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A Generalizable Hybrid Search Framework for Optimizing 

Expensive Design Problems using Surrogate Models 

Abstract: 

Experimental optimization of physical and biological processes is a difficult task. 

To address this, sequential surrogate models combined with search algorithms 

have been employed to solve nonlinear high dimensional design problems with 

expensive objective function evaluations. In this article, a hybrid surrogate 

framework was built to learn optimal parameters of a diverse set of simulated 

design problems meant to represent real world physical and biological processes 

in both dimensionality and nonlinearity. The framework uses a hybrid radial basis 

function / genetic algorithm with dynamic coordinate search response, utilizing 

the strengths of both algorithms. The new hybrid method performs better or as 

good as its constituent algorithms in 19 of 20 high dimensional test functions, 

making it a very practical surrogate framework for a wide variety of optimization 

design problems. Experiments also show that the hybrid framework can be 

improved even more when optimizing processes with simulated noise. 

Keywords: hybrid surrogate, meta-modeling, DYCORS, experimental 

optimization, radial basis function 

1. Introduction

The design and optimization of engineering systems often requires the use of high-

fidelity simulations and/or experiments. These black box systems often have nonlinear 

responses, high dimensionality, and have many local optima. This makes these systems 

costly and time consuming to model, understand, and optimize when simulations take 

hours or experiments performed in the lab require extensive time and resources. 

The first attempt to improve over simple optimization methods, such as ‘one-

factor-at-a-time’ and random experiments, was through the field of Design of 

Experiments (DOE). Techniques in DOE have been adapted to many computational 

(Giunta, Wojtkiewicz, and Eldred 2003) and experimental fields (Weuster-Botz 2000; 
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Singh et al. 2017) in order to reduce the number of samples needed for system design 
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and optimization. These methods often involve performing experiments or simulations 

at the vertices of the design space hypercube (the boundaries of the system). Full-

Factorial Designs are arguably the simplest to implement, where data is collected at all 

potential combinations of parameters 𝑝 for all levels 𝑙 requiring 𝑙𝑝 samples in total.

Even when 𝑙 = 2 (for ‘high’ and ‘low’ levels of the design space) the number of 

experiments or simulations quickly becomes infeasible so Fractional-Factorial Designs 

using 𝑙𝑝−𝑘 experiments for 𝑘 ‘generators’ are often used to reduce computational or

experimental burden, at the expense of convolving interaction effects of various 

parameters on the response. Other techniques include designing experiments or 

simulations using Latin Hypercubes, which prioritize space-filling properties, often used 

in the construction of posteriors in Bayesian statistics or models in computational 

design and inference (Cioppa and Lucas 2007; Pholdee and Bureerat 2015). This is a 

popular method of initializing databases for statistical inference and optimization 

problems. DOE techniques are also often combined with Response Surface 

Methodologies (RSM) such as a polynomial model, to iteratively move the sampling 

location, improve model fidelity as more data is collected (Saval, Pablos, and Sanchez 

1993), and focus experiments in regions of interest. Stochastic optimization methods 

such as Genetic Algorithms (Haupt and Haupt, n.d.), Particle Swarm Optimization 

(Agrawal et al. 2008), and Differential Evolution (Storn and Price 1997) have also been 

used to explore design spaces and perform optimization on both simulated and 

experimental datasets (Bapat and Wangikar 2004; Havel et al. 2006; Franco-Lara, Link, 

and Weuster-Botz 2006), often requiring fewer experiments than traditional DOE-RSM 

techniques. 
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The quickly developing field of surrogate optimization attempts to leverage 

robust response surface modeling techniques, such as radial basis functions (RBF) 

(Regis and Shoemaker 2012) or Kriging models (Wang and Shan 2007), to optimize 

nonlinear systems. These methods often employ a stochastic (G. Zhang, Olsen, and 

Block 2007), uncertainty-based (Jones, Schonlau, and W. J. Welch 1998), or Bayesian 

(Kathryn Chaloner 1996) search algorithm to intelligently select new sample points to 

query for experimentation or simulation. Because these stochastic optimizers require 

many function evaluations, and the design problems we are focusing on are expensive 

to evaluate, the surrogate model provides a cheap approximation of the true system. Due 

to the variety of modeling techniques and search algorithms available, hybrid 

algorithms, which attempt to leverage the strengths of various surrogate modeling 

techniques, have proliferated (Gu, Li, and Dong 2012; J. Zhang, Chowdhury, and 

Messac 2012). These hybrid approaches usually involve taking ensembles of various 

surrogate model predictions. New queries are then conducted at points weighted in 

favor of regions/surrogates with low sample variance or optimal response values. The 

drawback of many of these algorithms is that they are not always generalizable to 

design problems of diverse dimensionality and nonlinearity. 

We present a surrogate optimization algorithm which uses an evolving RBF 

model and hybrid search algorithm. This search algorithm selects half of its query 

points using a Euclidean distance metric truncated to provide diversity in suggested 

query points. This is based on a Neural Network Genetic Algorithm (NNGA) developed 

for bioprocess optimization (G. Zhang and Block 2009b), which has been shown to be 

more efficient than traditional DOE-RSM methods. The other half of the query points 

are selected using a Dynamic Coordinate Search for Response Surface Methods 

algorithm (DYCORS) based on work developed for computationally expensive 
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simulation (Regis and Shoemaker 2012). DYCORS has been shown to perform better 

than a variety of popular surrogate optimization techniques. The performance of the 

NNGA-DYCORS hybrid algorithm is tested against NNGA and DYCORS separately. 

Further evaluation is performed to probe potentially useful extensions of the hybrid 

algorithm (i) to address  simulated experimental noise, (ii) to improve algorithm 

convergence over time, and (iii) to address cases in which certain groups of parameters 

have a greater influence on the response values than others. 

2. Methods

2.1 RBF Surrogate Model 

The surrogate model used is the RBF interpolation model (Powell 1990), which 

provides a cheap approximation of the process. A cubic RBF 𝜙(𝑥) = 𝑟3 with a linear

tail 𝑝(𝑥) is used to map input data 𝑋 ∈ ℝ𝑛𝑥𝑝 to output data 𝑌 ∈ ℝ𝑛𝑥1 given a number of

datapoints 𝑛 with input dimensionality 𝑝. The form of the RBF interpolation 𝑠(𝑥) is 

shown (Equation 1). 

𝑠𝑛(𝑥) = Σ𝑖=1
𝑛 𝜆𝑖𝜙(||𝑥 − 𝑥𝑖||) + 𝑝(𝑥) (1) 

Substituting 𝜙(𝑥) and 𝑝(𝑥) gives Equation 2, 

𝑠𝑛(𝑥) = Σ𝑖=1
𝑛 𝜆𝑖(||𝑥 − 𝑥𝑖||)

3
+ 𝑐0 + Σ𝑗=1

𝑝 𝑐𝑗𝑥𝑗  (2) 

where || 𝑥 − 𝑥𝑖  || is the Euclidean norm of a given point 𝑥 and all RBF nodes 𝑥𝑖. 

The number of nodes in an RBF model is often tuned to give low bias (more nodes) or 

low variance (fewer nodes). For training, the coefficients of the RBF 𝜆 ∈ ℝ𝑛𝑥1 and the

linear tail 𝑐 ∈ ℝ(𝑑+1) 𝑥 1 (for a 𝑑 dimensional design problem) are determined by

solving to the following system of linear equations shown in Equation 3. 
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(
Φ 𝑃
𝑃𝑇 0(𝑝+1) 𝑥 (𝑝+1)

) (
𝜆
𝑐

) = (
𝑌

0𝑑+1
) (3) 

The matrix Φ ∈ ℝ𝑛𝑥𝑛 consists of components Φ𝑖𝑗 = 𝜙 (||𝑥𝑖 − 𝑥𝑗||). The matrix

𝑃 ∈ ℝ𝑛𝑥(𝑑+1) is comprised of the rows of [1, 𝑥𝑖
𝑇]. The output of datapoint 𝑖 is 𝑦𝑖 

contained in 𝑌. The coefficient vector can be inverted using singular value 

decomposition, solving the linear transformation for input data 𝑋 and output data 𝑌. 

Modifying the equation to exclude the linear terms requires solving Φ𝜆 = 𝑌, which will 

be used in Section 3.2. 

2.2 NNGA 

The NNGA algorithm is based on an RBF assisted genetic algorithm. The NNGA uses 

an RBF model to suggest points that are close to but not directly on top of optima using 

a truncated genetic algorithm (TGA). One advantage genetic algorithms have over 

gradient-based methods is that their randomness allows them to efficiently explore both 

global and local regions of optimality. This makes them very attractive for an 

optimization framework attempting to look for global optima while facing uncertainty 

associated with a sparsely explored parameter space, and thus untrustworthy RBF 

models. This framework is shown in Figure 1a and the TGA is illustrated in Figure 2. 

[Figure 1] 

First, a database of inputs 𝑋 and outputs 𝑌 of 𝑁𝑜 total queries is collected (often 

through a DOE, random queries, or Latin Hypercube design). An RBF model is 

constructed using the training regime discussed in Section 2.1. Next a TGA is ran using 

a randomly initiated population of potential query points with the goal of minimizing 

the RBF predicted output. In each iteration of the TGA, queries expected to perform the 
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best survive a culling process and have their information propagated into the next 

iteration by a pairing, crossover, and random mutation step. After each iteration, the 

best predicted query is recorded. When the average normalized Euclidean distance 

between the TGA’s current predicted best query and its next 𝑁 − 1 predicted best 

queries, 𝑑𝑎𝑣,𝑛𝑜𝑟𝑚, is less than or equal to the critical distance parameter 𝐶𝐷 = 0.2, the 

TGA is considered to be converged and submits this list of 𝑁 best points for potential 

querying (or if the maximum number of iterations has been reached). This TGA is run a 

total of 𝑘𝑚𝑎𝑥 = 4 times, and its query selections from all rounds of TGA are clustered 

down to a final averaged query list of size 𝑁 using K-Means Clustering. The final list is 

queried to give the next set of data for simulation or experiments. The number of 

queries per batch 𝑁, total number of batches 𝑏𝑚𝑎𝑥, and critical distance parameter 𝐶𝐷, 

which controls the degree of truncation, are set by the user. 

[Figure 2] 

2.3 DYCORS 

The DYCORS generates a large list of potential query points based on gaussian 

perturbations of the current best point in the training dataset. It is dynamic because, as 

the training dataset increases in size, the number of parameters perturbed decreases. In 

this manner, DYCORS narrows its search of the parameter space over time. The 

DYCORS process is shown in Figure 1b and the parameters used in the algorithm are 

presented in the discussion below. 

First a database with inputs 𝑋 and outputs 𝑌 of 𝑁𝑜 total queries is collected, and 

an RBF model constructed. Next, the best point in the current database 𝑥∗ is selected

and perturbed by a truncated multivariate normal distribution (Botev 2017), bounded by 
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the parameter’s bounds [Δ𝑙𝑜𝑤, Δℎ𝑖𝑔ℎ] and using standard deviation 𝑙𝑏 ∗ Δ𝑗  for each 

parameter 𝑗 and current batch step size 𝑙𝑏. This is repeated on 𝑑 = min{100𝑝, 5000} 

copies of 𝑥∗ and is equivalent to taking the best solution and looking in the general 𝑙𝑏 ∗

Δ𝑗 region around them for the next points to query. The perturbation appears in the form 

of Equation 4 for a parameter 𝑗 to be perturbed for a given 𝑖 copy of 𝑥∗.

𝑥𝑖,𝑗 = 𝑥𝑖,𝑗 + 𝒩(0, 𝑙𝑏 ∗ Δ𝑗) (4) 

DYCORS is modulated by the Step Size Selection Algorithm shown in Figure 1d 
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which counts consecutive successful 𝒞𝑠𝑢𝑐𝑐 and failed 𝒞𝑓𝑎𝑖𝑙 batches of queries and either 

doubles (if  𝒞𝑠𝑢𝑐𝑐 ≥ 𝒯𝑠𝑢𝑐𝑐 = 3) or halves (if  𝒞𝑓𝑎𝑖𝑙 ≥ 𝒯𝑓𝑎𝑖𝑙 = max{𝑝, 5}) the step size 𝑙𝑏 

for the next batch based on thresholds 𝒯. This heuristic is employed based on the logic 

that, if numerus consecutive failures to improve are seen, a minimum parameter set has 

likely been reached. Thus, the search space is narrowed. In addition to altering 𝑙𝑏 over 

time (with an initial 𝑙𝑜 = 0.2 and minimum 𝑙𝑚𝑖𝑛 = 0.2(0.5)6), DYCORS also reduces 

the probability that a point 𝑥𝑖,𝑗 will be perturbed by Equation 5 which is dependent on 

the current number of queries in the database 𝑁𝑏. This has the effect of ‘narrowing 

down’ the amount of perturbations per batch as time goes on. After the perturbations are 

made and step size 𝑙𝑏 is updated, the 𝑁 best perturbations of 𝑥∗ are selected to be 

queried. The process is shown in detail in Figure 1b. The primary way that this 

implementation of DYCORS differs from the original work is that the 𝑁 best 

perturbations of 𝑥∗ are selected for querying rather than the single best perturbation. For 

a given 𝑁𝑚𝑎𝑥 (total amount of queries) this makes this implementation of DYCORS 

less efficient, but allows for multiple queries to be generated at once, and thus parallel 

computations / experiments to be made. 
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𝑃(𝑁𝑏) = min {
20

𝑝
, 1} ∗ (1 −

ln(𝑁𝑏−𝑁𝑜+1)

ln(𝑁𝑚𝑎𝑥−𝑁𝑜)
) (5) 

2.4 NNGA-DYCORS Hybrid 

To combine the NNGA and DYCORS surrogate optimization algorithms, we simply 

run them in parallel with a shared dataset {𝑋, 𝑌} and RBF model. This is shown by a 

flowchart in Figure 1c. By having access to the same data, the two algorithms can make 

different conclusions about new optimal queries. To form the new dataset, the suggested 

queries are combined from each of the constituent algorithms, and the new queries are 

conducted. The user can determine how many queries each algorithm suggests each 

batch. In this article, the NNGA and DYCORS arms of the hybrid find the same number 

of optimal queries. 

2.5 Test Functions and Algorithm Assessment 

To test the ability of these algorithms to learn arbitrary complex relationships between 

𝑋 and 𝑌 and find the minima of the resulting surfaces, optimization is done on several 

test functions as shown in Table 1. 

[Table 1] 

Simulations were performed on 10-D and 50-D dimensional variants of each test 

function to simulate low and high dimensional optimization problems. For each 

evaluation, all algorithms were run 15 times with a randomly selected initial database of 

size 𝑁𝑜 = 50 and 𝑁 = 10 queries per batch (with 𝑁𝑁𝑁𝐺𝐴 = 5 and 𝑁𝐷𝑌𝐶𝑂𝑅𝑆 = 5 queries 

per batch from NNGA and DYCORS respectively in the case of the hybrid NNGA-

DYCORS algorithm). The total number of batches was 𝑏𝑚𝑎𝑥 = 15 which made for a 

total of 𝑁𝑚𝑎𝑥 = 200 simulated experimental datapoints as the size of the final dataset. 
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To evaluate the optimization algorithms, learning curves were plotted to demonstrate 

the average optimal (minimum) output of each batch of queries including error bars that 

indicate the standard deviation in the minimum output of each batch for the 15 runs. 

The mean, median, minimum, and standard deviations of the final batch of queries is 

shown in Tables S1 and S2. 

2.6 Software and Hardware 

Hardware used: Dell Precision 5820 Tower, Intel Xeon W-2145 DDR4-2666 Processor 

(3.7 GHz), 32 GB Memory. Software used: MATLAB R2019a with Bioinformatics 

Package. 

3. Results

3.1 The Hybrid Framework versus Constituent Algorithms 

The NNGA-DYCORS algorithm was tested against its constituent algorithms, NNGA 

and DYCORS individually. Examining the performance of the constituent algorithms 

(Figure 3 and Table S1 and S2), the NNGA often outperforms the DYCORS in the 

higher 50-D problems, while the DYCORS outperforms NNGA in the lower 10-D 

problems. This was the case both over time (Figure 3) and at the final optimal query 

points (Table S1 and S2). Given these differences in performance, it stands to reason 

that a hybrid approach would provide a sensible route to a more robust algorithm that 

could be used on a wider variety of dimensions. As seen in Figure 3, the hybrid NNGA-

DYCORS often outperforms or performs similar the next best constituent algorithm in 

each experiment. This is reinforced by the data in Table S1 and S2, where the final 

optima of the hybrid NNGA-DYCORS is less than or equal to the final optima of the 

next best constituent algorithm in 19 of 20 experiments (all but the Michalewicz 50-D). 
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An optimum may be considered “better” if its upper bound (its mean plus standard 

deviation) is less than the mean of another algorithms optimum. While this is a rough 

approximation of the comparative performance of the algorithm, it strongly indicates 

that the NNGA-DYCORS is robust on a wild variety of problem sets and dimensions. 

In intermediate cases (those between 10-D and 50-D), the NNGA-DYCORS continued 

to outperform or perform as well as its most competitive constituent algorithm (data not 

shown), showing its usefulness in design optimization problems where it is not obvious 

a priori what dimensionality counts as ‘high’ and ‘low’. 

[Figure 3] 

3.2 Algorithm Performance in the Presence of Simulated Experimental Noise 

To test the effect of random noise on the ability of the surrogate optimization algorithms 

to find optimal parameters, random noise 𝑒 was added to each function evaluation to 

simulate experimental noise. 

𝑦 = 𝑦 + 𝒩(0, 𝑒 ∗ 𝑦) (6) 

It is common practice, especially in noisy and data-sparse models, to improve 

the out-of-sample generalizability by model selection procedures such as cross-

validation to avoid overfitting. To address this, a hyperparameter optimization loop for 

the number of nodes 𝑛𝑛𝑜𝑑𝑒𝑠 in the RBF model was added to the NNGA-DYCORS 

algorithm, where cross-validation over the database was used to select the optimal 

𝑛𝑛𝑜𝑑𝑒𝑠. In this case we deliberately trade higher bias for lower variance to reduce 

overfitting. As can be seen in Figure 4, application of a node optimization scheme either 

improved or did not degrade the learner’s performance over the regular scheme (where 

𝑛𝑛𝑜𝑑𝑒𝑠 = 𝑁𝑏) for 𝑒 = 0.2 (20% simulated response noise) in all but one test function. It
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should be noted that in these experiments, the linear tail of the RBF was excluded, so 

Equation 3 was modified to be Φ𝜆 = 𝑌. 

[Figure 4] 

3.3 Evaluating the Effect of Convergence Parameters on Algorithm 

Performance 

Both NNGA and DYCORS have adjustable convergence parameters that control their 

design space exploration/exploitation tradeoff. In other words, both algorithms have a 

means of avoiding premature convergence to local minima, as predicted by an early (i.e. 

less accurate and generalizable) surrogate approximation. Here we test the effect of 

changing these internal search parameters 𝑙𝑏 (DYCORS) and 𝐶𝐷 (NNGA). For 

DYCORS, this has already been suggested using a time-varying strategy (Jiang, 

Shoemaker, and Liu 2018) for current database size 𝑁𝑏. In this method, the step size is

dynamically recalculated as 𝑙𝑏+1 = 𝐶𝑏𝑙𝑏. 

𝜃(𝑁𝑏) = 2 (1 −
ln(𝑁𝑏−𝑁𝑜+1)

ln(𝑁𝑚𝑎𝑥+𝑁𝑜)
) (7) 

𝐶𝑏 = { 
1 𝜃 ≥ 1
𝜃 0.5 < 𝜃 < 1

0.5 𝜃 ≤ 0.5
} (8) 

For NNGA, if one defines a maximum and minimum critical distance parameter 

𝐶𝐷1 = 0.2 and 𝐶𝐷2 = 0.05 respectively, then 𝐶𝐷 can be changed linearly over time 

using the following formula, 

𝐶𝐷(𝑁𝑏) = (
𝐶𝐷2−𝐶𝐷1

𝑁𝑚𝑎𝑥−𝑁𝑜
) ∗ (𝑁𝑏 − 𝑁𝑜) + 𝐶𝐷1 (9) 
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where 𝑁𝑚𝑎𝑥 and 𝑁𝑜 are the maximum and initial database sizes respectively. 

The result of implementing this dynamic parameter approach (Figure 5) was that the 

hybrid learner did not have substantially better performance over the regular hybrid 

learner. This suggests that the internal search parameters 𝑙𝑏 and 𝐶𝐷 do not need to be 

substantially altered over the course of optimization. 

[Figure 5] 

3.4 Evaluating the Effects of a Parameter Subset Selection Algorithm 

In engineering systems, certain parameters influence the response more significantly 

than others, and often few parameters matter at all. To simulate this variable response 

sensitivity while maintaining the nonlinearity and dimensionality of the test problems, 

an ‘sensitivity vector’ 𝛾 was used to scale the test problems. This vector scales each 

problem as 𝑥𝑠𝑐𝑎𝑙𝑒𝑑,𝑗 = 𝛾𝑗𝑥𝑗  for parameter 𝑗 so that 20% of the parameters are scaled up 

by 𝛾 = 2, 30% are unscaled, 20% are scaled down by 𝛾 = 0.5, and 30% are neglected 

in the deterministic function. An example of the implementation of 𝛾 and a scaled 2-D 

Ackley Function is shown in Figure 6. 

𝛾 = [2,2, … 1,1, … 0.5,0.5, … 0,0] 

[Figure 6] 

Previous work in applying a decision tree-based subset selection strategy to the NNGA 

algorithm (G. Zhang and Block 2009a) reduced the number of queries needed in 

optimization. To explore this further, an RBF-based subset selection strategy was 

developed. After 𝑏 = 7 batches of queries (roughly halfway through the entire set of 

queries), 𝑝 RBF models are trained with 𝑞 = 1 … 𝑝 parameters being “dropped out”. For 

each neglected parameter 𝑞, a cross-validated average correlation coefficient 𝑅𝑎𝑣
2  is
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found using a separate hold-out-set of data. The most ‘important’ parameters should 

have the lowest 𝑅𝑎𝑣
2  assuming the RBF model is robust for the database. In experiments

using this technique, the DYCORS algorithm selects the most important parameters and 

only uses that subset in the coordinate-wise perturbation, while the NNGA operates 

normally. The result was that, while this subset selection method was able to speed up 

learning in some cases (Ackley Function), it was not able to do so consistently 

(Michalewicz Function). 

[Figure 7] 

4. Discussion

There are a seemingly infinite number of modeling techniques, search optimization 

algorithms, and initialization/infill strategies in the literature to facilitate optimizing 

expensive objective functions. However, the characteristics of the experimental system 

and design space are never really known a priori, so having an algorithm that is more 

efficient than traditional methods and able to work with a wide variety of problems is 

advantageous. Therefore, the goal of this article was to develop a surrogate optimization 

framework that could be successfully applied to test problems with a wide range of 

dimensionality and degrees of nonlinearity. The NNGA-DYCORS algorithm runs two 

surrogate optimization algorithms in parallel. The NNGA uses a Euclidean distance-

based metric to truncate a genetic algorithm, whose best members are K-means cluster 

distilled into a final query list. This acts as a global optimization process because the 

internal genetic algorithm searches over the entire design space. The DYCORS 

algorithm perturbs the best previous queries using a dynamic Gaussian distribution, 

where the perturbations are adjusted based on cumulative success and the total number 

of queries in the database. Thus, DYCORS acts as a local search method in the region 
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defined by a gaussian centered at its best queries. Both arms of the hybrid algorithm use 

an RBF for prediction. 

The result was that the NNGA-DYCORS hybrid algorithm was statistically 

equal to or outperformed its constituent algorithms in the 19 of 20 test problems. This 

demonstrates the robustness of the NNGA-DYCORS, as it performs as a ‘best-case-

scenario’ on a variety of test problem dimensions and shapes. This is important because, 

in real experimental problems, one does not know the shape of the surface a priori, 

highlighting the utility of a generalizable optimization framework such as the NNGA-

DYCORS. Additionally, it is never clear what constitutes a ‘high’ and ‘low’ 

dimensionality design problem, so an algorithm that performs well in arbitrary 

dimensions should have large practical value.  The DYCORS algorithm was already 

shown to be competitive compared to other heuristics (Regis and Shoemaker 2012), and 

the NNGA was demonstrated to be significantly more efficient than traditional 

experimental optimization methods (G. Zhang and Block 2009b). It stands to reason 

that this hybrid framework should extend the usefulness of both algorithms to test 

problems of arbitrary dimensionality and degree of nonlinearity. 

Using a node optimization scheme to reduce model variance during query 

selection improves hybrid algorithm performance, especially for noisy surfaces (as 

could be the case in experimental situations). Practitioners should therefore consider 

built-in regularization to avoid overfitting of the data when dealing with expensive, 

data-sparse, and noisy systems. Optimizing the number of nodes was specific to this 

RBF variant, but the optimization loop in Section 3.2 could be applied to any model 

hyperparameter. In the next set of experiments, our method of making the NNGA-

DYCORS convergence parameters dynamic during query selection did not improve 

performance. This indicates (i) it may not be fruitful to pursue extensive algorithm 
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parameter adjustments/heuristics for this algorithm and (ii) there is little sensitivity in 

the selection of algorithm convergence parameters on the outcome, unlike the results in 

previous articles (Jiang, Shoemaker, and Liu 2018; G. Zhang and Block 2009a). Finally, 

to mimic typical engineering scenarios where response sensitivity varies with the inputs, 

the test functions were scaled with a ‘sensitivity’ vector. A subset selection strategy was 

unable to consistently improve on the regular NNGA-DYCORS performance by 

‘focusing’ the coordinate search on the most sensitive sets of parameters.  This may be 

because the RBF does not adequately model a given test function so does not correctly 

identify the most important parameters in the database, or the coordinate search method 

does not properly exploit the narrowed parameter space. Generically, it may be useful to 

reduce the dimensionality of the parameter space, but the strategy of doing so using 

model adherence “drop-out” experiments was not uniformly successful. 

This article demonstrates that the NNGA-DYCORS hybrid learning algorithm 

outperforms its constituent algorithms in the important criteria of robustness and 

generalizability to different kinds of problems. Thus, this algorithm can be applied to a 

wide variety of physical and biological design optimization problems with a degree of 

assurance that parameter estimates will be optimal while minimizing necessary 

resources. Additionally, as this hybrid is both robust and highly generalizable to many 

types of design problems, it should be useful for practitioners who are not experts in 

surrogate optimization methods, and work on a variety of problems of diverse 

complexity. 
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Supplemental Tables 

Table S1. Final Algorithm Performance Part I. Experiments from Section 3.1 where NNGA-

DYCORS performed better than or as well as the next best constituent algorithm by one standard 

deviation have their mean bolded. Variants of NNGA-DYCORS are tested in Sections 3.2 – 3.4. 

All data shown are from the final batch of experiments for all algorithms. 

(Section 3.1) (Section 3.2) (Section 3.3) (Section 3.4)

NNGA DYCORS NNGA-DYCORS Node Opt Regular Dynamic Regular Subset Selector Regular

Ackley 10-D Mean -13.94 -18.27 -18.32 -17.95 -17.20 -18.65 -18.32 -22.16 -19.06

Median -14.15 -18.94 -18.61 -18.19 -17.41 -18.79 -18.61 -22.51 -19.32

Min -15.21 -19.96 -20.02 -21.12 -21.36 -20.12 -20.02 -22.72 -19.90

St. Dev 0.85 1.56 1.23 1.71 3.07 0.97 1.23 0.70 0.74

Ackley 50-D Mean -12.39 -8.39 -13.28 -11.69 -10.99 -13.19 -13.28 -18.04 -13.50

Median -12.22 -8.50 -13.35 -11.54 -10.64 -13.28 -13.35 -17.56 -13.39

Min -13.62 -9.75 -14.06 -13.55 -15.69 -14.19 -14.06 -21.44 -14.64

St. Dev 0.55 0.95 0.50 0.87 1.41 0.49 0.50 1.74 0.56

Rastrigin 10-D Mean -33.92 -57.33 -50.71 -71.91 -49.79 -49.52 -50.71 -92.48 -77.94

Median -29.94 -61.37 -50.71 -71.50 -47.29 -52.19 -50.71 -94.88 -78.08

Min -49.29 -82.89 -67.66 -107.03 -81.55 -68.68 -67.66 -100.00 -91.32

St. Dev 8.73 16.13 13.64 14.96 14.17 11.94 13.64 6.79 7.44

Rastrigin 50-D Mean -29.59 -24.12 -74.51 -105.19 -54.98 -73.01 -74.51 -412.62 -191.60

Median -25.22 -26.93 -66.56 -103.66 -46.03 -67.93 -66.56 -426.23 -191.22

Min -79.98 -113.43 -132.07 -152.68 -150.11 -127.28 -132.07 -456.88 -270.62

St. Dev 21.66 45.37 27.63 28.13 39.83 31.12 27.63 36.60 28.65

Griewank 10-D Mean 15.69 1.17 1.12 3.05 3.03 1.15 1.12 0.41 1.44

Median 15.57 1.18 1.10 2.65 2.79 1.14 1.10 0.28 1.38

Min 10.72 1.02 1.03 1.52 1.02 1.04 1.03 0.00 0.97

St. Dev 2.56 0.08 0.06 1.33 1.63 0.12 0.06 0.43 0.35

Griewank 50-D Mean 89.89 313.22 42.00 104.51 179.87 40.60 42.00 16.97 72.46

Median 93.10 319.37 41.23 102.41 172.40 38.85 41.23 12.92 69.59

Min 56.83 231.28 29.23 77.00 71.24 28.55 29.23 1.40 54.64

St. Dev 15.64 45.69 8.67 16.69 70.25 8.21 8.67 16.08 13.40

Levy 10-D Mean 1.32 1.87 0.35 0.42 0.96 0.45 0.35 0.67 0.50

Median 1.25 2.00 0.24 0.34 0.70 0.22 0.24 0.68 0.48

Min 0.82 0.14 0.05 0.20 0.18 0.07 0.05 0.49 0.20

St. Dev 0.39 1.37 0.28 0.23 0.81 0.42 0.28 0.10 0.15

Levy 50-D Mean 8.79 35.65 6.47 6.06 26.34 6.17 6.47 6.57 9.64

Median 8.65 34.53 6.16 5.74 25.80 5.79 6.16 6.39 9.39

Min 6.83 21.76 3.74 4.11 14.67 4.62 3.74 5.23 7.03

St. Dev 1.56 7.13 1.27 1.30 8.55 1.44 1.27 1.27 2.07

Michalewicz 10-D Mean -3.83 -5.32 -4.67 -4.03 -5.28 -4.76 -4.67 -2.89 -3.27

Median -3.82 -5.31 -4.62 -4.06 -5.27 -4.54 -4.62 -2.93 -3.30

Min -4.47 -6.29 -6.37 -5.01 -6.77 -5.98 -6.37 -3.46 -4.52

St. Dev 0.27 0.62 0.69 0.61 0.77 0.69 0.69 0.48 0.55

Michalewicz 50-D Mean -12.45 -16.29 -14.46 -15.91 -15.62 -15.17 -14.46 -8.83 -9.76

Median -12.29 -16.63 -14.26 -15.34 -15.22 -15.24 -14.26 -8.70 -9.80

Min -14.64 -18.46 -16.32 -21.16 -19.42 -16.73 -16.32 -12.50 -11.00

St. Dev 0.80 1.42 0.82 2.13 1.74 1.03 0.82 1.21 0.98
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Table S2. Final Algorithm Performance Part II. Experiments from Section 3.1 where NNGA-

DYCORS performed better than or as well as the next best constituent algorithm by one standard 

deviation have their mean bolded. Variants of NNGA-DYCORS are tested in Sections 3.2 – 3.4. 

All data shown are from the final batch of experiments for all algorithms. 

(Section 3.1) (Section 3.2) (Section 3.3) (Section 3.4)

NNGA DYCORS NNGA-DYCORS Node Opt Regular Dynamic Regular Subset Selector Regular

Rosenbrock 10-D Mean 1549.17 371.38 314.70 560.34 406.12 307.57 314.70 523.17 1634.10

Median 1603.75 264.02 259.76 504.14 315.14 309.88 259.76 199.76 1297.98

Min 514.90 139.76 113.65 230.31 89.97 77.47 113.65 11.15 161.31

St. Dev 561.26 344.11 168.60 235.90 283.75 145.75 168.60 763.77 1748.49

Rosenbrock 50-D Mean 75690.36 242306.98 38456.52 98999.76 73734.80 35725.07 38456.52 51608.16 102779.11

Median 74088.12 248151.64 37217.99 89868.23 74216.32 32142.01 37217.99 48846.00 102600.79

Min 50297.29 131056.62 21309.17 47744.74 37723.98 16783.97 21309.17 3074.55 64081.57

St. Dev 12389.95 87955.49 15421.30 36205.98 22396.93 10067.54 15421.30 36082.25 29036.23

Dixon-Price 10-D Mean 112.35 -3.63 -8.95 7.91 11.81 -9.61 -8.95 -9.04 -11.95

Median 118.76 -6.89 -8.95 6.31 12.69 -9.67 -8.95 -9.65 -12.44

Min 58.20 -9.06 -9.96 -2.47 -8.08 -10.52 -9.96 -10.95 -12.99

St. Dev 28.35 6.26 0.86 6.96 14.48 0.72 0.86 1.47 1.29

Dixon-Price 50-D Mean 4821.50 18991.14 2662.18 2006.23 6529.50 2239.03 2662.18 162.90 1294.59

Median 4923.68 18334.97 2720.11 2060.22 6449.41 2187.08 2720.11 94.48 1267.19

Min 3656.99 14642.27 2060.92 1108.66 4098.76 1414.94 2060.92 -2.49 732.76

St. Dev 695.21 3066.97 453.33 779.12 1951.07 478.78 453.33 157.33 281.06

Styblinski-Tang 10-D Mean -298.18 -326.69 -333.67 -378.58 -361.62 -329.51 -333.67 -192.14 -228.76

Median -298.32 -320.13 -333.31 -360.75 -361.14 -327.43 -333.31 -191.82 -229.24

Min -342.77 -361.26 -378.67 -461.34 -430.62 -374.52 -378.67 -235.31 -253.52

St. Dev 22.28 19.57 22.60 44.76 31.31 26.62 22.60 19.08 20.47

Styblinski-Tang 50-D Mean -968.58 -1147.15 -1081.74 -1240.77 -1234.98 -1071.24 -1081.74 -537.72 -647.90

Median -969.09 -1154.69 -1103.16 -1221.53 -1256.26 -1074.18 -1103.16 -522.02 -655.64

Min -1048.73 -1275.31 -1204.57 -1431.93 -1455.61 -1148.52 -1204.57 -669.89 -818.40

St. Dev 50.06 68.43 66.59 108.97 106.62 39.64 66.59 62.99 67.06

Sphere 10-D Mean 4.09 0.06 0.04 0.76 1.05 0.03 0.04 0.01 0.12

Median 4.46 0.04 0.04 0.64 0.87 0.02 0.04 0.01 0.07

Min 1.91 0.01 0.02 0.28 0.13 0.01 0.02 0.00 0.02

St. Dev 1.14 0.05 0.02 0.61 0.97 0.02 0.02 0.02 0.11

Sphere 50-D Mean 23.44 84.55 13.44 11.96 30.45 12.36 13.44 5.10 17.84

Median 24.46 84.31 12.75 12.24 31.75 12.85 12.75 4.39 16.58

Min 15.06 56.38 10.69 5.44 17.66 8.95 10.69 0.64 10.45

St. Dev 3.39 15.24 2.53 3.04 11.59 1.79 2.53 3.67 5.24

Zakharov 10-D Mean 115.15 90.29 92.33 54.99 85.25 101.44 92.33 25.16 45.66

Median 113.79 76.68 79.57 53.80 87.63 94.76 79.57 16.15 41.29

Min 61.37 43.08 55.38 26.94 23.27 78.55 55.38 0.00 13.27

St. Dev 33.86 33.90 31.78 13.17 29.66 26.12 31.78 22.56 24.37

Zakharov 50-D Mean 2991494.52 946.09 4997.76 2273.53 20975.65 2189.24 4997.76 1082.03 1014.78

Median 1008940.58 875.85 1199.42 741.27 1916.37 943.91 1199.42 992.05 791.85

Min 844.41 694.97 754.38 427.68 474.36 673.69 754.38 395.69 424.28

St. Dev 4392168.34 362.74 8991.23 5131.20 36463.61 4457.90 8991.23 711.68 588.30
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Table 1. Test Functions. 
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Figure 1. Flow Charts of Optimization Algorithms. (a) NNGA and (b) DYCORS are used to create (c) the 
hybrid NNGA-DYCORS. (d) The Step Size Adjustment and Success/Failure Count method used in (b) is 

displayed as well. 
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Figure 2. Truncated Genetic Algorithm. Used as stochastic optimizer for NNGA based on ranking, pairing, 
crossover, and mutation steps to generate optimal parameter combinations. Maximum iterations set at 100, 

CD and r set by user. 
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Figure 3. Hybrid Algorithm Performance. NNGA black squares, DYCORS black dotted line, NNGA-DYCORS red 
circles. Shown is average minimum of response for each of the test functions in Table 1 plotted against 
cumulative queries. NNGA-DYCORS hybrid performs as well as best NNGA and DYCORS performances. 
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Figure 4. Algorithm Performance in the Presence of Noise. NNGA-DYCORS with node optimization shown in 
red circles, NNGA-DYCORS without scheme in black X’s. Shown is average minimum of response for each of 

the test functions in Table 1 plotted against cumulative queries for noise level (20% of response). Node 
optimization improves generally learner performance in the presence of simulated experimental noise. 
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Figure 5. Algorithm Performance using Dynamic Convergence Parameter Strategy. NNGA-DYCORS with 
dynamic convergence parameter strategy in red circles, NNGA-DYCORS without strategy in black. Shown is 
average minimum of response for each of the test functions in Table 1 plotted against cumulative queries. 

Performance is not much improved by using the dynamic strategy. 
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Figure 6. Effect of Scaling on Functions. Left figure Ackley Function, right is Ackley Function with ordinate 
axis modified by γ = 0.5. 
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Figure 7. Algorithm Performance using Subset Selection. NNGA-DYCORS with subset selection in red 
diamond, regular NNGA-DYCORS in solid black line. Shown is average minimum of response for each of the 
test functions in Table 1 plotted against cumulative queries. Subset selection does not have a consistently 

positive effect on algorithm performance. The subscript (2) indicates the sensitivity vector has been applied 
to the test problems. 

202x196mm (300 x 300 DPI) 

Page 29 of 29

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60




