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Executive Summary 

This document is a supporting document of the PIACERE run-time monitoring and self-learning, 
self-healing platform. Therefore, it is one part of the D6.2. The whole D6.2 is composed by:  

▪ The source code of the components that implement the required functionality 
▪ The infrastructure as code specification that defines the environments in which these 

components are developed, tested, and integrated. 
▪ The specification of the way in which these components should be run together 
▪ The specification of tests over these components both individually and as an integrated 

set. 
▪ The specification of the interfaces both programmatical and human oriented 
▪ This document 

The objective of this document is on the one hand to contain the rationale of the architecture 
and approaches taken in the development of the different components, and on the other hand 
to provide details in how the different components have been developed and can be deployed. 

To address the first objective, we have included the state-of-the-art analysis on the different 
aspects of this second iteration of the platform that supports the selected development 
approaches. We include information on the following aspects: Infrastructural elements 
monitoring, self-learning and self-healing. Besides, for the monitoring and self-learning we focus 
on performance and security dimensions. 

To address the second objective, for each major component of the PIACERE run-time monitoring 
and self-learning, self-healing platform we include information about its implementation, 
deployment and usage. The implementation sections contain key information to understand the 
features implemented and how the component relates to other components in the architecture. 
The delivery and usage sections contain information that will be used during the deployment 
integration of the WP6 components together with other components from other work packages 
in the common PIACERE framework. 

The current version of the PIACERE run-time monitoring and self-learning, self-healing platform, 
was developed with three main targets in mind. The first one is to ensure the availability of key 
resources among the components; the second one was to start working in the more challenging 
internal aspects of the components; finally, the third one was to establish the foundations for 
the integration with other work packages. 

This version of the document is a follow up version of the D6.1 – PIACERE run-time monitoring. 
It extends the previous version with the aspects evolved during the second year of development. 
Besides it includes a changelog version to understand the evolution during this second year. 

Next version (D6.3) of this document will include updates on the approaches, the 
implementation and delivery and usage based on the advances and the changes introduced to 
move forward the integration of these components with the rest of PIACERE components.  
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1 Introduction 

1.1 About this deliverable  

This document is a supporting document of the second version (M24) of the PIACERE run-time 
monitoring and self-learning, self-healing platform. It is a complementary document that 
explains the approach, the implementation, and the way to deliver and use each one of the 
current components that take part in the implementation of the functionalities expected from 
the WP6. Besides, as it is a follow up version of the document it also covers the evolution with 
respect to the previous version. 

The overall objective in this period has been to start the piloting of the features regarding the 
performance and security monitoring, self-learning and self-healing components. 

This document has been developed merging contributions from all the partners of all the tasks 
of the WP6:  

▪ Task 6.1 Runtime monitoring and self-healing preparation 
▪ Task 6.2 Self-learning algorithms for failure prediction 
▪ Task 6.3 Strategies and plans for runtime self-healing 
▪ Task 6.4 Runtime security monitoring 

The purpose of this document is threefold: 

▪ To serve as a reference of the background of the technical decisions taken regarding the 
approaches followed during the development of the components 

▪ To contain information to support future development. This includes information to 
understand how the components have been developed, which are their features and 
how can be tested. 

▪ To describe the evolution with respect to the previous version. 

1.2 Document structure 

The document is structured into six parts. Section 2 explains the components covered by the 
document and their relationships. Section 3 summarises the evolutions introduced during the 
period from different perspectives: overall approach, innovation, and technical. The next part 4 
addresses the state of the art that supports the technical decisions taken to develop the 
different components covered in this deliverable. 

The fourth part 5 addresses the implementation details of the different components. For each 
component we include details about the functional description, the requirements covered, how 
it fits in the overall architecture and its technical description. This part spans from section to 
section. The requirements include project level requirements that comes from the use cases, 
and the component internal requirements that are internally established with the upcoming 
integration in mind.  

The fifth part, section 6, provides the conclusions. 

Besides there is a final part Annex A that addresses the delivery and usage of each component.  

The implementation and the delivery parts, have been designed to be used in isolation by the 
developers, without requiring them to read the whole document. With that objective in mind 
some figures may be repeated to improve that isolated readability. 
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2 Run-time monitoring and self-learning, self-healing platform in 
PIACERE 

The components covered by this deliverable are part of the PIACERE infrastructure advisor 
platform as shown in Figure 1. The infrastructure advisor has the role of ensuring the optimal 
deployment of the application specified in the DOML (DevOps Modelling Language) along the 
time. 

The role of the components in this architecture is on the one hand to monitor the NFR (non-
functional requirements) stated in the DOML and in case there are some deviations, or a 
deviation is forecasted, take corrective actions. On the other hand, the components will feed 
data into the Infrastructure Elements Catalogue (IEC) so that the real measurements are taken 
into account in the following IOP (Infrastructure Optimizer platform) calculation of the optimal 
deployment for a given application deployment request.  

These components are mainly controlled by the PIACERE Runtime Controller (PRC) that will 
inform the components about the new deployments that should be tracked, and the 
deployments that do not require to be tracked anymore. 

In this new version, we also implemented several links from IDE to the different monitoring 
components to provide the users with an easy way to access the different monitoring 
components in an easy and integrated way. 

 

Figure 1: PIACERE Runtime Diagram on its 2.0 version. 

Besides the components indicated in the architecture of the PIACERE runtime platform, the 
monitoring components, both performance and monitoring, will deploy agents together with 
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the deployed applications in order to gather the data required for controlling the fulfilment of 
the NFR (Non-functional Requirements) stated in the DOML. 

WP6 will include the following components to achieve their role in the PIACERE platform: 

▪ Monitoring Controller: in charge of controlling the activities involved in the start and 
end of the monitoring of deployments, as they are created and destroyed by the PRC. 

▪ Monitoring: This is a package that contains components that gather data from the 
deployments and controls the non-functional requirements continuous achievement. It 
includes components to control two aspects. 

o Performance (also including availability) 
o Security 

▪ Self-learning: This is a package that contains components that perform forecasts about 
the future values of key measures on the infrastructure resources supporting the 
deployments. It includes components to provide forecasts on two aspects. 

o Performance (also including availability) 
o Security 

▪ Self-healing: This component receives alerts from the previous components and based 
on the type of alert it requests the PRC to perform different actions such as redeploy, 
reboot, scale, etc. 

NOTE: currently, the IDE Plug-in Dashboard is not included as it does not interact with the 
components addressed in this work package. 

The other components shown in the Runtime Diagram (Figure 1) are documented in the 
following deliverables: IDE in D3.8, IaC Optimizer Platform (IOP) and Infrastructural Element 
Catalogue (IEC) in D5.8, Runtime Controller (PRC) and IaC Execution Manager (IEM) in D5.2. 
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3 Changes  in v2: M12 – M24 Changelog 

This section explains the evolution from the previous release M12 to the current release M24. 
It is structured in separate sections to describe with more detail the evolution in specific areas 
covered by the D6.2. 

▪ Monitoring Controller 
▪ Performance Monitoring 
▪ Security monitoring 
▪ Performance Self learning  
▪ Security Self learning  
▪ Self-Healing 

With respect to the use case requirements coverage, we show the advance M12 to M24 in the 
following figures Figure 2 and Figure 3. The advance is described focusing of the different 
PIACERE Key Results (KR) covered in this document. KRs package the outcomes of the WP6 in 
exploitable results. These are: 

▪ KR11 - PIACERE Self-learning and self-healing mechanisms 
▪ KR12 - Runtime security monitoring 

During Year 1 the advance was focused in providing the building blocks to enable the 
development of more complex features during the next period, the overall progress and 
requirements coverage is shown in Figure 2.

 

Figure 2: Requirements coverage at M12. 

In Year 2 we advanced in the coverage of the requirements focussing on the direct usage by the 
targeted scenarios. The overall progress and requirements coverage is shown in Figure 3.  
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Figure 3: Requirements coverage M24. 

3.1 Monitoring controller 

This is a utility component introduced in M12 to provide a single point of control of the 
monitoring infrastructure to other components in the piacere framework such as the piacere 
runtime controller (PRC).  

3.1.1 Overall evolution 

The main activities performed during this period focused on the integration with other 
components of the PIACERE platform and the implementation of the end-to-end user scenarios. 

Table 1: Evolution of the Monitoring Controller component. 

M12 M24 

Definition of interfaces of that will proxy the 
monitoring platform with the rest of 
elements of the piacere infrastructure, 
covering: activation and deactivation of 
monitoring for specific deployments. 

Implementation and testing in pilots of the 
activation and deactivation functionalities 
towards required components in the internal 
monitoring infrastructure: 

▪ Performance monitoring 
▪ Performance self-learning 
▪ Security monitoring 

3.1.2 Innovation aspects 

As this component is utility component that acts as proxy between the piacere platform and the 
monitoring component we will only address the overall evolution in the period. There are no 
innovation aspects directly covered by it.  

3.1.3 Technical features 

It includes REST clients to manage relevant component in the internal monitoring architecture: 
performance monitoring, performance self-learning and security monitoring. 

The implementation of the clients relay in the standard definition of the API of those 
components using OpenAPI Specification (OAS). That enables an easier implementation of 
changes based on the expected evolution in those components. 

3.1.4 Changes coming from use cases 

No major changes from requests from the use cases have been made.  

3.2 Performance monitoring 

3.2.1 Overall evolution 

The main activities performed during this period focused on the integration with other 
components of the PIACERE platform and the implementation of the end-to-end user scenarios. 
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Table 2: Evolution of the Performance monitoring component. 

M12 M24 

Deployment of base monitoring elements to 
enable the development of other 
components. 

Including docker based agents to 
continuously feed the infrastructure with 
data. 

Those agents were not suitable to be 
deployed on use case infrastructure elements 
not including docker technology. 

Creation of performance monitoring agent 
configuration to be deployed as part of the 
infrastructure as code generated by the 
infrastructure as code generator (ICG).  

Deployment of multiple testing agents in a 
permanent way to produce the necessary 
information to develop other components in 
the PIACERE monitoring stack such as those 
related with the self-learning and self-
healing. 

Definition of interfaces of the different 
elements of the monitoring infrastructure. In 
this period the integration with IDE was not 
considered. 

Implementation of interfaces for the 
integration of the monitoring platform with 
the integrated development environment 
(IDE). The integration is focussed on the 
facilitation of the access to the different 
development related dashboards from the 
IDE. 

Prototypical performance dashboard was 
included. In this period only performance 
dashboards were envisioned.  

Implementation of deployment related 
functionalities at Grafana side, this has 
required the creation of a controller services 
that customize the Grafana based on the 
deployment information. 

Development of different dashboards for 
performance and self-learning metrics. 

The integration of components was mainly 
focused internally on the monitoring scope. 

▪ Data gathering 
▪ Self-learning  
▪ Self-healing 

Finally, we have collaborated closely with 
other components in the PIACERE 
architecture to achieve the successful end-to-
end execution of a deployment including the 
monitoring agents and the configuration of 
the monitoring platform. Main components 
involved in this collaboration have been: 

▪ PIACERE runtime controller (PRC) 
part of KR13 

▪ Infrastructure as code execution 
manager (IEM) KR10 

▪ Integrated Development 
environment (IDE) KR2 

3.2.2 Innovation aspects 

No major changes in the innovation aspects have been introduced. We continue in the 
achievement of the planned innovation: 
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▪ To externally monitor heterogeneous types of resources (Cloud services and IoT) and 
diverse metrics (performance, cost, availability, security) in a continuous and integrated 
manner with the defined deployment model. 

3.2.3 Technical features 

Performance monitoring controller has been developed. It covers two main aspects: 
deployment configuration and provisioning of deployment related Grafana dashboards 
information to the IDE. The Figure 4 shows the main features implemented in the performance 
monitoring controller. The API and the details of its usage can be accessed in the integration 
environment (https://git.code.tecnalia.com/piacere/public/the-platform/runtime-
monitoring/pm/-/tree/y2/git/pmc/openapi.yaml) 

 

Figure 4: Performance monitoring controller. 

The POST and DELETE methods are related with the creation and removal of deployment 
workflows and are related with the PRC integration. While the GET methods are focused on the 
retrieval of information about the deployment related dashboard by the IDE.  

Performance monitoring agent has been developed. It covers the generation of the 
infrastructure as code related with the necessary collection of monitoring data at elements 
configured as part of the deployments created. The agent has been developed using Ansible and 
available open-source components when possible. The agents are placed outside from the 
piacere framework main deployment as they run in the infrastructure elements created by the 
IAC (Infrastructure as code) created by piacere. 

3.2.4 Changes coming from the use cases 

The experimentation with the use cases have been useful to: 

▪ Adjust the visibility of the agent related code in order to facilitate the usage by the 
scenarios 

▪ Adjust the agent variables and their management to match the stage based IaC 
procedure implemented in the PIACERE Project. 

▪ Request the modification of the log information on the IEM to be able to analyze the 
progress of the configuration of the agents. 

▪ Request the modification of the PRC to get the deployment id necessary to setup the 
performance and self-learning dashboards. 
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3.3 Security monitoring 

3.3.1 Overall evolution 

The main activities performed during the last period were focused on monitoring, self-learning 
components and adapting the to the security non-functional requirements.  

Table 3: Evolution of the Security monitoring component. 

M12 M24 

We have specified a central interface for the 
security monitoring component. This 
interface takes care of the configuration of 
the monitoring of the deployments, similar to 
those developed in T6.1. 

We have implemented the stub of the 
interface, we have dockerized it and 
orchestrate with a docker-compose.  

A new version of security controller has been 
developed by creating a new release of 
OpenAPI specification with corresponding 
business logics on the back-end services.  

Basic security mechanisms were integrated 
within the controllers (basic auth, 
communication over TLS, secure connections 
between internal components), thus making 
the security monitoring components more 
secure.   

Security monitoring deployed it in the project 
CI platform. 

Security monitoring facility has been 
integrated with the existing PIACERE CI 
process. 

We have implemented ansible playbooks for 
the agent in order to facilitate their 
deployment and configuration at pilot 
scenarios. 

We have deployed agents to collect data 
related to security to be able to develop and 
test the security related monitoring and self-
learning components.  

An ansible playbook to deploy the security 
agent of the security monitoring following 
the agreed WP6 approach to deploy 
monitoring agents with the minimal 
configuration  

The agent has been extended with additional 
configuration supporting PIACERE 
deployments and already with the notion of 
multi-tenancy (or multi-project support). 

 Contribution to the DOML definitions w.r.t. 
basic strategies for supporting security 
related ansible based self-healing processes 
have been made. These discussions are still in 
progress, we can expect implementation of 
the strategies in the next reporting period. 

 Integration with the IDE (redirect to the 
Security Self-Learning dashboards within a 
project). 

3.3.2 Innovation aspects  

Innovations during the past period were focused on 2 main aspects: 

▪ The dynamic notion of security monitoring integrated within the complete CI/CD. 
Besides the static analysis being done within WP4 we are capable to obtain dynamic 
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analysis with the use of PIACERE framework. This analysis evaluates infrastructure and 
provides a set of security issues detected (CVEs, severities detected, problems that can 
be resolved with hardening and also anomalies detected in the runtime). 

▪ Machine learning (ML) based anomaly detection using Masked Language Modelling and 
Hypersphere Volume Minimization has been introduced and integrated. Additionally, 
the presented approach embedded into the whole DevOps lifecycle increases the 
innovation part of the ML-based anomaly detection. 

3.3.3 Technical features  

New version of the OpenAPI specifications. In the latest versions of the Security Monitoring 
Controller, resources related to the Security Self-learning have been slightly updated in order to 
adapt to responses from the self-learning API. Additionally, DELETE method is now supported 
on the Deployment resource in order to support removal of deployments (or projects).  

 

Figure 5: Security Monitoring Controller's API. 

The Figure 5 above presents introduction of "deployments" and DELETE method for the 
resource. Complete API specification can be found on official PIACERE public repository1. 

Ansible playbook to deploy security agents and updates to the agents. In the public 
repositories2 there are Ansible playbooks for deploying agents in Docker and “bare-metal” 
environments.  

Security of the components. More configuration options are now supported with additional 
user names and passwords for the deployment of the core security monitoring components. 
Specifically, ElasticSearch can be protected by using basic authentication credentials (also for 
securing communication with self-learning components). Documentation on these details can 
be found in the README.md file of the official PIACERE public repository3.  

3.3.4 Changes coming from the use cases 

No major changes stemming from the use cases have been made.  

 
1 https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-
monitoring-controller/-/blob/main/swagger_server/swagger/swagger.yaml - OpenAPI specification of 
the Security Monitoring Controller. 
2 https://git.code.tecnalia.com/piacere/public/agents/sma-playbook – public repository of the security 
monitoring agents 
3 https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-
monitoring-deployment – repository and documentation of the Security Monitoring stack (ELK, Wazuh 
Manager and Security Monitoring Controller) 

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-monitoring-controller/-/blob/main/swagger_server/swagger/swagger.yaml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-monitoring-controller/-/blob/main/swagger_server/swagger/swagger.yaml
https://git.code.tecnalia.com/piacere/public/agents/sma-playbook
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-monitoring-deployment
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-monitoring-deployment


D6.2 – PIACERE run-time monitoring  Version 1.0 – Final. Date: 02.12.2022 

and self-learning, self-healing platform - v2 

© PIACERE Consortium   Contract No. GA 101000162 Page 19 of 107 

www.piacere-project.eu   

3.4 Performance Self-learning 

3.4.1 Overall evolution 

The main activities performed during this period has been focused on the coverage of additional 
metrics to complete the planned metrics to be adressed. We have mainly evolved the 
component in these lines: 

Table 4: Evolution of the Self-Learning component. 

M12 M24 

We had developed all the metrics but only 
CPU ones were tested. Concretely: 

▪ CPU metrics (usage_idle, usage_user, 
usage_system) were developed, 
integrated and tested. 

▪ MEMORY (free, used_percent) and 
DISK (free, used_percent) metrics 
were only developed and integrated 

Now all metrics (CPU, MEMORY and DISK 
ones) are developed, integrated and 
successfully tested 

Concept drift detection was not developed, 
integrated and tested in any metrics 

Now all metrics count on a concept drift 
detector; it has been developed, integrated 
and successfully tested  

A monitoring data point is received every 1 
hour.  

In order to be able to predict in time a 
decrease in the performance, and take the 
corresponding actions (self-healing), we have 
changed the frequency to have a datapoint 
every 10 minutes. 

3.4.2 Innovation aspects  

We have not added more innovation aspects. They were included at the beginning of the 
project, and now it is time to take them to the reality. They continue to be the same: 

▪ To develop improved predictive models to detect and predict the non-compliance on 
NFRs (runtime- and security-related) with integrated anomaly and concept drift 
techniques.   

3.4.3 Technical features  

We have mainly introduced the following technical modifications: 

▪ Now the technique to develop the incremental learning algorithm is based on 
SNARIMAX4 with a regressor based on KNN.  

The main reason for this change is that SNARIMAX is tailored to time series forecasting 
(it adapts to several horizons of prediction), while Random Forest is only useful is case 
of nowcasting (horizon=1). As we may try to make predictions for several horizons, this 
technique scales better in case of this need becomes a reality. 

 
4 https://riverml.xyz/0.14.0/api/time-series/SNARIMAX/ 
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Previously The technique to develop the incremental learning algorithm was Random 
Forest. 

▪ Now the technique to develop the outlier detector algorithm uses the range  

[mean-s*std : mean+s*std] 

The main reasons for this change are: 

• It is not based on machine learning, but on statistics, so it is faster in processing 

• It perfectly detects the outliers present in PIACERE, more than the previous 
technique 

• It is more transparent and understandable 

3.4.4 Changes coming from the use cases 

The uses cases have not changed the nature of the component. 

3.5 Security Self-learning 

3.5.1 Overall evolution 

The main activities performed during this period have been in the implementation of the training 
and inference process. Based on the basic security requirements, extensions to the 
communication layer of the security self-learning components have been made in order to make 
the platform more secure. Additionally, a specific model has been chosen and implemented for 
the training and for the inference process. Three different dashboards have been implemented 
and are made available for the use within PIACERE pilots.  

Table 5: Evolution of the security self-Learning component. 

M12 M24 

We have specified a central interface for the 
security self-learning interactions. The 
interface for the self-learning functionalities 
have been integrated with the security 
monitoring controller. 

We have implemented the stub of the 
interface, we have dockerized it and 
orchestrate with a docker-compose.  

Based on the basic security requirements, 
extensions to the communication layer of the 
security self-learning components have been 
made in order to make the platform more 
secure. Additionally, a specific model has 
been chosen and implemented for the 
training and for the inference process. Three 
different dashboards have been 
implemented and are made available for the 
use within PIACERE pilots. 

 Integration with the IDE (redirect to the 
Security Self-Learning dashboards within a 
project). 

3.5.2 Innovation aspects  

LogBERT model is implemented as it is described in section 4.2.2.2. 

For training process GPU-based systems are being used. Moreover, for the inference process, 
GPU and CPU-based systems are supported. GPU and CPU workers can be deployed on different 
hosts.  
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Different dashboards have been developed: 

▪ Dashboard for log and anomaly scores inspection is made available. 
▪ Dashboards for parsed log template inspection has been made available. 
▪ Dashboards for training log parser and anomaly detection model 

3.5.3 Technical features  

Integration tests have been implemented. Moreover, GitLab CI pipelines for building docker 
images and python packages have been established. 

Support for basic authentication towards external Elasticsearch instance has been made.  

3.5.4 Changes coming from use cases 

No major changes stemming from the use cases have been made.  

3.6 Self-Healing 

3.6.1 Overall evolution 

The main activities performed during this period have been focused on the implementation of 
initial strategies, the identification of possible additional strategies and the integration of the 
self-healing from the user perspective. 

Table 6: Evolution of the self-healing component. 

M12 M24 

We have implemented a first version the self-
healing component where we manage 
different elements: notifications from the 
other monitoring components, types of 
notifications, strategies that can be applied 
and relationships between types of 
notifications and strategies. 

We have implemented the stub of the 
interface covering notification aspects. 

We have implemented the integration of the 
self-healing with the PRC (PIACERE runtime 
controller) to be able to request the removal 
and creation of deployments. 

We have also collaborated in the 
implementation of the usage of the 
notification interface by other monitoring 
components: security monitoring, 
performance self-learning and security self-
learning. 

We have implemented a front end for the 
self-heling to facilitate the understanding of 
its configuration and the visualization of his 
activity. 

The front end has been integrated in the IDE 
and it is now linked to the deployment. 

We have identified an initial set of strategies: 
reboot, redeploy, vertical scalability and 
horizontal scalability.  

We have refactored the vertical and 
horizontal scaling strategies to reduce them 
to one single scaling strategy. That based on 
the DOML will take de decision of scaling 
horizontal or vertically. 

Based on the discussions with security 
monitoring we have found the need to 
implement additional strategies: ansible, 
quarantine and user warning. 
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Some of the identified strategies require 
changes in doml that are being discussed. 

The main activities corresponding to the achievement of this objective have been: 

▪ We have refactored the vertical and horizontal scaling strategies to reduce them to one 
single scaling strategy. Based on the DOML the self-healing component will take the 
decision of scaling horizontal or vertically. 

▪ Based on the discussions with security monitoring developer partner we have found the 
need to implement two new strategies: quarantine and user warning. 

3.6.2 Innovation aspects  

No major changes in the innovation aspects have been introduced. They continue to be the 
same: 

▪ To provide the means to set up self-healed IaC at runtime with minimal manual 
intervention 

3.6.3 Technical features 

New strategies have been introduced as part of the identification of potential self-healing 
strategies to be applied: 

▪ Vertical scaling: this will be applied for infrastructure elements with no scale capability 
known that are suffering performance degradation. It will be also a possibility for those 
elements with scale capability. 

▪ Horizontal Scaling: this will be applied for infrastructure elements with scale capability. 
▪ Quarantine: this will stop the infrastructure element, when it becomes untrusty from a 

security perspective. This may involve the detention of the whole deployment. 
▪ User warning: this will warn the user of some non-critical security hazards. 

The self-healing user interfaces have been integrated in the IDE, now it is possible to access the 
self-healing logs from the IDE. 

3.6.4 Changes coming from the use cases  

No major changes stemming from the use cases have been made.   DRAFT

http://www.medina-project.eu/


D6.2 – PIACERE run-time monitoring  Version 1.0 – Final. Date: 02.12.2022 

and self-learning, self-healing platform - v2 

© PIACERE Consortium   Contract No. GA 101000162 Page 23 of 107 

www.piacere-project.eu   

4 State of the Art 

4.1 Infrastructural elements monitoring  

4.1.1 Infrastructural elements monitoring approaches and challenges 

Multi-cloud scenarios are more and more used to deploy microservices-based applications. The 
components of such an application are described in the literature as “loosely coupled units of 
development that work on a single concern” [1]. In the cloud, each microservice (or component) 
can be deployed in a different resource, even in a different cloud, attending its specific needs or 
non-functional requirements (NFR) such as location, cost, performance, etc., making the multi-
cloud scenario especially adequate for the deployment of microservices-based applications.  
This new architype, where an application is deployed in distributed cloud resources, would not 
be possible without novel developments in governance, SLA (Service Level Agreement) 
management and monitoring. 

In fact, one of the challenges in the area of cloud services federation, among others like the data 
portability or the lack of applicability of standards and legislation, is the monitoring and 
assessment of cloud services SLAs [2]. Precise monitoring of Quality of Service (QoS) and SLA 
verification of cloud services enables additional functionalities [3], as service selection or real 
time capacity estimation. Tools such as Nagios or Ganglia allow monitoring low-level metrics of 
computing resources in general, but automation on the configuration and calculation of complex 
metrics to assess CSLAs is still missing, especially when addressing multi-cloud environments. 

During the current period a new initiative has gain some momentum. This initiative is Gaia-X 5 it 
is an ecosystem to define a next generation of data infrastructure. Among their service there is 
one centred in the monitoring named Continuous Automated Monitoring CAM. The purpose of 
CAM is to support means to transparently evaluate the compliance of the individual services 
offered at Gaia-X. It focusses on the compliance with some requirements and rules imposed by 
Gaia-X on the system. 

4.1.1.1 Performance Monitoring 

In the H2020 project DECIDE, a component that supports the brokerage of cloud services is 
presented, called ACSmI [4]. One of the functions of this broker is to control the fulfilment of 
the SLAs for each Cloud Service contracted. ACSmI monitors the SLAs (also called non-functional 
properties or NFRs) of the services offered by the Cloud Service Providers (CSPs) and assesses 
them to detect any violation. If a violation of some SLO (Service Level Objectives) is detected, an 
alert is raised. In ACSmI, the NFRs assessed are performance, availability, location and cost, while 
virtual machines are the only cloud resource used. 

For each of the selected NFR, related metrics to be assessed have been defined. To be able to 
compare, combine and assess SLAs from different CSPs, the metrics are defined according to 
ISO/IEC 19086-1:2016 standard [5]. This standard seeks to establish a set of common cloud SLA 
building blocks (concepts, terms, definitions and contexts) that can be used to create Cloud 
Service Level Agreements (CSLAs).  

In order to support the most standardized metrics, the guidelines defined in the mentioned ISO 
standard were adopted by ACSmI for the metrics selected: 

▪ Availability. Availability is defined as A = MTBF/(MTBF+MTTR), ∑ (100%-termi))
n
i=1  

where MTBF (Mean Time Between Failures) and MTTR (Mean Time To Recover), are 
calculated based on other discrete metrics using different techniques. 

 
5 https://www.data-infrastructure.eu/GAIAX/Navigation/EN/Home/home.html 
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▪ Performance. For the performance the usage of CPU, memory and disk is measured. 
Different thresholds can be configured ad-hoc through the ACSmI monitoring API. 

▪ Location. It determines where a cloud resource is located, geo-locating its IP address 
from the Service registry.  

▪ Cost. Determines the current cost that a CSP is reporting on a certain resource. The 
actual incurred cost is calculated by monitoring the billing. 

ACSmI combines push and pull monitoring (internal and external approach for monitoring VMs) 
for cloud resources. This implies that pre-configured agents are to be installed in the 
corresponding virtual machines, in an architecture described as Extended Internal Adaptive in 
[6]. It is composed by several components, among others:  

▪ Metering or Data collection: Collects the data from the different cloud services where 
the application is deployed. Based in Telegraf6 open-source tool, Metering is 
automatically configured based on the information of the application to be deployed.  

▪ SLA Assessment: in charge of the aggregation of the different raw metrics in order to 
assess the values of the NFRs with respect to the SLOs. 

▪ Violations Handler: Once the assessment detects a violation of some SLA, this 
subcomponent registers it for future consults and informs of the violation to the CSP. 

The definition of a composed SLA for a multi-cloud application is another issue that needs to be 
considered. This is critical for multi-cloud applications, for which the composed Multi-Cloud SLA 
(MCSLA) is based on the composition of the underlying Cloud services SLAs [7]. The MCSLA can 
act as the contract between the end-users and the developer of the multi-cloud native 
application and it needs to be assessed at run time. A MCSLA must act as an aggregator of all 
terms defined in the various SLAs. 

In a related H2020 project, Melodic, a novel distributed application monitoring system was 
introduced – EMS: Event Management System. [8] It is able to collect, process and deliver 
monitoring information pertaining to a distributed, cross-cloud application, according to CAMEL 
model specifications, considering the defined SLOs. The aggregated monitoring data is used by 
Upperware (the Melodic orchestration) to trigger reactively the reasoning process and issue 
decisions on reconfigurations when and if needed. The big advantage of the EMS approach is its 
decentralized nature, which is ideal for multi-cloud applications, since it provides a hierarchical 
filtering of the monitoring information, avoiding bottlenecks and excessive use of network 
bandwidth. 

EMS undertakes the task of deploying a network of agents for collecting monitoring information 
from the monitoring probes as events, processes them using distributed event processing 
methods, and forwards the results to Upperware (e.g., Metasolver – the optimisation 
component). A CAMEL model specifies the needed monitoring information and the kind of 
processing required, as these have been defined through SLOs. Both the installation of 
monitoring probes and the deployment of EMS agents is the responsibility of Executionware 
under the orchestration of the Melodic workflow. EMS is a distributed application monitoring 
system that comprises of a server integrated in Upperware, named Event Processing Manager 
(EPM), and several clients, named Event Processing Agents (EPAs). EPM and EPAs form a 
network of nodes for distributed event processing, called Event Processing Network (EPN). This 
network is orchestrated and controlled by EPM which is used to, specifically: 

 
6 https://www.influxdata.com/time-series-platform/telegraf/ 
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▪ Analyse the CAMEL model of a cross-cloud application in order to extract the required 
(by other Melodic platform components) monitoring information along with the 
processing needed. 

▪ Deploy (through Executionware) EMS clients (EPAs), to each distributed application 
node that hosts an application component (to be monitored). 

▪ Configure each EPA to collect (from sensors) and forward the needed events, and also 
apply the required complex event processing rules. 

▪ Provide the required information (specified in the CAMEL model), either by updating the 
application constraints model, by publishing events (any interested party may subscribe 
to receive them), or by requesting Melodic platform to reconfigure the distributed 
application (e.g., when certain SLOs are violated). 

The EMS is one of the Melodic components being enhanced in another H2020 project – 
Morphemic. The focus is on resilience, especially in the context of edge deployments, and 
includes features like self-healing (i.e., automatic healing for the monitoring platform – EMS), 
clustering and federation. 

4.1.1.2 Security Monitoring 

Existing security monitoring solutions implement functionalities such as: sensor, parser, 
integrator, detector, inspector and actuator [9]. Sensor is collecting data from the target 
subsystem resulting into records – logs. Parser and integrator can be two components dedicated 
to transform (normalise) logs into a common format and aggregate the logs onto the central 
location. Detector is capable of detecting anomalies from the data stream (or the logs), inspector 
allows data inspection and actuator performs actions on the target system configuration. 
Network Security Monitoring tools in the market encompass from single-module solutions to a 
combination of the described modules. Single module solution can be network traffic sensors 
(sensors incorporating libpcap library such as wireshark , tcpdump , tshark ; traffic sessions 
capture, such as netflow ; traffic statistics using SNMP) and log and state sensors (syslog parsers, 
application logs parsers). Multi-module solutions have greater importance, since these allow not 
only collecting but also analytics and detection capabilities. These solutions can further be 
divided into different classes: Intrusion Detection Systems (IDSs), Intrusion Prevention Systems 
(IPSs), Security Event Management (SEMs), Security Information and Event Managements 
(SIEMs), Universal Threat Managements (UTMs). In PIACERE we are targeting existing open-
source solutions providing all the modules described above (parser, integrator, detector, 
inspector and actuator) with the possibility of having specific sensors for the target 
infrastructure (or the application). OSSEC, Zeek (BRO), Wazuh and Splunk are the potential 
candidates to be used since all provide the needed requirements (see the list of requirements 
in section 5.3.2) and are built on top of open-source solutions/modules. 

OSSEC (Open Source HIDS SECurity) [10] is a multi-platform, open source HIDS (Host-based 
Intrusion Detection System) that performs log analysis, integrity checking, monitoring of 
Windows records, and rootkit detection. It provides alerts and maintains a copy of the modified 
files to perform forensics tasks. It has some basic SIEM features, such as allowing the correlation 
of logs from several devices and formats, and mechanisms for compliance of security policies, 
but it has been traditionally considered to be an IDS. 

Zeek  (formerly known as BRO) [11] is a passive network traffic analyser. It supports a wide range 
of traffic analysis tasks beyond the security domain, including performance measurement and 
troubleshooting. Zeek has an extensive set of logs describing network activity of every 
connection seen on the wire and also application-layer transcripts (HTTP sessions with their 
requested URIs, key headers, MIME types, and server responses; DNS requests with replies; SSL 
certificates; key content of SMTP sessions; and more). By default, Zeek writes all this information 
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into well-structured tab-separated or JSON log files suitable for post-processing with external 
software.  

Wazuh [12] is built on top of OSSEC – it has a robust open-source Intrusion Detection System 
that performs log analysis, integrating log analysis, file integrity monitoring, Windows registry 
monitoring, centralized policy enforcement, rootkit detection, real-time alerting, and active 
response from multiple devices and formats running on most operating systems. This tool has a 
cross-platform architecture and is centralized, allowing to target multiple systems for 
monitoring, managing and analysing firewalls, IDSs, web servers, and authentication logs. For 
each capability, Wazuh has a process defined with specific rules where it is possible to define 
metrics, for example:   

▪ Compliance level with standards such as PCI DSS, HIPA, GDPR 

▪ Occurrence of changes within system files (file integrity checks) 

▪ Detection of rootkits installed on the infrastructure 

▪ Number and severity of infrastructure vulnerabilities detected (e.g. CVE level of 

dependencies installed on the OS being monitored) 

▪ Monitoring cloud logs (via IaaS’ or PaaS’ API, such as AWS’ CloudMonitoring) 

High level architecture of Wazuh is depicted in Figure 6. Looking at it from high-level, it consists 
of Wazuh Agents and Wazuh Server. The Wazuh agent (installed on endpoints) with different 
interfaces (modules) is able to detect different metrics on the host.  Wazuh Server consists of 
worker nodes (Wazuh cluster), Kibana Server and ElasticSearch Cluster. 

 

Figure 6: High-level Wazuh's architecture. 

Vulnerability assessment in a context of security monitoring process is a systematic review of 
security weaknesses and can be performed in different ways, but the most common way is by 
using automated vulnerability scanning software that is usually already provided in the tools 
mentioned above. Due to the quick changing rate of IT environments and evolution of attacks, 
vulnerability scans should be performed on a regular basis (continuously collecting security 
metrics and categorizing these based on some predefined rules).  

Devices (infrastructure) can be profiled according to their “behaviour” by exploiting system-level 
information in order to detect anomalous behaviours. Anomaly detection in the context of 
security monitoring is analysed in the section 4.2.2.2. 
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4.1.2 Infrastructural elements monitoring approach in PIACERE 

4.1.2.1 Performance Monitoring 

The goal within Runtime Performance Monitoring is to continuously gather metrics from the 
infrastructures deployed and ensure that they continuously meet the expectations defined 
during the application deployment design phase. 

As in the ACSmI [4] we have deployed agents in the deployed infrastructures to gather 
performance metrics and send them back to the PIACERE Platform. We have used Telegraf [13] 
open-source tool to gather that information. The agents will be deployed as integral part of the 
application deployment in this sense the ICG generates the required IaC configuration not only 
to deploy the components of the application but also the agents required to ensure the 
continuous alignment of the infrastructure to the expectations reflected in the DOML. 

Apart from the agents gathering the information we have deployed additional elements to store 
the data, process it, and dispose it for use by other components. For the deployment of these 
elements we considered two options: deploy them as part of the application or deploy them as 
part of the PIACERE framework. We have decided to deploy them as part of the PIACERE 
framework for some reasons: 

▪ It decouples the application from the monitoring and operation 
▪ We can use the PIACERE framework to monitor several applications 

For the monitoring part in the PIACERE framework we have included: time series databases to 
store the information, processing framework to continuously check the NFR, web user interfaces 
that allow to view and analyse the metrics gathered, and some configuration components to 
adapt the infrastructure each time an application is deployed. 

For the storage of information, we have used influxdb7 that integrates quite well with Telegraf 
allowing a firewall-friendly and secure communication from the agents present in the deployed 
infrastructure and the PIACERE framework. Influxdb is an open-source time series database with 
a big user base. Besides, it can be deployed in different ways supporting a wide range of needs 
from a container to a cluster. It has a REST API to feed and query information. 

For the processing framework and web user interface we have used Grafana8. That is also an 
open-source platform. It provides a responsive web-based user interface with a backend that 
takes care of the thresholds and the notifications. It also has a REST API to manage the sources, 
the dashboards, the thresholds and the notifications means.  

For the configuration component we have defined a PIACERE-oriented REST API, and a Java 
based server to implement the logic for that REST API. 

4.1.2.2 Security Monitoring 

The goal within Runtime Security Monitoring is to provide a security monitoring system for the 
target infrastructure/application, managed by PIACERE. It complements PIACERE SAST (Statical 
Analysis Security Tools) technique with dynamic perspective – using Network Security 
Monitoring (NSM) tools [9]. The monitoring system is able to detect suspicious (system and/or 
application) log entries on the system, configuration changes of the system, file integrity issues, 
some types of attacks, and malware presence on the system. Network security strategies 
encompass protection, detection and response processes. Using the runtime security 

 
7 https://www.influxdata.com/ 
8 https://grafana.com/ 
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monitoring tools (Wazuh, Filebeat, ELK-stack and newly developed components: anomaly 
detection tool based on LogBert algorithm and Security Monitoring Contoller) in PIACERE we are 
focusing primarily on the detection and secondary on the response and protection (through the 
self-learning and self-healing process). With the Wazuh (agents and a manager) and Filebeat we 
are capable to detect real-time security-related metrics and aggregate logs for the purpose of 
anomaly detection. Using dedicated ELK-stack based on open-source distribution components 
we are storing newly detected events and logs in Elasticsearch (open-source distribution) in 
different – separate indexes. Anomaly detection based on log date is capable to 1) train the 
model using the already provided logs from the dedicated index and 2) detect anomalies in real 
time based using a specific already pre-trained model. We have extended Wazuh modules to 
include PIACERE specific labels so that we are capable of filtering the data and events based on 
these labels in the data itself. Kibana is used to depict security-related events. Security 
Monitoring Controller is capable of monitoring the events and triggers actions based on the 
severity level of these detected events. These actions are, for example, webhook calls to 
external services (e.g., Self Healing PIACERE component). Security Monitoring Controller is 
equipped also with a process capable of detecting Wazuh’s and Anomaly detection logs.  

4.2 Self-learning 

4.2.1 Self-learning approaches and challenges 

Nowadays, many machine learning models in production are still static, i.e., they were 
developed and trained by data scientists or researchers on historical data, and from that point 
on they will not be able to incorporate new knowledge. In most real applications data arrive in 
the form of fast streams, and new data characteristics or trends should be incorporated into the 
existing models. When they remain static, these models should be retrained on a fairly regular 
basis (daily or even more frequently). However, this is not very efficient because:  

1. implies that an expert would have to be focused on deciding which is the best moment 
to train the models again, 

2. nowadays data are produced in the form of fast streams, and  
3. data are affected by non-stationary phenomena that occur fast, and a human cannot 

successfully detect changes in a real-fashion environment.  

Therefore, some level of automation (self-learning) is crucial, and the state of the art is ready to 
provide us with some interesting solutions. In PIACERE we adopt some of them, taking the IaC 
(Infrastructure as Code) to next level of intelligent deployment, configuration and management 
in the virtualization field.  

We would like to start this section by highlighting a non-trivial aspect regarding self-learning. 
We can find in the literature the term self-learning referring to unsupervised learning, self-
supervised learning, self-labelling or even reinforcement learning. In all cases, the idea is to 
automatically generate some kind of supervisory signal to solve some tasks, e.g., to learn data 
representations [14] or to automatically label a dataset. In other occasions, it refers to 
autoencoders (neural networks) [15]. However, in PIACERE we adopt the other well-known 
meaning [16], [17], [18], [19] that refers to the ability of a model of:  

▪ ingesting new data as it becomes available (incremental learning), 
▪ detecting by itself changes (drifts) in data distribution and to be automatically retrained 

after this occurs, 
▪ warning the system when anomalies are detected, or 
▪ self-optimizing and self-calibrating in case of performance issues due to concept drift or 

anomalies. 
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Under these circumstances, self-learning becomes a perfect ally in those scenarios where 
changes or anomalies may be present. An autonomous model allows systems to be more 
accurate and reliable in production for much longer periods of time. But this is hard to achieve 
and presents several challenges:  

▪ these models are based on algorithms that are usually more difficult to fine-tune, 
▪ overfitting can be a great concern, 
▪ the stability of the model must be assured, 
▪ false alarms (drift detections) may provoke that the retraining process is useless, even 

degrading the performance of the model, and 
▪ an anomaly must not be confused with a drift. 

The latter point is not trivial [20] given the relevance of it for PIACERE. One of the challenges for 
concept drift handling algorithms is not to mix the true drift with an outlier or noise which refers 
to a once-off random deviation or anomaly [21], [22]. No adaptivity is needed in the latter case, 
as Figure 7 shows. 

 

Figure 7: Types of drift according to severity and speed of changes, and noisy blips. Here the stars and 
circles represent the prevailing concept at every time instant [23]. 

4.2.1.1 Stream data analysis 

Applications generating huge amounts of data in the form of fast streams are increasingly 
prevalent. These applications collect data from almost any source and analyse it to find answers 
that enable cost and time reductions, new product developments, optimized offerings, or smart 
decision making, or –as in our case– try to improve the deployment process of Infrastructure as 
Code (IaC). In these scenarios, instead of all training data being available from the beginning, 
data are often received over time in streams of samples or batches. Data streams are the basis 
of the real-time analysis, which is composed by sequences of items, each having a timestamp 
and thus a temporal order. A stream data environment shows several particularities [24] that 
we should consider when designing our algorithms: 

▪ Each sample or batch is processed only once on arrival. Stream data analysis solutions 
should be able to process information sequentially, according to its arrival. These 
solutions must not put the resources (mainly memory space and processing time 
restrictions) at risk, 

▪ The processing time must be small and constant, without exceeding the ratio in which 
new samples arrive. Otherwise, some kind of temporal storage should be considered, 
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▪ The stream data analysis solution should use only a preallocated amount of main 
memory 

▪ The model/algorithm in which this stream data analysis solution is based, should be 
completely trained before next sample arrives 

In Infrastructure as Code (IaC) platforms, data also arrives in the form of data streams, and thus 
it may suffer anomalies and concept drift phenomena, as we will see later. Finally, it deserves 
mentioning that data streams in IaC are usually in the form of time series, and thus the temporal 
dependence in data is present; and it should be considered properly. But, in the case of PIACERE, 
our prediction problem is closer to nowcasting (where the prediction corresponds to the next 
time step, and thus the problem is closer to the online learning field) than to the classic time 
series forecasting problem where the temporal dependence is more relevant.  

4.2.1.2 Performance Anomaly detection  

Data analysis nowadays faces a number of challenges. One of them has been extensively studied 
due to its importance on the field: Anomaly detection. When analysing real-world data, data 
that differs from the norm can be found, such data is called an anomaly or outlier. Anomalies 
can be caused by inaccurate concept, this is, data that is unexpected by the current 
comprehension of the phenomenon. Hawkins [25] defines an outlier as “an observation that 
deviates so much from other observations as to arouse suspicion that it was generated by a 
different mechanism”. Anomalies are also referred to as abnormalities, deviants, or outliers in 
the data mining and statistics literature [26]. 

Anomaly detection provides a set of algorithms and techniques that can be used to spot out the 
instances dissimilar to all others. Among the most popular techniques the following algorithms 
can be found: 

▪ One-Class SVMs [27]: An extension of the support vector machine standard algorithm 
[28]. 

▪ Local Outlier Factor [29]: Algorithm that instead of performing a binary classification 
estimates the probability of an instance being anomalous. 

▪ Isolation Forest [30]: A binary tree based search that tries to isolate anomalies. An online 
version called Half Space Trees [31] also exists. 

▪ Elliptic Envelope [32]: An algorithm based on the minimum variance determinant [33] 
estimator that analyses in an elliptically symmetric unimodal distribution. 

In recent years, an important growth of deep neural networks, a subset of the machine learning 
field, have been seen, with astonishing outcomes in different application areas, also when 
applied to anomaly detection [34] [35]. Therefore, deep learning-based anomaly detection 
(DAD) algorithms have obtained a privileged position and are one of the main focus areas. It is 
important to note that boundaries between abnormal and normal data is not precisely defined 
in evolving environments. This lack of boundaries represents challenges for both conventional 
and also deep learning techniques. 

Due to the large-scale nature of the data to be analysed in the IaC platform, it becomes nearly 
impossible for the traditional machine learning techniques to scale and find anomalies properly. 
DAD techniques are able to handle these large amounts of data and are also able to learn 
hierarchical discriminative features solving the problem end-to-end by removing the need of 
developing manual features by domain experts. 

Through decades of study in the field, we can find an important amount of techniques in the 
literature. The following list includes some of the most important set of techniques used with 
major achievements: 
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▪ Autoencoder (AE) [36] is an artificial neural network type that tries to learn a 
representation for a set of data in an unsupervised manner. 

▪ Deep Belief Networks (DBN) [37] is a class of deep neural networks, that act as a feature 
detector by reconstructing probabilistically its inputs. 

▪ Long short-term memory (LSTM) [38] [39] is an artificial recurrent neural network (RNN) 
developed to deal with the vanishing gradient problem, that is well suited to classifying, 
processing and making predictions particularly on time series data. 

▪ Deep Neural Networks [40]  are a set of artificial neural networks that use multiple layers 
in the network used to solve a wide set of problems in fields including audio recognition, 
computer vision, natural language processing and speech recognition. 

▪ Convolutional Neural Network (CNN or ConvNet) [41] [42] [43] is a class of deep neural 
network, an artificial neural network with multiple hidden layers that are very successful 
in different fields like computer vision, natural language processing, image classification 
among others. 

▪ Denoise Autoencoder, Stacked Denoise Autoencoder (DAE, SDAE) [44] [45] [46] are an 
alternative to the concept of regular Autoencoder, where the data is partially corrupted 
by noises and are trained to predict uncorrupted data.  

▪ Recurrent Neural Network (RNN) [47] [48] is a class of artificial neural networks where 
directed graph is used to make connections between nodes and an internal state is used 
to process inputs. 

However, new techniques and approaches are also being studied that offer better results 
sometimes using less resources than classic techniques [37] [38]. 

4.2.1.3 Security Anomaly Detection 

In an operational phase, the automatic analysis of these logs could thus provide valuable insights 
regarding the current and past status of the monitored assets. Many research works have 
tackled this problem but there are still open research questions and further improvements lay 
ahead. Furthermore, in most cases, they are limited to the research sphere, and their application 
to real-world use cases is yet to be explored. Below, we analyse the most relevant contributions 
in order to understand the current state of the art. 

4.2.1.3.1 Terminology 
Most of the works follow a similar terminology with respect to log analysis. A log message usually 
refers to the text part of a log, once other fields such as timestamp, log level, component, etc. 
have been removed. Examples of log messages could be: ‘Deletion of file file0 complete’ or ‘Took 
2.67 seconds to create VM’. Log messages can be composed of both fixed and variable parts. 
The first is usually referred to as log key or log template and the latter as log parameters. Thus, 
log templates of the previous examples would be ‘Deletion of file <*> complete’ and ‘Took <*> 
seconds to create VM’ and their corresponding parameters (substituted by ‘<*>’ in the 
templates), file0 and 2.67. The process of discerning which parts of a log message are fixed and 
which are parameters is referred to as log parsing, and is usually the first step in a typical pipeline 
for log analysis. 

4.2.1.3.2 Anomaly detection in logs 
DeepLog (2017) 

One of the most relevant works on the application of deep learning to log analysis is DeepLog 
[49]. It describes a framework composed of three different models: a log key Anomaly Detection 
(AD) model and a parameter value AD model, both based on stacked LSTM (Long Short Term 
Memory) networks, and a workflow model to help diagnose the detected anomalies (root cause 
analysis - RCA). Models are trained only with logs produced during normal execution of the 
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system (i.e. with no anomalies). Spell [50] is used as the log parser. We will analyse the AD 
models, since they are of higher interest for our purposes. 

In DeepLog, the log key model tries to predict the next log key in a sequence as a multi-class 
classification problem. During the inference phase, the trained model estimates which log keys 
are most likely to appear next, providing an ordered list of all known log keys. The N first 
candidates are considered to be ‘normal’ -since they are expected by the model- so if the true 
log key coming next is not within those candidates, it will be deemed anomalous. This is a 
common approach to decide about the abnormality of a log key depending on the parameter N, 
and it appears in several other works. We will refer to it as the candidate set approach. As this 
is a classification approach, the method is unable to deal with log keys not seen during training. 
DeepLog tackles this by allowing manual feedback from the user in case of detected false 
positives (FPs), but this solution is not scalable and requires manual intervention. 

Regarding parameters, DeepLog considers each sequence of parameter value vectors -a log key 
may contain several parameters- for a specific log key as a separate time series. It only handles 
numerical parameters. During training, the validation set mean square error (MSE) is modelled 
as a Gaussian distribution that is later used to determine abnormality during the inference 
phase. 

DeepLog provided good results in several public datasets and set the state of the art at the time, 
but with the surge in interest towards this topic, and thus the proliferation of research works, 
several other novel approaches have been proposed outperforming DeepLog in those same 
datasets. 

LogAnomaly (2019) 

LogAnomaly [51] also makes use of LSTM networks in this case to detect both sequential -log 
order- and quantitative -log count or frequency- anomalies. The main contribution of 
LogAnomaly is the use of a method based on the popular word2vec [52] to capture the semantic 
information in log messages. This method, template2vec, converts the words in log templates 
into word embeddings and combines these to form template embeddings. However, it requires 
the use of a corpus of synonyms and antonyms, some of them manually defined to make them 
domain specific, which makes it very impractical. 

To detect quantitative anomalies, they compose an additional representation of a log sequence 
by counting the appearance of every log template in the sequence. An additional LSTM model is 
trained to learn the quantitative pattern of the log sequence, whose output is then combined 
through an attention mechanism with that of the template embeddings LSTM. Only normal logs 
are used for training and FT-Tree (frequent template tree) [53] is used as the log parser. 

LogAnomaly also uses a candidate set approach to detect anomalies during inference, but they 
also accept ‘similar’ candidates -they can measure distance between embeddings. 
Consequently, even if they capture the semantics of log templates to some extent, they still 
cannot handle previously unseen log templates during inference. Their solution is to 
approximate unseen log templates to the ‘closest’ one already included in the training set. 

LogRobust (2019) 

LogRobust [54] introduces an architectural change, describing a Bidirectional LSTM network in 
order to capture information from sequences in both directions (i.e. ‘past’ and ‘future’). An 
attention mechanism is applied to the output of the Bi-LSTM to combine outputs from all time 
steps. Contrary to DeepLog and LogAnomaly, LogRobust tackles the problem as a binary 
classification method, classifying log sequences as either normal or abnormal. This is, it works in 
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a supervised manner, so it requires labeled anomalies instead of just log data from normal 
operating conditions. LogRobust uses Drain [55] as the log parser. 

Similarly to LogAnomaly, LogRobust leverages the semantic information within log templates. 
To do so, off-the-shelf word vectors pre-trained on the Common Crawl Corpus dataset are used. 
The vectors for the words in a log template are aggregated using TF-IDF weights, thus generating 
a fixed-dimension vector representing every log template, regardless of the number of words in 
it. This implies that they can handle any log template, also those unseen during training. 

HitAnomaly (2020) 

HitAnomaly [56] is the first work that leverages the Transformer [57] architecture for AD in log 
sequences. In order to capture the semantic information in log templates, they define a ‘log 
encoder’ architecture that takes as input the words within a template, and outputs a fixed-
dimension vector representing the template. Sequences of these vectors are then fed to a ‘log 
sequence encoder’, which eventually outputs a fixed-dimension representation of the whole 
template sequence. Both encoders use a very similar architecture, with the only difference that 
the log encoder stacks two transformer blocks, while there is only one in the log sequence 
encoder. HitAnomaly uses Drain [55] as the log parser. 

Parameters within a log sequence are also encoded using a ‘parameter encoder’ with the same 
architecture as in the log encoder. Interestingly, the parameter representation (output of the 
parameter encoder) and the log template representation (output of the log encoder) are 
combined to capture interaction between a template and its parameters. Finally, the log 
template sequence representation and the log parameters sequence representation are 
combined through an attention mechanism and fed to a binary classifier. 

HitAnomaly showed state-of-the-art results in terms of overall performance on public datasets 
as well as impressive results when dealing with high shares of previously unseen log templates. 

NeuralLog (2021) 

NeuralLog [58] does not provide any further advancement in terms of the proposed 
architecture, which is based on transformers. However, instead of relying on log parsing, known 
to be an important source of noise that severely conditions the AD results, they directly employ 
raw log messages, preprocess them, apply WordPiece tokenization and obtain the semantic 
information using a pre-trained BERT [59] model. 

LogBERT (2021) 

LogBERT [60] is the first work leveraging the transformer architecture working in a self-
supervised fashion (i.e. training with ‘normal’ logs only). Drain [55] is used to parse the log 
messages and a unique id is assigned to each of the obtained log templates. Therefore, LogBERT 
does not capture the semantic content of log templates by any means. A transformer encoder 
architecture is trained on sequences of these ids using two different tasks: Masked Language 
Modelling (MLM) and Hypersphere Volume Minimization (HVM). 

For MLM, template ids are randomly masked, and the model is used to predict the expected ids 
for the masked tokens in a classical multi-class classification approach. For HVM, an initial special 
token is trained to represent the whole log template sequence in terms of normality: tokens 
representing normal sequences are to be concentrated around the centre of the hypersphere. 
The distance to the centre will be used during inference to measure abnormality of a log 
sequence. 
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Harold Ott et al. (2021) 

In the work by Harold Ott et al. [61], they explore the use of sentence-level embeddings obtained 
from pre-trained language models as log template representation. Their architecture consists of 
a Bi-LSTM network. The main novelty in this works lays in the comparison of two different tasks 
for self-supervised AD: the already mentioned candidate set approach, in which the Bi-LSTM is 
used for multi-class classification, and a regression approach in which the loss function is the 
MSE between the template embeddings. 

4.2.1.3.3 Anomaly detection in security logs 
All the reviewed approaches provided performance results in publicly available datasets. These 
datasets contain logs from supercomputers (BGL and Thunderbird [62]) or distributed systems 
(HDFS [62] and Openstack [49] ). None of them was specifically validated in security data. Only 
DeepLog [49] provided results for the VAST Challenge 2011 [63] - MC2 data set, which is a small 
dataset for which detection results were satisfactory, correctly identifying log template 
anomalies in 5 out of the 6 suspicious activities and raising a single FP (False Positive). 

Specifically, in the domain of cybersecurity, there are a few works that have proposed varied 
solutions to leverage AI models for security monitoring. For instance, [64] describes an active 
learning framework that uses unsupervised outlier detection on predefined features computed 
from raw data (e.g. number of successful logins) and presents rare events to an analyst. The 
analyst’s feedback is then used to train a supervised model that would predict whether future 
rare events are malicious or not, complementing the unsupervised model. The framework runs 
on a periodical basis (e.g. daily), collecting analyst’s feedback and retraining the models. The 
framework is validated using a proprietary credit card transactions dataset. 

The use of unsupervised deep learning approaches for insider threat detection was explored in 
[65]. Specifically, common DNN (Deep Neural Networks) and LSTM architectures were employed 
for the CERT Insider Threat Dataset [66]. The input to these was composed of categorical 
variables (e.g. user’s role, department, etc.) and engineered ‘count’ variables (e.g. number of 
logins between 12 AM and 6 AM). However, through experimentation, the categorical variables 
were proven unhelpful. Daily aggregation was carried out for numerical features. As future lines 
of work, the authors mentioned the analysis on a per-log basis to reduce or remove the feature 
engineering required. 

The works specifically designed for security log monitoring using AI are scarce and do not yet 
make use of state-of-the-art architectures. Conversely, many works have been recently 
proposed for anomaly detection in logs, with an increasing number of research publications on 
the topic every year. The application of more advanced log anomaly detection methods to 
cybersecurity use cases remains an appealing open challenge. 

4.2.1.4 “Concept drift” detection 

The data generation process in real-time applications is not always stationary because it is 
subject to dynamic externalities that affect the stationarity of such data streams, e.g., 
seasonality, errors, etc. This causes that such applications suffer from the concept drift 
phenomenon. The predictive models that are trained over these data streams may become 
obsolete, and having problems to adapt suitably to the new conditions. Thus, in these scenarios 
there is a pressing need for drift detection and adaption algorithms that detect and adapt to 
these changes as fast as possible, in order to keep the applications updated and providing a good 
performance [67]. The research on concept drift is still a hot topic due to its impact on real world 
applications, and as we will show, PIACERE is not an exception.  
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Many research efforts have been dedicated to study and alleviate the effects of the concept drift 
phenomenon [68], and this has been the case since the last 3 years. The complexity in concept 
drift manifests when we try to characterize it [69]. We can find many different types of concept 
drifts (see Figure 7) which can be characterized by e.g., the speed or severity of change. 
Consequently, drift detection turns into a relevant factor for those active mechanisms that need 
a triggering mechanism to perform an adaptation after drift occurs [70]. A drift detector should 
estimate the time instant at which change occurs over the data stream, so that when the 
detection appears, the adaptation mechanism is applied to the base learner in order to avoid 
the degradation of its predictive performance. The successful design of an effective detector is 
not straightforward, yet it is primordial to achieve a more reliable system. The way to find the 
best strategy for concept drift detection still remains as an open research issue, as confirmed in 
[70]. This challenge to find a universal best solution becomes evident in the most recent 
comparative among drift detectors carried out by [71]. In light of the results achieved in this 
manuscript, we can realise that there is not a method with the best metrics, or even showing 
the best performance in most cases. We can state that the ideal goal is to develop detectors that 
1) detect all existing drifts in the stream 2) with low latency, 3) with as few false alarms and, 4) 
as few missed detections as possible, and 5) minimizing the distance of the true positive 
detections, always assuring a good classification performance. Therefore, as there is not an 
ultimate detector, we will have to choose one depending on the characteristics of the 
application or scenario, giving more importance to some metrics than others (false alarms, 
missed detections, distance of the real drift, etc.).  

Finally, the operation of a drift detector (see Figure 8) usually utilises a specific base learner (i.e., 
learning algorithm). The base learner is trained on the current instance of the data stream within 
an incremental learning process repeated for each incoming instance. The detector is analysing 
all the time the classification performance of the base learner (e.g., accuracy or error rate) to 
know whether a drift has occurred or not. Although the accuracy or error rate are often used as 
inputs of the detector, others use diversity [72] or structural changes stemming from the model 
itself [73].  

Drift detectors use different strategies to monitor the performance of the base classifier and to 
decide if a drift has occurred or not. A common practice is to use a lower confidence level to 
denote a warning, which means that a drift may have happened. If this happens, then detectors 
prescribe that a new base classifier is created, and it starts to be trained in parallel. Then, if a 
concept drift is confirmed (e.g., because the number of consecutive warnings has exceeded a 
threshold), the new base learner will replace the original one. However, if the warning has not 
been confirmed and it is a false alarm (false positive), the new base learner will be discarded. 

 

Figure 8: Drift detection example [23]. 

We can find a plethora of drift detection methods in the literature. Next, we delve into the 
details of the most well-known and used drift detectors. Some of them have recently been 
compared in a very remarkable study [74], so we will literally refer to some of its findings, 
explanations and methods. This work is crucial in the state-of-the-art, and from our view it does 
not make sense to reword such parts: 
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▪ DDM [75]: this detector acts as follows: when the concept changes, the base learner will 
incorrectly classify the arriving instances that are created based on a different data 
distribution. Therefore, if the error-rate increases, it is signal that a concept drift has 
occurred. Whereas, if the distribution remains stable (without changes, stationary), the 
error rate will decrease. 

▪ EDDM [76]: similar to DDM, but instead of using the error rate, EDDM uses the distance 
between classification errors (number of examples between two classification errors) of 
the base learner to indicate if a drift has happened. 

▪ ADWIN [77]: uses a sliding window of instances with a variable size W. When drifts are 
detected, W is reduced and the longer the concept the larger the size of W. Two 
dynamically adjusted sub-windows are stored, representing older and recent data. 
Drifts are detected when the difference of the means of these sub-windows is higher 
than a given threshold. 

▪ PHT [78]: it is a sequential analysis technique that computes the observed values (the 
actual accuracy of the base learner) and their average to the current time step. When a 
drift occurs, the classifier starts to fail to correctly classify new instances, making the 
current and the mean accuracy decrease. 

▪ HDDM [79]: It is a method based on Hoeffding’s bounds with a moving average-test. 
There are two main versions: one uses the average as estimator, the other one uses the 
EWMA.  

It also deserves highlighting in this section the latest drift detection techniques, above all those 
which have shown a potential to impact on this field, mainly due to their citations in the last 3 
years, the relevance of the journal/conference in which have been published, the relevance of 
the authors in the field, among others: [80], [81], [82], [83], [84], [85], [86], [87]. Despite they 
show less relevance than the upper ones, we consider them remarkable for being recent or 
being published in reputed journals or conferences. 

4.2.1.4.1 Drift meaning in monitoring platforms 
Looking for this phenomenon in monitoring platforms, we see how it is already a relevant 
problem to deal with. Despite in PIACERE we pursue the drift detection and the adaptation of 
our prediction algorithms for monitoring variables, it is worth mentioning the existence of this 
phenomenon in other scope of infrastructure. 

Drift detection is important for ops teams to ensure that components are in line with the 
expected configuration and also to ensure compliance. For these teams, infrastructure drift is 
when there is an unwanted delta between the IaC code base and the actual state of the 
infrastructure. This issue becomes more and more complex as the number of environments 
grows. Some teams have dozens of environments that they need to keep updated. Driftctl9 is an 
open-source tool which can detect drift in Terraform managed infrastructure. It reads Terraform 
state files and checks that against the actual running infrastructure. The authors of driftcl spoke 
to around 200 DevOps teams to learn about infrastructure drift challenges, and they identified 
three main causes of drift: 

▪ 96% of teams: a team member makes a change through the (AWS, Azure, etc) console 
or directly updates infrastructure resources through an application API, 

▪ 44% of teams: a team member applies an IaC change to an environment but does not 
propagate it to other environments, 

▪ 50% of teams: application and deployment induced drift. 

 
9 https://driftctl.com/ 
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While the first two are mostly workflow issues, the last one refers to an unintentional application 
and deployment induced drift, and it is completely independent from the DevOps team. Due to 
its unpredictable characteristic, it may cause headaches. Drift always happens, and the key 
challenge is being able to detect and analyse it; the faster it is detected, the easier it is to 
remediate drift. 

AWS has the CloudFormation Drift Detection feature [88], which allows organizations who have 
templated their configurations and deployments, known as stacks, to detect when configuration 
drift occurs from out-of-band changes. These out-of-band changes have been directly applied 
to cloud assets, instead of leveraging a templated deployment approach. To avoid configuration 
drift, Amazon is suggesting the customers use a CloudFormation Change Set to apply changes. 
This way your deployment template is kept up to date and can be used to provision AWS services 
in a consistent manner. Drift can be detected within a few minutes from the out-of-band 
changes being applied so that administrators can quickly address this. Differences in 
configuration are detected by comparing the current stack configuration with the one specified 
in the template and identifying divergence. In addition, detailed information for every difference 
is provided. 

As we see, the “concept drift” has been explored in monitoring platforms from different 
perspectives (configuration drift, infrastructural drift). In PIACERE we will adopt the classical 
view explained in section 4.2.1.4. 

4.2.2 Self-learning approach in PIACERE 

4.2.2.1 Performance and Availability Self-learning 

The previous subsection presented the most well-known and the latest techniques, this one 
delves into the self-learning strategy for PIACERE.   

The Self-learning component focuses on incrementally online learning and predicting the 
performance and the availability of the system to guarantee constant high-level performance. 
The performance information is provided by 7 monitoring variables:  

▪ CPU: 

• usage_idle: % of cpu that is not being used by any program 

• usage_system: % of time the processor spends in running the operating 
system(i.e., kernal) functions connected to your application 

• usage_user: % of work handled by a cpu 
▪ DISK: 

• free: % of disk that is not being used 

• used_percent: % of disk that is being used 
▪ MEMORY:  

• free: % of memory that is not being used 

• used_percent: % of memory that is being used 

At this stage of the project, the prediction for the availability is still pending, and the formula for 
the availability calculus itself, and it will be part of the design and implementation tasks for the 
next period and reported in D6.3. 

These metrics give us a good idea of the "health" of the system. Once their predictions exceed 
a threshold, the component will trigger a warning to the Self-healing component, which will 
decide how to consider such a warning (launching an optimization process, redeployment 
actions, etc.). 

DRAFT

http://www.medina-project.eu/
https://aws.amazon.com/blogs/aws/new-change-sets-for-aws-cloudformation/


D6.2 – PIACERE run-time monitoring  Version 1.0 – Final. Date: 02.12.2022 

and self-learning, self-healing platform - v2 

© PIACERE Consortium   Contract No. GA 101000162 Page 38 of 107 

www.piacere-project.eu   

As we have already mentioned, the self-learning capability of this component refers to the ability 
of ingesting new monitoring data as it becomes available (incremental learning), and then make 
a prediction for the next time step in an online manner. The problem is that, in many occasions, 
real-time monitoring data may suffer from “rare” events that we need to early detect if we want 
to have a solid, robust and reliable system. In PIACERE these events are:  

▪ Changes (concept drifts) in data distribution, and 
▪ Anomalies. 

The impact of these events on the prediction performance is different, and also the mitigation 
actions for each case. We will give more details on each event in the next subsections. 

4.2.2.1.1 Monitoring data and incremental online learning 
The performance monitoring data in PIACERE is in the form of time series, which means that 
there is a monitoring data point every 10 minutes with the value for CPU, DISK and MEM 
monitoring variables in that moment. 

The processing has been divided into two stages: the first one counts on a reservoir of batch 
instances to tune the parameters of the machine learning technique and train the algorithm, 
and the second one to run on a “real-time” mode where the performance of the system is 
predicted every time new data arrive. Then, as incremental learner and predictor we have used 
a SNARIMAX10 model, which stands for (S)easonal (N)on-linear (A)uto(R)egressive (I)ntegrated 
(M)oving-(A)verage with e(X)ogenous inputs model, and that is able to incrementally learn and 
predict every time a new instance arrives. By following the test-then-train scheme used in many 
online learning approaches [89], we have used Mean Absolute Error (MAE) as performance 
metric for regression problems. Figure 9 shows how the algorithm is able to successfully predict 
the next CPU usage idle data point 10 minutes ahead. The algorithm exhibits a very good 
predictive performance (see Figure 10). 

 

Figure 9: Incremental learning for the CPU usage_idle variable. 

 
10 https://riverml.xyz/0.14.0/api/time-series/SNARIMAX/ 
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Figure 10: Evolution of the Mean Absolute Error (MAE) for the prediction of the CPU usage_idle variable. 

 

4.2.2.1.2 Anomaly detection 
As we have previously seen, anomalies are one of the rare events that may appear in PIACERE 
data. They should be early detected in order to keep the prediction performance under control. 
Once they have been detected, the algorithm should not learn these data points in order to be 
robust; these outliers do not belong to the normal distribution of the monitoring data.  

Figure 11 and Figure 12 show how the outlier detection algorithm is able to detect outliers, and 
then warns the online learning algorithm not to learn such data points. 

 

Figure 11: Anomalies detection for the CPU usage_idle. 
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Figure 12: Anomalies detected for the CPU usage_idle variable. 

 

In order to prevent performance degradation in our online learning algorithm, we have found 
that a simple systematic approach is able to detect the outliers present in our data. Concretely, 
the outlier detection approach uses the range [mean - s*std : mean + s*std] to consider any data 
points outside the range to be outliers; where s is the scalar factor that we use to adjust the 
sensitivity of such algorithm, and s=4.   

We see in Figure 12 how these outliers are not affecting the predictive performance of the 
algorithm. Then, we have achieved a self-learning component robust to outliers, and then the 
online prediction will be more reliable. 

4.2.2.1.3 Concept drift detection 
Changes in data distribution should be early detected in order to prevent a performance 
degradation in the predictions of the algorithm. In order to have a good drift detector, we have 
prioritised the one that maximizes the true positives while keeping the number of false positives 
to a minimum.  

The popular concept drift detector called ADWIN (ADaptive WINdowing) [90] efficiently keeps a 
dynamic-length window of recent data points, such that it states that there have not been any 
changes (drift) in the data distribution. Actually, this window is divided into two sub-
windows (W0,W1), to know whether a change has occurred or not. The average of W0 and W1 
are compared to confirm that they belong to the same distribution; if the distribution is 
different, concept drift phenomenon is detected. Then, after detecting a drift, W0 is replaced 
by W1, and a new W1 is initialized. We have experimentally tested ADWIN with the 
performance monitoring data of PIACERE, and as Figure 13 and Figure 14 show for the case of 
data for CPU usage_user, it is able to handle with such changes in data distribution. 

 . 
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Figure 13: Drift detection for CPU usage_user. 

 

Figure 14: Drift occurrence for CPU usage_user. 

4.2.2.1.4 Concept drift adaptation 
Adaptation is the required phase when a change has been detected. The algorithm has been 
incrementally trained with data that belong to a concept (old), and from now on should be 
adapted to learn the new concept (one). The strategy followed in PIACERE is the recommended 
one in these cases: 

▪ Reset the drift detector (ADWIN) 
▪ Re-train the model with the new concept. To do that, we use a sliding window of past 

instances. 

4.2.2.1.5 Next actions 
▪ We will try the possibility of predicting several time steps ahead, not only the next one 

(10 mins). Despite it is not crucial for the current system in PIACERE, because 10 mins is 
usually more than enough to perform mitigation actions (such as redeployments, 
optimizations, etc.), it would be a good ingredient for the project. 
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▪ We will study the possibility of having just 1 metric for DISK and 1 metric for MEMORY 
▪ We will also study the possibility of having just 1 metric for all the performance metrics 
▪ We will define the availability metric  
▪ We will develop an incremental learning (with anomaly detection, and concept drift 

detection and adaptation) for the AVAILABILITY metric. 

4.2.2.1.6 Self-learning relevance to the use cases 
As we have already mentioned in the state-of-the-art, both outliers and drifts detection are 
primordial to get a reliable online learning prediction in any real application based on real data. 
In this case, in PIACERE, the monitoring data is present in any use case, so the prediction of the 
health of the system will be a relevant part in it. 

4.2.2.2 Security Self Learning 

4.2.2.2.1 Approach to Security Self Learning 
Computer-generated log messages are a very valuable source of information to represent the 
current status of a system or application. Log messages are precisely generated to provide 
application developers and system operators with information that could help them, among 
other things, understand execution paths, find bugs or solve incidents. Generally speaking, when 
a problem occurs, logs are often relied upon for investigation.  

Anomaly detection process within PIACERE is implemented an ML-based anomaly detection 
solution using LogBERT implementation (better said, its variant, using similar approach). Its role 
is to provide a second layer of analysis of gathered data and metrics, besides code monitoring 
data feed provided by Security Monitoring components (agents). For the self-supervised 
learning process it requires only data from normal operating conditions. It transforms from 
unstructured logs to structured datasets (Drain method; collection of all possible types of events 
and covering all normal situations to avoid unseen events during the training process). 
Anomalies are being labelled. The process: 

▪ Use of Masked Language Modelling (MLM) - common in self-supervised NLP 

 

Figure 15: Process of masking and predictions within anomaly detection process. 

▪ Hypersphere Volume Minimization (HVM) - Hypothesis that ‘normal’ samples can be 
mapped to close representations. 

 

Figure 16: Example of anomaly detection. 

Approach to Security self-learning has already been indicated in section 4.1.2.2: using Filebeat 
to aggregate the logs, then parse these logs in anomaly detection component in order to create 
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structure logs as an input to anomaly detector (Figure 21). Anomaly detector is capable to create 
and label specific events with anomaly score, and ship these newly created events back to ELK 
stack used by Security Monitoring. 

 

Figure 17: Approach to security self-learning in PIACERE. 

 

4.2.2.2.2 Integration 
In the following figures we show a security self-learning dashboard from one of the demo 
deployments. Figure 18 shows three different time-based aggregations of anomalies scores as 
line plots. Different granularities provide better overview about the status in the system. Figure 
19 shows histogram of logs and table with details below. The table contains timestamp of a log, 
anomaly score, and message. The unknown column marks if a log message was recognized by 
log parser. All the charts can be used to zoom in a specific area for easier inspection of the logs. 

 

Figure 18: Different aggregations of anomaly scores presented as line plots. 

DRAFT

http://www.medina-project.eu/


D6.2 – PIACERE run-time monitoring  Version 1.0 – Final. Date: 02.12.2022 

and self-learning, self-healing platform - v2 

© PIACERE Consortium   Contract No. GA 101000162 Page 44 of 107 

www.piacere-project.eu   

 

 

Figure 19: Histogram of logs and a table with log messages, anomaly scores, and additional information. 

4.3 Self-healing 

4.3.1 Self-healing strategies and challenges 

The scope of the self-healing in PIACERE is focused on the gathering of detected anomalies and 
to take corrective actions. Anomalies are gathered from other components in the PIACERE 
framework such as those devoted to monitoring or those performing forecasts based on the 
gathered trends or evidences. Corrective actions are executed by the same infrastructure that 
takes care of the configuration of the infrastructure and the applications. In this sense we could 
say that our scope is going to be mainly in the planning of the self-healing. 

In the literature we can find different approaches that extend the scope of the self-healing, 
covering other phases both before and after that planning activity. The Table 7 below shows a 
comparison of the potentially related approaches with respect to: the covered phases of the 
classical autonomic control loop “MAPE-K (Monitor-Analyse-Plan-Execute over a shared 
Knowledge)” [91], technique used, whether it’s a decentralized or centralized approach, and the 
applied context.  

Table 7: MAPE-K results. 

Reference MAPE-K Technique [De]centralized Context 

Di Nitto et al. [92] M, A, P, E, K Probability 
theory 

Decentralized Microservice 

Maimó et al. [93] M, A, P, E, K Deep learning Centralized 5G networks 

Yang et al. [94] M, A, P, E, K Security 
theory 

Decentralized IoT-based 
healthcare 
storage 
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Alhosban et al. [95] M, A, P, E Predictive 
model 

Centralized Cloud service 

Azaiez and Chainbi [96] M, A, P, E Multi-agent Decentralized Cloud 

Gill et al. [97] M, A, P, E Reactive Centralized Cloud service 

Li et al. [98] M, A, P, E Reactive Centralized Cloud 
computing 

Magalhaes and Silva 
[99], [100] 

M, A, P, E Statistical 
theory 

Centralized Web 
application 

Rajput and Sikka [101] M, A, P, E Multi-agent Decentralized Distributed 
environment 

Rios et al. [102] M, A, P, E CAMEL based Decentralized Distributed 
environment 

Mosallanejad et al. [103] M, A, E Reactive Centralized Cloud 

Wang et al. [104] M, A Machine 
learning 

Centralized Cloud 
computing 

 

Several approaches for self-healing/self-adaptive systems are provided in the table above. In 
[105], a survey of self-healing frameworks and methodologies in multi-tier architectures is 
provided by Schneider et al. They provide a comparative analysis of the computing environment, 
degree of behavioural autonomy, and organisational requirements of these approaches. 
Another survey of self-healing systems with the focus on approaches is provided by Psaier et al. 
[106]. In [107], Taherizadeh et al. provide a survey to identify the main challenges in the field of 
monitoring edge computing applications; to present a taxonomy of monitoring requirements for 
adaptive applications orchestrated upon edge computing frameworks; and to discuss and 
compare the use of cloud monitoring technologies. In [108], Esfahani et al. characterize the 
sources of uncertainty in self-adaptive software systems, and demonstrate their impact on the 
system’s ability to satisfy its objectives. They provide an alternative notion of optimality that 
explicitly incorporates the uncertainty underlying the knowledge (models) used for decision 
making. They also discuss the state-of-the-art for dealing with uncertainty in this setting. A book 
chapter by Weyns [109] provides a particular perspective on the evolution of the field of self-
adaptation in six waves including: i) automating tasks, ii) architecture-based adaptation, iii) 
models at runtime, iv) goal driven adaptation, v) guarantees under uncertainties, and vi) control-
based approaches. 

The approaches in Table 7 are ordered by their respective coverage of the autonomic control 
loop, from those which cover all the phases to those which cover only a few of them. The details 
of these methods are summarized as follows. 

Di Nitto et al. [92] propose an approach named Gru based on multiagent systems that add an 
autonomic adaptation layer for microservice applications focusing on Docker. Gru is designed to 
support decentralized microservices management, and can be integrated with ease in 
dockerized applications, managing them with autonomic actions to satisfy application quality 
requirements. 
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In [93], Maimó et al. propose a 5G-oriented cyberdefense architecture to identify cyberthreats 
in 5G mobile networks. Their architecture uses deep learning techniques to analyse network 
traffic. It allows adapting, automatically, the configuration of the architecture in order to 
manage traffic fluctuations, to optimize the computing resources and to tune the behaviour and 
the performance of analysis and detection processes. 

In [94], Yang et al. propose a privacy-preserving smart IoT-based healthcare big data storage 
system with self-adaptive access control, aiming to ensure the security of patients’ healthcare 
data, realize access control for normal and emergency scenarios, and support smart 
deduplication to save the storage space in big data storage system. 

Alhosban et al. [95] propose a self-healing framework for cloud-based systems, which uses the 
previous history to detect faults and a recovery plan to avoid future faults. 

Azaiez and Chainbi [96] propose a multi-agent system which interacts with the Cloud 
infrastructure to analyze the resources state and execute Checkpoint/Replication strategies or 
migration techniques to solve the problem of failed resources. 

Gill et al. [97] present an intelligent and autonomic resource management technique named 
RADAR with the focus on two properties of self-management that provide self-healing by 
handling unexpected failures and self-configuration of resources and applications. 

Li et al. [98] propose a self-healing monitoring and recovery model in cloud computing 
environments working in three steps: 1) monitoring the system to identify faults, 2) finding out 
the properties of faults, and 3) recovering from faults using an undo strategy. 

Magalhaes and Silva [99] propose a self-healing framework for web-based applications to fulfill 
the user SLA and improve resource utilization simultaneously through self-adaption of cloud 
infrastructure. 

In [100], the same authors present a framework to provide the web-based applications with the 
ability to detect performance anomalies at runtime and trigger automatic recovery actions to 
mitigate their impact. 

Rajput and Sikka [101] propose an architecture which could support agent-based distributed 
systems to address fault recovery for achieving self-adaptiveness. 

Rios et al. [102] propose a Cloud Application Modelling and Execution Language (CAMEL) based 
model for self-healing to model the multi-cloud applications in the distributed environment. 

Mosallanejad et al. [103] propose an SLA based self-healing model for the cloud environment to 
monitor SLA and detect SLA violation automatically. 

Wang et al. [104] propose a self-adaptive monitoring approach for cloud computing systems. It 
characterizes the running status of systems with Principal Component Analysis (PCA), estimates 
the anomaly degree, and predicts the possibility of faults. Based on that, it dynamically adjusts 
the monitoring period. 

4.3.2 Self-healing approach in PIACERE 

The goal of Self-healing is to analyse notifications coming from the monitoring and self-learning 
components and propose corrective actions when they are necessary. Therefore, the approach 
to self-healing in PIACERE leverage three elements, see Figure 20: notification messages, 
notifications types and response strategies. 
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Figure 20: Self-healing elements. 

Self-healing messages are sent by monitoring and self-learning components. To do so self-
healing provides a REST api, with capability to create self_healing_messages. The 
self_healing_messages will include as mandatory field the event type. Besides it will include the 
severity of the event warning or critical. 

We have created an infrastructure to define the allowed event types and the strategy to respond 
to each of those events based on their criticality. The most obvious strategy will be to redeploy 
the applications that raise critical situations, but other strategies are also in evaluation such as 
the possibility to reboot the infrastructure, to scale, to put deployment in quarantine state, to 
notify user, etc. 

For most of the strategies the general approach in which these strategies are going implemented 
are BPMN workflows to be executed by PRC. During this period based on the security monitoring 
feedback we have also identified the ansible based strategies that will be executed in the 
running infrastructure element, in this case the execution will be manage by the IEM.  

The overall self-healing process will be to receive notifications, queue the notifications to be 
executed, and to proceed with the execution of the self-healing strategies in each deployment.  

As the strategies could take some time to be executed, we still need to decide on approaches to 
review the notifications in the queue, because it may happen that we receive multiple 
notifications that could be solved with just one corrective strategy. This will be done in the next 
period as we test the component in the pilots. 
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5 Implementation 

5.1 Monitoring Controller 

The monitoring controller is an aggregator component that serves as unique front-end to lower 
level specialised controllers. These are the performance monitoring controller and the security 
monitoring controller. 

5.1.1 Functional description 

The PIACERE monitoring, self-learning and self-healing architecture involves several distributed 
and potentially scalable components that require continuous configuration as PIACERE platform 
creates, updates and destroys application deployments. Besides, the architecture currently 
covers two main non-functional aspects (performance, and security), each one involving 
different sets of components and technologies.  

The Figure 21 describes the sequence diagram for the two main functionalities to be covered by 
the Monitoring Controller, this is start and stop deployments.  

From the previous version we have evolved the diagram to include the request dashboard 
workflow required by the IDE and the loop that is being implemented to feed the Infrastructure 
element Catalog (IEC) with the information gathered from the deployed infrastructure. 

 

Figure 21: Monitoring Controller Sequence diagram. 
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On one hand, the monitoring controller aims to simplify the configuration of the PIACERE 
monitoring, self-learning and self-healing component as PIACERE platform creates, updates and 
destroys application deployments. On the other hand, the monitoring controller aims to isolate 
the PIACERE runtime controller from changes in the PIACERE monitoring, self-learning and self-
healing architecture. 

The second implementation of the Monitoring Controller still aims to provide a REST API to be 
used by the PIACERE Runtime Controller. 

The Monitoring Controller is a proxy component that aims to provide a single point of entry to 
the configuration of the PIACERE monitoring, self-learning and self-healing components as 
PIACERE platform creates, updates and destroys application deployments, as such it does not 
provide innovative advances to the state of the art. 

5.1.2 Requirements covered by this prototype 

The user requirements from WP2 satisfied by this version is described in the Table 8. All these 
requirements are being polished and adapted as the project advances and we gain knowledge 
on the use cases and on the implemented components. 

Table 8: Monitoring Controller related user requirements from WP2. 

Req ID Description Implementation 
Status 

Requirement Coverage at M24 

REQ17 Seamless security 
monitoring deployment 

Deployment of runtime 
security monitoring should 
happen seamlessly or with 
minimal effort and 
configuration required by 
the user. 

 

completed A REST API has been provided and 
deployed to be a single point of 
entry for the configuration of the 
PIACERE monitoring, self-learning 
and self-healing components 
each time that a deployment is 
requested to the PIACERE 
runtime controller. 

REQ50 Monitor performance, 
availability, and security 

The monitoring component 
shall monitor the metrics 
associated with the defined 
measurable NFRs (e.g. 
performance, availability, 
and security through the 
runtime security 
monitoring). 

 

In progress The REST API supports the 
transmission of all the necessary 
information for the configuration 
of the deployment, namely non-
functional requirements 
regarding performance, 
availability and security. 

The current version of the 
component includes the function 
to call the remaining 
components. 

REQ51 Deployment non-functional 
requirements tracking 

In progress The component will forward all 
the necessary information to the 
self-learning components to be 
able to track the infrastructure 
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The self-learning component 
shall ensure that the 
conditions are met 
(compliance with respect to 
SLO) and that a failure or a 
non-compliance of a NFRs is 
not likely to occur. This 
implies the compliance of a 
predefined set of non-
functional requirements (e.g. 
performance). 

 

related non-functional 
requirements. 

 

The internal requirements satisfied by this interim version are described in the Table 9. All these 
requirements are as well polished and adapted as the project advances. 

Table 9: Monitoring Controller related internal requirements. 

Title Implementation 
Status 

Requirement Coverage at M24  

Add code into 
the project 
source 
repository  

Completed The repository has been created and the code is being 
uploaded regularly 
https://git.code.tecnalia.com/piacere/private/t61-
runtime-monitoring/mc/mc.git 

Implement 
REST API 
specification  

Completed The OpenAPI has been defined and put under 
configuration control 
https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/mc/-
/blob/y2/src/mc/openapi/openapi.yaml  

The content of the deployment creation message requires 
still some discussion with other components to 
understand the information that can be provided and its 
format. 

Implement 
specification 
first approach 

Completed In order to speed-up the implementation of changes 
derived from the expected evolution of the REST API, we 
have implemented a specification first approach with 
OpenAPI generator. Besides, the usage of OpenAPI 
generator bring additional benefits in the sense of 
introduction of good practices in structuring and 
configuring the code. 

Prepare for 
deployment 

Completed In order to ensure that we are prepared to deploy the 
component in the integration environment we have 
integrated this component with the remaining 
monitoring components in a docker-compose file that 
includes a reverse proxy to receive all the requests using 
secure standard HTTPS protocol. 
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https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring /pm  

Provide fast 
deployment 
alternative for 
deployment, 
testing and 
evaluation 

Completed To allow a seamless infrastructure requirements free 
alternative to test this component we have provided a 
Vagrant based deployment option. This reduces the list of 
software requirements to two: VirtualBox11 and Vagrant12. 

These two tools (VirtualBox and Vagrant) are available for 
most of the operating systems: Windows, Mac, Linux, BSD, 
…  

Include usage 
documentation 

Completed We have included usage documentation at different 
levels: 

• Docker-compose 
https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/pm/pm-deploy  

• Python code  
https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/mc/-
/blob/y2/README.md 

We update continuously the documentation as we 
advance in the coding and pre-integration of the 
monitoring components 

Unitary test In progress We have included a testing framework to the code based 
on Tox13. Concrete tests are still to be developed as the 
component gets more mature. 

Continuous 
integration 

In progress Continuous integration has been implemented based on 
Gitlab-ci 14  
https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/pm/-/blob/y2/.gitlab-
ci.yml  

The integration approach requires to be migrated with the 
rest of the components of PIACERE framework. 

Test in use 
cases 

In progress We have tested the component with use-case in the 
deployment feature, the un-deploy feature will be tested 
in the following version. 

 

 
11 https://www.virtualbox.org/ 
12 https://www.vagrantup.com/ 
13 https://tox.wiki/en/latest/index.html 
14 https://docs.gitlab.com/ee/ci/ 
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5.1.3 Fitting into overall PIACERE Architecture 

The Monitoring Controller is one of the components of the PIACERE architecture. It is part of the 
Infrastructure Advisor package in the runtime phase of PIACERE (Figure 22). The Monitoring 
Controller interacts with other components in the PIACERE ecosystem:  

• PIACERE Runtime Controller (PRC) requests to the Monitoring Controller to start and 
stop the monitoring of the concrete deployments. 

• The Monitoring Controller forwards the start and stop deployment monitoring requests 
to the PIACERE monitoring, self-learning and self-healing components. Specifically, to: 

o Performance Monitoring 
o Security Monitoring 
o Performance Self-learning 
o Security Self-learning 
o Self-healing 

 

Figure 22: PIACERE Runtime Diagram on its 2.0 version focussed in monitoring components. 

5.1.4 Technical description 

This subsection is devoted to describing the technical specification of this second prototype. 
First, the main architecture of the prototype and the components are shown and described in 
Section 5.1.4.1. Prototype Architecture. This subsection finishes with the technical specifications 
of the developed system in Section 5.1.4.2 Technical Specifications. 

5.1.4.1 Prototype architecture and components description 

The main architecture of this second prototype is depicted in the following Figure 23. In this 
architecture, seven different components can be distinguished: Connexion, Monitoring 
Controller, and five clients to communicate with the rest of the components of PIACERE 
monitoring, self-learning and self-healing components. 
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Figure 23: Monitoring Controller second prototype architecture. 

This second prototype of the Monitoring Controller is composed by four components and we 
are still deciding if self-healing requires to know that a concrete deployment has been activated. 
We will integrate this fifth component if during the development of the last strategies we 
identify the need to setup something in the self-healing component for each active deployment.  

▪ Connexion: This is an open-source component from Zalando 
https://github.com/zalando/connexion that enables the specification first approach in 
python. 

▪ Monitoring Controller: This is the main component where the forwarding and the 
configuration are managed. 

▪ Performance Monitoring Client: This will be an autogenerated component from the 
OpenAPI of the performance monitoring with the openapi generator 
https://github.com/OpenAPITools/openapi-generator. 

▪ Security Monitoring Client: This will be also an autogenerated component with the 
openapi generator. 

▪ Performance Self-learning Client: This will be also an autogenerated component with 
the openapi generator. 

▪ Security Self-learning Client: This will be also an autogenerated component with the 
openapi generator. 
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Planned component for the next iteration is: 

▪ Self-healing Client: This will be also an autogenerated component with the openapi 
generator. 

5.1.4.2 Technical specifications 

This prototype has been developed using Python, which is an interpreted class-based, high level, 
object-oriented and general-purpose programming language. We have chosen Python as it is 
easier to ready, learn and write and is ideal for the fast implementation of low complexity code 
as the one we have to do in this component.  

The component is packaged using Docker technology to simplify the Python requirements and 
environment management. This is also a requirement for the future integration of PIACERE 
components into the PIACERE framework. 

5.2 Performance Monitoring 

5.2.1 Functional description 

The PIACERE Performance Monitoring component gathers performance and availability related 
information from the infrastructure resources that form part of each of the deployments 
managed by PIACERE. It also stores that information over the time so that it can be accessed by 
other components to perform more complex analysis, such as the performance self-learning 
component. Besides, it also monitors some metrics with respect to some thresholds in order to 
issue notifications to other components, in case those thresholds are exceeded. Finally, it 
aggregates metrics based on actual measurements and updates the characteristics of the 
services listed in the Infrastructure Element Catalogue. 

The Figure 24 describes the sequence diagram for the three main activities that the Performance 
Monitoring should support apart from the user interface access and the data retrieval that are 
not currently included in this release, as we are going to provide them using open-source 
components already available. 
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Figure 24: Performance monitoring Sequence diagram. 

The second implementation of the Performance Monitoring aims to: 

▪ Automate the creation of dashboard specific to the deployments under request from its 
API 

▪ To provide information on those dashboards to the IDE 
▪ To integrate dashboards for real-time and those coming from the information generated 

from the self-learning component 

The following figure represent the internal workflow of the performance monitoring 
components and their internal parts. Based on the request from the user, typically done from 
the IDE, the PRC request the activation of the deployment to the IEM and to the monitoring 
stack.  

The IEM deploys the IaC generated by the ICG that contains the monitoring agents. This will 
create somewhere the infrastructure elements required by the application, and these 
infrastructure elements will contain the monitoring agents.  

The monitoring stack receives the deployment activation request from the PRC. It forwards this 
request to lower level monitoring components such as performance monitoring controller. The 
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performance monitoring controller configures appropriate dashboards that will take care of the 
visualization of metrics with different purposes. 

 

Figure 25: Performance monitoring internal workflow. 

5.2.2 Requirements covered by this prototype 

The user requirements from WP2 satisfied by this interim version are described in the Table 10. 
All these requirements are being polished and adapted as the project advances and we gain 
knowledge on the use cases and on the implemented components. 

Table 10: Performance Monitoring related user requirements from WP2. 

Req ID Description Implementation 
Status 

Requirement Coverage at M24 

REQ46 IOP focused 
infrastructure metrics  

The monitoring 
component shall gather 
metrics from the 
instances of the 
infrastructural elements 
at run time. These 
metrics need to be 
related to the NFR and 
accessible to the IOP 
(through the dynamic 
part of the 
infrastructural 
catalogue). 

planned The feature was planned to be 
implemented in M12, we did not 
finalise it as we have decide to 
simplify the scales of the metrics to 
simplify the understanding by the 
pilots. It will be completed during the 
next period. 

REQ47 Full monitoring stack 

The monitoring 
component shall include 
the needed elements in 

Completed The Performance Monitoring 
includes all the elements required to 
monitor infrastructure elements: The 
agents to gather the information, the 
database to store the data, the 
analysis and presentation layer to 
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the stack to monitor the 
infrastructural elements. 

show the metrics and follow the 
thresholds, and the component to 
configure the deployments.  

The elements are present, but they 
still require some development that 
should be completed in the following 
months: 

• Complete missing features 
regarding notification of 
threshold and IEC 
(Infrastructure Element 
Catalogue) feed. 

REQ48 Self-learning focused 
monitoring 

The monitoring 
component shall 
transform the real time 
values into the correct 
format/type/nature for 
the self learning 
component. 

Completed Real time data is stored and the 
performance self-learning prototype 
is actually capable of consuming that 
information using the provided 
interface. 

REQ50 Monitor performance, 
availability, and security 

The monitoring 
component shall 
monitor the metrics 
associated with the 
defined measurable 
NFRs (e.g. performance, 
availability, and security 
through the runtime 
security monitoring). 

In progress The Performance Monitor currently 
gathers information from 
infrastructure resource that can be 
used to compute the performance 
and availability metrics.  

Dashboards are in place to represent 
them and they are accessible from 
the IDE. 

In the following months, we plan to 
simplify the metrics to percentual 
scale. Besides, we will also try to 
provide an aggregated performance 
metric that gives high level view of 
the overall health of the system. 

REQ51 Deployment 
nonfunctional 
requirements tracking 

The self-learning 
component shall ensure 
that the conditions are 
met (compliance with 
respect to SLO) and that 
a failure or a non-
compliance of a NFRs is 

In progress We have defined a predefined set of 
thresholds based on the state of the 
practice experiences. Now we are 
implementing a simplification of the 
scales of the metrics in order to 
refactor the notifications base on 
those simplified thresholds. 
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not likely to occur. This 
implies the compliance 
of a predefined set of 
non-functional 
requirements (e.g. 
performance). 

REQ52 Monitored data based 
self-learning  

Self-healing shall 
consume the data 
monitored and store it in 
a time-series database 
to create discriminative 
complex statistical 
variables and train a 
predictor, which will 
learn potential failure 
patterns in order to 
prevent the system from 
falling into an NFR 
violation situation. 

Completed The Performance Monitoring 
currently provides the time series 
database for the usage by the 
performance self learning 
component. This covers a part of this 
requirement, the other part is 
covered by the performance self 
learning component. 

Dashboards for self-learning have 
been implemented and are 
accessible from the IDE for each 
deployment. 

REQ72 monitoring user 
interface 

The runtime monitoring 
component should 
provide an UI for the end 
users to see the 
monitored resources 
and the corresponding 
metrics/NFRs in real 
time. 

Completed The current version of the 
Performance Monitoring includes a 
graphical user interface that renders 
the information coming from the 
time series database. 

We have introduced a deployment-
based dashboard that includes 
information related to the NFR 
thresholds coming from the DOML 
specification. 

REQ93 Self-healing should 
classify the events 
notified 

In progress Self-healing component shall classify 
the events received from the self 
learning and derive corrective 
actions. 

We are receiving notifications from 
some of the monitoring elements, 
and those elements include the 
typology. Currently we are extending 
the strategies that may head to 
additional or refined types from 
some of the monitoring components. 

 

The internal requirements satisfied by this interim version are described in the Table 11. All 
these requirements are as well polished and adapted as the project advances. 
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Table 11: Performance Monitoring related internal requirements. 

Title Implementation 
Status 

Requirement Coverage 

Add code into 
the project 
source 
repository  

Completed The repository has been created and the code is being 
uploaded regularly 
https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/pm  

Implement REST 
API specification  

Completed The final version of the OpenAPI has been defined 
and put under configuration control 
https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/pm/-
/blob/y2/git/pmc/openapi.yaml 

The OpenAPI have been implemented and put in 
integration. 

Implement 
specification first 
approach 

Completed In order to speed-up the implementation of changes 
derived from the expected evolution of the REST API, 
we have implemented a specification first approach 
with openapi generator. Besides, the usage of openapi 
generator brings additional benefits in the sense of 
introduction of good practices in structuring and 
configuring the code. 

Prepare for 
deployment 

Completed In order to ensure that we are prepared to deploy the 
component in the integration environment we have 
integrated this component with the remaining 
monitoring components in a Docker-compose file 
that includes a reverse proxy to receive all the 
requests using secure standard HTTPS protocol.  
https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/pm   

Provide fast 
deployment 
alternative for 
deployment, 
testing and 
evaluation 

Completed To allow a seamless infrastructure requirements free 
alternative to test this component we have provide a 
Vagrant based deployment option. This reduces the 
list of software requirements to two: VirtualBox and 
Vagrant. 

These two tools (VirtualBox and Vagrant) are available 
for most of the operating systems: Windows, Mac, 
Linux, BSD, …  

Include usage 
documentation 

Completed We have included usage documentation at different 
levels: 

▪ Docker-compose 
https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/pm  
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We update continuously the documentation as we 
advance in the coding and pre-integration of the 
monitoring components 

Unitary test Planned We plan to include a testing framework to the code 
JUnit in the performance monitoring controller.  

Integration test Completed We have completed the end-to-end deployment 
scenario for both the demo project and for the use 
cases. 

Continuous 
integration 

In progress Continuous integration has been implemented based 
on gitlab-ci  
https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/pm/-/blob/y2/.gitlab-
ci.yml  

The integration approach requires to be migrated with 
the rest of the components of PIACERE framework. 

 

5.2.3 Fitting into overall PIACERE Architecture 

The Performance Monitoring is one of the components of the PIACERE architecture. It is part of 
the Infrastructure Advisor package in the runtime phase of PIACERE (Figure 22). The Monitoring 
Controller interacts with other components in the PIACERE ecosystem:  

▪ The Monitoring Controller request to start and stop the monitoring of the concrete 
deployments to the Performance monitoring as well as other components. 

▪ The infrastructure element catalogue receive from the Performance monitoring 
information about the monitored infrastructure resources. 

▪ The performance Self-learning will use the stored data by the performance monitoring 
to forecast events in the infrastructure resources. 

▪ The Self-healing receive notifications from the performance monitoring about non-
functional thresholds violations. 

5.2.4 Technical description 

This subsection is devoted to describing the technical specification of this second prototype. 
First, the main architecture of the prototype and the components are shown and described in 
Section 5.2.4.1. This subsection finishes with the technical specifications of the developed 
system in Section 5.2.4.2 Technical Specifications. 

5.2.4.1 Prototype architecture and components description 

The main architecture of this second prototype is depicted in the following Figure 23. In this 
architecture, four different components can be distinguished (highlighted in green): 
Performance Monitoring Controller, Influxdb, Grafana and Performance Monitoring Agents. 
Then main purpose of these components is described. 

From the previous version we have added links from the IDE to the performance monitoring 
dashboard to provide the users a easier access to the monitoring information. 
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Figure 26: Performance Monitoring second prototype architecture. 

This second prototype of the Performance Monitoring is composed by four components, three 
of them will run together with the PIACERE runtime framework and the other one will run in the 
deployed infrastructures. The components in the PIACERE runtime framework are: 

▪ Performance Monitoring Controller: This is the main component that receives the start 
and stop requests by the Monitoring controller and configures Grafana in consequence.  

▪ Influxdb: is a time series database that will receive the information from all the 
Performance Monitoring agents throughout all the active deployments: This is an open 
source component15 that enables the storage of time series. 

▪ Grafana is a time series rendering web interface that includes functionalities to keep 
track of thresholds and sends notifications when the thresholds are exceeded. This is an 
open source component16 

The component running in the deployed infrastructures is the Performance Monitoring agent. 
The monitoring agent gathers multiple parameters from the runtime infrastructures that run the 
components of the deployed applications. The Performance Monitoring agent is implemented 
using an open source component17. 

 
15 https://www.influxdata.com/ 
16 https://grafana.com/ 
17 https://www.influxdata.com/time-series-platform/telegraf/ 
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5.2.4.2 Technical specifications 

The Performance Monitoring Controller prototype has been developed using Java, more 
specifically the Java Spring Boot framework18 that is an open source, enterprise-level framework 
for creating standalone, production-grade applications. We have created the application using 
the openapi generator technology, that starting from the OpenAPI specification is capable to 
generate a Spring Boot architecture to implement that functionality.  

Internally we have developed an client from the recent Grafana openApi 
https://github.com/grafana/grafana/blob/main/public/api-spec.json this allow us to easily 
adapt to higher versions of Grafana in case we need to evolve to bring new features or security 
patches. 

Additional dashboard has been integrated to show self-learning computed data, this has 
introduced the usage of dashboard folders to aggregate the dashboard of each deployment.  

5.3 Security Monitoring 

5.3.1 Functional description 

The Security monitoring system consists of subsystems (Wazuh deployment – manager and 
agents - with specific components for data transformation) collecting data in order to provide 
values for security metrics. As an additional option, it can provide the deployment of 
Vulnerability Assessment Tool (VAT) that is capable of monitoring API end-points of the specific 
Web Application. The system stores the (1) data aggregated by the (security) monitoring system 
and (2) data generated by underlying anomaly detection system using dedicated ELK stack (raw 
logs needed for building the model and real-time detection, and events as output of the anomaly 
detection system. Sources of raw logs are configurable via Filebeat instance (agent), but 
normally it already includes these files as sources: audit.log, cron, dmesg, messages, secure and 
yum.log. Finally, it aggregates metrics based on actual measurements and updates the 
characteristics of the services listed in the Infrastructure Element Catalogue. 

The Figure 27 describes the sequence diagram of the Security Monitoring and Security Self-
learning processes. 

 
18 https://spring.io/projects/spring-boot 
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Figure 27: Security Monitoring Sequence diagram. 

The second implementation of the Security Monitoring: 

• Provides the Controller, exposing Security Monitoring API and orchestrating underlying 
services (Figure 28): Monitoring Manager and Model Trainer. 

• Provides basic infrastructure based on ELK (part of Wazuh deployment) in order to 
aggregate relevant security metrics and provide data feed to anomaly detection 
components. 
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• Exposes integrated graphical user interface  

5.3.2 Requirements covered by this prototype 

The user requirements from WP2 satisfied by this interim version are described in Table 12. 

Table 12: Security Monitoring and Security Self-learning Requirements related user requirements from 
WP2. 

Req ID Description Implementation 
Status 

Requirement Coverage at M24 

REQ14 Runtime security monitoring 
must provide monitoring 
data from the 
infrastructure's hosts w.r.t. 
security metrics 

In-progress Security Monitoring Controller 
provides API call in order to get 
the alerts/events from the 
stored database. 

REQ15 Runtime security monitoring 
can provide monitoring data 
from the application layer 
(infrastructure's guest) w.r.t. 
security metrics 

In-progress This is possible through the 
configuration of the Security 
Monitoring Manager 
(specifically, Wazuh 
configuration). However, 
additional default configuration 
for the use cases needs to be 
included in the agent’s 
configuration.  

REQ16 Runtime security monitoring 
should contribute to 
mitigation actions taken 
when considering plans and 
strategies for runtime self-
healing actions 

In-progress Basic mitigation strategies have 
already been defined. Currently, 
we are having conversations 
within WP6 how to advance on 
the integration with the self-
healing components 
(integration from the 
components is already in 
progress). 

REQ17 Deployment of runtime 
security monitoring should 
happen seamlessly or with 
minimal effort and 
configuration required by 
the user. 

Done. The deployment code is partially 
already available on the 
project’s public repository. 

REQ18 Runtime security monitoring 
must be able to detect 
different types of metrics in 
run-time: integrity of IaC 
configuration, potential 
attacks to the infrastructure, 
IaC security issues (known 
CVEs of the environment). 

Done. The data of these metrics are 
already available in the Security 
Monitoring infrastructure. 
However, this is possible 
through the configuration of the 
Security Monitoring Manager 
(specifically, Wazuh 
configuration). The 
configuration needs to be 
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provided through the 
configuration step. 

REQ19 Runtime security monitoring 
and alarm system (self-
learning) integration must 
be implemented. 

In-progress The integration of the self-
healing component is under 
development. Deployments of 
these components are available, 
but some configuration steps 
are still manual.  

REQ21 Runtime security monitoring 
and Runtime monitoring 
infrastructure should be 
integrated with minimal 
extensions. 

In-progress The integration is being done 
through the deployment of the 
Security Monitoring Agents and 
their deployment code.  

REQ50 The monitoring component 
shall monitor the metrics 
associated with the defined 
measurable NFRs (e.g. 
performance, availability, 
and security through the 
runtime security 
monitoring) 

In-progress DOML extension has already 
been provided in order to 
express basic rules on detection 
and triggering actions based on 
user input.  

REQ51 The self-learning component 
shall ensure that the 
conditions are met 
(compliance with respect to 
SLO) and that a failure or a 
non-compliance of a NFRs is 
not likely to occur. This 
implies the compliance of a 
predefined set of non-
functional requirements 
(e.g. performance) 

In-progress The self-learning component of 
security monitoring will build 
appropriate model to be used 
for detecting metrics with 
respect to anomaly detection 
(anomalies detected on the 
infrastructure). In the proposed 
DOML extensions, it is possible 
to express new metrics and 
related NFRs and rules for the 
actions to be taken in the case of 
fulfilling the rules. Still, the 
implementation of the process 
has not been finished until now.  

 

The internal requirements satisfied by this interim version are described in the Table 13. All 
these requirements are as well polished and adapted as the project advances. 

Table 13: Security Monitoring related internal requirements. 

Title Implementation 
Status 

Requirement Coverage 

Add code into the 
project source 
repository  

Completed The repository has been created and the code is being 
uploaded regularly 
https://git.code.tecnalia.com/piacere/private/t64-
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runtime-security-monitoring/security-monitoring-
controller  

and  

https://git.code.tecnalia.com/piacere/private/t64-
runtime-security-monitoring/security-monitoring-
deployment  

Implement REST 
API specification  

In progress An updated version (v1.1.1.) of the OpenAPI has been 
defined and put under configuration control : 
https://git.code.tecnalia.com/piacere/private/t64-
runtime-security-monitoring/security-monitoring-
controller/-
/blob/y2/swagger_server/swagger/swagger.yaml  

Implement 
specification first 
approach 

Completed In order to speed-up the implementation of changes 
derived from the expected evolution of the REST API, 
we have implemented a specification first approach 
with OpenAPI generator.  

Prepare for 
deployment 

Completed Part of the code provided on the Gitlab.  

Provide fast 
deployment 
alternative for 
deployment, 
testing and 
evaluation 

Completed Part of the code provided on the Gitlab. 

Include usage 
documentation 

Completed Part of the code provided on the Gitlab. 

Unitary test Planned  Not yet available 

Integration test Planned Not yet available 

Continuous 
integration 

Planned Not yet available 

5.3.3 Fitting into overall PIACERE Architecture 

The Security Monitoring is one of the components of the PIACERE architecture. It is part of the 
Infrastructure Advisor package in the runtime phase of PIACERE (Figure 22). The Monitoring 
Controller interacts with Security Monitoring:  

▪ The Monitoring Controller requests to start and stop the monitoring of the concrete 
deployments. 

▪ The Infrastructure Element Catalogue receives from the Security Monitoring 
information about the monitored infrastructure resources. 

▪ The Security Self-learning will use the stored data by the security monitoring to build 
models used by the anomaly detection process in the infrastructure resources. 
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▪ The Self-healing receives notifications from the security monitoring about non-
functional thresholds violations. 

5.3.4 Technical description 

5.3.4.1 Prototype architecture and components description 

Figure 28 depicts architecture of the Security Monitoring and Security Self-learning components. 

 

Figure 28: Architecture of Security Monitoring and Security Self-learning. 

Controller exposes underlying APIs of the Monitoring Manager and Model Trainer via RESTful 
(OpenAPI spec) API. Model Trainer internally stores trained models in the internal Model 
Repository. Anomaly Detection component uses the data feed provided by the Monitoring 
Manager in order to detect anomalies based on the pre-built anomaly detection model built by 
the Model Trainer (and stored within its internal component – Model Repository). Monitoring 
Manager’s Agents residing on the underlying infrastructure provide continuous data feed into 
the Monitoring Manager’s data storage. There are possibilities to extend Monitoring Manager’s 
Agents with other modules such as Vulnerability Assessment Tool (VAT), in order to provide 
different security-based metrics into the data feed, to be considered in the evaluation process. 

5.3.4.2 Technical specifications 

The Security Monitoring components are developed mainly using Python and Ansible 
deployment scripts. OpenAPI specification has been developed for the Controller’s API (publicly 
accessible at  https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-
monitoring/security-monitoring-controller/-
/blob/main/swagger_server/swagger/swagger.yaml ). 

The Controller uses Flask framework and its underlying Authentication/Authorization 
mechanisms. Through the API it provides, it exposes alerts where additional search queries are 
possible. 

Monitoring Manager is developed using deployment of Wazuh 4.2 which already provides 
agents and ELK stack (based on OpenDistro Elasticsearch) used for storing a plethora of different 
security metrics.  It aggregates and stores alerts stemming from the Agents deployed on the 
infrastructure. Filebeat deployment is part of these agents. Data stemming from ELK (specifically 
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from Filebeat19) is being consumed by the anomaly detection mechanism within the Security 
Monitoring architecture. Monitoring Manager provides Kibana dashboard so that the user can 
review all the alerts provided by the Security Monitoring Manager. 

VAT is the tool developed by XLAB. Its deployment is optional at this point. The planned use of 
the tool is to provide additional security metrics that could be expressed through NFRs. 

5.4 Performance Self-learning 

5.4.1 Functional description 

After being started by the Performance Monitoring component, the Performance Self Learning 
components follows an iterative process. It acquires data from the Performance Monitoring 
database and analyses it. The analysis consists of a concept drift algorithm and an anomaly 
detection algorithm, both operating at the same time. The online prediction process may send 
a notification to the Self-Healing when the forecasted metric exceeds a threshold. 

The following figure describes the sequence diagram for this iterative process. 

 

Figure 29: Self-learning sequence diagram. 

The following figure describes how the sequence diagram is implemented internally in the 
performance self-learning. The self-learning iteratively processes metrics for each monitored 
deployment. The processing starts with the checking if the training has done, if the training is 
not done it check if enough metrics are in place to perform the initial model. Currently 200 
metrics are used but that can be customised. After the initial model has been generated each 
follow up metric is used in the online learning and prediction algorithm that also consider 
anomalies and drifts. The outcome information is used to compare with the thresholds and 
inform the self-healing if necessary. Besides, that information is stored back in the time series 
database for its latter usage. 

 
19 https://www.elastic.co/beats/filebeat 
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Figure 30: Self-learning workflow diagram. 

5.4.2 Requirements covered by this prototype 

The user requirements from WP2 satisfied by this interim version are described in the Table 14. 

Table 14: Performance Self-learning Requirements related user requirements from WP2. 

Req ID Description Implementation 
Status 

Requirement Coverage 

REQ11 The learning algorithm 
should be executed as fast 
as possible as it must 
provide an outcome before 
more data arrives. 
 
The anomaly detection 
should have fast and easy 
access to the monitoring 
data. 

Completed The whole Performance Self-
Learning component has direct 
access to the data in the 
Performance Monitoring 
database. 

At the moment execution is fast 
enough in the initial test of pilots 
but further analysis is planned for 
Y3. 

REQ51 The self-learning shall 
ensure that the conditions 
are met (compliance with 
respect to SLO) and that a 
failure or a non-compliance 
of a NFRs is not likely to 
occur. This implies the 
compliance of a predefined 
set of non-functional 
requirements (e.g. 
performance) 

Completed The Performance Self-Learning 
component is able to run fast by 
filtering the data to be acquired. 

REQ52 Self learning shall consume 
the data monitored and 
stored in a time-series 
database to create 

Completed Thanks to the integration of the 
Performance Monitoring 
database access implementation, 
the Performance Self-Learning 

DRAFT

http://www.medina-project.eu/


D6.2 – PIACERE run-time monitoring  Version 1.0 – Final. Date: 02.12.2022 

and self-learning, self-healing platform - v2 

© PIACERE Consortium   Contract No. GA 101000162 Page 70 of 107 

www.piacere-project.eu   

discriminative complex 
statistical variables and 
train a predictor which will 
learn potential failure 
patterns in order to prevent 
the system from falling into 
an NFR violation situation 

component is able to consume 
the data in an incremental way 
and to create the necessary 
variables. 

 

The internal requirements satisfied by this interim version are described in the Table 15. All 
these requirements are as well polished and adapted as the project advances. 

Table 15: Performance Self Learning related internal requirements. 

Title Implementation 
Status 

Requirement Coverage 

Add code into 
the project 
source 
repository  

Completed The repository has been created and the code is being 
uploaded regularly:  
https://git.code.tecnalia.com/piacere/public/the-
platform/self-learning 

Implement REST 
API specification  

Completed The OpenAPI has been defined and put under 
configuration control:  
https://git.code.tecnalia.com/piacere/public/the-
platform/self-learning/-/blob/y2/docs/self-learning-
openapi.yaml 

Implement 
specification 
first approach 

Completed In order to speed-up the implementation of changes 
derived from the expected evolution of the REST API, 
we have implemented a specification first approach 
with OpenAPI generator.  

Prepare for 
deployment 

Completed Part of the code provided on the Gitlab.  

Provide fast 
deployment 
alternative for 
deployment, 
testing and 
evaluation 

Completed Following the Dependency specification for Python 
Software Packages the required file is provided: 
https://git.code.tecnalia.com/piacere/public/the-
platform/self-learning/-/blob/y2/requirements.txt 

Include usage 
documentation 

In-progress Deployment information have been provided and 
usage documentation is being working out based on 
the feedback from the use case application. 

Unitary test In-progress Not yet available. 

Integration test In-progress The deployment and collection have been performed. 
Additional test are required to be able to exemplify the 
self-learning add value in a concrete scenario. 
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Continuous 
integration 

Completed The component has been deployed with the rest of the 
components of the PIACERE platform. 

 

5.4.3 Fitting into overall PIACERE Architecture 

The Performance Self Learning is one of the components of the PIACERE architecture. It is part 
of the Infrastructure Advisor package in the runtime phase of PIACERE (Figure 22). The 
Monitoring Controller interacts with the Performance Self Learning:  

• The Monitoring Controller requests to start and stop the Performance Self Learning of 
the concrete deployments. 

• The Performance Self Learning will create different models and feed them with data 
from the Performance Monitoring Controlled to be able to detect Concept Drift 
phenomenon and detect anomalies. 

• The Self-healing receives notifications from the Performance Self Learning component 
about warnings in the deployments behaviour. 

5.4.4 Technical description 

5.4.4.1 Prototype architecture and components description 

The Performance Self-learning component is composed by different solutions and approaches 
to deal with its goal. In order to achieve its main objective, the Performance Self-learning is 
composed by different subcomponents portrayed in the following Figure 31. 

   

Figure 31: Architecture of the Self-learning component. 

In this architecture, two main different components can be distinguished: PerformanceSelf 
LearningCore and PerformanceSelfLearningAPI component. The PerformanceSelfLearningCore 
component is also composed by two components: River and InfluxDB.  

The prototype is split in two main components. 

▪ PerformanceSelfLearningCore: This component will be in charge of loading or creating 
Concept Drift and Anomaly Detection learning models whenever a deployment loading 
has been notified or stopping the learning process on any unloading. This component 
will also be in charge of feeding the models with data. Finally, once data is analysed, 
SelfHealing component is notified in case of exceeding the idle threshold for the metric 
being monitored. 
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▪ PerformanceSelfLearningAPI: This component will be on charge on notifying the 
PerformanceSelfLearningCore component of the loading or unloading of any 
deployment. 

The PerformanceSelfLearningCore is also split in two components: 

▪ River: The library that implements the Concept Drift and Anomaly Detection algorithm 
▪ InfluxDB: The time series database from which the PerformanceSelfLearningCore will 

receive the data to feed the models. 

5.4.4.2 Technical specifications 

River is a library for developing online machine learning solutions in Python. It was created by 
the combination of two of the most popular stream learning packages: scikit-multiflow and 
creme. Its main innovation is the use of pipelines to transform data in the process of data 
digestion. It also provides different learning models out of the box, specialized in jobs such as 
anomaly detection, classification, clustering, regression, etc. The library also offers the Half 
Space Trees (anomaly detection), Random Forest Regressor (incremental learning) and ADWIN 
(drift detection) used in the component. River has been the basis for the development of the 
incremental learning and anomaly detection, and it will also be the basis for the drift detection.  
After using River with the toy dataset, we have successfully confirmed that it is the suitable 
library to develop the Self-learning component in the PIACERE project. 

For data provision, the official InfluxDB Python library is used, due to the use of InfluxDB as the 
data storage. Its use is seamlessly integrated in the current implementation, allowing data 
retrieval for different date ranges providing the ability to use online learning that best fits the 
component. 

This component will also requires the integration with different components with a RESTful API 
to be aware of new deployments to be analysed and to warn the Self-Healing component about 
any differing behaviour. A Flask server is used to provide the API easing the integration with 
different components. 

Due to the use of Python programming language by the previous libraries, Python has also been 
selected as the main language of the prototype. 

5.5 Security Self-learning 

5.5.1 Functional description 

The main purpose of the Security Self-learning component is to provide capabilities to train 
anomaly detection models. It receives data from the Security Monitoring component (see Figure 
27). As a first necessary step, a specified subset of the data has to be used to train a behavioural 
model. This subset of data, along with the necessary configuration files, is provided to the Model 
Trainer component (see Figure 28), which eventually stores every trained model in the Model 
Repository (currently part of the Infrastructural Model Trainer, eventually could be part of the 
Elements Catalogue as initially planned). Once a model is trained, this step is repeated only if 
requested to do so. A trained model is loaded from the Model Repository to carry out anomaly 
detection of the data collected by the Security Monitoring component. This task is thus carried 
out as part of the Security Monitoring workflow. Under previously specified conditions, e.g. high 
number of anomalies in a short time period, the Security Monitoring component will notify the 
Self-healing component. 

Internally, the Model Trainer needs to train two different machine-learning models: the log 
parser and the anomaly detector. The log parser is in charge of transforming raw logs received 
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from the Security Monitoring into structured logs. The log parser is thus trained in an 
unsupervised way. Then, the anomaly detector is trained on the stream of structured logs to 
learn patterns representing the normal behaviour. Afterwards, as already mentioned, a trained 
log parser and anomaly detector will be loaded by the Anomaly Detection component of Security 
Monitoring in order to provide an anomaly score for every incoming log message. Figure 32 
illustrates this process. 

 

Figure 32: Internal functioning of the Model Trainer. 

The sequence diagram describing the functioning of the Security Self-learning component can 
be seen in Figure 27, integrated with that of the Security Monitoring. 

5.5.2 Requirements covered by this prototype 

The user requirements are listed under Security Monitoring Implementation section in Table 12. 
Internal requirements covered by this prototype are listed in Table 16. 

Table 16: Internal requirements for Security Self-learning. 

Title Implementation 
Status 

Requirement Coverage at M24 

Add code into 
the project 
source repository  

Completed The repository has been created and the code is being 

uploaded regularly 

https://git.code.tecnalia.com/piacere/private/t64-

runtime-security-monitoring/security-monitoring-

controller , available also on the public repository: 

https://git.code.tecnalia.com/piacere/public/the-

platform/runtime-security-monitoring/security-

monitoring-controller/-/tree/main/  

Implement REST 
API specification  

Completed A first version of the OpenAPI has been defined and 
put under configuration control  

Implement 
specification first 
approach 

Completed In order to speed-up the implementation of changes 
derived from the expected evolution of the REST API, 
we have implemented a specification first approach 
with OpenAPI generator.  
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Prepare for 
deployment 

Completed Part of the private repository (not in project’s Gitlab). 

Provide fast 
deployment 
alternative for 
deployment, 
testing and 
evaluation 

Completed Part of the private repository (not in project’s Gitlab). 

Include usage 
documentation 

Completed Part of the private repository (not in project’s Gitlab). 

Unitary test Completed  Part of the private repository (not in project’s Gitlab). 
CI instance in PIACERE already links to deployment of 
the dashboards. 
 

Integration test Completed  CI instance in PIACERE already links to deployment of 
the dashboards. 

Continuous 
integration 

Completed  CI instance in PIACERE already links to deployment of 
the dashboards. 

 

5.5.3 Fitting into overall PIACERE Architecture 

Security Self-learning’s architecture and fitting into the overall PIACERE Architecture is  
described in section 5.5.4.1. 

5.5.4 Technical description 

5.5.4.1 Prototype architecture and Components description 

The Security Self Learning component consists of a single architecture element, referred to as 
Model Trainer. Its architectural integration with that of the Security Monitoring is depicted in 
Figure 28. 

The Security Monitoring controller triggers via API the model training, providing the necessary 
data and configuration files. As a result of the training process, a new log parser based on Drain 
method, and a new anomaly detection model based on LogBERT are created. These objects 
belong to the Model Trainer component (Figure 28) and are accessible via API as well. 

Additionally, a dashboard is available as a submodule of the existing UI (see IDE Plug-
in/Dashboard in Figure 21, Figure 22 in section 4.2.2.2) to interact with the Model Trainer both 
for the training of the log parsers and anomaly detection models, as well as for visualization of 
intermediate and final results. 

5.5.4.2 Technical specifications 

Input:  

▪ Data stemming from the Security Monitoring component. The data is already 
aggregated from different sources by the Security Monitoring component using ELK, 
which is directly accessed by the Model Trainer. 
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▪ Security Self-learning component uses dedicated Elasticsearch’s indexes that are 
considered as input for the anomaly detection process. 

Programming languages/tools:  

▪ Python: popular data science and machine learning libraries are used, mainly numpy, 
pandas, pytorch and transformers. 

Dependencies: 

▪ Grafana dashboard (deployment). 
▪ ELK stack: storing raw log data. 

5.6 Self-healing 

5.6.1 Functional description 

The PIACERE self-healing component receives events form the rest of the monitoring and self-
learning components and, based on the nature of the issue, it launches different fixing 
strategies.  

The Figure 33 shows the sequence diagram for the main activity that the self-healing should 
implement: the notification processing workflow.  

 

Figure 33: Self-healing sequence diagram. 

The second implementation of the self-healing aims to: 

▪ Wait for event notifications from the rest of the monitoring and self-learning 
components in the IA (infrastructure Advisor). 

▪ Classify the event to identify the corresponding strategy and other possible aspects in 
the future such as its severity. 

▪ Queue the strategies to be applied 
▪ Request the execution of the fixing strategy to the PRC (PIACERE runtime controller) 
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Apart from this workflow we have also implemented some supporting features to enable the 
monitoring of the notifications received and the management of the types of notifications and 
strategies applied to each of them. 

The following figure represent the internal workflow of the self-healing components and their 
internal parts. 

 

Figure 34: Self-healing internal workflow. 

5.6.2 Requirements covered by this prototype 

The user requirements from WP2 satisfied by this interim version are described in the Table 17. 
All these requirements are being polished and adapted as the project advances and we gain 
knowledge on the use cases and on the implemented components. 

Table 17: Self-healing related user requirements from WP2. 

Req ID Description Implementation 
Status 

Requirement Coverage at 
M24 

REQ16 Runtime security monitoring 
should contribute to 
mitigation actions taken 
when considering plans and 
strategies for runtime self-
healing actions. 

In progress The self-healing general 
approach, related to types of 
notifications and strategies has 
been established  

REQ17 Deployment of runtime 
security monitoring should 
happen seamlessly or with 
minimal effort and 
configuration required by the 
user. 

In progress The self-healing will receive 
configuration request from the 
monitoring controller 

REQ46 The monitoring component 
shall gather metrics from the 
instances of the 
infrastructural elements at 
run time. These metrics need 
to be related to the NFR and 

In discussion Metrics will be fed by the 
monitoring component about 
performance and security. We 
are evaluating the possibility of 
feeding the Infrastructural 
elements catalogue with 
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accessible to the IOP (through 
the dynamic part of the 
infrastructural catalogue). 

information about self-healing 
actions. 

REQ47 Full monitoring stack. 

The monitoring component 
shall include the needed 
elements in the stack to 
monitor the infrastructural 
elements 

In progress Self-healing components are 
being dockerized and deployed 
with container choreography 
tools. 

REQ92 Self-healing component shall 
receive notifications from the 
self-learning. 

In progress Self-healing component 
implements a REST API to 
receive notifications from all 
the components involved in 
the application infrastructure 
monitoring. 

REQ93 Self-healing component shall 
classify the events received 
from the self-learning and 
derive corrective actions. 

In progress Self-healing provides a 
classification field as part of 
the notification message. 

REQ94 Self-healing component shall 
inform the run time controller 
about the different 
components to orchestrate 
(the workflow to be 
executed). 

In progress We have implemented 
deployment level strategies in 
this level. In the next period we 
are developing ansible 
strategies that will enable the 
specification of actions on 
specific infrastructure 
elements. 

REQ97 The Self-healing components 
provide feedback on the 
DOML code, without doing 
automatic writes. The end 
user can choose to accept or 
not the feedback received. (ex 
REQ56&75). 

In discussion 

Not addressed 

The information is planned to 
be added to the Infrastructural 
elements catalogue instead of 
in the DOML 

 

The internal requirements satisfied by this interim version are described in the Table 18. All 
these requirements are as well polished and adapted as the project advances. 

Table 18: Self-healing related internal requirements. 

Title Implementation 
Status 

Requirement Coverage 
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Implement 
OpenAPI 
specification  

Completed It is available in the public repository. 

Implement 
specification first 
approach 

Completed The notification interface is implemented and it is 
receiving notifications from other components in the 
monitoring infrastructure. 

 

5.6.3 Fitting into overall PIACERE Architecture 

The Self-Healing is one of the components of the PIACERE architecture. It is part of the 
Infrastructure Advisor package in the runtime phase of PIACERE (Figure 22). It interacts with 
other tools in the PIACERE ecosystem:  

▪ Performance Monitoring, Security Monitoring, Performance Self-Learning and Security 
Self-Learning components send notifications to the Self-Healing component. 

▪ Self-Healing component proposes self-healing workflow to the Runtime Controller 
component. 

5.6.4 Technical description 

This subsection is devoted to describing the technical specification of this second prototype. 
First, the main architecture and the components of the prototype are shown and described in 
section 5.6.4.1. This subsection finishes with the technical specifications of the developed 
system in Section 5.6.4.2. 

5.6.4.1 Prototype architecture and components description 

Self-healing architecture is based on a microservices style which splits the front-end, only for 
testing purposes in this stage, and the backend, so that´s it´s easier to scale and survive 
infrastructure issues.   

In order to manage the events-oriented architecture, in this second prototype, Kafka streaming 
solution has been chosen. DRAFT
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Figure 35: Self-healing internal architecture. 

This second prototype of the Self-healing is composed by two principal components, which main 
purpose are briefly described as follows. It should be noted that further detail on these 
components is provided in the upcoming Section 6.6. 

▪ Self-healing service: this component manages all the logic of the self-healing.  It 
implements the necessary logic to treat the notifications received by the components 
involved in the self-healing mechanism, exposing a REST service in order to simplify the 
interaction, and the work for communicating with the runtime controller in order to 
propose the self-healing mechanisms. 

▪ Self-healing test frontend: This component has been developed to simplify the 
integration and test of the self-healing with the rest of the components. 

In addition, some considerations about the other components of the self-healing: 

▪ Access control. JSON Web Token (JWT)20  mechanism is used. A stateless security 
mechanism which uses a secure token that holds the user´s login name and authorities. 

▪ Data persistence in MySQL database. 
▪ JHipster Registry21.  Service discovery using Netflix Eureka22. 
▪ Apache Kafka23:  Event streaming solution to capture real-time data from the related 

components which need to send notifications to the Self-healing component. 

 
20 https://jwt.io/introduction 
21 https://www.jhipster.tech/ 
22 https://spring.io/projects/spring-cloud-netflix 
23 https://kafka.apache.org/ 
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5.6.4.2 Technical specifications 

This prototype has been developed using JHipster Framework, which provides all the needed 
technologies and configuration options for a modern web application and microservice 
architecture. 

This framework uses Spring Boot to develop, deploy and test the application. 

In the client side, the test frontend gateway uses Yeoman, Webpack, Angular and Bootstrap 
technologies. 

In the server side the Self-healing microservice uses Maven, Spring, Spring MVC Rest, Spring 
Data JPA and Netflix OSS. 

The technology used to manage the events received is Kafka.  
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6 Conclusions 

Along this document, we have presented the current state of the development of the PIACERE 
run-time monitoring and self-learning, self-healing platform, together with the rationale that 
supports the decisions taken in this period. 

As we have stated in the executive summary, the objective in this period has been to start the 
piloting of the features regarding the performance and security monitoring, self-learning and 
self-healing components. 

During this period, we have deployed all components in the integration platform, and we have 
fully covered de IaC deployment from the IDE including the agent deployment and the 
configuration of the monitoring components to track that deployment. We have achieve the 
testing of the deployment in the context of one of the pilots gathering valuable feedback for the 
next iteration. 

During the next months, we will complete in the integration and the implementation of the 
remaining workflows of the PIACERE frameworks and the new self-healing strategies.  
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Annex A. Delivery and Usage 

6.1 Monitoring Controller 

6.1.1 Installation instructions 

There are many ways to run this component: 

▪ Run the component in isolation 
▪ Run with Docker 
▪ Run with a Docker compose  
▪ Run with Vagrant 

Each approach is described into its corresponding README in the PIACERE code repository.  

6.1.1.1 Component in isolation  

The installation of the component in isolation is described at: 
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/mc/mc 

The requirement to run the component in isolation is to have Python 3.5.2+. In order to execute 
the component we have to carry out three steps: 

▪ Download the code 
▪ Install the requirements 
▪ Launch the Python module 

To download the code we will use git: 

git clone https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/mc/mc.git 

To install the requirements we will use pip, so we will require to have the pip3 python tool: 

cd mc 

pip3 install -r requirements.txt 

NOTE: the module has been developed on linux and therefore even if Python is multi-platform, 
we cannot ensure that the requirements are multiplatform as well. Therefore, running this step 
in non linux systems may have some issues. 

To launch the Python module we require to have the port 8080 available and run: 

python3 -m mc 

6.1.1.2 Docker  

The installation with Docker is also described at: 
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/mc/mc 

The requirements to run the component with Docker is to have Docker installed, we have used 
Docker version 20.10.10 with linux/amd64 architecture. In order to execute the component we 
have to carry out three steps: 

▪ Download the code 
▪ Build the image 
▪ Run the image 

To download the code we will use git: 
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git clone https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/mc/mc.git 

To build the image: 

cd mc 

docker build -t mc . 

NOTE: the image relies on linux kernel, therefore it requires a Docker installation able to run 
linux based machines. 

To run the image in a container we require to have the port 8080 available and run: 

docker run -p 8080:8080 mc 

6.1.1.3 Docker compose 

The installation with docker-compose is described at: 
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/pm/pm-deploy. 

This docker-compose is a partial integration of components of WP6 currently we cover two 
components: monitoring controller and performance monitoring in the future we will cover all 
the remaining components: (security monitoring, performance self-learning, security self-
learning and self-healing.). 

The requirements to run the component with Docker is to have Docker installed, we have used 
Docker version 20.10.10 with linux/amd64 architecture and docker-compose version 1.29.0 . In 
order to execute the component, we have to carry out three steps: 

▪ Download the code 
▪ Setup relevant variables 
▪ Build the images 
▪ Run the docker-compose 

To download the code we will use git: 

git clone –recurse-submodules https://git.code.tecnalia.com/piacere/private/t61-runtime-

monitoring/pm/pm-deploy.git 

To setup relevant variables we need to identify the variables without values, and give value to 
them: 

echo list variables to be setup 

cat .env | grep -e ".*=\s*$" 

Assign values to those variables. The current set of values are the ones show bellow, but the are 
subject to change as the development advance, therefore it is advisable to check the current list 
using the instruction above (cat …) 

export SERVER_HOST=192.168.56.1.nip.io 

NOTE: https://nip.io is a service that allows doing a mapping between any IP to a hostname. 

To build the images: 

cd pm-deploy 

docker-compose build 

NOTE: the image relies on linux kernel, therefore it requires a Docker installation able to run 
Linux-based machines. 

To run the docker-compose we will need the port 443 available: 
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docker-compose up 

6.1.1.4 Vagrant  

The installation with Vagrant is described at: https://git.code.tecnalia.com/piacere/private/t61-
runtime-monitoring/pm/pm-vagrant.  This vagrant runs the partial integration docker-compose 
described above. 

The requirements to run the component with Vagrant is to have VirtualBox and Vagrant 
installed, we have used VirtualBox version 6.1.22 and Vagrant version 2.2.16. In order to execute 
the component, we have to carry out three steps: 

▪ Download the code 
▪ Start the Vagrant machine 
▪ Build the images 
▪ Run the docker-compose 

To download the code we will use git: 

git clone –recurse-submodules https://git.code.tecnalia.com/piacere/private/t61-runtime-

monitoring/pm/pm-vagrant.git 

To start the Vagrant machine 

cd pm-vagrant 

vagrant up 

To build the images: 

vagrant ssh 

cd /vagrant-project/git/pm-deploy/ 

docker-compose --env-file /vagrant-project/.local/develop/.env build 

To run the docker-compose: 

docker-compose --env-file /vagrant-project/.local/develop/.env up -d --no-build --

remove-orphans 

6.1.2 User Manual 

The Monitoring controller can be used through its REST API, described at: 
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/mc/-
/blob/y2/src/mc/openapi/openapi.yaml 

In order to access that API in the running component, we need to specify the HTTP schema, the 
host and the port. Then it will be possible to access the REST API documentation in the same 
running instance where we can invoke the services: 

For the component in isolation, the way to access the swagger UI, showing the REST API, will be 
http://localhost:8080/api/v1/ui/, in the rest of the execution options the access will depend on 
the server and the port specified and it will look like 
https://192.168.56.1.nip.io:8443/mc/api/v1/ui/ 

In that address we will find the standard swagger UI shown in Figure 36. The swagger UI will list 
the operations available and it will allow us to invoke them. 
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Figure 36: Monitoring Controller swagger ui. 

Anyway, even if the swagger UI provides a valuable resource to understand and test the API, the 
real way to use the component will be to integrate it with other components. To do so the best 
way is to get profit from the OpenAPI based client code generators such as: 

▪ Openapi-generator: https://github.com/OpenAPITools/openapi-generator 
▪ Swagger-codegen: https://github.com/swagger-api/swagger-codegen 

6.1.3 Licensing information 

To be defined 

6.1.4 Download 

The component code is available at PIACERE code repository at: 
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/mc/mc 
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6.2 Performance Monitoring 

6.2.1 Installation instructions 

This component shares the part of the development environment with the Monitoring 
controller. In that sense it shares some of their ways to be executed: 

▪ Run with a docker compose  
▪ Run with Vagrant 

Besides, as this component is composed by separate running services, it makes no sense to apply 
some of the execution methods available in the Monitoring controller such as: run the 
component in isolation or run with docker. However, focussing in the Performance monitoring 
controller there can be situations, such as during development, where it can make sense to run 
this component in isolation. For this specific case we provide specific guidelines. 

Each approach is described into its corresponding README in the PIACERE code repository.  

6.2.1.1 Performance monitoring controller in isolation  

The installation of the component in isolation is described at: 
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/pm/pmc 

The requirements to run the component in isolation is to have java and maven. In order to 
execute the component we have to carry out two steps: 

▪ Download the code 
▪ Launch the spring boot application 

To download the code we will use git: 

git clone https://git.code.tecnalia.com/piacere/private/t61-runtime-

monitoring/pm/pmc.git 

To run the spring boot application 

mvn run 

6.2.1.2 Docker compose 

The installation with docker-compose is described at: 
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/pm/pm-deploy. 

This docker-compose is a partial integration of WP6 components. Currently we cover two 
components: monitoring controller and performance monitoring in the future we will cover all 
the remaining components: (security monitoring, performance self-learning, security self-
learning and self-healing.). The usage details are available above in section 6.1.1.3. 

6.2.1.3 Vagrant  

The installation with vagrant is described at: https://git.code.tecnalia.com/piacere/private/t61-
runtime-monitoring/pm/pm-vagrant. This vagrant runs the partial integration docker-compose 
described above. The usage details are available above in section 6.1.1.4. 

6.2.2 User Manual 

This component has three different sub-components. In the following subsections we provide 
the user manual for each of them. 
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6.2.2.1 Performance Monitoring controller 

The Performance Monitoring controller is used through its REST API, described at: 
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm/-
/tree/y2/git/pmc/openapi.yaml 

In order to access that API in the running component, we need to specify the HTTP schema, the 
host and the port. Then It will be possible to access the REST API documentation in the same 
running instance where we can invoke the services: 

For the component in isolation, the way to access the swagger UI, showing the REST API, will be 
http://localhost:8080/pmc/api/v1/ui/, in the rest of the execution options the access will 
depend on the server and the port specified and it will look like 
https://192.168.56.1.nip.io:8443/pmc/api/v1/ui/ 

In that address we will find the standard swagger UI shown in Figure 37. The swagger UI will list 
the operations available and it will allow us to invoke them. 

 

Figure 37: Performance Monitoring Controller swagger ui. 

Anyway, even if the swagger UI provides a valuable resource to understand and test the API, the 
real way to use the component will be to integrate it with other components. To do so the best 
way is to get profit from the OpenAPI based client code generators such as: 

▪ Openapi-generator: https://github.com/OpenAPITools/openapi-generator 
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▪ Swagger-codegen: https://github.com/swagger-api/swagger-codegen 

6.2.2.2 Influxdb 

Influxdb will be used following the standard user guideline 
https://docs.influxdata.com/influxdb/v2.0/. The instance will be available in different URLs 
depending on the execution method selected. For example, if we use the Vagrant method, it will 
be accessible at https://influxdb.192.168.56.1.nip.io:8443/. As another example, as shown in 
the Figure 38, in our internal continuous integration framework the component is accessible at 
https://influxdb.piacere.esilab.org:8443/ 

 

Figure 38: Influxdb.  

6.2.2.3 Grafana 

Grafana will be accessible at https://192.168.56.1.nip.io:8443/grafana/  

Grafana will be used following the standard user guideline 
https://grafana.com/docs/grafana/latest/getting-started/getting-started/. The instance will be 
available in different URLs depending on the execution method selected. For example, if we use 
the Vagrant method, it will be accessible at https://192.168.56.1.nip.io:8443/grafana, as shown 
in the Figure 39. As another example, in our internal continuous integration framework, the 
component is accessible at https://piacere.esilab.org:8443/grafana  
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Figure 39: Grafana  

6.2.3 Licensing information 

Currently the code is owned by Tecnalia, and the license is still to be defined in D6.3. 

6.2.4 Download 

The component code is available in the PIACERE code repository at: 
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm.  

Besides, a testing oriented agent infrastructure can be deployed using the code available at 
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/pm/pma-deploy. This 
enables the feeding of data into the piacere monitoring platform without requiring to perform 
real deployments that may involve some costs. 

6.3 Security Monitoring 

6.3.1 Security Monitoring Service 

The Security Monitoring Service is expected to be deployed eventually as a set of containers. 
However, currently the deployment is available using specific Ansible playbook on top of an 
environment (i.e., inventory built either manually or using the Vagrant tool). The deployment 
consists of (Figure 28): 

▪ Security Monitoring Controller: API entry point for underlying components (also the 
Model trainer of the Security Self-learning). It is also in charge of regularly pushing 
events towards external services such as Self-healing components. 

▪ Security Monitoring Manager (includes Kibana dashboard): collects all the necessary 
events from the Security Manager Agents from the infrastructures and provides data 
feed to the Model Trainer service (of the Security Self-learning) 

▪ Security Manager Agents: these are in charge of collecting monitoring data and 
forwarding this towards the Manager for analytics and storage. 

▪ Security Self-learning component. It is not part of the basic deployment package. 
Currently it is being offered only as SaaS model and is loosely-coupled integrated with 
other monitoring components.  

6.3.2 Installation Instructions 

Installation of the Security Monitoring components consists of the Controller and the Monitoring 
Manager. 
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6.3.2.1 Installing Controller 

The code resides on the project’s repository (also on the public counterpart 
https://git.code.tecnalia.com/piacere/public):  

▪ Private: https://git.code.tecnalia.com/piacere/private/t64-runtime-security-
monitoring/security-monitoring-controller 

▪ Public- counterpart: https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-security-monitoring/security-monitoring-controller  

$ git clone git@git.code.tecnalia.com:piacere/private/t64-runtime-security-

monitoring/security-monitoring-controller.git 

To run the server, please execute the following from the root directory: 

pip3 install -r requirements.txt 
python3 -m swagger_server 

To run the server on a Docker container, please execute the following from the root directory: 

# building the image 
docker build -t swagger_server . 

 
# starting up a container 
docker run -p 8080:8080 swagger_server 

6.3.2.2 Installing Monitoring Manager 

These are summary of the code available on the repository: 

https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-
monitoring-deployment  

First, checkout Wazuh's tag v4.2.7 into the current directory: 

$ git clone https://github.com/wazuh/wazuh-ansible.git 

$ git checkout tags/v4.2.7 

You need to update 2 files: 

- wazuh-ansible/playbooks/wazuh-agent.yml 
- wazuh-ansible/playbooks/wazuh-odfe-single.yml 

And provide IPs of the manager and the agents. IPs can be found in the inventory file of the 
Ansible script: https://git.code.tecnalia.com/piacere/private/t64-runtime-security-
monitoring/security-monitoring-deployment/-/blob/develop/security-monitoring-
ansible/environments/vagrant-1manager-2agents/inventory.txt  

Provision Wazuh server and Wazuh agents: 

$ cd security-monitoring-ansible 

$ ENVIRONMENT=vagrant-1manager-2agents make create provision 

6.3.3 User Manual 

6.3.3.1 Controller 

Figure 40 depicts Security Monitoring’s API as it is served by the Security Monitoring Controller 
after it is made available (deployed). 

Open your browser to here: 
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http://localhost:8080/security-monitoring/v1/ui/  

Your Swagger definition lives here: 

http://localhost:8080/security-monitoring/v1/swagger.json  

 

Figure 40: Security Monitoring part of the Security Monitoring Controller API. 

6.3.3.2 Monitoring Manager 

Check the running instances: 

- Navigate browser to: https://192.168.33.10:5601 (the IP from the inventory file), login 
with default credentials admin:changeme. Navigate to wazuh section on the left hand-
side. 

- You should see 2 agents registered and running with Wazuh. 

List of indices: 

curl -X GET https://192.168.33.10:9200/_cat/indices?v -u admin:changeme -k 

List all entries in the index wazuh-alerts: 

$ curl -X GET https://192.168.33.10:9200/wazuh-alerts-4.x-2021.11.03/_search -u 

admin:changeme -k 

 

6.3.4 Licensing information 

The code is Apache 2.0 licensed.  

6.3.5 Download 

▪ Private repository: The Security Monitoring Controller’s code is available on the project 
repositories: https://git.code.tecnalia.com/piacere/private/t64-runtime-security-
monitoring/security-monitoring-controller  
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▪ Public repository:  https://git.code.tecnalia.com/piacere/public/the-platform/runtime-
security-monitoring/security-monitoring-controller  

The Security Monitoring Deployment code is available here: 

▪ Private repository: https://git.code.tecnalia.com/piacere/private/t64-runtime-security-
monitoring/security-monitoring-deployment/-/tree/develop  

▪ Public repository: https://git.code.tecnalia.com/piacere/public/the-platform/runtime-
security-monitoring/security-monitoring-controller  

6.4 Performance Self-learning 

6.4.1 Performance Self-learning Service 

The structure of the Performance Self-learning is split in two main sections. The first section, the 
libraries (folder “libs”), contains functional code used for dataset manipulation, input/output 
and learning. 

• dataset.py: It contains the utility functions used to manipulate datasets and transform 
them to be ready to be feed to learning algorithms. 

• Io.py: Input/output code used for data retrieval from different sources like the 
filesystem or a given database. 

• learning.py: Everything related to learning algorithms to predict different outcomes 
from the data. 

The second main section is the Performance Self-learning engine (folder “src”) used to receive 
notifications of different deployments, acquire and feed data to learning algorithms and send 
notifications to the SelfHealing component. 

An essential part of the code is also the generated swagger client used to notify the SelfHealing 
component. 

6.4.2 Installation Instructions 

The Performance Self-learning is run as a standalone component at the moment. The code must 
be downloaded from a git repository, setup properly and then it can be executed. 

To download the code, we have to clone the repository: 

git clone https://git.code.tecnalia.com/piacere/private/t62-self-learning/psl.git 

Once the repository has been cloned, the library requirements must be installed. Move to the 
cloned repository directory and install requirements: 

cd psl 

pip3 install -r requirements.txt 

In the last step, the connection parameters must be setup. Rename the `connection.ini.sample` 
in the src directory as `connection.ini` and set the correct values in the file. 

Finally, we can execute the component with the following command: 

python3 -mc src/main.py 

6.4.3 User Manual 

The Performance Self-learning component behaviour expects notifications through the RESTful 
API. The specification of the API can be found at:  
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https://git.code.tecnalia.com/piacere/private/t62-self-learning/psl/-

/blob/main/docs/self-learning-openapi.yaml 

 

 

Figure 41: Performance Self-learning OpenAPI. 

Once the component is running, no more interactions than the call to those two endpoints are 
necessary. The following example commands show how to call those endpoints. 

Add a model: 

curl -X 'POST' 'http://localhost:8080/psl/api/v1/models/add/1' -H 'accept: 

application/json' -d '' 

 

Delete a model: 

curl -X 'DELETE' 'http://localhost:8080/psl/api/v1/models/del/1' -H 'accept: 

application/json' 

 

6.4.4 Licensing information 

Currently the code is owned by Tecnalia, and the license is still to be defined in D6.3. 

6.4.5 Download 

The Performance Self Learning’s code is available on the project repository: 

https://git.code.tecnalia.com/piacere/private/t62-self-learning/psl.git 

6.5 Security Self-learning 

6.5.1 Security Self-Learning Service 

The Security Self-Learning service is expected to be deployed as a single microservice that will 
be exposed to the Security Monitoring Controller and will coordinate the whole training process, 
from the connection to the data source containing raw logs, to the training of the log parser and 
AD model and their storage in the Model Repository 
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6.5.2 Installation Instructions 

All the different services composing the Security Self-Learning are currently running as 
standalone services which have to be manually executed. In all cases, conda24 environments are 
used to handle dependencies in an isolated manner. The codebase is closed and hosted on 
private repositories. 

6.5.3 User Manual 

As describer earlier in this document, the interaction with the Security Self-Learning service will 
be done exclusively by the Security Monitoring controller, which exposes an API (included below 
in Figure 42) for such purposes. 

Example of reading all available ad_models trained by the self_learning instance that are 
available to be used by the Security Monitoring Anomaly Detector: 

curl -X 'GET' 'https://localhost:8080/security-monitoring/v1/ad_models' -H 'accept: 

application/json' 

Result (returning object with parent train_id reference and other details of the model: 

[ 

  { 

    "id": "3fa85f64-5717-4562-b3fc-2c963f66afa6", 

    "train_id": "3fa85f64-5717-4562-b3fc-2c963f66afa6", 

    "name": "string", 

    "description": "string", 

    "configuration": "string" 

  } 

] 

 

 
24 https://docs.conda.io/en/latest/ 
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Figure 42: Self-learning API provided by Security Controller. 

The dashboard is based on Grafana and is provided as an informative tool that would provide 
insights on the intermediate steps and results of the training process. The design of the exact 
functionalities that it will include is an on-going process. 

6.5.4 Licensing information 

Currently is closed source, owned by XLAB. 

6.5.5 Download 

The Security Monitoring Controller’s code is available on the project repository. The Controller 
provides API endpoints to the Security Self-learning component: 
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-
monitoring-controller  

6.6 Self-healing 

6.6.1.1 Self-healing service 

The main structure of the prototype developed in this second stage of the project is composed 
by the packages shown in the following Figure 43. 
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Figure 43: Self-healing project structure. 

Each of these packages has its own objective and its context within the whole prototype. 
Furthermore, these packages are also comprised by several JAVA classes. With all this, the main 
purpose and composition of each component is as follows: 

▪ com.piacere.selfhealing.service.aop.logging: this package is composed by 
LoggingAspect.java, which defines the aspect for logging execution of service and 
repository Spring components. 

▪ com.piacere.selfhealing.service.client: Composed by UserFeignClientInterceptor.java 
which implements RequestInterceptor.java.  This class checks and add JWT token to the 
request header. 

▪ com.piacere.selfhealing.service.config: this package contains  all classes related to 
configuration purposes. 

▪ com.piacere.selfhealing.service.consumer: this package contains classes to consume 
messages from the queue configured. 

▪ com.piacere.selfhealing.service.domain: this package contains data model classes. 
▪ com.piacere.selfhealing.service.domain.enumeration: this package contains enum 

objects. 
▪ com.piacere.selfhealing.service.producer: this package contains classes to produce 

messages to the queue configured. 
▪ com.piacere.selfhealing.service.repository: this package contains Spring Data SQL 

repository classes. 
▪ com.piacere.selfhealing.service.security: this package contains Spring Security related 

classes for security management. 
▪ com.piacere.selfhealing.service.security.jwt: this package contains Java Web Token 

security configuration related classes. 
▪ com.piacere.selfhealing.service.serde: this package contains classes to 

serialize/deserialize queue messages received. 
▪ com.piacere.selfhealing.service.service: this package contains self healing services for 

CRUD operations and other requirements needed. 
▪ com.piacere.selfhealing.service.service.dto: this package contains self healing data 

transfer objects. 
▪ com.piacere.selfhealing.service.service.mapper: this package contains mapping classes 

to map data transfer objects. 
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▪ com.piacere.selfhealing.service.web.rest: this package contains classes to expose Self-
healing rest end points. 

▪ com.piacere.selfhealing.service.web.rest.errors: this package contains error classes used 
in the rest end points. 

6.6.1.2  Kafka streaming solution 

In the context of Self-healing component, it has been implemented the necessary logic to 
manage the notifications received with the Kafka streaming solution. 

 The configuration needed: 

 

Figure 44: Self-healing configuration. 

▪ Topic: Topic queuing.iec_self_healing.self_healing_message has been defined to associate 
all the events related to the Self-healing logic. 

▪ In the context of Kafka, we need one producer and one subscriber to manage the events 
received 

• Producer: In charge of sending messages to the topic defined. 

 

Figure 45: Self-healing producer. 

• Consumer: In charge of processing the messages asynchronously. 

 

Figure 46: Self-healing consumer. 

6.6.2 Installation instructions 

This project is executed in a Docker container. 

There are docker compose files for each environment development/production. 

To execute this project in the production environment, the next docker-compose files are used 
by the gitlab-ci continuous integration configuration: 

▪ docker-compose.yaml, main file with all the services needed by the self-healing 
component. 

▪ docker-compose-dev.yaml, traefik and portainer services configuration. 
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▪ docker-compose-traefik-tecnalia-selfsigned.yaml, traefik configuration for Tecnalia 
internal server. 

▪ docker-compose-expose.yaml, traefik configuration to expose ports. 

To execute this project in a development environment the docker-compose-local-dev.yaml file 
is needed: 

▪ git clone https://git.code.tecnalia.com/piacere/private/t63-self-healing/sh-deploy.git 
▪ docker-compose -f docker-compose-local-dev.yaml up --build -d 
▪ cd ./git/selfHealingService 
▪ ./mvnw -Pdev,api-docs -Dskip-tests 
▪ cd ../../git/selfHealingGateway 
▪ ./mvnw -Pdev,webapp,api-docs -Dskip-tests 

Frontends Available services after initialization: 

▪ JHipster registry: http://localhost:8761 
▪ Self-healing test web app: http://localhost:8080 
▪ Self-healing Api Documentation: 

 http://localhost:8080/services/selfhealingservice/v3/api-docs 

6.6.3 User manual 

To test the self-healing functionalities: 

▪ Login to the web app with user/password: admin/admin 
▪ In the administration menu, access openApi. 
▪ Choose SelfHealingService. 
▪ Post a message through the Self-healing notify rest service. 
▪ In this web app, entities menu, can be seen the message received and its status. 

 

Figure 47: Messages received in the Self-Healing component. 

6.6.4 Licensing information 

Information about license not included yet 

6.6.5 Download 

The code is available in Tecnalia GitLab repository: 

https://git.code.tecnalia.com/piacere/private/t63-self-healing/sh-deploy 
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