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ABSTRACT 
 
Modern embedded systems are being modeled as Heterogeneous Reconfigurable Computing Systems 

(HRCS) where Reconfigurable Hardware i.e. Field Programmable Gate Array (FPGA) and soft core 

processors acts as computing elements. So, an efficient task distribution methodology is essential for 

obtaining high performance in modern embedded systems. In this paper, we present a novel methodology 

for task distribution called Minimum Laxity First (MLF) algorithm that takes the advantage of runtime 

reconfiguration of FPGA in order to effectively utilize the available resources. The MLF algorithm is a list 

based dynamic scheduling algorithm that uses attributes of tasks as well computing resources as cost 

function to distribute the tasks of an application to HRCS. In this paper, an on chip HRCS computing 

platform is configured on Virtex 5 FPGA using Xilinx EDK. The real time applications JPEG, OFDM 

transmitters are represented as task graph and then the task are distributed, statically as well dynamically, 

to the platform HRCS in order to evaluate the performance of the designed task distribution model. Finally, 

the performance of MLF algorithm is compared with existing static scheduling algorithms. The comparison 

shows that the MLF algorithm outperforms in terms of efficient utilization of resources on chip and also 

speedup an application execution.   
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1. INTRODUCTION 
 

Modern embedded systems are used for highly integrated handheld devices such as mobile 

phones, digital cameras, and multimedia devices. Hardware Software Co-design supports mixed 

hardware and software implementation to satisfy the given timing and cost constraints.  Co-

design is a flexible solution for the applications when hardware realization satisfies the timing but 

not the cost constraints whereas software solution is not fast enough. So, the hardware software 

co-design provides intensive solution for the modern embedded systems which are modeled with 

flexible computing platform like Field Programmable Gate Arrays (FPGA). The FPGA is flexible 

hardware that offers cost effective solution through reuse and also accelerate many multimedia 

applications by adopting their hardware at runtime. In real time, the tasks of parallel application 

must share the resources of FPGA effectively in order to enhance application execution speed and 

it can be achieved through effective scheduling mechanism. The aim of this paper is to introduce 
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a disciplined approach to utilize the resources of embedded system, which are having reusable 

architectures, and also that meets the requirements of variety real time applications. Diverse set of 

resources like Reconfigurable Logic Units (RLUs) and soft core processors are interconnected 

together, with a high speed communication network, on a single chip FPGA that describes a new 

computing platform called Heterogeneous Reconfigurable Computing Systems (HRCS). The 

HRCS requires an efficient application scheduling methodology to share their resources in order 

to achieve high performance and also utilize the resources effectively. There are many researchers 

[3] [6] [7] [9] presented techniques for mapping multiple tasks to High Speed Computing 

Systems [26] with the aim of “minimizing execution time of an application” and also “efficient 

utilization of resources”. In this paper, first we would describe review of the various existing task 

distribution methodologies for platforms like HRCS and proposed a novel task distribution 

methodology. In general, task distribution i.e. scheduling models are two types called static and 

dynamic. Static Scheduling: All information needed for scheduling such as the structure of the 

parallel application, execution time of individual tasks and communication cost between the tasks 

must be known in advance and they are described in [10] [11] [12] [13] [14]. Dynamic 

scheduling: The scheduling decisions made at runtime are demonstrated in [8] [20] [22] [24] [26] 

and their aim is not only enhancing the execution time and also minimize the communication 

overheads. The static and dynamic scheduling heuristic approaches, proposed by various 

researches, are classified into four categories: List scheduling algorithms [20], clustering 

algorithms [11], Duplication Algorithms [22], and genetic algorithms. The list scheduling 

algorithms [20] provides good quality of task distribution and their performance would be 

compatible with all real time categories. So, in this paper we have been motivated to develop list 

scheduling algorithm and generally it has three steps: task selection, processor selection and 

status update. In this paper, we have developed a list based task distribution model which is based 

on the attributes of the tasks of an application and computing platform. The remaining paper is 

organized as the literature review in chapter 2, problem formulation in chapter 3, task distribution 

methodology in chapter 4, implementation scheme in chapter 5, and results discussion in chapter 

6 and finally paper is concluded in chapter 7.   

 

2. LITERATURE REVIEW  
 

The task distribution problems for CPU as well as for reconfigurable hardware have been 

addressed by many researchers in academic and industry. However, research in this paper is 

targeted to CPU – FPGA environment. The articles discussed in this session describe various task 

scheduling methodologies for heterogeneous computing systems.  A computing platform called 

MOLEN Polymorphic processor described in [26] which is incorporated with both general 

purpose and custom computing processing elements. The MOLEN processor is designed with 

arbitrary number of programmable units to support both hardware and software tasks. An 

efficient multi task scheduler in [9] proposed for runtime reconfigurable systems and also it has 

introduced a new parameter called Time-Improvement as cost function for compiler assisted 

scheduling models. The Time-Improvement parameter described based on reduction-in-task-

execution time and distance-to-next-call of the tasks in an application.  The scheduling system in 

[9], targeted to MOLEN Polymorphic processor [26] and in which the scheduler assigns control 

of tasks and less computing intensive tasks to General Purpose Processor (GPP) whereas 

computing intensive tasks are assigned to FPGA. The task scheduler in [9] outperforms previous 

existing algorithms and accelerates task execution 4% to 20%. In [6], an online scheduling is 

demonstrated for CPU-FPGA platform where tasks are described into three categories such as 
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Software Tasks executes only on CPU, Hardware Tasks executes only on FPGA and Hybrid 

Tasks executes on both CPU & FPGA. The scheduling model [6] is integration of task allocation, 

placement and task migration modules and considers the reserved time of tasks as cost function to 

schedule the tasks of an application. An On-line HW/SW partitioning and co-scheduling 

algorithm [3] proposed for GPP and Reconfigurable Processing Unit (RPU) environment in 

which Hardware Earliest Finish Time (HEFT) and Software Earliest Finish Time (SEFT) are 

estimated for tasks of an application.  The difference between HEFT and SEFT imply to partition 

the tasks and EFT used to define scheduled tasks list for GPP and RPU as well. An overview of 

tasks co-scheduling [7] [31] is described to µP and FPGA environment and it have been defined 

from different research communities like Embedded Computing (EC), Heterogeneous Computing 

(HC) and Reconfigurable Hardware (RH). The Reconfigurable Computing Co-scheduler (ReCoS) 

[7] integrates the strengths of HC and RH scheduling policies in order to effectively handle the 

RC system constraints such as the number of FFs, LUTs, Multiplexers, CLBs, communication 

overheads, reconfiguration overheads, throughputs and power constraints. The ReCoS, as 

compared with EC, RC and RH scheduling algorithms, shows improvement in optimal schedule 

search time and execution time of an application. Hardware supported task scheduling is 

proposed in [15] for Dynamically Reconfigurable SoC (RSoC) to utilize the resources effectively 

for execution of multi task applications. The RSoC architecture comprises a general purpose 

embedded processor along with two L1 data and instruction cache and number of reconfigurable 

logic units on a single chip.  In [15], task systems are represented as Modified Directed Acyclic 

Graph (MDAG) and the MDAG defined as tuple G = (V, E
d
, E

c
, P), where V is set of nodes, E

d
 

and E
c
 are the set of directed data edges and control edges respectively and P represents the set of 

probabilities associated with E
c
. The conclusion of the paper [15] states that Dynamic Scheduling 

(DS) does not degrade as the complexity of the problem increase whereas the performance of 

Static Scheduling (SS) decline. Finally, the DS outperforms the SS when both task system 

complexity and degree of dynamism increases.  Compiler assisted runtime scheduler [16] is 

designed for MOLEN architecture where the run time application is described as Configuration 

Call Graph (CCG). The CCG assigns two parameters called the distance to the next call and 

frequency of calls in future to the tasks in an application and these parameters acts as cost 

function to schedule the tasks. Communication aware online task scheduling for partially 

reconfigurable systems [17] distributes the tasks of an application to 2D area of computing 

architecture and where communication time of tasks acts as cost function to schedule the tasks. 

The scheduler in [17] describes the tasks expected end time as �� = ������� + ��
��
� + ��
��� +
���� + ��
���	, where ������� is completion time of already scheduled task, ��
��
� is task 

configuration time, ��
��� is data/memory read time, ���� is task execution time and ��
��� is 

data/memory write time and it could run on host processor. HW/SW co-design techniques [18] 

are described for dynamically reconfigurable architectures with the aim of deciding execution 

order of the event at run time based on their EDF. Here they have demonstrated a HW/SW 

partitioning algorithm, a co-design methodology with dynamic scheduling for discrete event 

systems along with a dynamic reconfigurable computing multi-context scheduling algorithm.  

These three co-design techniques [18] minimize the application execution time by paralleling 

events execution and it could be controlled by host processor for both shared memory and local 

memory based Dynamic Reconfigurable Logic (DRL) architectures. When number of DRL cells 

is equal or more than three, the techniques in [18] brings better optimization for shared memory 

architecture compared to the local memory architectures. A HW/SW partitioning algorithm 

presented in [30] to partition the tasks as software tasks and hardware tasks based on their waiting 

time. A layer model in [20] provides systematic use of dynamically reconfigurable hardware and 
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also reduces the error-proneness of the system components. A methodology in [34] presented for 

building real time reconfigurable systems and they ensure that all the constraints of the 

applications are met. In [34, the Compulsory-Reuse (CR) tasks in an application are found and 

they are used to calculate the Loading-Back factor that support the reuse of resources. The 

various research articles addressed in this section describes task distribution of non real time 

systems in order to achieve optimized performance and throughput but they may miss deadlines 

in real time. In this article, we also focused on non real time systems with the objective to meet 

dead line requirements at runtime.  

  

3. TASK DISTRIBUTION PROBLEM 
 

Generally, a task distribution methodology consists of an application, targeted architecture and 

criteria to task distribution. So this chapter is intended to brief about task graph of an application, 

targeted architecture, performance criteria, motivation to the research and some necessary 

assumption.  

 

3.1 Targeted architecture 
 

Heterogeneous reconfigurable hardware is an emerging technology [1] [26] [32] [33] due to their 

high performance, flexibility, area reuse and also provides faster time-to-market solutions [1] [33] 

for real time applications compared to ASIC solutions. In this research, a computing platform is 

modeled on a single chip FPGA which consists of a soft core processor (i.e. microprocessor is 

configured on core of FPGA) and multiple Reconfigurable Logic Unit (RLU) as processing 

elements shown in figure 1. The soft core processor is static core in nature and it would execute 

software version of tasks in an application. The reconfigurable units RLU1, RLU2, RLU3, RLU4 

and RLU5 support dynamic reconfiguration at runtime for hardware tasks of an application. The 

Cache memory is dedicated for soft core processor to store the instructions and input/output data 

while task execution. The shared memory stores the task executables and input/output data for 

both soft core and hard core (i.e. RLU computing elements) processing elements.  
 

 
                         

 
 

 

 

 

 

 

 

 

 
Figure 1. Target heterogeneous architecture 

 

The soft core and hard core Processing Elements (PEs) in the targeted architecture are wrapped 

with communication interface so that provides interface between memory and PEs for data 

interchange. The hardware reconfiguration and tasks execution is managed by a task distribution 

model which would be the objective of this research and it can be demonstrated in coming 
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chapters. The RLUs independently execute the tasks and communicate with each other. The 

targeted platform can be implemented on Xilinx Virtex-5 and Virtex-6 or Altera FPGA devices.  

The FPGA Vendors provide specific design tools to develop custom computing platforms where 

as the Xilinx EDK development tool is used to develop a processor based reconfigurable system 

called Heterogeneous Reconfigurable Systems.   

 

3.2 Application as Task Graph  
 

An application is represented by a waited Directed Acyclic Graph (DAG) G = (V, E), where V 

represents set of tasks � = {��, ��, �� 	…	��}	and E represents set of edges E = {e11, e12 …., e21 

,e22, .…., eMN} between the tasks. Each edge �
��	� represents precedence constraint such that 

task �
 should complete its execution before ��. In a DAG, task without any predecessor is an 

entry task and task without successor is an exit task. Generally, the tasks execution of an 

application is non – preemptive but in this research we have considered that the tasks behavior 

would be either preemptive or non-preemptive. In this research, the tasks of an application, i.e. 

DAG, are waited with their attributes (stated as parameters in rest of the paper) like	 
  task arrival 

time, 	!
 task deadline, 	"
 task area in terms of number of bit slices required, #$
 task 

reconfiguration time, 	ℎ�
 task execution time on FPGA and 	&�
 task execution time on soft core 

processor, where i = 1, 2, 3 . . . . N and N is equal to number of tasks in DAG. Task arrival 

time	 
 	is the starting time of task execution and task deadline	!
 would be maximum time 

allowed to complete the task. The tasks area 	"
 is described as the number of logic gates required 

for task execution on FPGA. The task configuration time #$
 is the time taken by FPGA to adopt 

their hardware to execute the task. In this paper, we have assumed that the configuration time is 

fixed for all tasks, since all RLUs configuration time is fixed in FPGA. The task execution time is 

the time taken by task to complete their execution either on µP called 	&�
 or FPGA called	ℎ�
. 
 

3.3 Performance Criteria  
 

In this research, we intended to represent parallel applications as DAG and also they carry task 

parameters.  The one or more task parameters may acts as cost function to distribute applications 

to the resources of computing architecture. Initially, the tasks of parallel applications have been 

executed on soft core processor as well on hard core FPGA in order to acquire their parameters. 

The acquired parameters like area (number of slices on FPGA), execution time are maintained in 

the form of cost matrix'()�×�. The order of the execution time cost matrix is N×2, since there are 

N tasks assumed in an application and each task is executed on 2 processing elements i.e. soft 

core processor and FPGA. The cost matrixes of an application plays crucial role while 

distributing the tasks to the targeted architecture. In practical, the execution time of an application 

depends on Finish Time (FT) of the exit task and called as scheduled length of an application. In 

this research, the objective of task distribution model is to minimize the scheduled length of an 

application and also efficient utilization of Heterogeneous architecture resources. The FT of task 

depends on nature of resources used for computation and also on tasks arrival time. The FT of the 

task, FT	(�
) = 	 
 + �
, where �
 is an execution time of a task ti on soft core processor or FPGA 

i.e. �
 	 ∈ 	 '()�×�. The arrival time of task �
 is depends on finish time of the task �
0� i.e. 

 (�
) = 	 FT(	�
0�) and so on.   

        

3.4 Motivational Example  
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The task graph shown in figure 2 is an example taken form [20] [35] and it is targeted to a 

heterogeneous reconfigurable platform having one CPU and three RLUs as computing elements. 

 
 

 

       

  
 

 

 

 

Figure 2 Task graph and its attribute table on soft core processor and FPGA 
 

Generally, execution time of task graph depends on the processing elements on which their tasks 

are executed. In this research, the reconfiguration latency is assumed as constant and equal to 

zero. The task graph, in figure 2, is executed on different configurations of targeted platform as 

shown in figure 3. In the figure 3, along the x-axis represents execution time in millisecond and 

the y-axis represents platform configurations used for task graph execution. An application, 

shown in figure 2, is scheduled to single microprocessor and FPGA with single RLU and the 

execution time in the both cases are shown in figure 3(a) and 3(b) respectively. The application 

ideal schedulable length on CPU, figure 3(a), is 127 µsec. and it would be 101 µsec., when the 

application is mapped to FPGA with single RLU, figure 3(b). So, schedulable length of an 

application can be minimized when and only RLU acts as computing element. Since FPGA 

support partial reconfiguration, we could cluster the FPGA into multiple RLUs to support parallel 

task execution and it further reduces the schedulable length of an application. Application 

scheduled to multiple RLUs platform where tasks found the required area and the execution time 

is 65µs as shown in figure 3(c).  

Task 

(Node) 

Area on 

FPGA 

Execution Time in 

µsec 

Soft core 

processor 

FPGA 

T1 200 14 12 

T2 180 13 10 

T3 120 11 9 

T4 180 13 10 

T5 150 12 9 

T6 170 13 11 

T7 90 7 5 

T8 70 5 3 

T9 250 18 15 

T10 300 21 17 

T9 T8 T7 

T10 

T1 

T6 T5 T4 T3 T2 
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Figure 3. Scheduled length of task graph on heterogeneous Reconfigurable Computing Systems 

 

In real time, tasks may require hardware area which could not available on FPGA and they can be 

called as critical tasks. The critical tasks may leads to infinite schedulable length (i.e. application 

could not fully executed) and such critical tasks can be executed on microprocessor due to 

microprocessor flexibility for software tasks. In this article, tasks which do not find the required 

area on FPGA can be treated as critical tasks. For example, when we consider RLUs area on 

FPGA is less than 200 then the tasks T1, T9 and T10 in task graph (Figure 2) becomes critical 

tasks and the application could not execute on RLUs of FPGA. The scenario of scheduling critical 

tasks to the platform where tasks do not find required area and its execution time is infinite as 

shown in figure 3(d). The execution time infinite indicates that the application is partially 

executed (i.e. tasks 9 and 10 are not completely executed) due to lack of resources and it can be 
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addressed effectively by introducing a soft core processor along with FPGA, where as the 

processor acts as a flexible computing element for critical tasks. The task schedule for such 

HRCS platform is shown in figure 3(e) and the execution time is 74 µs which is more than 3(c) 

but application is executed successfully. The dynamic task schedule of the application to the 

platform with multiple RLUs only is shown in figure 3(f) and its execution time is 63µs. 

Similarly, the dynamic task schedule of the application to the platform HRCS is shown in 3(g) 

and its execution time is 71 µs. From the figures 3 (c), (e), (f), (g), it is clear that the dynamic 

schedule enhances the application execution speed compared to static schedule. The idle time of 

RLUs and processors is used for execution of task of parallel applications. In this paper, we are 

intended to address dynamic scheduling techniques for real time applications.   

 

3.5 problem statement and assumptions 
 

An overview of different steps in scheduling of real time application to HRCS platform is 

described in figure 4. An application would be represented as weighted DAG and it is passed to 

task prioritization and HW/SW partitioning modules. The prioritization modules assigns priorities 

to the tasks of DAG based on their attributes and then the partitioning module partition the tasks 

into hardware and software tasks.  

 

                                                                                                                                                  
 

Figure 4. Flow chart of task distribution methodology 

 

Task prioritization assigns priority to each task in such a way that meets the deadlines of an 

application. The HW/SW partitioner partition the tasks based on the resources availability and 

nature of task and the scheduler prepares the scheduled task list to either CPU or FPGA based on 

task parameters stated in section 3.2. These three sequential steps plays major role in distribution 

of tasks to HRCS i.e. the task graphs are distributed sequentially not concurrently. In this 

Input DAG and its 

parameters 

HW/SW Partitioner 

Application scheduler  

 Task schedule to 

CPU 

Task Schedule to 

FPGA 

Scheduled task                    

list for HRCS 

Task Prioritization   



International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015 

                                                                                                                                                                         27 

 

research, tasks would be scheduled to CPU and FPGA concurrently i.e. task graphs are executed 

concurrently based on availability of the HRCS resources. Each processing element in HRCS 

intended to run only one task at a time and each task may be loaded to either CPU or FPGA. In 

HRCS, data among the tasks can be exchanged by shared memory and the tasks nature is 

assumed as either preemption or non preemption. Let’s assume that the set of tasks 1 =
	{��, ��, ……	, ��} of an application are represented as weighted DAG and task arrival time would 

be stochastic in nature. The tasks set T in DAG would be partitioned into three types called 

software tasks (ST), hardware tasks (HT) and hybrid tasks (HST) based on their area (i.e. 

resources width in terms of number of bit slices) 	"
 and preemption nature, as stated below.   

 

1. The set of tasks, which are preempted in nature and could not find required area on RC of 

HRCS, can be treated as software task set (ST). 21 = 	 {&��	, &��, …… , &��}, &�
 ∈
	ST,	(1 ≤ 5 ≤ 6), having the parameters	 
, !
	and 	&�
 and run only on µP. 

2. The set of tasks, which are non-preempted in nature and could find required area on RC of 

HRCS, can be treated as hardware task set (HT). 71 = 	 {ℎ��	, ℎ��, …… , ℎ��}, ℎ�
 ∈
	7T,(1 ≤ 5 ≤ 8), having parameters	 
 , !
 , "
	, $
	 and ℎ�
 and run only run on FPGA. 

3. The set of tasks, which are preempted in nature and could find required area on RC of 

HRCS, can be treated as hybrid task set (HST). 721 = 	 9ℎ&��, ℎ&��, …… , ℎ&�:;,	ℎ&�
 	 ∈
	72T (1 ≤ 5 ≤ <), having parameters 	 
, !
 , "
	, $
, 	&�
	 and ℎ�
	and run either on µP or 

FPGA. 

 

In this research, the task parameters are estimated to the platform HRCS statically by different 

techniques. Task area width "
	 is estimated with the help of synthesis tools like XILINX ISE, 

Synopsys Design Compiler. Task hardware configuration parameters like	$
,	ℎ�
	are estimated by 

configuring them to hard core processor i.e. FPGA, whereas software execution time &�
	is 

estimated by executing the task on soft core processor i.e. µP. The partitioned tasks are prioritized 

based on the level of tasks and then scheduled them to either to soft core processor or hard core 

processor. In this article, we made decision to direct software tasks to µP and hardware tasks to 

FPGA permanently but the hybrid tasks are directed to either µP or FPGA based on resources 

availability at that instant of time.  

   

4.PROPOSED METHODOLOGY FOR TASK DISTRIBUTION TO 

HETEROGENEOUS COMPUTING SYSTEMS 

 

The execution time of real time applications always depends on targeted platform and its 

computing elements. Distribution of the tasks of real time applications becomes complex when 

there are multiple heterogeneous computing elements present in computing platform and it has 

been addressed by many researchers for various computing platforms. In this article, we intended 

to describe a task distribution methodology to the platform where CPU and FPGA would be 

computing elements. Usually task distribution takes place in three steps task prioritization, 

HW/SW partition and application schedule as shown in figure 4. In our research, the task 

prioritization generates the priorities for the tasks based on their level in task graph. Task 

partitioner partition the tasks into software tasks, hardware tasks and hybrid tasks based on the 

resources required and availability. The scheduler prepares task distribution list to the hard core 

processor and soft core processor based on tasks dead line. The behavior and Pseudocode for 

these three steps are described in the following sub sections.   
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4.1 Task prioritization  
 

Initially task graph is represented as adjacency matrix which shows dependency of tasks in a task 

graph. The adjacency matrix is used to find Level of individual tasks in the task graph. The Level 

of tasks in task graph acts as cost function for task prioritization. In any task graph, source task 

gets highest priority and sink task gets lowest priority in order to maintain dependency between 

tasks. The Pseudocode for task prioritization is described in algorithm 1. 

 

Algorithm 1: Pseudocode for Task prioritization  

1 for each task_graph, no_tasks, no_next_task do 

2        Compute adjacent Matrix 

3         Compute Level of task  

4  while ((Level)i > 0) 

5  Assign_Priority (task, Level); 

6                        Sort (priority_list)  

7    end                   

8  end 

 

Tasks may have equal priority since more than one task may exist at same level in a task graph. 

The tasks T2, T3, T4, T5 and T6 in task graph, shown in figure 2, are at same level and they have 

equal priority according to algorithm 1.  In the task graph (figure 2), task T1 has first priority, 

tasks T2, T3, T4, T5 and T6 assigned with second priority, tasks T7, T8 and T9 assigned with 

third priority and finally task T10 assigned with forth priority. The prioritized tasks are sorted 

according to their priority increasing order and then moved for HW/SW partition module. 

 

4.2 Task Partition 
 

The prioritized tasks are partitioned into software task, hardware tasks and hybrid tasks based on 

resources available and preemption nature of the task. The pseudocode for task partition is 

described in algorithm 2.  

  

Algorithm 2: Pseudocode for Task Partition  

1   for initial prioritized task_graph, no_tasks do 

2            HT_queue = 0;  HST_queue = 0;   ST_Queue = 0; 

3        if ( ( area (Ti ) < available_RLU) & preemption_nature = false) then  

4       HT_queue = Ti   

5 else if ( ( area (Ti ) <  available_RLU) & preemption_nature = true) then 

6                        HST_queue = Ti   

7    else                  

8           ST_Queue = Ti  

9            end 

10 end   
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The initial prioritized tasks of task graph would be accepted by the task partition module as input. 

The ST_Queue, HT_Queue and HST_Queues are used to store software tasks, hardware tasks and 

hybrid tasks respectively. Initially these queues would be empty and intended to store partitioned 

tasks in their priority increasing order. The tasks which are non-preempted in nature and could 

find reconfigurable area on HRCS are sent to HT_Queue, tasks which are preempted in nature 

and could find reconfigurable area on HRCS are sent to HST_Queue, and tasks which are 

preempted in nature and could not find reconfigurable area on HRCS are sent ST_Queue. Finally, 

these partitioned tasks are available in their respective queues and they could be distributed to 

computing platform HRCS by tasks scheduling module.  
         

 4.3 Task Scheduling  
 

The pseudocode in section 4.1 and 4.2 depict the behavior of prioritization and partition 

methodologies. These methodologies receive task graphs as well as their attributes as input and 

prepares initial schedule portioned task list. In this section, the dynamic task scheduling policy is 

demonstrated as combination of prioritization and resource management. The initial scheduled 

tasks in algorithm 1 &2 are further prioritized based on the cost function called Minimum Laxity 

First (MLF) and availability of the resources. The pseudocode of task scheduling model is 

described in algorithm 3. 
 

Algorithm 3: Pseudo code for Task scheduling 

1 while (no_task graphs >0) 

2               for initial scheduled and partitioned task graph, no_tasks do 

3  Compute MLF of individual tasks in task graph  

4  Assign_Priority (task, MLF) 

5                          Sort (priority_list)  

6     end      

7              RLU_Impementation_Queue = 0; CPU_Impementation_Queue = 0; 

8              for prioritized tasks, no_tasks do 

9                  if ( Ti �  HT_Queue) then  

10                           Ti -> RLU_Implementation Queue 

11        else if ((Ti � HST_Queue) &(RLU_available ) then 

12                         Ti -> RLU_Implentation Queue 

13     else                  

14            Ti ->  CPU_Implementation Queue 

15             end 

16    end   

17           while (RLU_Implementation_Queue != empty)   

18                  Wait for RLU      

19              Assign task to available RLU 

20           end   

21            while (CPU_Implementation_Queue != empty)  

22             Wait for CPU 

23              Assign task to CPU 

24           end 

25 end 
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The task scheduler accepts the partitioned tasks as input and computes a parameter called 

Minimum Laxity First (MLF) for all the individual tasks which are in same level of the task 

graph. The expression for MLF is =>?@ = AB − DB − EB. The MLF acts as cost function to 

prioritize parallel tasks and then prioritized tasks are scheduled as their priority increasing order. 

The RLU_Implementation Queue and CPU_impementation Queue are used to store the task for 

execution on hard core processor and soft core processor respectively. The RLU_Implementation 

Queue stores the tasks which could execute on hardcore processor (RLUs) and the 

CPU_Implementation queue stores the tasks which could execute on softcore processor (CPU). 

Tasks in HT_Queue and also tasks in HST_Queue for which reconfigurable area available are 

sent to RLU_Implementation Queue. Similarly tasks in ST_Queue and tasks in HST_Queue for 

which reconfigurable area is not available are sent to CPU_Implementation Queue. Finally, tasks 

in RLU_Implementation Queue and CPU_Implementation Queue are executed on hard core 

processor (RLU) and soft core processor (microprocessor) respectively.   
 

5. IMPLEMENTATION SCHEME 
 

In this section, we describe the computing environment, real time application and methods 

followed for application execution. The reconfigurable computing brings flexibility for execution 

of wide range of application and also enhances the execution speed. So, in this research we have 

described a heterogeneous computing environment on a single chip FPGA called Heterogeneous 

Reconfigurable Computing System (HRCS). The HRCS contains a soft core processor and 

multiple hard core processors i.e. Reconfigurable Logic Units (RLUs) as processing elements. 

The soft core processor executes application in traditional method like fetch, decode and execute 

whereas the hard core processor reconfigures its architecture according to the behavior of an 

application task. The described HRCS platform is realized on Virtex 5 FPGA with a MicroBlaze 

as soft core processor and partially reconfigurable RLUs as hard core processing elements. In the 

realized heterogeneous reconfigurable platform, the MicroBlaze is equipped with a BRAM, 

Instruction and Data Cache memories for storing program as well data while executing an 

application. BRAM also acts as shared memory for RLUs to store input and output data. These 

functional blocks MicroBlaze, RLUs (custom hardware for application tasks), BRAM, Cache and 

general purpose I/O devices are interconnected through communication protocols like Processor 

Local Bus (PLB) and First In First Out (FIFO) as shown in figure 5.  
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Figure 5.    On-chip Heterogeneous Reconfigurable Computing System   
 

We have selected set of task graphs extracted from multimedia applications and executed on hard 

core and soft core processing elements which are constructed on Virtex 5 FPGA platform. The 

task graph of JPEG is shown in figure 6(a) and it can be used as input to task distributing model. 
 

 
 

Figure 6  (a) Tasks and their dependency in JPEG    (b) Task and their dependency in DCT     (c) Task and 

their dependency in Encoder 
 

The JPEG task graph has five levels where task T1 for RGB_to_ YCbCr at level 1, task graph has 

three tasksT2, T3, T4 shown in figure 6(b) for Discrete Cosine Transform (DCT) at level 2, task 

T5 for quantization at level 3, task graph has three tasks T6, T7, T8 shown in figure 6(c) for 

Encoder at level 4 and task T9 for Stream_writing at level 5. In the figure 6(b), the task T6 for 

matrix wrapping – 1 and T7 for matrix transpose are in the same level they could be executed 

concurrently. The figure 6(c) shows encoder where pipeline is introduced while hardware 

implementation of the task graph which increases the throughput of the task graph. The tasks in 

encoder can be executed sequentially. The dataflow diagram of the procedure which is followed 

to design HRCS and implement the real time application on HRCS is describe in figure 7.  
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Figure 7   Xilinx Tool flow to design HRCS and task graph execution on HRCS 
The Embedded Development Kit (EDK) demonstrates board support package design. So, in this 

research, we have been using the Xilinx EDK to realize the HRCS platform on Virtex 5 FPGA 

where MicroBlaze soft core is configured in part of the reconfigurable area of FPGA and the rest 

reconfigurable area is divided into multiple hard core processing elements. Standard embedded 

SW development flow supports execution of the applications on soft core processor where as the 

standard FPGA HW development flow supports execution of the application on hard core 

processor. 
 

6. RESULTS & DISCUSSION 
 

This section is intended to describe FPGA device utilization for configuring HRCS, evaluate the 

performance of the task distribution methodology described for HRCS and finally HRCS 

resources utilization while executing for real time applications.  
 

6.1 Device Utilization for Heterogeneous Reconfigurable Computing System  
 

The Virtex 5 FPGA (XC5VLX110T) device consists of 17,280 slices, 64 DSP slices and 5,328Kb 

of RAM memory blocks to design high performance embedded systems. Each slice contains 4 

LUT, 4 FF, arithmetic logic gates, multiplexers and fast look ahead carry chain. The Virtex 5 

device used to configure the resources of HRCS such as soft core processor, RLUs and Memory 

with the necessary communication ports. The device utilization for configuration of various 

modules in HRCS summarized in table 2 

.  
Table 2. Virtex 5 FPGA (XC5VLX110T) Device utilization chart 

 

Resource Module No. slices 

Soft core (MicroBlaze) MicroBlaze 1599 

Hard core 

(Reconfigurable Logic Unit) 

RLU1 500 

RLU2 500 

RLU3 500 

 

Memory 

DDR2_SDRAM 

(256MB) 

1687 
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dlmb_cntlr (8KB) 7 

Ilmb_cntlr (8KB) 4 

Communication Interfaces 

(Bus controllers) 

dlmb 1 

ilmb 1 

Mb_plb 96 

Debug Module Mdm (64KB) 97 

Timing and reset circuits proc_sys_reset 30 

xps_timer (64KB) 187 

I/O interfaces RS232_uart (64KB) 97 

DIP_Switches_8bit 

(64KB) 

67 

LEDs_8bit (64KB) 71 

Heterogeneous Reconfigurable Computing System 5,444 

 

The table 2 depicts the number of slices used for each module in HRCS and the HRCS consumed 

5,444 slices on virtex 5 FPGA. In coming sections we will demonstrate the tasks distribution to 

targeted HRCS architecture and their performance.   

 

6.2 Performance Estimation of application targeted to HRCS  
 

Initially, the real time application JPEG is taken as input to analyze the effectiveness of the task 

distribution methodology. So, the JPEG is represented as task graph and their dependencies are 

shown in figure 8.  

 

 
 

Figure 8. Task graph of JPEG 
 

As stated in figure 7, the behavior of the tasks in JPEG is described in C++ and also in HDL in 

order to execute them on soft core and hard core processing elements. The C++ code of the task is 

cross compiled to the soft core processor MicroBlaze and that generates executable file. The 

executables of the tasks are stored in program memory and then executed on MicroBlaze in order 

to acquire attributes, i.e. ececution time, of the tasks on MicroBlaze. Similarly, HDL code of the 

tasks is synthesized for the device Xilinx Virtex 5 to generate gate level netlist and that produces 

configuration files required for task execution on FPGA. These configuration files are stored in 

memory and configured them to FPGA and then executed in order to acquire the attributes, like 

area required and execution time, of the tasks on FPGA. The acquired attributes of JPEG task 

graph (shown in figure 6) is shown in table 3 where the task in a task graph in first column, level 

of the tasks in second column, area required on FPGA in third column, tasks execution time on 

FPGA in forth column and the execution time of tasks on soft core processors, i.e. core 2 duo and 

MicroBlaze, in column 5 and 6. Finally, the column 7 represents the enhancement in 

computational complexity of MicroBlaze compared to GPP i.e Core 2 duo Processor.  
   

T5 T6 T7 T4 

T3 

T2 

T1 
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Table 3: Attributes of JPEG Task graph on HRCS  

 

 
The table 3 shows execution time of the application JPEG on soft core processor and hardcore 

processor. From the table, it is clear that the performance of the JPEG task graph is effective on 

FPGA reconfigurable area compared to soft core processor. The computation time of the 

application is more on MicroBlaze compared to Core 2 Duo processor. The computation time 

(number of CPU clock cycles) of an application is equal to multiplication of clock speed of the 

processor and execution time of that application on the processor. So, the custom soft core 

MicroBlaze takes more computation time compared to general purpose Core 2 duo soft core 

processor. The comparisons between the soft cores in terms of computation time and number of 

clock cycles are shown in figure 9.  

  
 

    
 

Figure 9 (a) No. of clock cycles consumed for execution of JPEG   (b) Computation time of the application 

JPEG on MicroBlaze and Core 2 duo processor 
 

The figure 9 depicts that the JPEG execution is effective on Core 2 Duo compared to MicroBlaze 

but the MicroBlaze provides cost effective solution in terms of power and area. Since, the core 2 

duo runs at 1.2Ghz, whereas MicroBlaze runs at 125MHz, the core 2 duo dissipates more power 

and also consumes more area. So, the MicroBlaze would be the soft core processor to design low 

power computing platform for real time applications.  

 



International Journal of Embedded systems and Applications(IJESA) Vol.5, No.1, March 2015 

                                                                                                                                                                         35 

 

The task distribution methodologies distribute the tasks of an application statically as well as 

dynamically to the resources of computing platform. As we have stated, the both task distribution 

methodologies are implemented and verified for the represented task graphs. In this research, the 

dynamic task distribution methodology follows the MLF algorithm for task distribution. Initially, 

hypothetical task graph shown in figure 2 is distributed statically as well dynamically to the 

platform HRCS which is configured on FPGA and then the JPEG task graph is distributed for 

execution. The execution time, in both static and dynamic scheduled policies, of hypothetical task 

graph and JPEG task graphs on the platform HRCS is shown in figure 10.  

 

               
(a)                                                                                      (b) 

Figure 10 (a) Execution time of hypothetical task graph on HRCS (b) Execution time of JPEG task graph 

on HRCS 

 

From the figure 10, it is clear that the execution time of the task graphs is less in dynamic 

scheduling policy compared to static scheduling policy. So the task distribution with dynamic 

scheduling enhances the application execution and also utilizes the resources of computing 

platform HRS effectively.  The real time application JPEG alone is small enough to effectively 

utilize the HRCS resources. So, an advanced application OFDM also considered along with JPEG 

and distributed to HRCS in order to utilize the resources effectively. The task graph of OFDM 

transmitter consists of 6 tasks as shown in figure 11. The tasks in OFDM transmitter are source 

generator (T1), serial to parallel (S/P) converter (T2), Quadrature Amplitude Modulation (QAM) 

a constellation mapper (T3) , IFFT (T4), parallel to serial (P/S) converter (T5) and cyclic prefix 

insertion blocks (T6). 
 

 
 

Figure 11. OFDM Transmitter Task graph 

 

The task 3 is QAM and it could perform 16 QAM operations to generate 16 symbols which are 

further transmitted to 16 bit IFFT. The tasks, in OFDM transmitter, are executed individual on 

   

T1 T2 T4 T5 T6 

T3i 
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MicroBlaze as well on FPGA and captured their attributes. The attributes of OFDM transmitter 

task graph are listed in table 4. Form the table 4, it is clear that the hardware realization enhances 

the OFDM transmitter execution. The execution speed of OFDM transmitter on MicroBlaze 

processor is slower than the general purpose processor and DSP processors. The core 2 duo and 

DSP processors dissipates more power since they run at 1.2GHz and 225 MHz speed and also 

bulky due to their heat sink. But, the MicroBlaze is available on the same chip FPGA where RLU 

resides and hence it would be effective soft core processor for many power sensitive real time 

applications.      
 

 

Table 4. Attributes of OFDM Transmitter 

 

 
 

So the tasks, in OFDM transmitter task graph, are distributed to HRCS platform statically as well 

dynamically. The execution time of the OFDM transmitter on the platform HRCS is shown in 

figure 12. Finally both JPEG and OFDM transmitter task graphs together distributed to the HRCS 

platform and the execution time in both static scheduling and dynamic scheduling policy is shown 

in figure 13. 
 

 
 

The figure 12 shows that the execution time of OFDM transmitter and it is same in both Static 

and Dynamic scheduling policies because there are no parallel tasks in the task graph of OFDM 

transmitter. The figure 13 shows the execution time when both JPEG & OFDM transmitter task 

graphs together distributed to the HRCS platform. From the figures 10, 12 and 13, the dynamic 
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task distribution policy with  MLF algorithm enhances the execution time compared to static task 

distribution policy in [15] [20]. The application execution time difference between dynamic 

scheduling policy and static scheduling policy depends on the task parallelism in the task graph 

and execution time of the parallel tasks. The resource utilization of HRCS in both task 

distribution scenarios would be demonstrated in coming section. 

 

6.3 Resources utilization 
 

The resources utilization of the platform HRCS is estimated based on the tasks allocated to 

individual resources of the platform and time spent in executing the tasks. The expression used to 

calculate the resources utilization is as follows.	FDGHIJKD	I=LBME=BHN = 	
∑N	×D=
P×QR

	, where n = 

number of resources active in a time slot et, et = task execution time slot, N = Total number of 

resources in computing platform, ET = Total execution time of an application. The resource 

utilization is calculated for both JPEG and OFDM transmitter task graphs targeted to the platform 

HRCS. The JPEG utilized 26.7% of HRCS resources when tasks are distributed statically 

whereas it is 28.9% when they are distributed dynamically. Similarly, the OFDM utilize 25% of 

the resources in both task distribution policies due to lake of parallelism in OFDM transmitter 

task graph. The resource utilization is 25% in the case of both JPEG and OFDM transmitter task 

graphs together distributed to the platform.  

  

7.  CONCLUSION  
 

In this paper, we have proposed a novel dynamic task distribution methodology named as MLF 

algorithm for on chip heterogeneous computing platform. An on chip Heterogeneous 

Reconfigurable Computing System (HRCS) is constructed on Virtex 5 FPGA device for 

application execution. The HRCS contains MicroBlaze as soft core processor and multiple RLUs 

configured on FPGA as hardcore processor. The real time applications JPEG and OFDM 

transmitter task graphs design parameters are obtained by executing them on the resources of 

HRCS. The obtained attributes of task graphs acts as cost functions in MLF algorithm and the 

task graphs are distributed statically as well as dynamically to the resources of HRCS. From the 

result, it is concluded that the application execution is effective on HRCS when parallel tasks are 

targeted. The MLF dynamic task distribution methodology enhanced the execution speed of the 

JPEG applications by 9.6% over static task distribution. On the other side, the execution of the 

task graphs takes less time on GPP and DSP processors compared to the On-chip soft core 

processor MicroBlaze but GPP and DSP processors dissipates more power due to their high clock 

speeds. So the MicroBlaze can acts as soft core processes in design of low power computing 

platforms for real time applications.   
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