VSOP-2

A Space VLBI Mission to Image
Central Engines and Jet Launching Regions

Seifi Kameno (Kagoshma University)

VSOP-2 ScienceWorking Group

- VSOP-2 Project Overview
- Scientific Specifications
- Science Case for AGN disks and Jets

- VSOP-2 Project Overview
 - Scientific Specifications
 - Science Case for AGN

VSOP-2 to succeed the heritage of VSOP

HALCA : 1997-2005

VSOP : cm-VLBI at $1.6 \mathrm{GHz}, 5 \mathrm{GHz}$ for jets and circumnuclear matter of AGN

jet motion
Quasar 3C 380
lobe expansion
1998 Aug.

Radio Galaxy 3C 84
plasma torus

Kameno et al. 2003

ASTRO-G satellite of the VSOP-2Mission

Dual pol. @ 8, 22; 43 GHz Phase-referencing capability Switching Maneuver
10 cm Orbit Determination
Antenna
surface acouracy ($0.45 \rightarrow 0.7 \mathrm{~mm} \mathrm{rms}$)
precision pointing (0.005deg)

Target Life Time is 3 years?

ASTRO-G Satellite Configuration

- 9.3-m offset Cassegrain antenna with module

Mass (wet) 1200 Kg Power 2000W structures

- Light weight
- gimbal adjuster

ASTRO-G Configuration

Large Deployable Antenna

... employs ETS-VIII Mechanism

Module-type offset-Cassegrain antenna

ETS-VIII (2006) deployment mechanism

Seven Modules (Stow / Deployment)

Deployment Test of ETS-VIII

Rocket \& Orbit

Launch Rocket is H2A

-Launch epoch; 2012 \rightarrow 2016+
due to technical uncertainty pointed out in the JAXA's critical review

	HALCA / VSOP	ASTRO-G / VSOP-2
Apogee Height	$21,300 \mathrm{~km}$	$25,000 \mathrm{~km}$
Perigee Height	560 km	$1,000 \mathrm{~km}$
Inclination	31°	31°
Orbit Period	6.3 hr	7.5 hr

Antenna Deployment tests

Surface error after deployment

...doesn't meet the requirement of 1.0 mm rms due to creep of the hoop cable

Deployed configuration

Launch configuration

We tested a new cable material; Quartz \rightarrow Carbon Fibre

This modification results in
-rms $=0.57 \mathrm{~mm}$ (nominal) 0.78 mm (worst)
-43 GHz obs. possible
-Delay in the schedule

Quartz cable

ASTRO-G Development schedule (previous)

ASTRO-G Development schedule (current)

- VSOP-2 Project Overview
 - Scientific Specifications
 - Science Case for AGN

Improvements of VSOP-2

Resolution

10x frequency, 10x resolution, 10x sensitivity

Frequecy	Resolutoin	@ 10 Mpc
8 GHz	200μ as	0.01 pc
22 GHz	80μ as	0.004 pc
43 GHz	$40 \mu \mathrm{as}$	0.002 pc

Sensitivity

Frequency	Flux density $\quad \mathrm{Tb}$	
8 GHz	25 mJy	
(phase-ref)	6 mJy	$6.8 \times 10^{7} \mathrm{~K}$
22 GHz	50 mJy	
(phase-ref)	8 mJy	$1.3 \times 10^{8} \mathrm{~K}$
43 GHz	110 mJy	
(phase-ref)	11 mJy	$2.1 \times 10^{8} \mathrm{~K}$

Possibility for direct imaging of accretion disks for the first time

Phase Referencing Capability

VSOP-2 offers position-switching phase referencing capability

60 -sec-cycle switch for 3° separation

Phase-ref OFF

Phase-ref ON

- Longer coherent integration \rightarrow higher sensitivity
- Positioning
-Astrometry
-Multi-frequency registration
-Multi-epoch registration

Dual Polarization Capability

LHCP and RHCP at 8,22 , and 43 GHz

- Linear polarization $\rightarrow B_{\perp}$
- Faraday rotation measure $\rightarrow B_{\|}$

- VSOP-2 Project Overview
 - Scientific Specifications
 - Science Case for AGN

Zooming up on the central engine

Power Source of Active Galactic Nuclei

... considered to be accreting power onto massive black hole

The key is to resolve the central engine:

- Black hole
- Accretion disk
- Jet-launching region

Accretion disk types to image

Slim Disk (Abramowiczet al. 1988)

- $T_{\mathrm{e}} \sim 10^{6} \mathrm{~K}$
- $d m / d t>1$
- Narrow-Line Sr

Standfailisk (Shakura \& Sunyaev 1973) T°

- $T_{\mathrm{e}} \sim 10^{4-5} \mathrm{~K}$
- $d m / d t \ll 1$
- Quasars

VSOP-2 Detectable
 ADAF / RIAF

(Narayan \& Yi 1994)

- $T_{b}>$ detection limit of $10^{8} \mathrm{~K}$
- ~ 40\% population of AGNs
- $T_{\mathrm{e}} \sim 10^{9-11} \mathrm{~K}$
- $d m / d t \ll 1$
- Low-luminosity AGNs

Imaging accretion disks and jets with VSOP-2

Distinctly important source : M 87

- Rs $\sim 3.8 \mu \mathrm{as}:$ VSOP-2 resolution ~ 10 Rs
- The root of the jet can be imaged
- Separated by 1.5° from M $84 \ldots$ phase ref.

Movie : courtesy of C. Walker

Disk imaging in M 87

Most probable source for disk imaging

-Goal : image the core that is unresolved with ground VLBI
-Extra : detection of the disk discriminated from jets, distribution of brightness, spectral index, and time evolution

Prediction from models and simulations

M87 disk imaging capability

$3 C 274$ at 43.135 GHz in LL 2004 Apr 05
Correlated flux density @ 43 GHz
※ VSOP-2 : 1200-4000 M λ

- Fringe detection in M 87
-visibility amp. > 100 mJy@43 GHz, 24 mJy@22 GHz $\cdot 22 \mathrm{GHz}$: OK. 43 GHz : requre $\mathrm{rms}<0.7 \mathrm{~mm}$

-Resolutipn

-FWHM = 12 Rs@43 GHz, 24 Rs@22 GHz

- Tb > image r.m.s.
$\cdot \mathrm{Tb} \sim \mathrm{Te} \sim 10^{9-10} \mathrm{~K}>$ r.m.s. $=5 \times 10^{8} \mathrm{~K}$
- Electron scattering << disk size
\cdot core size@5 GHz < 0.3 mas (VSOP)
$\rightarrow \lambda^{2}$ scattering < $14 \mu \mathrm{as} @ 22 \mathrm{GHz}, 4 \mu \mathrm{as} @ 43 \mathrm{GHz}$
- Brightness ration to jets < dynamic range
\cdot Tb in jets $\sim 10^{11} \mathrm{~K} \rightarrow$ require D.R. ~ 100

VSOP-2 results impact to accretion disk models

Imaging simulations

Ground-VLBI

VSOP-2

Clean LL map. Array: BrAPtMGMkBA
ADAFJET at 43.000 GHz 2016 Mar 10

Jet acceleration and high-energy emission

- High-energy emission component

Proposed MHD models for jet formation

-Magnetic centrifugal force

Blandford \& Payne (1982)

- Magnetic stress by rotating disk

Uchida \& Shibata (1985)

- Magnetic tower jets

Kato, Y. (2007)

3-D magnetic structure in the jet-launching region

Magnetic stressby rotating accretion disk

Uchida \& Shibata (1985), Shibata \& Uchida (1986)

$\xrightarrow{\text { Radiations of BHAccretion Flows \& Jets }}$

Velocity fields in Jet acceleration region

Apparent acceleration in ~ 0.1 pc (!?) -collimation of jet opening angle -increase of Doppler factors

To clarify what happens in inner sub-pc region
\rightarrow magnetic fields in $\sim 100 \mathrm{Rg}$
Brightness temperature @ 86 GHz

Inner-Jet Structure

-3-D magnetic fields by polarization observations

- Linear pol. $\rightarrow B_{\perp}$
- Faraday RM $\rightarrow B_{\|}$

Attridge+ 1999

High-energy emission region

Identification of the $\gamma / X /$ optical component

VSOP-2 resolution corresponds to 0.03 pc at 100 Mpc

Probing high-energy emitting region

such as ASTRO-H, CTA, IXO
Identify γ-ray components $\mathrm{w} / \sim 0.01-0.03 \mathrm{pc}$ resolution

High-energy emission region

EGRET era : Blazars are γ-ray emitting AGNs Fermi era : γ-ray from FR-I radio galaxies

3C 84 flare and new component

Probing high-energy emitting region

Broadband SED

- γ-ray : Fermi(?) CTA
- X-ray : ASTRO-H, IXO
- Optical
- Radio

Timing observations

- Fermi / CTA / MAXI / IXO

Polarization

- Kanata / VSOP-2

New coverage of observable space to open new window

Imaging and positioning -VSOP-2

AGN sub-pc-scale structure

Maser disk structure

- disk rotation \rightarrow BH mass

- non-circular motion \rightarrow accretion
- dispersion in P-V diagram \rightarrow turbulence

 Noel-Storr et al. 2003, ApJS 148
Sofue et al. 2003, PASJ 55, 59

Summary

-VSOP-2 survives ... to be launched 2016 (or later)
-40- μ as resolution to image disks and jets in nearby AGNs

- Synergy with high energy astrophysics
-Broad-band SED, Timing at γ-ray, X-ray, and optical
-Positioning, kinematics, and magnetic fields with VSOP-2

Visit and give your contribution to VSOP-2 science working group activity
. http://hotaka.mtk.nao.ac.jp/groups/astrogswg/

Backup Slides

Concepts of Space VLBI

Updates in $2005 \rightarrow 2010$

Sensitivity degradation due to realistic Tsys and surface accuracy

Spec in 2005

Frequency	8 GHz	22 GHz	43 GHz
SEFD (nominal)	5600 Jy	5000 Jy	28000 Jy
$T_{\text {sys }}$	89 K	56 K	98 K
A_{e}	$44 \mathrm{~m}^{2}$	$31 \mathrm{~m}^{2}$	$9.7 \mathrm{~m}^{2}$
SEFD (requirement)	5900 Jy	8200 Jy	190000 Jy
$T_{\text {sys }}$	89 K	56 K	98 K
A_{e}	$42 \mathrm{~m}^{2}$	$19 \mathrm{~m}^{2}$	$1.4 \mathrm{~m}^{2}$
SEFD (obsolete)	4080 Jy	2200 Jy	3170 Jy
$T_{\text {sys }}$	60 K	30 K	40 K
A_{e}	$40 \mathrm{~m}^{2}$	$38 \mathrm{~m}^{2}$	$35 \mathrm{~m}^{2}$

Fringe detection limit		2005 nominal		0.7 mm rms		1.0 mm rms	
		22 GHz	43 GHz	22 GHz	43 GHz	22 GHz	43 GHz
	$7 \sigma / \mathrm{GBT} /$ Cont.	12 mJy	22 mJy	24 mJy	100 mJy	30 mJy	280 mJy
	$7 \sigma /$ VLBA / Cont.	50 mJy	107 mJy	74 mJy	421 mJy	95 mJy	1100 mJy
	$7 \sigma / \mathrm{GBT} /$ Maser	0.7 Jy	0.9 Jy	1.4 Jy	4.2 Jy	1.8 Jy	12 Jy
	$7 \sigma /$ VLBA $/$ Maser	3.0 Jy	4.6 Jy	4.4 Jy	18 Jy	5.6 Jy	46 Jy

Updates in Key Science Area

Proposal 2005

Accretion disks

Jets

Goal : Imaging accretion disks in plural nearby AGNs
Extra : Distribution of brightness and spectral indices, imaging a black-hole shadow

Goal : Inner-jet structure, Velocity fields, Magnetic field structure in jet acceleration and collimation region
Extra : Magnetic fields in disks and jetlaunching region
Goal : Imaging masers in galactic SFRs, proper motion and annual pallarax,, Imaging megamasers in 20 Mpc , LMC/SMC annual pallarax
Extra : H_{0} measurements in 4% accuracy

YSO magnetospheres

New Science Case

Goal : Image the 'core' to verify accretion-disk models in more than 1 AGN (at 22 or 43 GHz) Extra : Disks in plural AGNs, Distribution of brightness and spectral indices

Goal : Velocity fields in jets, Imaging γ-ray emitting region, magnetic fields in jets in some nearby AGNs
Extra : Those in ~10-20 AGNs, Motion of γ ray emitting components

Goal : Sub-pc structure of megamasers, LMC/ SMC proper motion
Extra : LMC/SMC annual pallarax, Calibration of the distance ladder

Goal : Time-development of flares
Extra : Magnetic field structure in YSO flares

Goal : -
Extra : -

Red : deleted Blue : degrade Green : New!

