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Section 1 Abstract

Optimizing media for biological processes, such as those used in tissue engineering and cultivated 

meat production, is difficult due to the extensive experimentation required, number of media 

components, nonlinear and interactive responses, and the number of conflicting design objectives. 

Here we demonstrate the capacity of a nonlinear design-of-experiments (DOE) method to predict 

optimal media conditions in fewer experiments than a traditional DOE. The approach is based on 

a hybridization of a coordinate search for local optimization with dynamically adjusted search 

spaces and a global search method utilizing a truncated genetic algorithm using radial basis 

functions to store and model prior knowledge. Using this method, we were able to reduce the cost 

of muscle cell proliferation media while maintaining cell growth 48 hours after seeding using 30 

common components of typical commercial growth medium in fewer experiments than a 

traditional DOE (70 vs 103). While we clearly demonstrated that the experimental optimization 

algorithm significantly outperforms conventional DOE, due to the choice of a 48 hour growth 

assay weighted by medium cost as an objective function, these findings were limited to 

performance at a single passage, and did not generalize to growth over multiple passages. This 

underscores the importance of choosing objective functions that align well with process goals.
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Section 2 Introduction

Cell culture media is a critical component of bioprocesses such as pharmaceutical manufacturing 

and the emerging field of cultivated meat products. Optimizing culture media is a difficult task 

due to the extensive experiments required, number of media components, nonlinear and interactive 

responses from each component, and conflicting design objectives. Additionally, for cultured meat 

products, media needs to be less expensive than those currently deployed for other cell culture 

processes (e.g. biopharmaceutical production), food-grade, consider safety, component stability, 

and effects on sensory characteristics of final products. Without much in the way of first principles 

models for these objectives, especially for adherent mammalian muscle cells used for cultivated 

meat production (as well as fat and connective tissues), media optimization must be done 

experimentally with constraints on inputs, outputs, and number of experiments. 

Optimizing one factor at a time or with random experiments is still the most common way of 

exploring design space. This strategy is very inefficient for large systems (culture media such as 

DMEM may have up to 30 components [1]) and is unable to consider interactions among media 

components. Design-of-Experiments (DOE) methods are better able to manage large numbers of 

components in fewer experiments using Factorial, Fractional Factorial, Plackett-Burman, and 

Central Composite Designs where linear and polynomial models can correlate first order and 

interactive effects of media components. In general, DOE methods are able to optimize < 10 

variables [2], and with the help of screening designs can solve problems > 25 variables [3], though 

at the expense of ignoring interactions, screened variables, and easily costing > 100 experiments 

(when combining typical screening and factorial experiments, although this number can be quite 
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lower if < 5 variables are explored). Experimental optimization of media has also been done using 

stochastic methods such as genetic algorithms, [4] and this approach is generally suited to 

optimizing systems of dimensionality > 15 where DOE methods can become experimentally 

cumbersome, but also take ~200 experiments. 

Because the size of the design space increases exponentially with the number of design variables, 

a natural advance was to use response surface models to capture information about interactions 

and nonlinearity. These techniques can then be used to sequentially identify optimal culture 

conditions while simultaneously improving modeling accuracy. Oftentimes experimenters will 

employ polynomial models to find optimal culture conditions [5] but only after extensive DOE to 

reduce the dimensionality of the problem space to < 5. More advanced modeling techniques are 

neural networks, decision trees [6] and Gaussian processes [7], which are often better at 

generalizing noisy, nonlinear, and multi-modal data. When combined with global optimization 

methods, Zhang and Block demonstrated that these response surface methods can optimize 

problems with > 20 variables in less than half the number of experiments as traditional DOE [8]. 

Recently Cosenza and Block [9] further improved the robustness of this algorithm by using a 

hybrid optimization scheme validated on simulated design problems.

Here we employ this novel nonlinear experimental design algorithm called HND to optimize the 

proliferation of C2C12 cells while simultaneously reducing media cost by modeling the response 

surface of culture conditions using an RBF with a hybridized global/local optimization scheme. 

We then compare this approach to a more traditional DOE method. The organization of this article 

is as follows: Section 3 includes an outline of the experimental and computational methods use in 
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media optimization, Section 4 goes over the results and Section 5 details a discussion of the results 

and current challenges.

Section 3 Materials and Methods

Media Components and Cell Line

Table 1 lists the 30 components of the media system, concentration ranges, and the concentration 

of the control growth media (GM) used in this work. GM is based on a formulation of DMEM + 

10% FBS from HiMedia Cell Culture with 4.5 g Glucose / L and L-Glutamine where FBS is fetal 

bovine serum (Biowest). All components were stored as aqueous stock solutions in 2-6oC sterilized 

using 0.2 μm pore size micro-filtration (Pall Corporation Acrodisc). The pH was adjusted to 7.2 

using 1M HCl or NaOH solution, and Sodium Bicarbonate (Sigma) buffer at 1850 mg/L was 

added.

[Table 1]

C2C12 muscle cells were used for all experiments (ATC). The cells were stored in liquid N2 in 

10% DMSO (Sigma), 20% FBS, 70% GM at passage 15. To generate enough cells for these 

experiments, cells were taken out of storage, thawed, centrifuged at 1,500g for five minutes and 

re-suspended in DMEM (Glibco) + 10% FBS in 15 cm cell culture plates (Cellstar, Greiner Bio-

One). Cells were then trypsinized (Gen-Clone) in their log phase of growth (~50% confluence, or 

about two days of growth) and plated on 96 well plates (Cellstar, Greiner Bio-One). To plate the 
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cells, trypsinized cells are suspended in phosphate buffered solution (PBS Glibco) and counted 

using a hemocytometer. The PBS volume was then adjusted so that 5,000 cells / well (~15,625 

cells / cm2) could be seeded using 50 μL of PBS into 150 μL of the media being tested (total well 

volume of 200 μL). The cells were incubated at 37oC and 5% CO2 for 48 hours post-seeding before 

measurements of proliferation were made with replicates. For six well plate experiments (Cellstar, 

Greiner Bio-One) a total volume of 3 mL was used with the same ratios of PBS to media and 

seeding density (150,000 cells / well), with all other steps being the same.

Assays and Objective Function

After 48 hours of incubation, the performance of the media was measured using AlamarBlue [10] 

metabolic colorimetric assay (AB). After pipetting in 10% volume of AB assay (20 μL) for each 

well, all wells were left to incubate for 3 hours at 25oC and 5% CO2. The %AB reduction was 

measured using a microplate reader at 600 μm and 570 μm using Equation (1) with six replicates 

of each experimental and control well.

(1)%𝐴𝐵 =
117216 ∗ 𝜆570,𝑚𝑒𝑑𝑖𝑎 ― 80586 ∗ 𝜆600,𝑚𝑒𝑑𝑖𝑎

155677 ∗ 𝜆600,𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ― 14625 ∗ 𝜆570,𝑐𝑜𝑛𝑡𝑟𝑜𝑙

To quantify the relative proliferation of cells after 48 hours of growth, the ratio of %AB for a given 

medium to %AB for basic GM was used as a metric of the success. The economic cost of a medium 

was considered by normalizing the %AB ratio by the volume of FBS, which constitutes the vast 

majority of the media cost [11]. Therefore, the objective function  and the optimization problem 𝛼

Page 6 of 27

Wiley-VCH

Biotechnology Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

used in this work (finding the best media components ) are as follows, where  is the 𝑋 ∗ 𝑋𝐹𝐵𝑆

normalized volume of FBS ranging from . [0,1]

𝑋 ∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑋 𝛼(𝑋)

𝛼(𝑋) =
%𝐴𝐵/%𝐴𝐵𝐺𝑀

1 +  𝑋𝐹𝐵𝑆

𝑋𝑖 =
𝑋𝑖 ― 𝑋𝑖,𝑙𝑜𝑤

𝑋𝑖,ℎ𝑖𝑔ℎ ― 𝑋𝑖,𝑙𝑜𝑤

This objective function strikes a balance between a proportionality to cell proliferation and cost, 

and ease of use. A more elaborate objective function that describes multi-passage dynamics or 

further economic costs could be employed, but at the expense of significantly more time and labor.

Experimental Design Algorithm

A novel hybrid nonlinear experimental design algorithm (HND) was developed [9] to optimize 

high dimensional experimental design systems such as the one outlined above. It is based on a 

truncated genetic algorithm (TGA) method [8] hybridized with a dynamic coordinate search 

framework (DYCORS) [12]. This method starts by constructing an RBF approximation   of the 𝑦

system from an initial set of experiments with inputs and outputs  respectively. The RBF {𝑋0,𝛼0}

takes the form of a sum of  cluster -weighted radial functions   in Equation (2).𝑛𝑐 𝜆𝑖 𝜙(𝑥,𝑥′)
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(2)𝑦 = ∑𝑛𝑐

𝑖 = 1𝜆𝑖𝜙(𝑟𝑖)

The radial functions project a set of  normalized inputs  and  (in this case two media [0,1] 𝑥 𝑥′

concentrations) into a single output space using the Euclidean distance . This 𝑟 = ||𝑥 ― 𝑥′||2
2

quantifies the difference between two media combinations for arbitrary media components. Two 

media that are more similar have smaller  values, so are going to have similar predictions of . 𝑟 𝑦

The radial function used in this work was the cubic function . The weights are 𝜙(𝑥,𝑥′) = 𝑟3

determined by solving the linear equation for  for a training set of data that has been Φ(𝑋,𝑋)

collected .{𝑋,𝛼}

(3)𝜆 = (ΦΦ𝑇) ―1Φ𝑇𝛼

To find the optimal location of RBF nodes  we used the K-Means Clustering Algorithm. This 𝑛𝑐

algorithm was repeated for  cross-validated data splits for each batch of experiments, where 𝐾 = 4

the  with the lowest cross-validated error for the given training set was chosen as the optimal 𝑛𝑐

number of clusters. Cross-validation is critical for making sure models generalize well for small 

amounts of noisy data. In general, higher  makes the model more complex (wiggly), so here we 𝑛𝑐

balance accuracy with model simplicity/generalizability.

Using the trained RBF model, the two arms of our algorithm, TGA and DYCORS, each suggest 

five experimental conditions for a total of 10 experiments per batch within the design space 

 of the GM (see Table 1) that optimize . The TGA arm runs a genetic algorithm (a [ × 1/2, × 2] 𝛼

stochastic global optimization method) over the RBF model to predict the best designs. Because 
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the model is based on a small amount of noisy data, the genetic algorithm is stopped before it can 

converge to implicitly consider model and experimental uncertainty. The DYCORS arm of the 

algorithm searches in the region around the best design and picks the best predicted set of designs 

in that region, which expands and contracts based on the quality of previous experiments. The new 

experiments are conducted and the resulting data is used to correct and retrain the RBF model. To 

allow the RBF model to generalize better during early periods of optimization, 30 randomly 

selected experimental conditions were taken initially. The optimization loop was stopped when the 

 quality of the media showed a lack of improvement. The general framework for the HND is 𝛼

shown in Figure 1.

[Figure 1]

As a control method, a traditional DOE was used to optimize the same media design problem in 

three steps. (i) A 'Leave-One-Out' (LOO) experiment was conducted where a media composed of 

all components at their GM concentrations, excluding each individual component, were tested for 

their proliferation capacity using the %AB metric (  was not used because all media had the same 𝛼

amount of FBS), similar to what was done in previous work [13]. The lowest performing 

components had their concentrations fixed at their respective GM concentrations. Next (ii) a 

Folded/Un-Folded Plackett-Burman design was implemented with the remaining components at 

the upper and lower bounds of the design problem. This was done to determine the first order 

linear effects of each component on the objective function . A linear model to predict  was used 𝛼 𝛼

in conjunction with a LASSO algorithm (Hastie, 2017, p. 68) to rank the most important first order 

effects, and all but the highest impact components were kept at their GM concentrations. Finally, 
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(iii) the remaining components were used to design a Central Composite Design (CCD) where

experiments are spread out across the design space to more thoroughly explore potential optimal 

designs. The best  design from this DOE method was considered the optimal DOE design.𝛼

Computing Environment

Hardware used: Dell Precision 5820 Tower, Intel Xeon W-2145 DDR4-2666 Processor (3.7 GHz), 

32 GB Memory. Software used: MATLAB R2019a with Bioinformatics Package.

Section 4 Results

Performance of Traditional DOE for Media Optimization

The DOE-LOO step identified Ferric Nitrate, MgSO4, Glycine, L-Isoleucine, Choline Chloride, 

Riboflavin, and Thiamine HCl as components that, when left out of GM, had no (or positive) 

statistical effect on %AB after 48 hours post-seeding (30 experiments needed). These components 

were set to their respective GM concentration for all subsequent DOE experiments. Next, the 

DOE-PB with LASSO identified the six most -important components of the remaining 23 𝛼

components (KCl, L-Glutamine, Glucose, FBS, L-Cystine, L-Serine). To reduce the number of 

experiments for the DOE-CCD design, L-Cystine and L-Serine were kept constant at  × 1/2

normalized units above and below their GM midpoint concentrations respectively (10.4 mg/mL 

and 28 mg/mL) based on the sign of their coefficients (48 experiments required). The remaining 

four components in the CCD had their upper/lower bounds changed to  normalized units × 1/2
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above (KCl, L-Glutamine, FBS) and below (Glucose) their GM midpoints. The remaining 

components were varied in a CCD design, with the best medium being 200 mg/L KCl, 388 mg/L 

L-Glutamine, 9000 mg/L Glucose, 5% FBS (25 experiments) shown in detail in Table 1. An 80%

increase in  at 48 hours post-seeding over GM was measured (Figure 2 left) using 50% less FBS 𝛼

than GM. 

Performance of Novel HND for Media Optimization

For the HND optimization loop,  was used as the objective function and calculated using %AB 𝛼

measured at 48 hours post-seeding at 96 well plate scale (the exact same as the DOE method). The 

RBF was initially trained with 30 randomly selected experiments. Figure 2 shows that the average 

HND designs improved in both  and %AB metric over time (both cost and proliferation) quickly 𝛼

overcoming standard GM and achieving similar results to the best DOE design (an  difference of 𝛼

13.3%) with 70 experiments. We have included the proliferation metric (%AB / %AB GM) in 

Figure 2 for completeness even though it was not used as the objective function  in this work. 𝛼

The HND was stopped at 70 experiments because both %AB and  stopped improving. The best 𝛼

medium found had an  measured to be 56% better than GM during the optimization loop using 𝛼

32.5% less FBS than GM.

[Figure 2]

Comparison of Media Resulting from Novel HND and Traditional DOE
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Figure 3 shows the differences between the optimal media. For the most part the HND identified 

optimal concentrations that were slightly elevated compared to DOE, except for KCl, FBS, and 

Glucose. It is also notable that both HND and DOE determined that Glucose and FBS should be 

elevated and reduced in relative to GM. Figure 4 shows the media efficiency metric  plotted 𝛼

against the component concentrations for all experiments, demonstrating the nonlinear, interactive, 

and ultimately non-trivial nature of this experimental design optimization problem. These  𝛼

optimal HND and DOE designs were then tested against GM using %AB at 24, 48, and 72 hours 

post-seeding (Figure 5), where the designed media have high %AB relative to GM but that 

advantage is reduced over time. As a further check,  was calculated using raw cell number 𝛼

normalized by the volume of FBS in each experiment (at six well plate scale) where it was found 

HND and DOE again outperformed GM (Figure 5) in terms of the objective function . However, 𝛼

both HND and DOE produced 8% and 9% fewer cells respectively, using 70 and 103 total 

experiments respectively. This higher  comes from their lower levels of FBS. 𝛼

[Figure 3]

[Figure 4]

Evaluation of Optimized Media in Multi-Passage Proliferation

Finally, the C2C12 cells were grown in optimal HND, DOE and GM across five passages to mimic 

an industrial process where multi-passage dynamics could have large effects on media design. 

Figure 6 indicates GM cumulatively grew more cells than HND and DOE optimal media by the 
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second passage, and by the third passage had done so at higher  (again, approximated by number 𝛼

of cells normalized by volume of FBS). Both the optimal HND and DOE media performed roughly 

the same in terms of cumulative number of cells and media efficiency, but with 9x and 11x fewer 

cells than GM respectively and without a proportional decrease in cost per cell.

[Figure 5]

[Figure 6]

Section 5 Discussion

It is notable that, despite 30 components used, the HND was able to design a similar media to DOE 

with a similar degree of proliferation %AB and  in fewer experiments. Additionally, this DOE 𝛼

was more efficient than any single DOE, suggesting that the HND is much more efficient and 

simpler to use than the typical approach to high dimensional optimization. This is valuable in 

optimizing media due to the difficulty in collecting large amounts of data with many components. 

The reasons for the success of this method are likely (i) the balance between global and local 

optimization, and (ii) the ability of the HBD to accumulate information using the RBF, which can 

regress on nonlinear, noisy, and interaction-heavy problems, reducing the need for cumbersome 

dimensionality-reduction experiments used in the traditional DOE.

For the most part HND suggested higher concentrations of most media components than GM or 

DOE, except for KCl, FBS, and Glucose. This is likely because the DOE method utilized 
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dimensionality reduction. That is, factors that demonstrated insignificant effects were fixed at their 

GM level and no longer included in the optimization. On the other hand, HND could vary 

components throughout the optimization process, including increasing component concentrations 

when they had even a small positive effect. Inclusion of a per component cost (rather than just the 

cost of FBS) might dampen this effect.

While the RBF can model nonlinear and interactive processes, the effect of each component on  𝛼

is unclear without further experiments or model validation, a disadvantage of the HND approach. 

Nonetheless, sensitivity analysis using VARS [14] was conducted and indicates FBS, Glucose, 

and MgSO4 likely have a significant effect on , while other effects are more difficult to determine 𝛼

with the limited data available. Sobal sensitivity analysis utilizing polynomial regression likewise 

determined FBS, MgSO4, and L-Phenylalanine were the most explanatory components when 

taking component-component interactions into account. Focusing on optimizing only those 

components might bring further improvements, which is now feasible because fewer experiments 

were needed to arrive at this conclusion. Another issue was that the HND algorithm often did not 

change experimental conditions enough, leading to heavy clustering around early high performing 

local optima (as seen in Figure 3 and 4). Myopia (short-termism) should be encoded into the 

DYCORS arm of the HND to allow for more exploration of the design space, while balancing the 

need for exploitation of regions of the design space that show promise. It is also possible that 

initializing the optimization with a more dispersed design would yield a more successful 

optimization. However, results from Zhang and Block [15] indicate that the initialization strategy 

used may not have a large effect. In reality, the impact of initialization is likely to be a strong 
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function of the design surface and how close initial points are to the true optimum, neither of which 

are known a priori.

Using  as a metric, HND performs similar to DOE, and both better than GM (Figure 2). This is 𝛼

true over multiple days after cell seeding and is true when using cell number to calculate  (Figure 𝛼

5), seemingly validating the use of %AB at 48 hours post-seeding in approximating proliferation 

more generally. However, when measuring cell number at multiple passages (Figure 6) both 

designed media perform worse than GM. This is because the objective function  relied on  𝛼

measurements without multiple passages, so does not account for the dynamics of long-term 

cellular growth. This was a major shortcoming of the objective function picked, but not the HND 

or DOE itself. Future work in media design should incorporate more relevant metrics for 

optimization, such as a multi-passage objective function. Additionally, the %AB metric was not a 

perfect measure of cell number. Figure 5 (left) and Figure 2 appears to indicate HND and DOE 

media outperform GM, but when cell number is measured both optimal media have 8-9% fewer 

cells. Because AlamarBlue is a metabolic indicator, using it in the objective function for both 

methods may have biased the process towards higher metabolic activity rather than more 

proliferation. 

Despite these shortcomings, the HND has been demonstrated to be able to optimize high 

dimensional experimental systems. In our previous work in media optimization, fewer variables 

(21 components) required more experiments (73-94 data points) to complete. In this work, we 

demonstrate optimization of 30 components with 70 experiments with no dimensionality reduction 

or screening designs, to our knowledge, a unique accomplishment in experimental optimization 
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efficiency. Therefore, this represents a valuable proof of concept in the field of experimental 

optimization. While not able to fully replace first principles understanding of systems often based 

on the DOE approach (which is ill-advisable in any case), we show that the HND could aid in the 

optimization of the hardest design problems, including those found in the bioprocessing and larger 

cultivated meat industry, reducing the cost of experimentation and time-to-market for a new 

product.
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Table 1 Details of Media Design Space | components and bounds used in media optimization for 

proposed method (HND), control optimization method (DOE), and commercial (GM) indicated.

Concentration [mg/L]
Component GM Low High HND DOE
Calcium Chloride EMD 265 132.5 530 287.3 265
Ferric Nitrate Fischer 0.1 0.05 0.2 0.1 0.1
Magnesium Sulphate RPI 97.7 48.85 195.4 176.8 97.7
Potassium Chloride Fischer 400 200 800 555.8 200
Sodium Chloride Fischer 6400 3200 12800 8182.8 6400
Glycine Fischer 30 15 60 23.1 30
L-Arginine Spectrum 84 42 168 76.1 84
L-Cystine RPI 62.6 31.3 125.2 94.7 62.6
L-Glutamine Spectrum 584 292 1168 977.8 584
L-Histidine Spectrum 42 21 84 75.6 42
L-Isoleucine Acros 105 52.5 210 125.8 105
L-Leucine Acros 105 52.5 210 92.1 105
L-Lysine RPI 146 73 292 207.5 146
L-Methionine Spectrum 30 15 60 45.5 30
L-Phenylalanine AMRESCO 66 33 132 87.6 66
L-Serine AMRESCO 42 21 84 52.6 42
L-Threonine Spectrum 95 47.5 190 146.4 95
L-Tryptophan Biosynth 16 8 32 24.9 16
L-Tyrosine Disodium Salt RPI 103.8 51.9 207.6 152.3 104
L-Valine Spectrum 94 47 188 117 94
Choline Chloride Sigma 4 2 8 4.5 4
D-Ca-Pantothenate Acros 4 2 8 5.7 4
Folic Acid TCI 4 2 8 5.2 4
Nicotinamide Sigma 4 2 8 6.8 4
Pyridoxal Hydrochloride Acros 4 2 8 3.7 4
Riboflavin Sigma 0.4 0.2 0.8 0.5 0.4
Thiamine Hydrochloride Sigma 4 2 8 4 4
I-Inositol Fischer 7.2 3.6 14.4 6.4 7.2
D-Glucose Sigma 4500 2250 9000 6145.7 9000
FBS Biowest 10% 5% 20% 6.8% 5%
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Figure Legends

Figure 1: Hybrid Nonlinear Design (HND) Algorithm

Figure 2: Iterative Improvement of Media using HND and DOE | (left) media efficiency metric 

(right) %AB Proliferation. Both HND and DOE improve over GM.

Figure 3: Distribution of Components Generated by HND | histogram of HND chosen component 

concentrations from low to high bound, best DOE and HND results also compared to GM (as 

horizontal lines and in Table 1).

Figure 4: Input and Output of Media Generated by HND | each dot represents an experiment 

designed by HND at a chosen component concentrations (normalized to be 0 to 1) and the 

respective media efficiency metric .𝛼

Figure 5: Result of Optimal HND and DOE Experiments | (left) %AB Proliferation over time in 

96 well plates, error bars are standard deviation of six replicates, seeded at 5,000 cells / well (right) 

cell efficiency metric at 48 hour post-seeding in 6 well plates, error bars are standard deviations of 

three replicates, seeded at 150,000 cells / well. The media efficiency metric was approximated here 

by dividing number of cells by concentration of FBS. Raw cell number for HND, DOE, and GM 

were 594,000, 590,000, and 640,000 cells / well respectively.

Page 20 of 27

Wiley-VCH

Biotechnology Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Figure 6: Optimal Media over Multiple Passages | these media were the best found in optimization 

experiments. All cell numbers were taken at 48 hours post-seeding using hemocytometer in 6 well 

plates, error bars are standard deviations of three replicates, seeded at 150,000 cells / well (left)  

(right) natural log of approximate efficiency of media. The media efficiency metric was 

approximated here by dividing number of cells by concentration of FBS.
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Figure 1: Hybrid Nonlinear Design (HND) Algorithm 
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Figure 2: Iterative Improvement of Media using HND and DOE | (left) media efficiency metric (right) %AB 

Proliferation. Both HND and DOE improve over GM. 
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Figure 3: Distribution of Components Generated by HND | histogram of HND chosen component 
concentrations from low to high bound, best DOE and HND results also compared to GM (as horizontal lines 

and in Table 1). 
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Figure 4: Input and Output of Media Generated by HND | each dot represents an experiment designed by 
HND at a chosen component concentrations (normalized to be 0 to 1) and the respective media efficiency 

metric α. 
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For Peer Review
Figure 5: Result of Optimal HND and DOE Experiments | (left) %AB Proliferation over time in 96 well plates, 
error bars are standard deviation of six replicates, seeded at 5,000 cells / well (right) cell efficiency metric at 

48 hour post-seeding in 6 well plates, error bars are standard deviations of three replicates, seeded at 
150,000 cells / well. The media efficiency metric was approximated here by dividing number of cells by 

concentration of FBS. Raw cell number for HND, DOE, and GM were 594,000, 590,000, and 640,000 cells / 
well respectively. 
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Figure 6: Optimal Media over Multiple Passages | these media were the best found in optimization 

experiments. All cell numbers were taken at 48 hours post-seeding using hemocytometer in 6 well plates, 
error bars are standard deviations of three replicates, seeded at 150,000 cells / well (left)  (right) natural 
log of approximate efficiency of media. The media efficiency metric was approximated here by dividing 

number of cells by concentration of FBS. 
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