also tasks in HST_Queue for which reconfigurable area available are

sent to RLU_Implementation Queue. Similarly tasks in ST_Queue and tasks in HST_Queue for

which reconfigurable area is not available are sent to CPU_Implementation Queue. Finally, tasks

in RLU_Implementation Queue and CPU_Implementation Queue are executed on hard core

processor (RLU) and soft core processor (microprocessor) respectively.

5. IMPLEMENTATION SCHEME

In this section, we describe the computing environment, real time application and methods

followed for application execution. The reconfigurable computing brings flexibility for execution

of wide range of application and also enhances the execution speed. So, in this research we have

described a heterogeneous computing environment on a single chip FPGA called Heterogeneous

Reconfigurable Computing System (HRCS). The HRCS contains a soft core processor and

multiple hard core processors i.e. Reconfigurable Logic Units (RLUs) as processing elements.

The soft core processor executes application in traditional method like fetch, decode and execute

whereas the hard core processor reconfigures its architecture according to the behavior of an

application task. The described HRCS platform is realized on Virtex 5 FPGA with a MicroBlaze

as soft core processor and partially reconfigurable RLUs as hard core processing elements. In the

realized heterogeneous reconfigurable platform, the MicroBlaze is equipped with a BRAM,

Instruction and Data Cache memories for storing program as well data while executing an

application. BRAM also acts as shared memory for RLUs to store input and output data. These

functional blocks MicroBlaze, RLUs (custom hardware for application tasks), BRAM, Cache and

general purpose I/O devices are interconnected through communication protocols like Processor

Local Bus (PLB) and First In First Out (FIFO) as shown in figure 5.

MicroBlaze

(Soft core)

Data Cache

Instruction

Cache

BRAM

(Shared

Memory)

Input

Devices

Output

Devices

RLU1

(Custom Hardware)

RLU2

(Custom Hardware)

RLU3

(Custom Hardware)

FPGA

PLB bus FIFO bus

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

 31

Figure 5. On-chip Heterogeneous Reconfigurable Computing System

We have selected set of task graphs extracted from multimedia applications and executed on hard

core and soft core processing elements which are constructed on Virtex 5 FPGA platform. The

task graph of JPEG is shown in figure 6(a) and it can be used as input to task distributing model.

Figure 6 (a) Tasks and their dependency in JPEG (b) Task and their dependency in DCT (c) Task and

their dependency in Encoder

The JPEG task graph has five levels where task T1 for RGB_to_ YCbCr at level 1, task graph has

three tasksT2, T3, T4 shown in figure 6(b) for Discrete Cosine Transform (DCT) at level 2, task

T5 for quantization at level 3, task graph has three tasks T6, T7, T8 shown in figure 6(c) for

Encoder at level 4 and task T9 for Stream_writing at level 5. In the figure 6(b), the task T6 for

matrix wrapping – 1 and T7 for matrix transpose are in the same level they could be executed

concurrently. The figure 6(c) shows encoder where pipeline is introduced while hardware

implementation of the task graph which increases the throughput of the task graph. The tasks in

encoder can be executed sequentially. The dataflow diagram of the procedure which is followed

to design HRCS and implement the real time application on HRCS is describe in figure 7.

Matrix

Transpose

Matrix

Wrapping - 1

Matrix

Wrapping -2

Image Matrix DCT Matrix

DCT Image Matrix

Encoder

RGB 2 YCbCr

DCT

Quantization

Stream writing

Zigzag

Scanning

 RLE

Huffman

Encoding

 Task/Task Graph

 Pipeline

 Source or sink

 (a) (b) (c)

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

 32

Figure 7 Xilinx Tool flow to design HRCS and task graph execution on HRCS
The Embedded Development Kit (EDK) demonstrates board support package design. So, in this

research, we have been using the Xilinx EDK to realize the HRCS platform on Virtex 5 FPGA

where MicroBlaze soft core is configured in part of the reconfigurable area of FPGA and the rest

reconfigurable area is divided into multiple hard core processing elements. Standard embedded

SW development flow supports execution of the applications on soft core processor where as the

standard FPGA HW development flow supports execution of the application on hard core

processor.

6. RESULTS & DISCUSSION

This section is intended to describe FPGA device utilization for configuring HRCS, evaluate the

performance of the task distribution methodology described for HRCS and finally HRCS

resources utilization while executing for real time applications.

6.1 Device Utilization for Heterogeneous Reconfigurable Computing System

The Virtex 5 FPGA (XC5VLX110T) device consists of 17,280 slices, 64 DSP slices and 5,328Kb

of RAM memory blocks to design high performance embedded systems. Each slice contains 4

LUT, 4 FF, arithmetic logic gates, multiplexers and fast look ahead carry chain. The Virtex 5

device used to configure the resources of HRCS such as soft core processor, RLUs and Memory

with the necessary communication ports. The device utilization for configuration of various

modules in HRCS summarized in table 2

.
Table 2. Virtex 5 FPGA (XC5VLX110T) Device utilization chart

Resource Module No. slices

Soft core (MicroBlaze) MicroBlaze 1599

Hard core

(Reconfigurable Logic Unit)

RLU1 500

RLU2 500

RLU3 500

Memory

DDR2_SDRAM

(256MB)

1687

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

 33

dlmb_cntlr (8KB) 7

Ilmb_cntlr (8KB) 4

Communication Interfaces

(Bus controllers)

dlmb 1

ilmb 1

Mb_plb 96

Debug Module Mdm (64KB) 97

Timing and reset circuits proc_sys_reset 30

xps_timer (64KB) 187

I/O interfaces RS232_uart (64KB) 97

DIP_Switches_8bit

(64KB)

67

LEDs_8bit (64KB) 71

Heterogeneous Reconfigurable Computing System 5,444

The table 2 depicts the number of slices used for each module in HRCS and the HRCS consumed

5,444 slices on virtex 5 FPGA. In coming sections we will demonstrate the tasks distribution to

targeted HRCS architecture and their performance.

6.2 Performance Estimation of application targeted to HRCS

Initially, the real time application JPEG is taken as input to analyze the effectiveness of the task

distribution methodology. So, the JPEG is represented as task graph and their dependencies are

shown in figure 8.

Figure 8. Task graph of JPEG

As stated in figure 7, the behavior of the tasks in JPEG is described in C++ and also in HDL in

order to execute them on soft core and hard core processing elements. The C++ code of the task is

cross compiled to the soft core processor MicroBlaze and that generates executable file. The

executables of the tasks are stored in program memory and then executed on MicroBlaze in order

to acquire attributes, i.e. ececution time, of the tasks on MicroBlaze. Similarly, HDL code of the

tasks is synthesized for the device Xilinx Virtex 5 to generate gate level netlist and that produces

configuration files required for task execution on FPGA. These configuration files are stored in

memory and configured them to FPGA and then executed in order to acquire the attributes, like

area required and execution time, of the tasks on FPGA. The acquired attributes of JPEG task

graph (shown in figure 6) is shown in table 3 where the task in a task graph in first column, level

of the tasks in second column, area required on FPGA in third column, tasks execution time on

FPGA in forth column and the execution time of tasks on soft core processors, i.e. core 2 duo and

MicroBlaze, in column 5 and 6. Finally, the column 7 represents the enhancement in

computational complexity of MicroBlaze compared to GPP i.e Core 2 duo Processor.

T5 T6 T7 T4

T3

T2

T1

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

 34

Table 3: Attributes of JPEG Task graph on HRCS

The table 3 shows execution time of the application JPEG on soft core processor and hardcore

processor. From the table, it is clear that the performance of the JPEG task graph is effective on

FPGA reconfigurable area compared to soft core processor. The computation time of the

application is more on MicroBlaze compared to Core 2 Duo processor. The computation time

(number of CPU clock cycles) of an application is equal to multiplication of clock speed of the

processor and execution time of that application on the processor. So, the custom soft core

MicroBlaze takes more computation time compared to general purpose Core 2 duo soft core

processor. The comparisons between the soft cores in terms of computation time and number of

clock cycles are shown in figure 9.

Figure 9 (a) No. of clock cycles consumed for execution of JPEG (b) Computation time of the application

JPEG on MicroBlaze and Core 2 duo processor

The figure 9 depicts that the JPEG execution is effective on Core 2 Duo compared to MicroBlaze

but the MicroBlaze provides cost effective solution in terms of power and area. Since, the core 2

duo runs at 1.2Ghz, whereas MicroBlaze runs at 125MHz, the core 2 duo dissipates more power

and also consumes more area. So, the MicroBlaze would be the soft core processor to design low

power computing platform for real time applications.

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

 35

The task distribution methodologies distribute the tasks of an application statically as well as

dynamically to the resources of computing platform. As we have stated, the both task distribution

methodologies are implemented and verified for the represented task graphs. In this research, the

dynamic task distribution methodology follows the MLF algorithm for task distribution. Initially,

hypothetical task graph shown in figure 2 is distributed statically as well dynamically to the

platform HRCS which is configured on FPGA and then the JPEG task graph is distributed for

execution. The execution time, in both static and dynamic scheduled policies, of hypothetical task

graph and JPEG task graphs on the platform HRCS is shown in figure 10.

(a) (b)

Figure 10 (a) Execution time of hypothetical task graph on HRCS (b) Execution time of JPEG task graph

on HRCS

From the figure 10, it is clear that the execution time of the task graphs is less in dynamic

scheduling policy compared to static scheduling policy. So the task distribution with dynamic

scheduling enhances the application execution and also utilizes the resources of computing

platform HRS effectively. The real time application JPEG alone is small enough to effectively

utilize the HRCS resources. So, an advanced application OFDM also considered along with JPEG

and distributed to HRCS in order to utilize the resources effectively. The task graph of OFDM

transmitter consists of 6 tasks as shown in figure 11. The tasks in OFDM transmitter are source

generator (T1), serial to parallel (S/P) converter (T2), Quadrature Amplitude Modulation (QAM)

a constellation mapper (T3) , IFFT (T4), parallel to serial (P/S) converter (T5) and cyclic prefix

insertion blocks (T6).

Figure 11. OFDM Transmitter Task graph

The task 3 is QAM and it could perform 16 QAM operations to generate 16 symbols which are

further transmitted to 16 bit IFFT. The tasks, in OFDM transmitter, are executed individual on

T1 T2 T4 T5 T6

T3i

T3i

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

 36

MicroBlaze as well on FPGA and captured their attributes. The attributes of OFDM transmitter

task graph are listed in table 4. Form the table 4, it is clear that the hardware realization enhances

the OFDM transmitter execution. The execution speed of OFDM transmitter on MicroBlaze

processor is slower than the general purpose processor and DSP processors. The core 2 duo and

DSP processors dissipates more power since they run at 1.2GHz and 225 MHz speed and also

bulky due to their heat sink. But, the MicroBlaze is available on the same chip FPGA where RLU

resides and hence it would be effective soft core processor for many power sensitive real time

applications.

Table 4. Attributes of OFDM Transmitter

So the tasks, in OFDM transmitter task graph, are distributed to HRCS platform statically as well

dynamically. The execution time of the OFDM transmitter on the platform HRCS is shown in

figure 12. Finally both JPEG and OFDM transmitter task graphs together distributed to the HRCS

platform and the execution time in both static scheduling and dynamic scheduling policy is shown

in figure 13.

The figure 12 shows that the execution time of OFDM transmitter and it is same in both Static

and Dynamic scheduling policies because there are no parallel tasks in the task graph of OFDM

transmitter. The figure 13 shows the execution time when both JPEG & OFDM transmitter task

graphs together distributed to the HRCS platform. From the figures 10, 12 and 13, the dynamic

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

 37

task distribution policy with MLF algorithm enhances the execution time compared to static task

distribution policy in [15] [20]. The application execution time difference between dynamic

scheduling policy and static scheduling policy depends on the task parallelism in the task graph

and execution time of the parallel tasks. The resource utilization of HRCS in both task

distribution scenarios would be demonstrated in coming section.

6.3 Resources utilization

The resources utilization of the platform HRCS is estimated based on the tasks allocated to

individual resources of the platform and time spent in executing the tasks. The expression used to

calculate the resources utilization is as follows.	FDGHIJKD	I=LBME=BHN = 	
∑N	×D=
P×QR

	, where n =

number of resources active in a time slot et, et = task execution time slot, N = Total number of

resources in computing platform, ET = Total execution time of an application. The resource

utilization is calculated for both JPEG and OFDM transmitter task graphs targeted to the platform

HRCS. The JPEG utilized 26.7% of HRCS resources when tasks are distributed statically

whereas it is 28.9% when they are distributed dynamically. Similarly, the OFDM utilize 25% of

the resources in both task distribution policies due to lake of parallelism in OFDM transmitter

task graph. The resource utilization is 25% in the case of both JPEG and OFDM transmitter task

graphs together distributed to the platform.

7. CONCLUSION

In this paper, we have proposed a novel dynamic task distribution methodology named as MLF

algorithm for on chip heterogeneous computing platform. An on chip Heterogeneous

Reconfigurable Computing System (HRCS) is constructed on Virtex 5 FPGA device for

application execution. The HRCS contains MicroBlaze as soft core processor and multiple RLUs

configured on FPGA as hardcore processor. The real time applications JPEG and OFDM

transmitter task graphs design parameters are obtained by executing them on the resources of

HRCS. The obtained attributes of task graphs acts as cost functions in MLF algorithm and the

task graphs are distributed statically as well as dynamically to the resources of HRCS. From the

result, it is concluded that the application execution is effective on HRCS when parallel tasks are

targeted. The MLF dynamic task distribution methodology enhanced the execution speed of the

JPEG applications by 9.6% over static task distribution. On the other side, the execution of the

task graphs takes less time on GPP and DSP processors compared to the On-chip soft core

processor MicroBlaze but GPP and DSP processors dissipates more power due to their high clock

speeds. So the MicroBlaze can acts as soft core processes in design of low power computing

platforms for real time applications.

REFERENCES

[1] Reiner Hartensstein, “Microprocessor is no more General Purpose: Why future reconfigurable

platforms will win” invited paper of the International conference on Innovative Systems in

silicon.ISIS’97, Texas, USA, pp 1- 10, October 8-10, 1997.

[2] D. Wang, S. Li and Y. Dou, Loop Kernel Pipelining Mapping onto Coarse-Grained Reconfigurable

Architecture for Data-Intensive Applications, in Journal of Software, Volume 4, no-1,p81-89, 2009.

[3] Maisam M. Bassiri and Hadi Sh. Shahhoseini, Online HW/SW partitioning and co-scheduling in

Reconfigurable Computing Systems, in 2nd IEEE International Conference on Computer Science and

Information Technology, 2009, ICCSIT 2009,pp 557-562.

[4] J Lyke, Reconfigurable Systems: A generalization of Reconfigurable computational strategies for

Space Systems, IEEE Aerospace conference Proceedings, vol. 4, pp 4-1935, 2002.

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

 38

[5] David B. Stewart, Pradeep K. Khosla “Real time Scheduling of Dynamically Reconfigurable

Systems” In Proceedings of the IEEE International Conference on Systems Engineering, Dayton

Ohio, pp. 139-142, August 1991.

[6] Liang LIANG, Xue-Gong ZHOU, Ying WANG, Cheng-Lian PENG, Online Hybrid Task Scheduling

in Reconfigurable Systems, in Proceedings of the 11th International Conference on Computer

Supported Cooperative Work in Design, pp 1072 – 1077, in 2007.

[7] Proshanta Saha, Tarek El-Ghazawi, Software/Hardware Co-Scheduling for Reconfigurable

Computing Systems, in International Symposium on Field-Programmable Custom Computing

Machines, pp 299-300, 2007.

[8] Solomon Raju Kota, Chandra Shekhar, Archana Kokkula, Durga Toshniwal, M. V. Kartikeyan and R.

C. Joshi, “Parameterized Module Scheduling Algorithm for Reconfigurable Computing Systems” in

15th International Conference on Advanced Computing and Communications, pp 473-478,.2007.

[9] Mahmood Fazlali, Mojtaba Sabeghi, Ali Zakerolhosseini and Koen Bertels, Efficient Task Scheduling

for Runtime Reconfigurable Systems, Journal of Systems Architecture, Volume 56, Issue 11, Pages

623-632, November 2010.

[10] Yun Wang and Manas Saksena, Scheduling Fixed –priority Tasks with Preemption Threshold, in

Sixth International Conference on Real-Time Computing Systems and Applications, RTCSA '99, pp

328-335, 1999.

[11] Ali Ahmadinia, Christophe Bodda and Jurgen Teich, A Dynamic Scheduling and Placement

Algorithm for Reconfigurable Hardware, ARCS 2004, LNCS 2981, pp. 125 – 139, 2004.

[12] Xue-Gong Zhou, Ying Wang, Xun-Zhang Haung and Cheng-Lian Peng, On-line Scheduling of real

time Tasks for Reconfigurable Computing System, International Conference on Computer

Engineering and Technology, PP 59-64, 2010.

[13] Maisam Mansub Bassiri and Hadi Shahriar Shahhoseini, A New Approach in On-line Task

Scheduling for Reconfigurable Computing Systems, in proceedings of 2
nd

 International Conference

on Computer Engineering and Technology, pp. 321-324, April 2010.

[14] Klaus Dane and Marco Platzner, A Heuristic Approach to Schedule Real-Time Tasks on

Reconfigurable Hardware, in proceedings of International Conference on Field Programmable Logic

and Applications, pp 568 – 578, 2005.

[15] Zexin Pan and B. Earl Wells, Hardware Supported Task Scheduling on Dynamically Reconfigurable

SoC Architectures, IEEE Transactions on VLSI Systems, vol. 16, No. 11, November 2008.

[16] Mojtaba Sabeghi, Vlad-Mihai Sima and Koen Bertels, Compiler Assigned Runtime Task Scheduling

on A Reconfigurable Computer, International Conference on Field Programmable Logic and

Applications, 2009 (FPL 2009) pp 44 – 50, September 2009.

[17] Yi Lu, Thomas Marconi, Koen Bertels and Georgi Gaydadjiev, A Communication Aware Online

Task Scheduling Algorithm for FPGA-based Partially Reconfigurable Systems, 2010 18
th

 IEEE

Annual International Symposium on Field Programmable Custom Computing Machines, pp 65-68,

sept.2010.

[18] Juanjo Noguera and Rosa M. Badia, HW/SW Co-design Techniques for Dynamically Reconfigurable

Architectures, IEEE Transaction on Very Large Scale Integration (VLSI) Systems, Vol. 10, No. 4, pp

399 – 415, August 2002.

[19] Boris Kettelhoit and Mario Porrmann, A layer Model for Systematically Designing Dynamically

Reconfigurable Systems, International Conference on Field Programmable Logic and Applications,

pp. 1-6, August 2006.

[20] Haluk Topcuoglu, Salim Hariri and Min-You Wu, Performance Effective and Low-Complexity Task

Scheduling for Heterogeneous Computing, IEEE Transactions on Parallel and Distributed Systems,

Vol. 13, No. 3, pp. 260 – 274, March 2002.

[21] Mohammad I. Daoud and Nawwaf Kharma, A High Performance Algorithm for Static Task

Scheduling in Heterogeneous Distributed Computing Systems, Journal of Parallel and Distributed

Computing, Vol. 68, no. 4, pp. 299-309, April 2008.

[22] S. Darba and D.P. Agarwal, Optimal Scheduling Algorithm for Distributed Memory Machines, IEEE

Trans. Parallel and Distributed Systems, Vol. 9, no. 1, pp. 87-95, Jan. 1998.

International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015

 39

[23] C.I. Park and T.Y. Choe, An Optimal Scheduling Algorithm Based on Task Duplication, IEEE Trans.

Computers, Vol. 51, no. 4, pp. 444-448, Apr. 2002.

[24] Y.K. Kwok and I. Ahmad, Dynamic Critical Path Scheduling: An effective Technique for Allocating

Task Graphs to Multiprocessors, IEEE Trans. Parallel Distributed Systems, Vol. 7, no. 5, pp. 506-

521, May 1996.

[25] An Improved Duplication Strategy for Scheduling Precedence Constrained Graphs in Multiprocessor

Systems, IEEE Trans. Parallel and Distribution Systems, Vol. 14, no. 6, June 2003.

[26] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K.L.M Bertels, G. K. Kuzmanov and E. M. Panainte,

The Molen Polymorphic Processor, IEEE Transaction on Computers, Vol. 53, Issue 11, pp. 1363-

1375, November 2004.

[27] John Lehoczky, Lui Sha and Ye Ding, The Rate Monotonic Scheduling Algorithm: Exact

Characterization and Average case behavior, Proceedings of Real Time Systems Symposium, pp.

166-171, Dec. 1989.

[28] C. L. Liu and James W. Layland, Scheduling algorithms for multiprogramming in a Hard Real Time

Environment, Journal of ACM, Vol. 20, no. 1, pp. 46-61, 1973.

[29] Wei Zhao, Krishivasan Ramamrithm and John A. Stankovic, Scheduling tasks with Resource

requirement in Hard Real Time Systems, IEEE Trans. Software Engineering, Vol. SE-13, No. 5, May

1987.

[30] Maisam M. Bassiri and Hadi Sh. Shahhoseini, A HW/SW Partitioning Algorithm for Multitask

Reconfigurable Embedded Systems, IEEE International Conference on Microelectronics, 2008.

[31] Proshanta Saha and Tarek El-Ghazawi, Extending Embedded Computing Scheduling Algorithms for

Reconfigurable Systems, 2007 3rd Southern Conference on Programmable Logic, pp 87 – 92,

February 2007.

[32] Mahendra vucha & Arvind Rajawat, An effective Dynamic Scheduler for Reconfigurable High Speed

Computing Systems, IEEE International Advance Computing Conference, pp. 766 – 773, February -

2013.

[33] Juan Antonio Clemente, Javier Resano, and Daniel Mozos, An approach to manage reconfigurations

and reduce area cost in hard real-time reconfigurable systems, ACM Trans. Embedded Computing

Systems, Vol. 13, No. 4, February 2014.

[34] Mahendra Vucha and Arvind Rajawat, A Case Study: Task Scheduling Methodologies for High

Speed Computing Systems, International Journal of Embedded Systems and Applications(IJESA),

Vol. 4, No. 4, December 2014.

[35] E. Ilavarasan P. Thambidurai, R. Mahilmannan, Performance Effective Task Scheduling Algorithm

for Heterogeneous Computing Systems, Proceedings of the 4
th

 International Symposium on Parallel

and Distributed Computing, 2005.

AUTHORS

Mahendra Vucha received his B. Tech degree in Electronics & Comm. Engineering

from JNTU, Hyderabad, India in 2007 and M. Tech degree in VLSI and Embedded

System Design from MANIT, Bhopal, India in 2009. He is currently working for his

PhD degree at MANIT, Bhopal, India and also working as Asst. Professor in Christ

University, Dept. of Electronics and Communication Engineering, Bangalore (K.A),

India. His areas of interest are Hardware Software Co-Design, Analog Circuit

design, Digital System Design and Embedded System Design.

Arvind Rajawat received his B.E degree in Electronics & Communication

Engineering from Govt. Engineering College, Ujjain, India in 1989, M. Tech

degree in Computer Science Engineering from SGSITS, Indore, India in 1991 and

Ph. D degree from MANIT, Bhopal, India. He is currently working as Professor in

Dept. Electronics and Communication, MANIT, Bhopal (M.P), India. His areas of

interest are Hardware Software Co-Design, Embedded System Design and Digital

VLSI Design.

