VSOP-2 A Space VLBI Mission to Image Central Engines and Jet Launching Regions

Seiji Kameno (Kagoshima University) VSOP-2 Science Working Group

- VSOP-2 Project Overview
- Scientific Specifications
- Science Case for AGN disks and Jets

VSOP-2 Project Overview Scientific Specifications Science Case for AGN

2

VSOP-2 to succeed the heritage of VSOP

3

ASTRO-G satellite of the VSOP-2Mission

Dual pol. @ 8, 22, 43 GHz Phase-referencing capability Switching Maneuver 10 cm Orbit Determination

9.3 m Antenna surface accuracy (0.45→0.7mm rms) precision pointing (0.005deg)

> 1 Gbps Data Downlink

Target Life Time is 3 years.

5

ASTRO-G Satellite Configuration

- 9.3-m offset Cassegrain antenna with module structures
 - Light weight
 - gimbal adjuster

ASTRO-G Configuration

9.6 m

Module-type offset-Cassegrain antenna

ETS-VIII (2006) deployment mechanism

Seven Modules (Stow / Deployment)

Deployment Test of ETS-VIII

Rocket & Orbit

Launch Rocket is H2A • Launch epoch; 2012→2016+

due to technical uncertainty pointed out in the JAXA's critical review

	HALCA / VSOP	ASTRO-G / VSOP-2
Apogee Height	21,300 km	25,000 km
Perigee Height	560 km	1,000 km
Inclination	31°	31°
Orbit Period	6.3 hr	7.5 hr

8

Antenna Deployment tests

Surface error after deployment

...doesn't meet the requirement of 1.0 mm rms

due to creep of the hoop cable

We tested a new cable material; Quartz \rightarrow Carbon Fibre

This modification results in

rms = 0.57 mm (nominal) 0.78 mm (worst)
43 GHz obs. possible
Delay in the schedule

Launch configuration

COSPAR 2010

ASTRO-G Development schedule (previous)

Financial Year (Apr-Mar)	2000~ 2005	2006	2007	2008	2009	2010	2011	2012 ~
	Concept	Decian	Decia Deci	Detailed			and Test	Operation
Spacecraft Development Phase	Pre Phase -/	Phase -A	Phase -B	n Detailed Phase rts	-С	Phase -D	and lest	Operation Phase -E Launch
Event: So th n	election of e science hission in ISAS	△ Approval of project preparation	Reviews et St System I/ Design PFM Stru Anteni Attidute	 △ Review △ F Fixed of of of of of of of of syste 	v $ riangle Review$			Review More than 5 years operation
Tracking Stations			Ground Trac Usuda	king Stations	Ground Interr	Tracking Stat	ions	
Ground Radio Telescopes.					Develop	oments	Op. Test	

ASTRO-G Development schedule (current)

Financi al Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Spacecraf		Conc	ept Desi	gn	modifie verifica	cation 8 ation	Bas Desi	ic De gn	tailed D.	Manufac Te	ture and st	Operatio
Developm ent Phase	Pre	Phase -A	Phase ·	A △ Pr	oiect star	s	Phase ·	B Pł	lase -C	Phase	e - D Pr La	↑ ase -E unch
Events			∆Bi Rec	△ Revie udget uest	ws	∆ Rev	iew	leview udget quest			△ Rev Mo 5 op	view ore than years eration
			Prelim Design F ↓ ha	inary Review It		Prelimina Design Review	ry De	Critical sign Revi	ew			
Tracking Stations							Tra Usuo	acking St da	ations	Track Inter	ing Static national	ns
Ground Radio Telescope								Deve	opments		Op. Tes	t

VSOP-2 Project Overview Scientific Specifications Science Case for AGN

12

Improvements of VSOP-2

10x frequency, 10x resolution, 10x sensitivity Linear scales of 40 μas

Frequecy	Resolutoin	@10 Mpc
8 GHz	200 µas	0.01 pc
22 GHz	80 µas	0.004 pc
43 GHz	40 µas	0.002 pc

Sensitivity

Resolution

Frequency	Flux densi	ty Tb
8 GHz	25 mJy	
(phase-ref)	6 mJy	6.8×10 ⁷ K
22 GHz	50 mJy	
(phase-ref)	8 mJy	1.3×10 ⁸ K
43 GHz	110 mJy	
(phase-ref)	11 mJy	2.1×10 ⁸ K

Possibility for direct imaging of accretion disks for the first time

COSPAR 2010

Phase Referencing Capability

VSOP-2 offers position-switching phase referencing capability

60-sec-cycle switch for 3° separation

Phase-ref OFF

Phase-ref ON

- Longer coherent integration → higher sensitivity
- Positioning
 - Astrometry
 - •Multi-frequency registration
 - •Multi-epoch registration

Dual Polarization Capability

LHCP and RHCP at 8, 22, and 43 GHz

- Linear polarization $\rightarrow B_{\perp}$
- Faraday rotation measure $\rightarrow B_{II}$

VSOP-2 Project Overview Scientific Specifications Science Case for AGN

Zooming up on the central engine

Power Source of Active Galactic Nuclei

... considered to be accreting power onto massive black hole

The key is to resolve the central engine:

- Black hole
- Accretion disk
- Jet-launching region

17

Accretion disk types to image

- *dm/dt* << 1
 - Low-luminosity AGNs

Imaging accretion disks and jets with VSOP-2

Distinctly important source : M 87

- $Rs \sim 3.8 \ \mu as$: VSOP-2 resolution ~ 10 Rs
- $\boldsymbol{\cdot}$ The root of the jet can be imaged
- Separated by 1.5° from M 84 ... phase ref.

HALCA beam size

Disk imaging in M 87

Most probable source for disk imaging

- •Goal : image the core that is unresolved with ground VLBI
- •Extra : detection of the disk discriminated from jets, distribution of brightness, spectral index, and time evolution

Prediction from models and simulations

M87 disk imaging capability

3C274 at 43.135 GHz in LL 2004 Apr 05

• Fringe detection in M 87

visibility amp. > 100 mJy@43 GHz, 24 mJy@22 GHz
22 GHz : OK. 43 GHz : requre rms < 0.7 mm

•<u>Resolutipn</u> •FWHM = 12 Rs@43 GHz, 24 Rs@22 GHz

- <u>Tb > image r.m.s.</u>
 Tb ~ Te ~ 10⁹⁻¹⁰ K > r.m.s. = 5x10⁸ K
- •<u>Electron scattering << disk size</u> •core size@5 GHz < 0.3 mas (VSOP)
 - → λ^2 scattering < 14 µas@22 GHz, 4 µas@43 GHz
- Brightness ration to jets < dynamic range
 Tb in jets ~ 10¹¹ K → require D.R. ~ 100

VSOP-2 results impact to accretion disk models

23

Jet acceleration and high-energy emission

- 3-D magnetic fields
- High-energy emission component

Proposed MHD models for jet formation

•Magnetic centrifugal force

Blandford & Payne (1982)

Magnetic stressby rotating accretion disk

Kato, Y. (2007)

25

•Magnetic stress by rotating disk

Uchida & Shibata (1985)

Magnetic tower jets

Kato, Y. (2007)

3-D magnetic structure in the jet-launching region

Velocity fields in Jet acceleration region

Apparent acceleration in ~ 0.1 pc (!?) • collimation of jet opening angle • increase of Doppler factors

To clarify what happens in inner sub-pc region → magnetic fields in ~100 Rg

Walker+

Brightness temperature @ 86 GHz

Inner-Jet Structure

High-energy emission region

VSOP-2 resolution corresponds to 0.03 pc at 100 Mpc

Probing high-energy emitting region

Identify γ-ray components w/ ~0.01 - 0.03 pc resolution

High-energy emiss

EGRET era : Blazars are γ-ray emitting Fermi era : γ-ray from FR-I radio galaxies

COSPAR 2010

M 87 (H.E.S.S.)

COSPAR 2010

31

Probing high-energy emitting region

Broadband SED

- γ-ray : Fermi(?) CTA
- X-ray : ASTRO-H, IXO
- Optical
- Radio

Timing observations

• Fermi / CTA / MAXI / IXO

Polarization

• Kanata / VSOP-2

Imaging and positioning •VSOP-2

AGN sub-pc-scale structure

Maser disk structure

- disk rotation → BH mass
- non-circular motion → accretion
- dispersion in P-V diagram →turbulence

Table 5.	.2: Key	sources	for	AGN	sub-structure
study					

galaxy	Scale $(pc/100\mu a)$	as) disk type
	0.0000	
NGC4258 ¹	0.0039	Thin
$NGC1068^{2}$	0.0074	Thick^2
$NGC1052^{3}$	0.0086	Thick ³ or Jet ⁴ ?
(1) Miyoshi ϵ	et al 1995; (2)	Greenhill et al.,1996;
(3)Kameno et	al. 2005; (4) Cla	aussen et al. 1997

COSPAR 2010

VSOP-2 survives ... to be launched 2016 (or later)
40-µas resolution to image disks and jets in nearby AGNs
Synergy with high energy astrophysics

- •Broad-band SED, Timing at γ-ray, X-ray, and optical
- Positioning, kinematics, and magnetic fields with VSOP-2

Visit and give your contribution to VSOP-2 science working group activity http://hotaka.mtk.nao.ac.jp/groups/astrogswg/

Backup Slides

Concepts of Space VLBI

Updates in 2005→2010

Sensitivity degradation due to realistic Tsys and surface accuracy

Impacts at 43 GHz

	Frequency	8 GHz	22 GHz	43 GHz
_	SEFD (nominal)	5600 Jy	5000 Jy	28000 Jy
0.7 mm rms	$T_{ m sys}$	89 K	56 K	98 K
	$A_{ m e}$	44 m^2	31 m^2	$9.7 \mathrm{m}^2$
	SEFD (requirement)	5900 Jy	8200 Jy	190000 Jy
1.0 mm rms	$T_{ m sys}$	89 K	$56 \mathrm{K}$	98 K
	$A_{ m e}$	42 m^2	$19 \mathrm{m}^2$	$1.4 {\rm m}^2$
	SEFD (obsolete)	4080 Jy	2200 Jy	3170 Jy
Spec in 2005	$T_{ m sys}$	60 K	$30 \mathrm{K}$	$40 \mathrm{K}$
	$A_{\mathbf{e}}$	40 m^2	$38 \mathrm{m}^2$	$35 \ { m m}^2$

Fringe		2005 nominal		0.7 mm rms		1.0 mm rms	
detection		22 GHz	43 GHz	22 GHz	43 GHz	22 GHz	43 GHz
	7σ / GBT / Cont.	12 mJy	22 mJy	24 mJy	100 mJy	30 mJy	280 mJy
	7σ / VLBA / Cont.	50 mJy	107 mJy	74 mJy	421 mJy	95 mJy	1100 mJy
	7σ / GBT / Maser	0.7 Jy	0.9 Jy	1.4 Jy	4.2 Jy	1.8 Jy	12 Jy
	7σ / VLBA / Maser	3.0 Jy	4.6 Jy	4.4 Jy	18 Jy	5.6 Jy	46 Jy

SEFD

Updates in Key Science Area

	Proposal 2005	New Science Case
Accretion disks	Goal : Imaging accretion disks in plural nearby AGNs Extra : Distribution of brightness and spectral indices, imaging a black-hole shadow	Goal : Image the 'core' to verify accretion-disk models in more than 1 AGN (at 22 or 43 GHz) Extra : Disks in plural AGNs, Distribution of brightness and spectral indices
Jets	Goal : Inner-jet structure, Velocity fields, Magnetic field structure in jet acceleration and collimation region Extra : Magnetic fields in disks and jet- launching region	Goal : Velocity fields in jets, Imaging γ -ray emitting region, magnetic fields in jets in some nearby AGNs Extra : Those in ~10 - 20 AGNs, Motion of γ - ray emitting components
Extragalactic masers	Goal : Imaging masers in galactic SFRs, proper motion and annual pallarax,, Imaging megamasers in 20 Mpc, LMC/SMC annual pallarax Extra : H ₀ measurements in 4% accuracy	Goal : Sub-pc structure of megamasers, LMC/ SMC proper motion Extra : LMC/SMC annual pallarax, Calibration of the distance ladder
YSO magneto- spheres	Goal : Time-development of flares Extra : Magnetic field structure in YSO flares	Goal : - Extra : - Blue : degrade Green : New!