

Deliverable D6.2

PIACERE run-time monitoring and self-learning, self-
healing platform - v2

Editor(s): Gorka Benguria

Responsible Partner: TECNALIA

Status-Version: Final v1.0

Date: 02.12.2022

Distribution level (CO, PU): PU

DRAFT

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 2 of 107

www.piacere-project.eu

Project Number: 101000162

Project Title: PIACERE

Title of Deliverable:
PIACERE run-time monitoring and self-learning, self-
healing platform - v1

Due Date of Delivery to the EC 30.11.2022

Workpackage responsible for the
Deliverable:

WP6 - Monitor plan and self-heal runtime of
Infrastructure as Code

Editor(s):
Gorka Benguria, Fundación Tecnalia Research &
Innovation

Contributor(s):

Tecnalia (Gorka Benguria, Jesus Lopez, Iñaki Etxaniz),
Ericsson (Cosimo Zotti), Polimi (Bin Xiang), XLAB (Ales
Cernivec, Tomaz Martincic, Alvaro Garcia Faura), 7bulls
(Radosław Piliszek, Marcin Bartmański)

Reviewer(s): Lorenzo Blasi, HPE

Approved by: All Partners

Recommended/mandatory
readers:

Recommended WP2, WP5, WP7

Abstract: These deliverables will contain the main outcomes from

M12 to M24 of T6.1-T6.4 due to the high dependency of
all the different tasks. It will include the monitoring stack
coming from task 6.1 with all the time series data
collected as well as the monitoring from the security
policies from task 6.4, the set of machine learning
algorithms (task 6.2) that comprise the self-learning
mechanisms and the self-healing strategies (task 6.3)
that trigger an optimized redeployment (see WP5). It will
be an iterative process. Each deliverable will comprise a
Technical Specification Report.

Keyword List: Monitoring, Forecast, Healing, Security, Availability,
Performance

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the authors’ views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein

DRAFT

http://www.medina-project.eu/
http://creativecommons.org/licenses/by-sa/3.0/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 3 of 107

www.piacere-project.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 13.10.2022 First TOC and sections assignment TECNALIA

v0.2 19.10.2022 Comments and suggestions received
by consortium partners

TECNALIA

V0.3 26.10.2022 Contributions round 1 7BULLS, ERICSSON,
POLIMI, XLAB,
TECNALIA

V0.4 09.11.2022 Contributions round 2 7BULLS, ERICSSON,
POLIMI, XLAB,
TECNALIA

V1.0 17.11.2022 Final Editing TECNALIA

V1.0 28.11.2022 review HPE

V1.0 02.12.2022 Final version TECNALIA

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 4 of 107

www.piacere-project.eu

Table of contents

Terms and abbreviations ... 7

Executive Summary ... 9

1 Introduction .. 10

1.1 About this deliverable ... 10

1.2 Document structure .. 10

2 Run-time monitoring and self-learning, self-healing platform in PIACERE 11

3 Changes in v2: M12 – M24 Changelog ... 13

3.1 Monitoring controller .. 14

3.2 Performance monitoring ... 14

3.3 Security monitoring ... 17

3.4 Performance Self-learning... 19

3.5 Security Self-learning .. 20

3.6 Self-Healing ... 21

4 State of the Art .. 23

4.1 Infrastructural elements monitoring ... 23

4.2 Self-learning .. 28

4.3 Self-healing .. 44

5 Implementation ... 48

5.1 Monitoring Controller ... 48

5.2 Performance Monitoring ... 54

5.3 Security Monitoring ... 62

5.4 Performance Self-learning... 68

5.5 Security Self-learning .. 72

5.6 Self-healing .. 75

6 Conclusions ... 81

Annex A. Delivery and Usage .. 91

6.1 Monitoring Controller ... 91

6.2 Performance Monitoring ... 95

6.3 Security Monitoring ... 98

6.4 Performance Self-learning... 101

6.5 Security Self-learning .. 102

6.6 Self-healing .. 104

 List of tables

TABLE 1: EVOLUTION OF THE MONITORING CONTROLLER COMPONENT. ... 14
TABLE 2: EVOLUTION OF THE PERFORMANCE MONITORING COMPONENT. ... 15
TABLE 3: EVOLUTION OF THE SECURITY MONITORING COMPONENT. ... 17

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 5 of 107

www.piacere-project.eu

TABLE 4: EVOLUTION OF THE SELF-LEARNING COMPONENT. ... 19
TABLE 5: EVOLUTION OF THE SECURITY SELF-LEARNING COMPONENT. .. 20
TABLE 6: EVOLUTION OF THE SELF-HEALING COMPONENT. .. 21
TABLE 7: MAPE-K RESULTS. ... 44
TABLE 8: MONITORING CONTROLLER RELATED USER REQUIREMENTS FROM WP2. 49
TABLE 9: MONITORING CONTROLLER RELATED INTERNAL REQUIREMENTS. .. 50
TABLE 10: PERFORMANCE MONITORING RELATED USER REQUIREMENTS FROM WP2. 56
TABLE 11: PERFORMANCE MONITORING RELATED INTERNAL REQUIREMENTS. ... 59
TABLE 12: SECURITY MONITORING AND SECURITY SELF-LEARNING REQUIREMENTS RELATED USER REQUIREMENTS

FROM WP2. ... 64
TABLE 13: SECURITY MONITORING RELATED INTERNAL REQUIREMENTS. ... 65
TABLE 14: PERFORMANCE SELF-LEARNING REQUIREMENTS RELATED USER REQUIREMENTS FROM WP2. 69
TABLE 15: PERFORMANCE SELF LEARNING RELATED INTERNAL REQUIREMENTS. ... 70
TABLE 16: INTERNAL REQUIREMENTS FOR SECURITY SELF-LEARNING. ... 73
TABLE 17: SELF-HEALING RELATED USER REQUIREMENTS FROM WP2. ... 76
TABLE 18: SELF-HEALING RELATED INTERNAL REQUIREMENTS. .. 77

List of figures

FIGURE 1: PIACERE RUNTIME DIAGRAM ON ITS 2.0 VERSION. ... 11
FIGURE 2: REQUIREMENTS COVERAGE AT M12. ... 13
FIGURE 3: REQUIREMENTS COVERAGE M24. .. 14
FIGURE 4: PERFORMANCE MONITORING CONTROLLER.. 16
FIGURE 5: SECURITY MONITORING CONTROLLER'S API. ... 18
FIGURE 6: HIGH-LEVEL WAZUH'S ARCHITECTURE. ... 26
FIGURE 7: TYPES OF DRIFT ACCORDING TO SEVERITY AND SPEED OF CHANGES, AND NOISY BLIPS. HERE THE STARS

AND CIRCLES REPRESENT THE PREVAILING CONCEPT AT EVERY TIME INSTANT [23]. 29
FIGURE 8: DRIFT DETECTION EXAMPLE [23]. .. 35
FIGURE 9: INCREMENTAL LEARNING FOR THE CPU USAGE_IDLE VARIABLE. .. 38
FIGURE 10: EVOLUTION OF THE MEAN ABSOLUTE ERROR (MAE) FOR THE PREDICTION OF THE CPU USAGE_IDLE

VARIABLE. ... 39
FIGURE 11: ANOMALIES DETECTION FOR THE CPU USAGE_IDLE. ... 39
FIGURE 12: ANOMALIES DETECTED FOR THE CPU USAGE_IDLE VARIABLE. ... 40
FIGURE 13: DRIFT DETECTION FOR CPU USAGE_USER. .. 41
FIGURE 14: DRIFT OCCURRENCE FOR CPU USAGE_USER. ... 41
FIGURE 15: PROCESS OF MASKING AND PREDICTIONS WITHIN ANOMALY DETECTION PROCESS. 42
FIGURE 16: EXAMPLE OF ANOMALY DETECTION. ... 42
FIGURE 17: APPROACH TO SECURITY SELF-LEARNING IN PIACERE. .. 43
FIGURE 18: DIFFERENT AGGREGATIONS OF ANOMALY SCORES PRESENTED AS LINE PLOTS. 43
FIGURE 19: HISTOGRAM OF LOGS AND A TABLE WITH LOG MESSAGES, ANOMALY SCORES, AND ADDITIONAL

INFORMATION. .. 44
FIGURE 20: SELF-HEALING ELEMENTS. ... 47
FIGURE 21: MONITORING CONTROLLER SEQUENCE DIAGRAM. .. 48
FIGURE 22: PIACERE RUNTIME DIAGRAM ON ITS 2.0 VERSION FOCUSSED IN MONITORING COMPONENTS. ... 52
FIGURE 23: MONITORING CONTROLLER SECOND PROTOTYPE ARCHITECTURE. .. 53
FIGURE 24: PERFORMANCE MONITORING SEQUENCE DIAGRAM. ... 55
FIGURE 25: PERFORMANCE MONITORING INTERNAL WORKFLOW. .. 56
FIGURE 26: PERFORMANCE MONITORING SECOND PROTOTYPE ARCHITECTURE. ... 61
FIGURE 27: SECURITY MONITORING SEQUENCE DIAGRAM. ... 63
FIGURE 28: ARCHITECTURE OF SECURITY MONITORING AND SECURITY SELF-LEARNING. 67
FIGURE 29: SELF-LEARNING SEQUENCE DIAGRAM. ... 68

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 6 of 107

www.piacere-project.eu

FIGURE 30: SELF-LEARNING WORKFLOW DIAGRAM. ... 69
FIGURE 31: ARCHITECTURE OF THE SELF-LEARNING COMPONENT. ... 71
FIGURE 32: INTERNAL FUNCTIONING OF THE MODEL TRAINER. ... 73
FIGURE 33: SELF-HEALING SEQUENCE DIAGRAM. .. 75
FIGURE 34: SELF-HEALING INTERNAL WORKFLOW. .. 76
FIGURE 35: SELF-HEALING INTERNAL ARCHITECTURE. ... 79
FIGURE 36: MONITORING CONTROLLER SWAGGER UI. ... 94
FIGURE 37: PERFORMANCE MONITORING CONTROLLER SWAGGER UI. ... 96
FIGURE 38: INFLUXDB. ... 97
FIGURE 39: GRAFANA .. 98
FIGURE 40: SECURITY MONITORING PART OF THE SECURITY MONITORING CONTROLLER API. 100
FIGURE 41: PERFORMANCE SELF-LEARNING OPENAPI. .. 102
FIGURE 42: SELF-LEARNING API PROVIDED BY SECURITY CONTROLLER. .. 104
FIGURE 43: SELF-HEALING PROJECT STRUCTURE. ... 105
FIGURE 44: SELF-HEALING CONFIGURATION. .. 106
FIGURE 45: SELF-HEALING PRODUCER. .. 106
FIGURE 46: SELF-HEALING CONSUMER. ... 106
FIGURE 47: MESSAGES RECEIVED IN THE SELF-HEALING COMPONENT. ... 107

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 7 of 107

www.piacere-project.eu

Terms and abbreviations

AD Anomaly Detection

AMEL Application Modelling and Execution Language

API Application Programming Interface

BERT Bidirectional Encoder Representations from Transformers

CAMEL Cloud Application Modelling and Execution Language

CSLA Cloud Service Level Agreements

CSP Cloud Service Provider

DevOps Development and Operation

DNN Deep Neural Networks

DoA Description of Action

DOML DevOps Modelling Language

EC European Commission

ELK Elastic Logstasth Kibana

EMS Event Management System

EPA Event Processing Agents

EPM Event Processing Manager

EPN Event Processing Network

FP False Positive

FT-Tree Frequent template tree

GA Grant Agreement to the project

HIDS Host-based intrusion detection system

HTTPS Secure HTTP Hyper Text Transport Protocol

HVM Hypersphere Volume Minimization

IaC Infrastructure as Code

ICG Infrastructure as Code Generator

IDE Integrated Development Environment

IDF Inverse Document Frequency

IDS Intrusion Detection System

IEC Infrastructure Elements Catalogue

IEM IaC execution Manager

IEP IaC execution Platform

IOP Infrastructure Optimizer Platform

IPS Intrusion Prevention System

KPI Key Performance Indicator

LSTM Long Short Term Memory

MAE Mean Absolute Error

MAPE-K Monitor-Analyze-Plan-Execute over a shared Knowledge

MCSLAs Multi-Cloud Service Level Agreements

MLM Masked Language Modelling

MSE Mean Square Error

MTBF Mean Time Between Failures

MTTR Mean Time To Recover

NFR Non-functional Requirements

NSM Network Security Monitoring

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 8 of 107

www.piacere-project.eu

PCA Principal Component Analysis

PRC PIACERE Runtime Controller

QoS Quality of Service

RCA Root Cause Analysis

REST REpresentational “State” Transfer

SEM Security Event Management

SIEM Security Information and Event Managements

SLA Service Level Agreement

SLO Service Level Objective

SNMP Simple Network Management Protocol

SOTA State of the art

SW Software

TF Term Frequency

URL Uniform Resource Locator

UTM Universal Threat Management

VAST Visual Analytics Science and Technology

VAT Vulnerability Assessment Tool

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 9 of 107

www.piacere-project.eu

Executive Summary

This document is a supporting document of the PIACERE run-time monitoring and self-learning,
self-healing platform. Therefore, it is one part of the D6.2. The whole D6.2 is composed by:

▪ The source code of the components that implement the required functionality
▪ The infrastructure as code specification that defines the environments in which these

components are developed, tested, and integrated.
▪ The specification of the way in which these components should be run together
▪ The specification of tests over these components both individually and as an integrated

set.
▪ The specification of the interfaces both programmatical and human oriented
▪ This document

The objective of this document is on the one hand to contain the rationale of the architecture
and approaches taken in the development of the different components, and on the other hand
to provide details in how the different components have been developed and can be deployed.

To address the first objective, we have included the state-of-the-art analysis on the different
aspects of this second iteration of the platform that supports the selected development
approaches. We include information on the following aspects: Infrastructural elements
monitoring, self-learning and self-healing. Besides, for the monitoring and self-learning we focus
on performance and security dimensions.

To address the second objective, for each major component of the PIACERE run-time monitoring
and self-learning, self-healing platform we include information about its implementation,
deployment and usage. The implementation sections contain key information to understand the
features implemented and how the component relates to other components in the architecture.
The delivery and usage sections contain information that will be used during the deployment
integration of the WP6 components together with other components from other work packages
in the common PIACERE framework.

The current version of the PIACERE run-time monitoring and self-learning, self-healing platform,
was developed with three main targets in mind. The first one is to ensure the availability of key
resources among the components; the second one was to start working in the more challenging
internal aspects of the components; finally, the third one was to establish the foundations for
the integration with other work packages.

This version of the document is a follow up version of the D6.1 – PIACERE run-time monitoring.
It extends the previous version with the aspects evolved during the second year of development.
Besides it includes a changelog version to understand the evolution during this second year.

Next version (D6.3) of this document will include updates on the approaches, the
implementation and delivery and usage based on the advances and the changes introduced to
move forward the integration of these components with the rest of PIACERE components.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 10 of 107

www.piacere-project.eu

1 Introduction

1.1 About this deliverable

This document is a supporting document of the second version (M24) of the PIACERE run-time
monitoring and self-learning, self-healing platform. It is a complementary document that
explains the approach, the implementation, and the way to deliver and use each one of the
current components that take part in the implementation of the functionalities expected from
the WP6. Besides, as it is a follow up version of the document it also covers the evolution with
respect to the previous version.

The overall objective in this period has been to start the piloting of the features regarding the
performance and security monitoring, self-learning and self-healing components.

This document has been developed merging contributions from all the partners of all the tasks
of the WP6:

▪ Task 6.1 Runtime monitoring and self-healing preparation
▪ Task 6.2 Self-learning algorithms for failure prediction
▪ Task 6.3 Strategies and plans for runtime self-healing
▪ Task 6.4 Runtime security monitoring

The purpose of this document is threefold:

▪ To serve as a reference of the background of the technical decisions taken regarding the
approaches followed during the development of the components

▪ To contain information to support future development. This includes information to
understand how the components have been developed, which are their features and
how can be tested.

▪ To describe the evolution with respect to the previous version.

1.2 Document structure

The document is structured into six parts. Section 2 explains the components covered by the
document and their relationships. Section 3 summarises the evolutions introduced during the
period from different perspectives: overall approach, innovation, and technical. The next part 4
addresses the state of the art that supports the technical decisions taken to develop the
different components covered in this deliverable.

The fourth part 5 addresses the implementation details of the different components. For each
component we include details about the functional description, the requirements covered, how
it fits in the overall architecture and its technical description. This part spans from section to
section. The requirements include project level requirements that comes from the use cases,
and the component internal requirements that are internally established with the upcoming
integration in mind.

The fifth part, section 6, provides the conclusions.

Besides there is a final part Annex A that addresses the delivery and usage of each component.

The implementation and the delivery parts, have been designed to be used in isolation by the
developers, without requiring them to read the whole document. With that objective in mind
some figures may be repeated to improve that isolated readability.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 11 of 107

www.piacere-project.eu

2 Run-time monitoring and self-learning, self-healing platform in
PIACERE

The components covered by this deliverable are part of the PIACERE infrastructure advisor
platform as shown in Figure 1. The infrastructure advisor has the role of ensuring the optimal
deployment of the application specified in the DOML (DevOps Modelling Language) along the
time.

The role of the components in this architecture is on the one hand to monitor the NFR (non-
functional requirements) stated in the DOML and in case there are some deviations, or a
deviation is forecasted, take corrective actions. On the other hand, the components will feed
data into the Infrastructure Elements Catalogue (IEC) so that the real measurements are taken
into account in the following IOP (Infrastructure Optimizer platform) calculation of the optimal
deployment for a given application deployment request.

These components are mainly controlled by the PIACERE Runtime Controller (PRC) that will
inform the components about the new deployments that should be tracked, and the
deployments that do not require to be tracked anymore.

In this new version, we also implemented several links from IDE to the different monitoring
components to provide the users with an easy way to access the different monitoring
components in an easy and integrated way.

Figure 1: PIACERE Runtime Diagram on its 2.0 version.

Besides the components indicated in the architecture of the PIACERE runtime platform, the
monitoring components, both performance and monitoring, will deploy agents together with

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 12 of 107

www.piacere-project.eu

the deployed applications in order to gather the data required for controlling the fulfilment of
the NFR (Non-functional Requirements) stated in the DOML.

WP6 will include the following components to achieve their role in the PIACERE platform:

▪ Monitoring Controller: in charge of controlling the activities involved in the start and
end of the monitoring of deployments, as they are created and destroyed by the PRC.

▪ Monitoring: This is a package that contains components that gather data from the
deployments and controls the non-functional requirements continuous achievement. It
includes components to control two aspects.

o Performance (also including availability)
o Security

▪ Self-learning: This is a package that contains components that perform forecasts about
the future values of key measures on the infrastructure resources supporting the
deployments. It includes components to provide forecasts on two aspects.

o Performance (also including availability)
o Security

▪ Self-healing: This component receives alerts from the previous components and based
on the type of alert it requests the PRC to perform different actions such as redeploy,
reboot, scale, etc.

NOTE: currently, the IDE Plug-in Dashboard is not included as it does not interact with the
components addressed in this work package.

The other components shown in the Runtime Diagram (Figure 1) are documented in the
following deliverables: IDE in D3.8, IaC Optimizer Platform (IOP) and Infrastructural Element
Catalogue (IEC) in D5.8, Runtime Controller (PRC) and IaC Execution Manager (IEM) in D5.2.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 13 of 107

www.piacere-project.eu

3 Changes in v2: M12 – M24 Changelog

This section explains the evolution from the previous release M12 to the current release M24.
It is structured in separate sections to describe with more detail the evolution in specific areas
covered by the D6.2.

▪ Monitoring Controller
▪ Performance Monitoring
▪ Security monitoring
▪ Performance Self learning
▪ Security Self learning
▪ Self-Healing

With respect to the use case requirements coverage, we show the advance M12 to M24 in the
following figures Figure 2 and Figure 3. The advance is described focusing of the different
PIACERE Key Results (KR) covered in this document. KRs package the outcomes of the WP6 in
exploitable results. These are:

▪ KR11 - PIACERE Self-learning and self-healing mechanisms
▪ KR12 - Runtime security monitoring

During Year 1 the advance was focused in providing the building blocks to enable the
development of more complex features during the next period, the overall progress and
requirements coverage is shown in Figure 2.

Figure 2: Requirements coverage at M12.

In Year 2 we advanced in the coverage of the requirements focussing on the direct usage by the
targeted scenarios. The overall progress and requirements coverage is shown in Figure 3.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 14 of 107

www.piacere-project.eu

Figure 3: Requirements coverage M24.

3.1 Monitoring controller

This is a utility component introduced in M12 to provide a single point of control of the
monitoring infrastructure to other components in the piacere framework such as the piacere
runtime controller (PRC).

3.1.1 Overall evolution

The main activities performed during this period focused on the integration with other
components of the PIACERE platform and the implementation of the end-to-end user scenarios.

Table 1: Evolution of the Monitoring Controller component.

M12 M24

Definition of interfaces of that will proxy the
monitoring platform with the rest of
elements of the piacere infrastructure,
covering: activation and deactivation of
monitoring for specific deployments.

Implementation and testing in pilots of the
activation and deactivation functionalities
towards required components in the internal
monitoring infrastructure:

▪ Performance monitoring
▪ Performance self-learning
▪ Security monitoring

3.1.2 Innovation aspects

As this component is utility component that acts as proxy between the piacere platform and the
monitoring component we will only address the overall evolution in the period. There are no
innovation aspects directly covered by it.

3.1.3 Technical features

It includes REST clients to manage relevant component in the internal monitoring architecture:
performance monitoring, performance self-learning and security monitoring.

The implementation of the clients relay in the standard definition of the API of those
components using OpenAPI Specification (OAS). That enables an easier implementation of
changes based on the expected evolution in those components.

3.1.4 Changes coming from use cases

No major changes from requests from the use cases have been made.

3.2 Performance monitoring

3.2.1 Overall evolution

The main activities performed during this period focused on the integration with other
components of the PIACERE platform and the implementation of the end-to-end user scenarios.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 15 of 107

www.piacere-project.eu

Table 2: Evolution of the Performance monitoring component.

M12 M24

Deployment of base monitoring elements to
enable the development of other
components.

Including docker based agents to
continuously feed the infrastructure with
data.

Those agents were not suitable to be
deployed on use case infrastructure elements
not including docker technology.

Creation of performance monitoring agent
configuration to be deployed as part of the
infrastructure as code generated by the
infrastructure as code generator (ICG).

Deployment of multiple testing agents in a
permanent way to produce the necessary
information to develop other components in
the PIACERE monitoring stack such as those
related with the self-learning and self-
healing.

Definition of interfaces of the different
elements of the monitoring infrastructure. In
this period the integration with IDE was not
considered.

Implementation of interfaces for the
integration of the monitoring platform with
the integrated development environment
(IDE). The integration is focussed on the
facilitation of the access to the different
development related dashboards from the
IDE.

Prototypical performance dashboard was
included. In this period only performance
dashboards were envisioned.

Implementation of deployment related
functionalities at Grafana side, this has
required the creation of a controller services
that customize the Grafana based on the
deployment information.

Development of different dashboards for
performance and self-learning metrics.

The integration of components was mainly
focused internally on the monitoring scope.

▪ Data gathering
▪ Self-learning
▪ Self-healing

Finally, we have collaborated closely with
other components in the PIACERE
architecture to achieve the successful end-to-
end execution of a deployment including the
monitoring agents and the configuration of
the monitoring platform. Main components
involved in this collaboration have been:

▪ PIACERE runtime controller (PRC)
part of KR13

▪ Infrastructure as code execution
manager (IEM) KR10

▪ Integrated Development
environment (IDE) KR2

3.2.2 Innovation aspects

No major changes in the innovation aspects have been introduced. We continue in the
achievement of the planned innovation:

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 16 of 107

www.piacere-project.eu

▪ To externally monitor heterogeneous types of resources (Cloud services and IoT) and
diverse metrics (performance, cost, availability, security) in a continuous and integrated
manner with the defined deployment model.

3.2.3 Technical features

Performance monitoring controller has been developed. It covers two main aspects:
deployment configuration and provisioning of deployment related Grafana dashboards
information to the IDE. The Figure 4 shows the main features implemented in the performance
monitoring controller. The API and the details of its usage can be accessed in the integration
environment (https://git.code.tecnalia.com/piacere/public/the-platform/runtime-
monitoring/pm/-/tree/y2/git/pmc/openapi.yaml)

Figure 4: Performance monitoring controller.

The POST and DELETE methods are related with the creation and removal of deployment
workflows and are related with the PRC integration. While the GET methods are focused on the
retrieval of information about the deployment related dashboard by the IDE.

Performance monitoring agent has been developed. It covers the generation of the
infrastructure as code related with the necessary collection of monitoring data at elements
configured as part of the deployments created. The agent has been developed using Ansible and
available open-source components when possible. The agents are placed outside from the
piacere framework main deployment as they run in the infrastructure elements created by the
IAC (Infrastructure as code) created by piacere.

3.2.4 Changes coming from the use cases

The experimentation with the use cases have been useful to:

▪ Adjust the visibility of the agent related code in order to facilitate the usage by the
scenarios

▪ Adjust the agent variables and their management to match the stage based IaC
procedure implemented in the PIACERE Project.

▪ Request the modification of the log information on the IEM to be able to analyze the
progress of the configuration of the agents.

▪ Request the modification of the PRC to get the deployment id necessary to setup the
performance and self-learning dashboards.

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/pm/pmc/-/blob/main/openapi.yaml

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 17 of 107

www.piacere-project.eu

3.3 Security monitoring

3.3.1 Overall evolution

The main activities performed during the last period were focused on monitoring, self-learning
components and adapting the to the security non-functional requirements.

Table 3: Evolution of the Security monitoring component.

M12 M24

We have specified a central interface for the
security monitoring component. This
interface takes care of the configuration of
the monitoring of the deployments, similar to
those developed in T6.1.

We have implemented the stub of the
interface, we have dockerized it and
orchestrate with a docker-compose.

A new version of security controller has been
developed by creating a new release of
OpenAPI specification with corresponding
business logics on the back-end services.

Basic security mechanisms were integrated
within the controllers (basic auth,
communication over TLS, secure connections
between internal components), thus making
the security monitoring components more
secure.

Security monitoring deployed it in the project
CI platform.

Security monitoring facility has been
integrated with the existing PIACERE CI
process.

We have implemented ansible playbooks for
the agent in order to facilitate their
deployment and configuration at pilot
scenarios.

We have deployed agents to collect data
related to security to be able to develop and
test the security related monitoring and self-
learning components.

An ansible playbook to deploy the security
agent of the security monitoring following
the agreed WP6 approach to deploy
monitoring agents with the minimal
configuration

The agent has been extended with additional
configuration supporting PIACERE
deployments and already with the notion of
multi-tenancy (or multi-project support).

 Contribution to the DOML definitions w.r.t.
basic strategies for supporting security
related ansible based self-healing processes
have been made. These discussions are still in
progress, we can expect implementation of
the strategies in the next reporting period.

 Integration with the IDE (redirect to the
Security Self-Learning dashboards within a
project).

3.3.2 Innovation aspects

Innovations during the past period were focused on 2 main aspects:

▪ The dynamic notion of security monitoring integrated within the complete CI/CD.
Besides the static analysis being done within WP4 we are capable to obtain dynamic

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 18 of 107

www.piacere-project.eu

analysis with the use of PIACERE framework. This analysis evaluates infrastructure and
provides a set of security issues detected (CVEs, severities detected, problems that can
be resolved with hardening and also anomalies detected in the runtime).

▪ Machine learning (ML) based anomaly detection using Masked Language Modelling and
Hypersphere Volume Minimization has been introduced and integrated. Additionally,
the presented approach embedded into the whole DevOps lifecycle increases the
innovation part of the ML-based anomaly detection.

3.3.3 Technical features

New version of the OpenAPI specifications. In the latest versions of the Security Monitoring
Controller, resources related to the Security Self-learning have been slightly updated in order to
adapt to responses from the self-learning API. Additionally, DELETE method is now supported
on the Deployment resource in order to support removal of deployments (or projects).

Figure 5: Security Monitoring Controller's API.

The Figure 5 above presents introduction of "deployments" and DELETE method for the
resource. Complete API specification can be found on official PIACERE public repository1.

Ansible playbook to deploy security agents and updates to the agents. In the public
repositories2 there are Ansible playbooks for deploying agents in Docker and “bare-metal”
environments.

Security of the components. More configuration options are now supported with additional
user names and passwords for the deployment of the core security monitoring components.
Specifically, ElasticSearch can be protected by using basic authentication credentials (also for
securing communication with self-learning components). Documentation on these details can
be found in the README.md file of the official PIACERE public repository3.

3.3.4 Changes coming from the use cases

No major changes stemming from the use cases have been made.

1 https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-
monitoring-controller/-/blob/main/swagger_server/swagger/swagger.yaml - OpenAPI specification of
the Security Monitoring Controller.
2 https://git.code.tecnalia.com/piacere/public/agents/sma-playbook – public repository of the security
monitoring agents
3 https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-
monitoring-deployment – repository and documentation of the Security Monitoring stack (ELK, Wazuh
Manager and Security Monitoring Controller)

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-monitoring-controller/-/blob/main/swagger_server/swagger/swagger.yaml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-monitoring-controller/-/blob/main/swagger_server/swagger/swagger.yaml
https://git.code.tecnalia.com/piacere/public/agents/sma-playbook
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-monitoring-deployment
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-monitoring-deployment

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 19 of 107

www.piacere-project.eu

3.4 Performance Self-learning

3.4.1 Overall evolution

The main activities performed during this period has been focused on the coverage of additional
metrics to complete the planned metrics to be adressed. We have mainly evolved the
component in these lines:

Table 4: Evolution of the Self-Learning component.

M12 M24

We had developed all the metrics but only
CPU ones were tested. Concretely:

▪ CPU metrics (usage_idle, usage_user,
usage_system) were developed,
integrated and tested.

▪ MEMORY (free, used_percent) and
DISK (free, used_percent) metrics
were only developed and integrated

Now all metrics (CPU, MEMORY and DISK
ones) are developed, integrated and
successfully tested

Concept drift detection was not developed,
integrated and tested in any metrics

Now all metrics count on a concept drift
detector; it has been developed, integrated
and successfully tested

A monitoring data point is received every 1
hour.

In order to be able to predict in time a
decrease in the performance, and take the
corresponding actions (self-healing), we have
changed the frequency to have a datapoint
every 10 minutes.

3.4.2 Innovation aspects

We have not added more innovation aspects. They were included at the beginning of the
project, and now it is time to take them to the reality. They continue to be the same:

▪ To develop improved predictive models to detect and predict the non-compliance on
NFRs (runtime- and security-related) with integrated anomaly and concept drift
techniques.

3.4.3 Technical features

We have mainly introduced the following technical modifications:

▪ Now the technique to develop the incremental learning algorithm is based on
SNARIMAX4 with a regressor based on KNN.

The main reason for this change is that SNARIMAX is tailored to time series forecasting
(it adapts to several horizons of prediction), while Random Forest is only useful is case
of nowcasting (horizon=1). As we may try to make predictions for several horizons, this
technique scales better in case of this need becomes a reality.

4 https://riverml.xyz/0.14.0/api/time-series/SNARIMAX/

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 20 of 107

www.piacere-project.eu

Previously The technique to develop the incremental learning algorithm was Random
Forest.

▪ Now the technique to develop the outlier detector algorithm uses the range

[mean-s*std : mean+s*std]

The main reasons for this change are:

• It is not based on machine learning, but on statistics, so it is faster in processing

• It perfectly detects the outliers present in PIACERE, more than the previous
technique

• It is more transparent and understandable

3.4.4 Changes coming from the use cases

The uses cases have not changed the nature of the component.

3.5 Security Self-learning

3.5.1 Overall evolution

The main activities performed during this period have been in the implementation of the training
and inference process. Based on the basic security requirements, extensions to the
communication layer of the security self-learning components have been made in order to make
the platform more secure. Additionally, a specific model has been chosen and implemented for
the training and for the inference process. Three different dashboards have been implemented
and are made available for the use within PIACERE pilots.

Table 5: Evolution of the security self-Learning component.

M12 M24

We have specified a central interface for the
security self-learning interactions. The
interface for the self-learning functionalities
have been integrated with the security
monitoring controller.

We have implemented the stub of the
interface, we have dockerized it and
orchestrate with a docker-compose.

Based on the basic security requirements,
extensions to the communication layer of the
security self-learning components have been
made in order to make the platform more
secure. Additionally, a specific model has
been chosen and implemented for the
training and for the inference process. Three
different dashboards have been
implemented and are made available for the
use within PIACERE pilots.

 Integration with the IDE (redirect to the
Security Self-Learning dashboards within a
project).

3.5.2 Innovation aspects

LogBERT model is implemented as it is described in section 4.2.2.2.

For training process GPU-based systems are being used. Moreover, for the inference process,
GPU and CPU-based systems are supported. GPU and CPU workers can be deployed on different
hosts.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 21 of 107

www.piacere-project.eu

Different dashboards have been developed:

▪ Dashboard for log and anomaly scores inspection is made available.
▪ Dashboards for parsed log template inspection has been made available.
▪ Dashboards for training log parser and anomaly detection model

3.5.3 Technical features

Integration tests have been implemented. Moreover, GitLab CI pipelines for building docker
images and python packages have been established.

Support for basic authentication towards external Elasticsearch instance has been made.

3.5.4 Changes coming from use cases

No major changes stemming from the use cases have been made.

3.6 Self-Healing

3.6.1 Overall evolution

The main activities performed during this period have been focused on the implementation of
initial strategies, the identification of possible additional strategies and the integration of the
self-healing from the user perspective.

Table 6: Evolution of the self-healing component.

M12 M24

We have implemented a first version the self-
healing component where we manage
different elements: notifications from the
other monitoring components, types of
notifications, strategies that can be applied
and relationships between types of
notifications and strategies.

We have implemented the stub of the
interface covering notification aspects.

We have implemented the integration of the
self-healing with the PRC (PIACERE runtime
controller) to be able to request the removal
and creation of deployments.

We have also collaborated in the
implementation of the usage of the
notification interface by other monitoring
components: security monitoring,
performance self-learning and security self-
learning.

We have implemented a front end for the
self-heling to facilitate the understanding of
its configuration and the visualization of his
activity.

The front end has been integrated in the IDE
and it is now linked to the deployment.

We have identified an initial set of strategies:
reboot, redeploy, vertical scalability and
horizontal scalability.

We have refactored the vertical and
horizontal scaling strategies to reduce them
to one single scaling strategy. That based on
the DOML will take de decision of scaling
horizontal or vertically.

Based on the discussions with security
monitoring we have found the need to
implement additional strategies: ansible,
quarantine and user warning.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 22 of 107

www.piacere-project.eu

Some of the identified strategies require
changes in doml that are being discussed.

The main activities corresponding to the achievement of this objective have been:

▪ We have refactored the vertical and horizontal scaling strategies to reduce them to one
single scaling strategy. Based on the DOML the self-healing component will take the
decision of scaling horizontal or vertically.

▪ Based on the discussions with security monitoring developer partner we have found the
need to implement two new strategies: quarantine and user warning.

3.6.2 Innovation aspects

No major changes in the innovation aspects have been introduced. They continue to be the
same:

▪ To provide the means to set up self-healed IaC at runtime with minimal manual
intervention

3.6.3 Technical features

New strategies have been introduced as part of the identification of potential self-healing
strategies to be applied:

▪ Vertical scaling: this will be applied for infrastructure elements with no scale capability
known that are suffering performance degradation. It will be also a possibility for those
elements with scale capability.

▪ Horizontal Scaling: this will be applied for infrastructure elements with scale capability.
▪ Quarantine: this will stop the infrastructure element, when it becomes untrusty from a

security perspective. This may involve the detention of the whole deployment.
▪ User warning: this will warn the user of some non-critical security hazards.

The self-healing user interfaces have been integrated in the IDE, now it is possible to access the
self-healing logs from the IDE.

3.6.4 Changes coming from the use cases

No major changes stemming from the use cases have been made. DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 23 of 107

www.piacere-project.eu

4 State of the Art

4.1 Infrastructural elements monitoring

4.1.1 Infrastructural elements monitoring approaches and challenges

Multi-cloud scenarios are more and more used to deploy microservices-based applications. The
components of such an application are described in the literature as “loosely coupled units of
development that work on a single concern” [1]. In the cloud, each microservice (or component)
can be deployed in a different resource, even in a different cloud, attending its specific needs or
non-functional requirements (NFR) such as location, cost, performance, etc., making the multi-
cloud scenario especially adequate for the deployment of microservices-based applications.
This new architype, where an application is deployed in distributed cloud resources, would not
be possible without novel developments in governance, SLA (Service Level Agreement)
management and monitoring.

In fact, one of the challenges in the area of cloud services federation, among others like the data
portability or the lack of applicability of standards and legislation, is the monitoring and
assessment of cloud services SLAs [2]. Precise monitoring of Quality of Service (QoS) and SLA
verification of cloud services enables additional functionalities [3], as service selection or real
time capacity estimation. Tools such as Nagios or Ganglia allow monitoring low-level metrics of
computing resources in general, but automation on the configuration and calculation of complex
metrics to assess CSLAs is still missing, especially when addressing multi-cloud environments.

During the current period a new initiative has gain some momentum. This initiative is Gaia-X 5 it
is an ecosystem to define a next generation of data infrastructure. Among their service there is
one centred in the monitoring named Continuous Automated Monitoring CAM. The purpose of
CAM is to support means to transparently evaluate the compliance of the individual services
offered at Gaia-X. It focusses on the compliance with some requirements and rules imposed by
Gaia-X on the system.

4.1.1.1 Performance Monitoring

In the H2020 project DECIDE, a component that supports the brokerage of cloud services is
presented, called ACSmI [4]. One of the functions of this broker is to control the fulfilment of
the SLAs for each Cloud Service contracted. ACSmI monitors the SLAs (also called non-functional
properties or NFRs) of the services offered by the Cloud Service Providers (CSPs) and assesses
them to detect any violation. If a violation of some SLO (Service Level Objectives) is detected, an
alert is raised. In ACSmI, the NFRs assessed are performance, availability, location and cost, while
virtual machines are the only cloud resource used.

For each of the selected NFR, related metrics to be assessed have been defined. To be able to
compare, combine and assess SLAs from different CSPs, the metrics are defined according to
ISO/IEC 19086-1:2016 standard [5]. This standard seeks to establish a set of common cloud SLA
building blocks (concepts, terms, definitions and contexts) that can be used to create Cloud
Service Level Agreements (CSLAs).

In order to support the most standardized metrics, the guidelines defined in the mentioned ISO
standard were adopted by ACSmI for the metrics selected:

▪ Availability. Availability is defined as A = MTBF/(MTBF+MTTR), ∑ (100%-termi))
n
i=1

where MTBF (Mean Time Between Failures) and MTTR (Mean Time To Recover), are
calculated based on other discrete metrics using different techniques.

5 https://www.data-infrastructure.eu/GAIAX/Navigation/EN/Home/home.html

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 24 of 107

www.piacere-project.eu

▪ Performance. For the performance the usage of CPU, memory and disk is measured.
Different thresholds can be configured ad-hoc through the ACSmI monitoring API.

▪ Location. It determines where a cloud resource is located, geo-locating its IP address
from the Service registry.

▪ Cost. Determines the current cost that a CSP is reporting on a certain resource. The
actual incurred cost is calculated by monitoring the billing.

ACSmI combines push and pull monitoring (internal and external approach for monitoring VMs)
for cloud resources. This implies that pre-configured agents are to be installed in the
corresponding virtual machines, in an architecture described as Extended Internal Adaptive in
[6]. It is composed by several components, among others:

▪ Metering or Data collection: Collects the data from the different cloud services where
the application is deployed. Based in Telegraf6 open-source tool, Metering is
automatically configured based on the information of the application to be deployed.

▪ SLA Assessment: in charge of the aggregation of the different raw metrics in order to
assess the values of the NFRs with respect to the SLOs.

▪ Violations Handler: Once the assessment detects a violation of some SLA, this
subcomponent registers it for future consults and informs of the violation to the CSP.

The definition of a composed SLA for a multi-cloud application is another issue that needs to be
considered. This is critical for multi-cloud applications, for which the composed Multi-Cloud SLA
(MCSLA) is based on the composition of the underlying Cloud services SLAs [7]. The MCSLA can
act as the contract between the end-users and the developer of the multi-cloud native
application and it needs to be assessed at run time. A MCSLA must act as an aggregator of all
terms defined in the various SLAs.

In a related H2020 project, Melodic, a novel distributed application monitoring system was
introduced – EMS: Event Management System. [8] It is able to collect, process and deliver
monitoring information pertaining to a distributed, cross-cloud application, according to CAMEL
model specifications, considering the defined SLOs. The aggregated monitoring data is used by
Upperware (the Melodic orchestration) to trigger reactively the reasoning process and issue
decisions on reconfigurations when and if needed. The big advantage of the EMS approach is its
decentralized nature, which is ideal for multi-cloud applications, since it provides a hierarchical
filtering of the monitoring information, avoiding bottlenecks and excessive use of network
bandwidth.

EMS undertakes the task of deploying a network of agents for collecting monitoring information
from the monitoring probes as events, processes them using distributed event processing
methods, and forwards the results to Upperware (e.g., Metasolver – the optimisation
component). A CAMEL model specifies the needed monitoring information and the kind of
processing required, as these have been defined through SLOs. Both the installation of
monitoring probes and the deployment of EMS agents is the responsibility of Executionware
under the orchestration of the Melodic workflow. EMS is a distributed application monitoring
system that comprises of a server integrated in Upperware, named Event Processing Manager
(EPM), and several clients, named Event Processing Agents (EPAs). EPM and EPAs form a
network of nodes for distributed event processing, called Event Processing Network (EPN). This
network is orchestrated and controlled by EPM which is used to, specifically:

6 https://www.influxdata.com/time-series-platform/telegraf/

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 25 of 107

www.piacere-project.eu

▪ Analyse the CAMEL model of a cross-cloud application in order to extract the required
(by other Melodic platform components) monitoring information along with the
processing needed.

▪ Deploy (through Executionware) EMS clients (EPAs), to each distributed application
node that hosts an application component (to be monitored).

▪ Configure each EPA to collect (from sensors) and forward the needed events, and also
apply the required complex event processing rules.

▪ Provide the required information (specified in the CAMEL model), either by updating the
application constraints model, by publishing events (any interested party may subscribe
to receive them), or by requesting Melodic platform to reconfigure the distributed
application (e.g., when certain SLOs are violated).

The EMS is one of the Melodic components being enhanced in another H2020 project –
Morphemic. The focus is on resilience, especially in the context of edge deployments, and
includes features like self-healing (i.e., automatic healing for the monitoring platform – EMS),
clustering and federation.

4.1.1.2 Security Monitoring

Existing security monitoring solutions implement functionalities such as: sensor, parser,
integrator, detector, inspector and actuator [9]. Sensor is collecting data from the target
subsystem resulting into records – logs. Parser and integrator can be two components dedicated
to transform (normalise) logs into a common format and aggregate the logs onto the central
location. Detector is capable of detecting anomalies from the data stream (or the logs), inspector
allows data inspection and actuator performs actions on the target system configuration.
Network Security Monitoring tools in the market encompass from single-module solutions to a
combination of the described modules. Single module solution can be network traffic sensors
(sensors incorporating libpcap library such as wireshark , tcpdump , tshark ; traffic sessions
capture, such as netflow ; traffic statistics using SNMP) and log and state sensors (syslog parsers,
application logs parsers). Multi-module solutions have greater importance, since these allow not
only collecting but also analytics and detection capabilities. These solutions can further be
divided into different classes: Intrusion Detection Systems (IDSs), Intrusion Prevention Systems
(IPSs), Security Event Management (SEMs), Security Information and Event Managements
(SIEMs), Universal Threat Managements (UTMs). In PIACERE we are targeting existing open-
source solutions providing all the modules described above (parser, integrator, detector,
inspector and actuator) with the possibility of having specific sensors for the target
infrastructure (or the application). OSSEC, Zeek (BRO), Wazuh and Splunk are the potential
candidates to be used since all provide the needed requirements (see the list of requirements
in section 5.3.2) and are built on top of open-source solutions/modules.

OSSEC (Open Source HIDS SECurity) [10] is a multi-platform, open source HIDS (Host-based
Intrusion Detection System) that performs log analysis, integrity checking, monitoring of
Windows records, and rootkit detection. It provides alerts and maintains a copy of the modified
files to perform forensics tasks. It has some basic SIEM features, such as allowing the correlation
of logs from several devices and formats, and mechanisms for compliance of security policies,
but it has been traditionally considered to be an IDS.

Zeek (formerly known as BRO) [11] is a passive network traffic analyser. It supports a wide range
of traffic analysis tasks beyond the security domain, including performance measurement and
troubleshooting. Zeek has an extensive set of logs describing network activity of every
connection seen on the wire and also application-layer transcripts (HTTP sessions with their
requested URIs, key headers, MIME types, and server responses; DNS requests with replies; SSL
certificates; key content of SMTP sessions; and more). By default, Zeek writes all this information

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 26 of 107

www.piacere-project.eu

into well-structured tab-separated or JSON log files suitable for post-processing with external
software.

Wazuh [12] is built on top of OSSEC – it has a robust open-source Intrusion Detection System
that performs log analysis, integrating log analysis, file integrity monitoring, Windows registry
monitoring, centralized policy enforcement, rootkit detection, real-time alerting, and active
response from multiple devices and formats running on most operating systems. This tool has a
cross-platform architecture and is centralized, allowing to target multiple systems for
monitoring, managing and analysing firewalls, IDSs, web servers, and authentication logs. For
each capability, Wazuh has a process defined with specific rules where it is possible to define
metrics, for example:

▪ Compliance level with standards such as PCI DSS, HIPA, GDPR

▪ Occurrence of changes within system files (file integrity checks)

▪ Detection of rootkits installed on the infrastructure

▪ Number and severity of infrastructure vulnerabilities detected (e.g. CVE level of

dependencies installed on the OS being monitored)

▪ Monitoring cloud logs (via IaaS’ or PaaS’ API, such as AWS’ CloudMonitoring)

High level architecture of Wazuh is depicted in Figure 6. Looking at it from high-level, it consists
of Wazuh Agents and Wazuh Server. The Wazuh agent (installed on endpoints) with different
interfaces (modules) is able to detect different metrics on the host. Wazuh Server consists of
worker nodes (Wazuh cluster), Kibana Server and ElasticSearch Cluster.

Figure 6: High-level Wazuh's architecture.

Vulnerability assessment in a context of security monitoring process is a systematic review of
security weaknesses and can be performed in different ways, but the most common way is by
using automated vulnerability scanning software that is usually already provided in the tools
mentioned above. Due to the quick changing rate of IT environments and evolution of attacks,
vulnerability scans should be performed on a regular basis (continuously collecting security
metrics and categorizing these based on some predefined rules).

Devices (infrastructure) can be profiled according to their “behaviour” by exploiting system-level
information in order to detect anomalous behaviours. Anomaly detection in the context of
security monitoring is analysed in the section 4.2.2.2.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 27 of 107

www.piacere-project.eu

4.1.2 Infrastructural elements monitoring approach in PIACERE

4.1.2.1 Performance Monitoring

The goal within Runtime Performance Monitoring is to continuously gather metrics from the
infrastructures deployed and ensure that they continuously meet the expectations defined
during the application deployment design phase.

As in the ACSmI [4] we have deployed agents in the deployed infrastructures to gather
performance metrics and send them back to the PIACERE Platform. We have used Telegraf [13]
open-source tool to gather that information. The agents will be deployed as integral part of the
application deployment in this sense the ICG generates the required IaC configuration not only
to deploy the components of the application but also the agents required to ensure the
continuous alignment of the infrastructure to the expectations reflected in the DOML.

Apart from the agents gathering the information we have deployed additional elements to store
the data, process it, and dispose it for use by other components. For the deployment of these
elements we considered two options: deploy them as part of the application or deploy them as
part of the PIACERE framework. We have decided to deploy them as part of the PIACERE
framework for some reasons:

▪ It decouples the application from the monitoring and operation
▪ We can use the PIACERE framework to monitor several applications

For the monitoring part in the PIACERE framework we have included: time series databases to
store the information, processing framework to continuously check the NFR, web user interfaces
that allow to view and analyse the metrics gathered, and some configuration components to
adapt the infrastructure each time an application is deployed.

For the storage of information, we have used influxdb7 that integrates quite well with Telegraf
allowing a firewall-friendly and secure communication from the agents present in the deployed
infrastructure and the PIACERE framework. Influxdb is an open-source time series database with
a big user base. Besides, it can be deployed in different ways supporting a wide range of needs
from a container to a cluster. It has a REST API to feed and query information.

For the processing framework and web user interface we have used Grafana8. That is also an
open-source platform. It provides a responsive web-based user interface with a backend that
takes care of the thresholds and the notifications. It also has a REST API to manage the sources,
the dashboards, the thresholds and the notifications means.

For the configuration component we have defined a PIACERE-oriented REST API, and a Java
based server to implement the logic for that REST API.

4.1.2.2 Security Monitoring

The goal within Runtime Security Monitoring is to provide a security monitoring system for the
target infrastructure/application, managed by PIACERE. It complements PIACERE SAST (Statical
Analysis Security Tools) technique with dynamic perspective – using Network Security
Monitoring (NSM) tools [9]. The monitoring system is able to detect suspicious (system and/or
application) log entries on the system, configuration changes of the system, file integrity issues,
some types of attacks, and malware presence on the system. Network security strategies
encompass protection, detection and response processes. Using the runtime security

7 https://www.influxdata.com/
8 https://grafana.com/

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 28 of 107

www.piacere-project.eu

monitoring tools (Wazuh, Filebeat, ELK-stack and newly developed components: anomaly
detection tool based on LogBert algorithm and Security Monitoring Contoller) in PIACERE we are
focusing primarily on the detection and secondary on the response and protection (through the
self-learning and self-healing process). With the Wazuh (agents and a manager) and Filebeat we
are capable to detect real-time security-related metrics and aggregate logs for the purpose of
anomaly detection. Using dedicated ELK-stack based on open-source distribution components
we are storing newly detected events and logs in Elasticsearch (open-source distribution) in
different – separate indexes. Anomaly detection based on log date is capable to 1) train the
model using the already provided logs from the dedicated index and 2) detect anomalies in real
time based using a specific already pre-trained model. We have extended Wazuh modules to
include PIACERE specific labels so that we are capable of filtering the data and events based on
these labels in the data itself. Kibana is used to depict security-related events. Security
Monitoring Controller is capable of monitoring the events and triggers actions based on the
severity level of these detected events. These actions are, for example, webhook calls to
external services (e.g., Self Healing PIACERE component). Security Monitoring Controller is
equipped also with a process capable of detecting Wazuh’s and Anomaly detection logs.

4.2 Self-learning

4.2.1 Self-learning approaches and challenges

Nowadays, many machine learning models in production are still static, i.e., they were
developed and trained by data scientists or researchers on historical data, and from that point
on they will not be able to incorporate new knowledge. In most real applications data arrive in
the form of fast streams, and new data characteristics or trends should be incorporated into the
existing models. When they remain static, these models should be retrained on a fairly regular
basis (daily or even more frequently). However, this is not very efficient because:

1. implies that an expert would have to be focused on deciding which is the best moment
to train the models again,

2. nowadays data are produced in the form of fast streams, and
3. data are affected by non-stationary phenomena that occur fast, and a human cannot

successfully detect changes in a real-fashion environment.

Therefore, some level of automation (self-learning) is crucial, and the state of the art is ready to
provide us with some interesting solutions. In PIACERE we adopt some of them, taking the IaC
(Infrastructure as Code) to next level of intelligent deployment, configuration and management
in the virtualization field.

We would like to start this section by highlighting a non-trivial aspect regarding self-learning.
We can find in the literature the term self-learning referring to unsupervised learning, self-
supervised learning, self-labelling or even reinforcement learning. In all cases, the idea is to
automatically generate some kind of supervisory signal to solve some tasks, e.g., to learn data
representations [14] or to automatically label a dataset. In other occasions, it refers to
autoencoders (neural networks) [15]. However, in PIACERE we adopt the other well-known
meaning [16], [17], [18], [19] that refers to the ability of a model of:

▪ ingesting new data as it becomes available (incremental learning),
▪ detecting by itself changes (drifts) in data distribution and to be automatically retrained

after this occurs,
▪ warning the system when anomalies are detected, or
▪ self-optimizing and self-calibrating in case of performance issues due to concept drift or

anomalies.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 29 of 107

www.piacere-project.eu

Under these circumstances, self-learning becomes a perfect ally in those scenarios where
changes or anomalies may be present. An autonomous model allows systems to be more
accurate and reliable in production for much longer periods of time. But this is hard to achieve
and presents several challenges:

▪ these models are based on algorithms that are usually more difficult to fine-tune,
▪ overfitting can be a great concern,
▪ the stability of the model must be assured,
▪ false alarms (drift detections) may provoke that the retraining process is useless, even

degrading the performance of the model, and
▪ an anomaly must not be confused with a drift.

The latter point is not trivial [20] given the relevance of it for PIACERE. One of the challenges for
concept drift handling algorithms is not to mix the true drift with an outlier or noise which refers
to a once-off random deviation or anomaly [21], [22]. No adaptivity is needed in the latter case,
as Figure 7 shows.

Figure 7: Types of drift according to severity and speed of changes, and noisy blips. Here the stars and
circles represent the prevailing concept at every time instant [23].

4.2.1.1 Stream data analysis

Applications generating huge amounts of data in the form of fast streams are increasingly
prevalent. These applications collect data from almost any source and analyse it to find answers
that enable cost and time reductions, new product developments, optimized offerings, or smart
decision making, or –as in our case– try to improve the deployment process of Infrastructure as
Code (IaC). In these scenarios, instead of all training data being available from the beginning,
data are often received over time in streams of samples or batches. Data streams are the basis
of the real-time analysis, which is composed by sequences of items, each having a timestamp
and thus a temporal order. A stream data environment shows several particularities [24] that
we should consider when designing our algorithms:

▪ Each sample or batch is processed only once on arrival. Stream data analysis solutions
should be able to process information sequentially, according to its arrival. These
solutions must not put the resources (mainly memory space and processing time
restrictions) at risk,

▪ The processing time must be small and constant, without exceeding the ratio in which
new samples arrive. Otherwise, some kind of temporal storage should be considered,

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 30 of 107

www.piacere-project.eu

▪ The stream data analysis solution should use only a preallocated amount of main
memory

▪ The model/algorithm in which this stream data analysis solution is based, should be
completely trained before next sample arrives

In Infrastructure as Code (IaC) platforms, data also arrives in the form of data streams, and thus
it may suffer anomalies and concept drift phenomena, as we will see later. Finally, it deserves
mentioning that data streams in IaC are usually in the form of time series, and thus the temporal
dependence in data is present; and it should be considered properly. But, in the case of PIACERE,
our prediction problem is closer to nowcasting (where the prediction corresponds to the next
time step, and thus the problem is closer to the online learning field) than to the classic time
series forecasting problem where the temporal dependence is more relevant.

4.2.1.2 Performance Anomaly detection

Data analysis nowadays faces a number of challenges. One of them has been extensively studied
due to its importance on the field: Anomaly detection. When analysing real-world data, data
that differs from the norm can be found, such data is called an anomaly or outlier. Anomalies
can be caused by inaccurate concept, this is, data that is unexpected by the current
comprehension of the phenomenon. Hawkins [25] defines an outlier as “an observation that
deviates so much from other observations as to arouse suspicion that it was generated by a
different mechanism”. Anomalies are also referred to as abnormalities, deviants, or outliers in
the data mining and statistics literature [26].

Anomaly detection provides a set of algorithms and techniques that can be used to spot out the
instances dissimilar to all others. Among the most popular techniques the following algorithms
can be found:

▪ One-Class SVMs [27]: An extension of the support vector machine standard algorithm
[28].

▪ Local Outlier Factor [29]: Algorithm that instead of performing a binary classification
estimates the probability of an instance being anomalous.

▪ Isolation Forest [30]: A binary tree based search that tries to isolate anomalies. An online
version called Half Space Trees [31] also exists.

▪ Elliptic Envelope [32]: An algorithm based on the minimum variance determinant [33]
estimator that analyses in an elliptically symmetric unimodal distribution.

In recent years, an important growth of deep neural networks, a subset of the machine learning
field, have been seen, with astonishing outcomes in different application areas, also when
applied to anomaly detection [34] [35]. Therefore, deep learning-based anomaly detection
(DAD) algorithms have obtained a privileged position and are one of the main focus areas. It is
important to note that boundaries between abnormal and normal data is not precisely defined
in evolving environments. This lack of boundaries represents challenges for both conventional
and also deep learning techniques.

Due to the large-scale nature of the data to be analysed in the IaC platform, it becomes nearly
impossible for the traditional machine learning techniques to scale and find anomalies properly.
DAD techniques are able to handle these large amounts of data and are also able to learn
hierarchical discriminative features solving the problem end-to-end by removing the need of
developing manual features by domain experts.

Through decades of study in the field, we can find an important amount of techniques in the
literature. The following list includes some of the most important set of techniques used with
major achievements:

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 31 of 107

www.piacere-project.eu

▪ Autoencoder (AE) [36] is an artificial neural network type that tries to learn a
representation for a set of data in an unsupervised manner.

▪ Deep Belief Networks (DBN) [37] is a class of deep neural networks, that act as a feature
detector by reconstructing probabilistically its inputs.

▪ Long short-term memory (LSTM) [38] [39] is an artificial recurrent neural network (RNN)
developed to deal with the vanishing gradient problem, that is well suited to classifying,
processing and making predictions particularly on time series data.

▪ Deep Neural Networks [40] are a set of artificial neural networks that use multiple layers
in the network used to solve a wide set of problems in fields including audio recognition,
computer vision, natural language processing and speech recognition.

▪ Convolutional Neural Network (CNN or ConvNet) [41] [42] [43] is a class of deep neural
network, an artificial neural network with multiple hidden layers that are very successful
in different fields like computer vision, natural language processing, image classification
among others.

▪ Denoise Autoencoder, Stacked Denoise Autoencoder (DAE, SDAE) [44] [45] [46] are an
alternative to the concept of regular Autoencoder, where the data is partially corrupted
by noises and are trained to predict uncorrupted data.

▪ Recurrent Neural Network (RNN) [47] [48] is a class of artificial neural networks where
directed graph is used to make connections between nodes and an internal state is used
to process inputs.

However, new techniques and approaches are also being studied that offer better results
sometimes using less resources than classic techniques [37] [38].

4.2.1.3 Security Anomaly Detection

In an operational phase, the automatic analysis of these logs could thus provide valuable insights
regarding the current and past status of the monitored assets. Many research works have
tackled this problem but there are still open research questions and further improvements lay
ahead. Furthermore, in most cases, they are limited to the research sphere, and their application
to real-world use cases is yet to be explored. Below, we analyse the most relevant contributions
in order to understand the current state of the art.

4.2.1.3.1 Terminology
Most of the works follow a similar terminology with respect to log analysis. A log message usually
refers to the text part of a log, once other fields such as timestamp, log level, component, etc.
have been removed. Examples of log messages could be: ‘Deletion of file file0 complete’ or ‘Took
2.67 seconds to create VM’. Log messages can be composed of both fixed and variable parts.
The first is usually referred to as log key or log template and the latter as log parameters. Thus,
log templates of the previous examples would be ‘Deletion of file <*> complete’ and ‘Took <*>
seconds to create VM’ and their corresponding parameters (substituted by ‘<*>’ in the
templates), file0 and 2.67. The process of discerning which parts of a log message are fixed and
which are parameters is referred to as log parsing, and is usually the first step in a typical pipeline
for log analysis.

4.2.1.3.2 Anomaly detection in logs
DeepLog (2017)

One of the most relevant works on the application of deep learning to log analysis is DeepLog
[49]. It describes a framework composed of three different models: a log key Anomaly Detection
(AD) model and a parameter value AD model, both based on stacked LSTM (Long Short Term
Memory) networks, and a workflow model to help diagnose the detected anomalies (root cause
analysis - RCA). Models are trained only with logs produced during normal execution of the

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 32 of 107

www.piacere-project.eu

system (i.e. with no anomalies). Spell [50] is used as the log parser. We will analyse the AD
models, since they are of higher interest for our purposes.

In DeepLog, the log key model tries to predict the next log key in a sequence as a multi-class
classification problem. During the inference phase, the trained model estimates which log keys
are most likely to appear next, providing an ordered list of all known log keys. The N first
candidates are considered to be ‘normal’ -since they are expected by the model- so if the true
log key coming next is not within those candidates, it will be deemed anomalous. This is a
common approach to decide about the abnormality of a log key depending on the parameter N,
and it appears in several other works. We will refer to it as the candidate set approach. As this
is a classification approach, the method is unable to deal with log keys not seen during training.
DeepLog tackles this by allowing manual feedback from the user in case of detected false
positives (FPs), but this solution is not scalable and requires manual intervention.

Regarding parameters, DeepLog considers each sequence of parameter value vectors -a log key
may contain several parameters- for a specific log key as a separate time series. It only handles
numerical parameters. During training, the validation set mean square error (MSE) is modelled
as a Gaussian distribution that is later used to determine abnormality during the inference
phase.

DeepLog provided good results in several public datasets and set the state of the art at the time,
but with the surge in interest towards this topic, and thus the proliferation of research works,
several other novel approaches have been proposed outperforming DeepLog in those same
datasets.

LogAnomaly (2019)

LogAnomaly [51] also makes use of LSTM networks in this case to detect both sequential -log
order- and quantitative -log count or frequency- anomalies. The main contribution of
LogAnomaly is the use of a method based on the popular word2vec [52] to capture the semantic
information in log messages. This method, template2vec, converts the words in log templates
into word embeddings and combines these to form template embeddings. However, it requires
the use of a corpus of synonyms and antonyms, some of them manually defined to make them
domain specific, which makes it very impractical.

To detect quantitative anomalies, they compose an additional representation of a log sequence
by counting the appearance of every log template in the sequence. An additional LSTM model is
trained to learn the quantitative pattern of the log sequence, whose output is then combined
through an attention mechanism with that of the template embeddings LSTM. Only normal logs
are used for training and FT-Tree (frequent template tree) [53] is used as the log parser.

LogAnomaly also uses a candidate set approach to detect anomalies during inference, but they
also accept ‘similar’ candidates -they can measure distance between embeddings.
Consequently, even if they capture the semantics of log templates to some extent, they still
cannot handle previously unseen log templates during inference. Their solution is to
approximate unseen log templates to the ‘closest’ one already included in the training set.

LogRobust (2019)

LogRobust [54] introduces an architectural change, describing a Bidirectional LSTM network in
order to capture information from sequences in both directions (i.e. ‘past’ and ‘future’). An
attention mechanism is applied to the output of the Bi-LSTM to combine outputs from all time
steps. Contrary to DeepLog and LogAnomaly, LogRobust tackles the problem as a binary
classification method, classifying log sequences as either normal or abnormal. This is, it works in

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 33 of 107

www.piacere-project.eu

a supervised manner, so it requires labeled anomalies instead of just log data from normal
operating conditions. LogRobust uses Drain [55] as the log parser.

Similarly to LogAnomaly, LogRobust leverages the semantic information within log templates.
To do so, off-the-shelf word vectors pre-trained on the Common Crawl Corpus dataset are used.
The vectors for the words in a log template are aggregated using TF-IDF weights, thus generating
a fixed-dimension vector representing every log template, regardless of the number of words in
it. This implies that they can handle any log template, also those unseen during training.

HitAnomaly (2020)

HitAnomaly [56] is the first work that leverages the Transformer [57] architecture for AD in log
sequences. In order to capture the semantic information in log templates, they define a ‘log
encoder’ architecture that takes as input the words within a template, and outputs a fixed-
dimension vector representing the template. Sequences of these vectors are then fed to a ‘log
sequence encoder’, which eventually outputs a fixed-dimension representation of the whole
template sequence. Both encoders use a very similar architecture, with the only difference that
the log encoder stacks two transformer blocks, while there is only one in the log sequence
encoder. HitAnomaly uses Drain [55] as the log parser.

Parameters within a log sequence are also encoded using a ‘parameter encoder’ with the same
architecture as in the log encoder. Interestingly, the parameter representation (output of the
parameter encoder) and the log template representation (output of the log encoder) are
combined to capture interaction between a template and its parameters. Finally, the log
template sequence representation and the log parameters sequence representation are
combined through an attention mechanism and fed to a binary classifier.

HitAnomaly showed state-of-the-art results in terms of overall performance on public datasets
as well as impressive results when dealing with high shares of previously unseen log templates.

NeuralLog (2021)

NeuralLog [58] does not provide any further advancement in terms of the proposed
architecture, which is based on transformers. However, instead of relying on log parsing, known
to be an important source of noise that severely conditions the AD results, they directly employ
raw log messages, preprocess them, apply WordPiece tokenization and obtain the semantic
information using a pre-trained BERT [59] model.

LogBERT (2021)

LogBERT [60] is the first work leveraging the transformer architecture working in a self-
supervised fashion (i.e. training with ‘normal’ logs only). Drain [55] is used to parse the log
messages and a unique id is assigned to each of the obtained log templates. Therefore, LogBERT
does not capture the semantic content of log templates by any means. A transformer encoder
architecture is trained on sequences of these ids using two different tasks: Masked Language
Modelling (MLM) and Hypersphere Volume Minimization (HVM).

For MLM, template ids are randomly masked, and the model is used to predict the expected ids
for the masked tokens in a classical multi-class classification approach. For HVM, an initial special
token is trained to represent the whole log template sequence in terms of normality: tokens
representing normal sequences are to be concentrated around the centre of the hypersphere.
The distance to the centre will be used during inference to measure abnormality of a log
sequence.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 34 of 107

www.piacere-project.eu

Harold Ott et al. (2021)

In the work by Harold Ott et al. [61], they explore the use of sentence-level embeddings obtained
from pre-trained language models as log template representation. Their architecture consists of
a Bi-LSTM network. The main novelty in this works lays in the comparison of two different tasks
for self-supervised AD: the already mentioned candidate set approach, in which the Bi-LSTM is
used for multi-class classification, and a regression approach in which the loss function is the
MSE between the template embeddings.

4.2.1.3.3 Anomaly detection in security logs
All the reviewed approaches provided performance results in publicly available datasets. These
datasets contain logs from supercomputers (BGL and Thunderbird [62]) or distributed systems
(HDFS [62] and Openstack [49]). None of them was specifically validated in security data. Only
DeepLog [49] provided results for the VAST Challenge 2011 [63] - MC2 data set, which is a small
dataset for which detection results were satisfactory, correctly identifying log template
anomalies in 5 out of the 6 suspicious activities and raising a single FP (False Positive).

Specifically, in the domain of cybersecurity, there are a few works that have proposed varied
solutions to leverage AI models for security monitoring. For instance, [64] describes an active
learning framework that uses unsupervised outlier detection on predefined features computed
from raw data (e.g. number of successful logins) and presents rare events to an analyst. The
analyst’s feedback is then used to train a supervised model that would predict whether future
rare events are malicious or not, complementing the unsupervised model. The framework runs
on a periodical basis (e.g. daily), collecting analyst’s feedback and retraining the models. The
framework is validated using a proprietary credit card transactions dataset.

The use of unsupervised deep learning approaches for insider threat detection was explored in
[65]. Specifically, common DNN (Deep Neural Networks) and LSTM architectures were employed
for the CERT Insider Threat Dataset [66]. The input to these was composed of categorical
variables (e.g. user’s role, department, etc.) and engineered ‘count’ variables (e.g. number of
logins between 12 AM and 6 AM). However, through experimentation, the categorical variables
were proven unhelpful. Daily aggregation was carried out for numerical features. As future lines
of work, the authors mentioned the analysis on a per-log basis to reduce or remove the feature
engineering required.

The works specifically designed for security log monitoring using AI are scarce and do not yet
make use of state-of-the-art architectures. Conversely, many works have been recently
proposed for anomaly detection in logs, with an increasing number of research publications on
the topic every year. The application of more advanced log anomaly detection methods to
cybersecurity use cases remains an appealing open challenge.

4.2.1.4 “Concept drift” detection

The data generation process in real-time applications is not always stationary because it is
subject to dynamic externalities that affect the stationarity of such data streams, e.g.,
seasonality, errors, etc. This causes that such applications suffer from the concept drift
phenomenon. The predictive models that are trained over these data streams may become
obsolete, and having problems to adapt suitably to the new conditions. Thus, in these scenarios
there is a pressing need for drift detection and adaption algorithms that detect and adapt to
these changes as fast as possible, in order to keep the applications updated and providing a good
performance [67]. The research on concept drift is still a hot topic due to its impact on real world
applications, and as we will show, PIACERE is not an exception.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 35 of 107

www.piacere-project.eu

Many research efforts have been dedicated to study and alleviate the effects of the concept drift
phenomenon [68], and this has been the case since the last 3 years. The complexity in concept
drift manifests when we try to characterize it [69]. We can find many different types of concept
drifts (see Figure 7) which can be characterized by e.g., the speed or severity of change.
Consequently, drift detection turns into a relevant factor for those active mechanisms that need
a triggering mechanism to perform an adaptation after drift occurs [70]. A drift detector should
estimate the time instant at which change occurs over the data stream, so that when the
detection appears, the adaptation mechanism is applied to the base learner in order to avoid
the degradation of its predictive performance. The successful design of an effective detector is
not straightforward, yet it is primordial to achieve a more reliable system. The way to find the
best strategy for concept drift detection still remains as an open research issue, as confirmed in
[70]. This challenge to find a universal best solution becomes evident in the most recent
comparative among drift detectors carried out by [71]. In light of the results achieved in this
manuscript, we can realise that there is not a method with the best metrics, or even showing
the best performance in most cases. We can state that the ideal goal is to develop detectors that
1) detect all existing drifts in the stream 2) with low latency, 3) with as few false alarms and, 4)
as few missed detections as possible, and 5) minimizing the distance of the true positive
detections, always assuring a good classification performance. Therefore, as there is not an
ultimate detector, we will have to choose one depending on the characteristics of the
application or scenario, giving more importance to some metrics than others (false alarms,
missed detections, distance of the real drift, etc.).

Finally, the operation of a drift detector (see Figure 8) usually utilises a specific base learner (i.e.,
learning algorithm). The base learner is trained on the current instance of the data stream within
an incremental learning process repeated for each incoming instance. The detector is analysing
all the time the classification performance of the base learner (e.g., accuracy or error rate) to
know whether a drift has occurred or not. Although the accuracy or error rate are often used as
inputs of the detector, others use diversity [72] or structural changes stemming from the model
itself [73].

Drift detectors use different strategies to monitor the performance of the base classifier and to
decide if a drift has occurred or not. A common practice is to use a lower confidence level to
denote a warning, which means that a drift may have happened. If this happens, then detectors
prescribe that a new base classifier is created, and it starts to be trained in parallel. Then, if a
concept drift is confirmed (e.g., because the number of consecutive warnings has exceeded a
threshold), the new base learner will replace the original one. However, if the warning has not
been confirmed and it is a false alarm (false positive), the new base learner will be discarded.

Figure 8: Drift detection example [23].

We can find a plethora of drift detection methods in the literature. Next, we delve into the
details of the most well-known and used drift detectors. Some of them have recently been
compared in a very remarkable study [74], so we will literally refer to some of its findings,
explanations and methods. This work is crucial in the state-of-the-art, and from our view it does
not make sense to reword such parts:

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 36 of 107

www.piacere-project.eu

▪ DDM [75]: this detector acts as follows: when the concept changes, the base learner will
incorrectly classify the arriving instances that are created based on a different data
distribution. Therefore, if the error-rate increases, it is signal that a concept drift has
occurred. Whereas, if the distribution remains stable (without changes, stationary), the
error rate will decrease.

▪ EDDM [76]: similar to DDM, but instead of using the error rate, EDDM uses the distance
between classification errors (number of examples between two classification errors) of
the base learner to indicate if a drift has happened.

▪ ADWIN [77]: uses a sliding window of instances with a variable size W. When drifts are
detected, W is reduced and the longer the concept the larger the size of W. Two
dynamically adjusted sub-windows are stored, representing older and recent data.
Drifts are detected when the difference of the means of these sub-windows is higher
than a given threshold.

▪ PHT [78]: it is a sequential analysis technique that computes the observed values (the
actual accuracy of the base learner) and their average to the current time step. When a
drift occurs, the classifier starts to fail to correctly classify new instances, making the
current and the mean accuracy decrease.

▪ HDDM [79]: It is a method based on Hoeffding’s bounds with a moving average-test.
There are two main versions: one uses the average as estimator, the other one uses the
EWMA.

It also deserves highlighting in this section the latest drift detection techniques, above all those
which have shown a potential to impact on this field, mainly due to their citations in the last 3
years, the relevance of the journal/conference in which have been published, the relevance of
the authors in the field, among others: [80], [81], [82], [83], [84], [85], [86], [87]. Despite they
show less relevance than the upper ones, we consider them remarkable for being recent or
being published in reputed journals or conferences.

4.2.1.4.1 Drift meaning in monitoring platforms
Looking for this phenomenon in monitoring platforms, we see how it is already a relevant
problem to deal with. Despite in PIACERE we pursue the drift detection and the adaptation of
our prediction algorithms for monitoring variables, it is worth mentioning the existence of this
phenomenon in other scope of infrastructure.

Drift detection is important for ops teams to ensure that components are in line with the
expected configuration and also to ensure compliance. For these teams, infrastructure drift is
when there is an unwanted delta between the IaC code base and the actual state of the
infrastructure. This issue becomes more and more complex as the number of environments
grows. Some teams have dozens of environments that they need to keep updated. Driftctl9 is an
open-source tool which can detect drift in Terraform managed infrastructure. It reads Terraform
state files and checks that against the actual running infrastructure. The authors of driftcl spoke
to around 200 DevOps teams to learn about infrastructure drift challenges, and they identified
three main causes of drift:

▪ 96% of teams: a team member makes a change through the (AWS, Azure, etc) console
or directly updates infrastructure resources through an application API,

▪ 44% of teams: a team member applies an IaC change to an environment but does not
propagate it to other environments,

▪ 50% of teams: application and deployment induced drift.

9 https://driftctl.com/

DRAFT

http://www.medina-project.eu/
https://driftctl.com/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 37 of 107

www.piacere-project.eu

While the first two are mostly workflow issues, the last one refers to an unintentional application
and deployment induced drift, and it is completely independent from the DevOps team. Due to
its unpredictable characteristic, it may cause headaches. Drift always happens, and the key
challenge is being able to detect and analyse it; the faster it is detected, the easier it is to
remediate drift.

AWS has the CloudFormation Drift Detection feature [88], which allows organizations who have
templated their configurations and deployments, known as stacks, to detect when configuration
drift occurs from out-of-band changes. These out-of-band changes have been directly applied
to cloud assets, instead of leveraging a templated deployment approach. To avoid configuration
drift, Amazon is suggesting the customers use a CloudFormation Change Set to apply changes.
This way your deployment template is kept up to date and can be used to provision AWS services
in a consistent manner. Drift can be detected within a few minutes from the out-of-band
changes being applied so that administrators can quickly address this. Differences in
configuration are detected by comparing the current stack configuration with the one specified
in the template and identifying divergence. In addition, detailed information for every difference
is provided.

As we see, the “concept drift” has been explored in monitoring platforms from different
perspectives (configuration drift, infrastructural drift). In PIACERE we will adopt the classical
view explained in section 4.2.1.4.

4.2.2 Self-learning approach in PIACERE

4.2.2.1 Performance and Availability Self-learning

The previous subsection presented the most well-known and the latest techniques, this one
delves into the self-learning strategy for PIACERE.

The Self-learning component focuses on incrementally online learning and predicting the
performance and the availability of the system to guarantee constant high-level performance.
The performance information is provided by 7 monitoring variables:

▪ CPU:

• usage_idle: % of cpu that is not being used by any program

• usage_system: % of time the processor spends in running the operating
system(i.e., kernal) functions connected to your application

• usage_user: % of work handled by a cpu
▪ DISK:

• free: % of disk that is not being used

• used_percent: % of disk that is being used
▪ MEMORY:

• free: % of memory that is not being used

• used_percent: % of memory that is being used

At this stage of the project, the prediction for the availability is still pending, and the formula for
the availability calculus itself, and it will be part of the design and implementation tasks for the
next period and reported in D6.3.

These metrics give us a good idea of the "health" of the system. Once their predictions exceed
a threshold, the component will trigger a warning to the Self-healing component, which will
decide how to consider such a warning (launching an optimization process, redeployment
actions, etc.).

DRAFT

http://www.medina-project.eu/
https://aws.amazon.com/blogs/aws/new-change-sets-for-aws-cloudformation/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 38 of 107

www.piacere-project.eu

As we have already mentioned, the self-learning capability of this component refers to the ability
of ingesting new monitoring data as it becomes available (incremental learning), and then make
a prediction for the next time step in an online manner. The problem is that, in many occasions,
real-time monitoring data may suffer from “rare” events that we need to early detect if we want
to have a solid, robust and reliable system. In PIACERE these events are:

▪ Changes (concept drifts) in data distribution, and
▪ Anomalies.

The impact of these events on the prediction performance is different, and also the mitigation
actions for each case. We will give more details on each event in the next subsections.

4.2.2.1.1 Monitoring data and incremental online learning
The performance monitoring data in PIACERE is in the form of time series, which means that
there is a monitoring data point every 10 minutes with the value for CPU, DISK and MEM
monitoring variables in that moment.

The processing has been divided into two stages: the first one counts on a reservoir of batch
instances to tune the parameters of the machine learning technique and train the algorithm,
and the second one to run on a “real-time” mode where the performance of the system is
predicted every time new data arrive. Then, as incremental learner and predictor we have used
a SNARIMAX10 model, which stands for (S)easonal (N)on-linear (A)uto(R)egressive (I)ntegrated
(M)oving-(A)verage with e(X)ogenous inputs model, and that is able to incrementally learn and
predict every time a new instance arrives. By following the test-then-train scheme used in many
online learning approaches [89], we have used Mean Absolute Error (MAE) as performance
metric for regression problems. Figure 9 shows how the algorithm is able to successfully predict
the next CPU usage idle data point 10 minutes ahead. The algorithm exhibits a very good
predictive performance (see Figure 10).

Figure 9: Incremental learning for the CPU usage_idle variable.

10 https://riverml.xyz/0.14.0/api/time-series/SNARIMAX/

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 39 of 107

www.piacere-project.eu

Figure 10: Evolution of the Mean Absolute Error (MAE) for the prediction of the CPU usage_idle variable.

4.2.2.1.2 Anomaly detection
As we have previously seen, anomalies are one of the rare events that may appear in PIACERE
data. They should be early detected in order to keep the prediction performance under control.
Once they have been detected, the algorithm should not learn these data points in order to be
robust; these outliers do not belong to the normal distribution of the monitoring data.

Figure 11 and Figure 12 show how the outlier detection algorithm is able to detect outliers, and
then warns the online learning algorithm not to learn such data points.

Figure 11: Anomalies detection for the CPU usage_idle.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 40 of 107

www.piacere-project.eu

Figure 12: Anomalies detected for the CPU usage_idle variable.

In order to prevent performance degradation in our online learning algorithm, we have found
that a simple systematic approach is able to detect the outliers present in our data. Concretely,
the outlier detection approach uses the range [mean - s*std : mean + s*std] to consider any data
points outside the range to be outliers; where s is the scalar factor that we use to adjust the
sensitivity of such algorithm, and s=4.

We see in Figure 12 how these outliers are not affecting the predictive performance of the
algorithm. Then, we have achieved a self-learning component robust to outliers, and then the
online prediction will be more reliable.

4.2.2.1.3 Concept drift detection
Changes in data distribution should be early detected in order to prevent a performance
degradation in the predictions of the algorithm. In order to have a good drift detector, we have
prioritised the one that maximizes the true positives while keeping the number of false positives
to a minimum.

The popular concept drift detector called ADWIN (ADaptive WINdowing) [90] efficiently keeps a
dynamic-length window of recent data points, such that it states that there have not been any
changes (drift) in the data distribution. Actually, this window is divided into two sub-
windows (W0,W1), to know whether a change has occurred or not. The average of W0 and W1
are compared to confirm that they belong to the same distribution; if the distribution is
different, concept drift phenomenon is detected. Then, after detecting a drift, W0 is replaced
by W1, and a new W1 is initialized. We have experimentally tested ADWIN with the
performance monitoring data of PIACERE, and as Figure 13 and Figure 14 show for the case of
data for CPU usage_user, it is able to handle with such changes in data distribution.

 .

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 41 of 107

www.piacere-project.eu

Figure 13: Drift detection for CPU usage_user.

Figure 14: Drift occurrence for CPU usage_user.

4.2.2.1.4 Concept drift adaptation
Adaptation is the required phase when a change has been detected. The algorithm has been
incrementally trained with data that belong to a concept (old), and from now on should be
adapted to learn the new concept (one). The strategy followed in PIACERE is the recommended
one in these cases:

▪ Reset the drift detector (ADWIN)
▪ Re-train the model with the new concept. To do that, we use a sliding window of past

instances.

4.2.2.1.5 Next actions
▪ We will try the possibility of predicting several time steps ahead, not only the next one

(10 mins). Despite it is not crucial for the current system in PIACERE, because 10 mins is
usually more than enough to perform mitigation actions (such as redeployments,
optimizations, etc.), it would be a good ingredient for the project.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 42 of 107

www.piacere-project.eu

▪ We will study the possibility of having just 1 metric for DISK and 1 metric for MEMORY
▪ We will also study the possibility of having just 1 metric for all the performance metrics
▪ We will define the availability metric
▪ We will develop an incremental learning (with anomaly detection, and concept drift

detection and adaptation) for the AVAILABILITY metric.

4.2.2.1.6 Self-learning relevance to the use cases
As we have already mentioned in the state-of-the-art, both outliers and drifts detection are
primordial to get a reliable online learning prediction in any real application based on real data.
In this case, in PIACERE, the monitoring data is present in any use case, so the prediction of the
health of the system will be a relevant part in it.

4.2.2.2 Security Self Learning

4.2.2.2.1 Approach to Security Self Learning
Computer-generated log messages are a very valuable source of information to represent the
current status of a system or application. Log messages are precisely generated to provide
application developers and system operators with information that could help them, among
other things, understand execution paths, find bugs or solve incidents. Generally speaking, when
a problem occurs, logs are often relied upon for investigation.

Anomaly detection process within PIACERE is implemented an ML-based anomaly detection
solution using LogBERT implementation (better said, its variant, using similar approach). Its role
is to provide a second layer of analysis of gathered data and metrics, besides code monitoring
data feed provided by Security Monitoring components (agents). For the self-supervised
learning process it requires only data from normal operating conditions. It transforms from
unstructured logs to structured datasets (Drain method; collection of all possible types of events
and covering all normal situations to avoid unseen events during the training process).
Anomalies are being labelled. The process:

▪ Use of Masked Language Modelling (MLM) - common in self-supervised NLP

Figure 15: Process of masking and predictions within anomaly detection process.

▪ Hypersphere Volume Minimization (HVM) - Hypothesis that ‘normal’ samples can be
mapped to close representations.

Figure 16: Example of anomaly detection.

Approach to Security self-learning has already been indicated in section 4.1.2.2: using Filebeat
to aggregate the logs, then parse these logs in anomaly detection component in order to create

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 43 of 107

www.piacere-project.eu

structure logs as an input to anomaly detector (Figure 21). Anomaly detector is capable to create
and label specific events with anomaly score, and ship these newly created events back to ELK
stack used by Security Monitoring.

Figure 17: Approach to security self-learning in PIACERE.

4.2.2.2.2 Integration
In the following figures we show a security self-learning dashboard from one of the demo
deployments. Figure 18 shows three different time-based aggregations of anomalies scores as
line plots. Different granularities provide better overview about the status in the system. Figure
19 shows histogram of logs and table with details below. The table contains timestamp of a log,
anomaly score, and message. The unknown column marks if a log message was recognized by
log parser. All the charts can be used to zoom in a specific area for easier inspection of the logs.

Figure 18: Different aggregations of anomaly scores presented as line plots.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 44 of 107

www.piacere-project.eu

Figure 19: Histogram of logs and a table with log messages, anomaly scores, and additional information.

4.3 Self-healing

4.3.1 Self-healing strategies and challenges

The scope of the self-healing in PIACERE is focused on the gathering of detected anomalies and
to take corrective actions. Anomalies are gathered from other components in the PIACERE
framework such as those devoted to monitoring or those performing forecasts based on the
gathered trends or evidences. Corrective actions are executed by the same infrastructure that
takes care of the configuration of the infrastructure and the applications. In this sense we could
say that our scope is going to be mainly in the planning of the self-healing.

In the literature we can find different approaches that extend the scope of the self-healing,
covering other phases both before and after that planning activity. The Table 7 below shows a
comparison of the potentially related approaches with respect to: the covered phases of the
classical autonomic control loop “MAPE-K (Monitor-Analyse-Plan-Execute over a shared
Knowledge)” [91], technique used, whether it’s a decentralized or centralized approach, and the
applied context.

Table 7: MAPE-K results.

Reference MAPE-K Technique [De]centralized Context

Di Nitto et al. [92] M, A, P, E, K Probability
theory

Decentralized Microservice

Maimó et al. [93] M, A, P, E, K Deep learning Centralized 5G networks

Yang et al. [94] M, A, P, E, K Security
theory

Decentralized IoT-based
healthcare
storage

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 45 of 107

www.piacere-project.eu

Alhosban et al. [95] M, A, P, E Predictive
model

Centralized Cloud service

Azaiez and Chainbi [96] M, A, P, E Multi-agent Decentralized Cloud

Gill et al. [97] M, A, P, E Reactive Centralized Cloud service

Li et al. [98] M, A, P, E Reactive Centralized Cloud
computing

Magalhaes and Silva
[99], [100]

M, A, P, E Statistical
theory

Centralized Web
application

Rajput and Sikka [101] M, A, P, E Multi-agent Decentralized Distributed
environment

Rios et al. [102] M, A, P, E CAMEL based Decentralized Distributed
environment

Mosallanejad et al. [103] M, A, E Reactive Centralized Cloud

Wang et al. [104] M, A Machine
learning

Centralized Cloud
computing

Several approaches for self-healing/self-adaptive systems are provided in the table above. In
[105], a survey of self-healing frameworks and methodologies in multi-tier architectures is
provided by Schneider et al. They provide a comparative analysis of the computing environment,
degree of behavioural autonomy, and organisational requirements of these approaches.
Another survey of self-healing systems with the focus on approaches is provided by Psaier et al.
[106]. In [107], Taherizadeh et al. provide a survey to identify the main challenges in the field of
monitoring edge computing applications; to present a taxonomy of monitoring requirements for
adaptive applications orchestrated upon edge computing frameworks; and to discuss and
compare the use of cloud monitoring technologies. In [108], Esfahani et al. characterize the
sources of uncertainty in self-adaptive software systems, and demonstrate their impact on the
system’s ability to satisfy its objectives. They provide an alternative notion of optimality that
explicitly incorporates the uncertainty underlying the knowledge (models) used for decision
making. They also discuss the state-of-the-art for dealing with uncertainty in this setting. A book
chapter by Weyns [109] provides a particular perspective on the evolution of the field of self-
adaptation in six waves including: i) automating tasks, ii) architecture-based adaptation, iii)
models at runtime, iv) goal driven adaptation, v) guarantees under uncertainties, and vi) control-
based approaches.

The approaches in Table 7 are ordered by their respective coverage of the autonomic control
loop, from those which cover all the phases to those which cover only a few of them. The details
of these methods are summarized as follows.

Di Nitto et al. [92] propose an approach named Gru based on multiagent systems that add an
autonomic adaptation layer for microservice applications focusing on Docker. Gru is designed to
support decentralized microservices management, and can be integrated with ease in
dockerized applications, managing them with autonomic actions to satisfy application quality
requirements.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 46 of 107

www.piacere-project.eu

In [93], Maimó et al. propose a 5G-oriented cyberdefense architecture to identify cyberthreats
in 5G mobile networks. Their architecture uses deep learning techniques to analyse network
traffic. It allows adapting, automatically, the configuration of the architecture in order to
manage traffic fluctuations, to optimize the computing resources and to tune the behaviour and
the performance of analysis and detection processes.

In [94], Yang et al. propose a privacy-preserving smart IoT-based healthcare big data storage
system with self-adaptive access control, aiming to ensure the security of patients’ healthcare
data, realize access control for normal and emergency scenarios, and support smart
deduplication to save the storage space in big data storage system.

Alhosban et al. [95] propose a self-healing framework for cloud-based systems, which uses the
previous history to detect faults and a recovery plan to avoid future faults.

Azaiez and Chainbi [96] propose a multi-agent system which interacts with the Cloud
infrastructure to analyze the resources state and execute Checkpoint/Replication strategies or
migration techniques to solve the problem of failed resources.

Gill et al. [97] present an intelligent and autonomic resource management technique named
RADAR with the focus on two properties of self-management that provide self-healing by
handling unexpected failures and self-configuration of resources and applications.

Li et al. [98] propose a self-healing monitoring and recovery model in cloud computing
environments working in three steps: 1) monitoring the system to identify faults, 2) finding out
the properties of faults, and 3) recovering from faults using an undo strategy.

Magalhaes and Silva [99] propose a self-healing framework for web-based applications to fulfill
the user SLA and improve resource utilization simultaneously through self-adaption of cloud
infrastructure.

In [100], the same authors present a framework to provide the web-based applications with the
ability to detect performance anomalies at runtime and trigger automatic recovery actions to
mitigate their impact.

Rajput and Sikka [101] propose an architecture which could support agent-based distributed
systems to address fault recovery for achieving self-adaptiveness.

Rios et al. [102] propose a Cloud Application Modelling and Execution Language (CAMEL) based
model for self-healing to model the multi-cloud applications in the distributed environment.

Mosallanejad et al. [103] propose an SLA based self-healing model for the cloud environment to
monitor SLA and detect SLA violation automatically.

Wang et al. [104] propose a self-adaptive monitoring approach for cloud computing systems. It
characterizes the running status of systems with Principal Component Analysis (PCA), estimates
the anomaly degree, and predicts the possibility of faults. Based on that, it dynamically adjusts
the monitoring period.

4.3.2 Self-healing approach in PIACERE

The goal of Self-healing is to analyse notifications coming from the monitoring and self-learning
components and propose corrective actions when they are necessary. Therefore, the approach
to self-healing in PIACERE leverage three elements, see Figure 20: notification messages,
notifications types and response strategies.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 47 of 107

www.piacere-project.eu

Figure 20: Self-healing elements.

Self-healing messages are sent by monitoring and self-learning components. To do so self-
healing provides a REST api, with capability to create self_healing_messages. The
self_healing_messages will include as mandatory field the event type. Besides it will include the
severity of the event warning or critical.

We have created an infrastructure to define the allowed event types and the strategy to respond
to each of those events based on their criticality. The most obvious strategy will be to redeploy
the applications that raise critical situations, but other strategies are also in evaluation such as
the possibility to reboot the infrastructure, to scale, to put deployment in quarantine state, to
notify user, etc.

For most of the strategies the general approach in which these strategies are going implemented
are BPMN workflows to be executed by PRC. During this period based on the security monitoring
feedback we have also identified the ansible based strategies that will be executed in the
running infrastructure element, in this case the execution will be manage by the IEM.

The overall self-healing process will be to receive notifications, queue the notifications to be
executed, and to proceed with the execution of the self-healing strategies in each deployment.

As the strategies could take some time to be executed, we still need to decide on approaches to
review the notifications in the queue, because it may happen that we receive multiple
notifications that could be solved with just one corrective strategy. This will be done in the next
period as we test the component in the pilots.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 48 of 107

www.piacere-project.eu

5 Implementation

5.1 Monitoring Controller

The monitoring controller is an aggregator component that serves as unique front-end to lower
level specialised controllers. These are the performance monitoring controller and the security
monitoring controller.

5.1.1 Functional description

The PIACERE monitoring, self-learning and self-healing architecture involves several distributed
and potentially scalable components that require continuous configuration as PIACERE platform
creates, updates and destroys application deployments. Besides, the architecture currently
covers two main non-functional aspects (performance, and security), each one involving
different sets of components and technologies.

The Figure 21 describes the sequence diagram for the two main functionalities to be covered by
the Monitoring Controller, this is start and stop deployments.

From the previous version we have evolved the diagram to include the request dashboard
workflow required by the IDE and the loop that is being implemented to feed the Infrastructure
element Catalog (IEC) with the information gathered from the deployed infrastructure.

Figure 21: Monitoring Controller Sequence diagram.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 49 of 107

www.piacere-project.eu

On one hand, the monitoring controller aims to simplify the configuration of the PIACERE
monitoring, self-learning and self-healing component as PIACERE platform creates, updates and
destroys application deployments. On the other hand, the monitoring controller aims to isolate
the PIACERE runtime controller from changes in the PIACERE monitoring, self-learning and self-
healing architecture.

The second implementation of the Monitoring Controller still aims to provide a REST API to be
used by the PIACERE Runtime Controller.

The Monitoring Controller is a proxy component that aims to provide a single point of entry to
the configuration of the PIACERE monitoring, self-learning and self-healing components as
PIACERE platform creates, updates and destroys application deployments, as such it does not
provide innovative advances to the state of the art.

5.1.2 Requirements covered by this prototype

The user requirements from WP2 satisfied by this version is described in the Table 8. All these
requirements are being polished and adapted as the project advances and we gain knowledge
on the use cases and on the implemented components.

Table 8: Monitoring Controller related user requirements from WP2.

Req ID Description Implementation
Status

Requirement Coverage at M24

REQ17 Seamless security
monitoring deployment

Deployment of runtime
security monitoring should
happen seamlessly or with
minimal effort and
configuration required by
the user.

completed A REST API has been provided and
deployed to be a single point of
entry for the configuration of the
PIACERE monitoring, self-learning
and self-healing components
each time that a deployment is
requested to the PIACERE
runtime controller.

REQ50 Monitor performance,
availability, and security

The monitoring component
shall monitor the metrics
associated with the defined
measurable NFRs (e.g.
performance, availability,
and security through the
runtime security
monitoring).

In progress The REST API supports the
transmission of all the necessary
information for the configuration
of the deployment, namely non-
functional requirements
regarding performance,
availability and security.

The current version of the
component includes the function
to call the remaining
components.

REQ51 Deployment non-functional
requirements tracking

In progress The component will forward all
the necessary information to the
self-learning components to be
able to track the infrastructure

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 50 of 107

www.piacere-project.eu

The self-learning component
shall ensure that the
conditions are met
(compliance with respect to
SLO) and that a failure or a
non-compliance of a NFRs is
not likely to occur. This
implies the compliance of a
predefined set of non-
functional requirements (e.g.
performance).

related non-functional
requirements.

The internal requirements satisfied by this interim version are described in the Table 9. All these
requirements are as well polished and adapted as the project advances.

Table 9: Monitoring Controller related internal requirements.

Title Implementation
Status

Requirement Coverage at M24

Add code into
the project
source
repository

Completed The repository has been created and the code is being
uploaded regularly
https://git.code.tecnalia.com/piacere/private/t61-
runtime-monitoring/mc/mc.git

Implement
REST API
specification

Completed The OpenAPI has been defined and put under
configuration control
https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/mc/-
/blob/y2/src/mc/openapi/openapi.yaml

The content of the deployment creation message requires
still some discussion with other components to
understand the information that can be provided and its
format.

Implement
specification
first approach

Completed In order to speed-up the implementation of changes
derived from the expected evolution of the REST API, we
have implemented a specification first approach with
OpenAPI generator. Besides, the usage of OpenAPI
generator bring additional benefits in the sense of
introduction of good practices in structuring and
configuring the code.

Prepare for
deployment

Completed In order to ensure that we are prepared to deploy the
component in the integration environment we have
integrated this component with the remaining
monitoring components in a docker-compose file that
includes a reverse proxy to receive all the requests using
secure standard HTTPS protocol.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 51 of 107

www.piacere-project.eu

https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring /pm

Provide fast
deployment
alternative for
deployment,
testing and
evaluation

Completed To allow a seamless infrastructure requirements free
alternative to test this component we have provided a
Vagrant based deployment option. This reduces the list of
software requirements to two: VirtualBox11 and Vagrant12.

These two tools (VirtualBox and Vagrant) are available for
most of the operating systems: Windows, Mac, Linux, BSD,
…

Include usage
documentation

Completed We have included usage documentation at different
levels:

• Docker-compose
https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/pm/pm-deploy

• Python code
https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/mc/-
/blob/y2/README.md

We update continuously the documentation as we
advance in the coding and pre-integration of the
monitoring components

Unitary test In progress We have included a testing framework to the code based
on Tox13. Concrete tests are still to be developed as the
component gets more mature.

Continuous
integration

In progress Continuous integration has been implemented based on
Gitlab-ci 14
https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/pm/-/blob/y2/.gitlab-
ci.yml

The integration approach requires to be migrated with the
rest of the components of PIACERE framework.

Test in use
cases

In progress We have tested the component with use-case in the
deployment feature, the un-deploy feature will be tested
in the following version.

11 https://www.virtualbox.org/
12 https://www.vagrantup.com/
13 https://tox.wiki/en/latest/index.html
14 https://docs.gitlab.com/ee/ci/

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/mc/-/blob/y2/README.md
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/mc/-/blob/y2/README.md
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/mc/-/blob/y2/README.md
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/mc/-/blob/y2/README.md
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm/-/blob/y2/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm/-/blob/y2/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm/-/blob/y2/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm/-/blob/y2/.gitlab-ci.yml

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 52 of 107

www.piacere-project.eu

5.1.3 Fitting into overall PIACERE Architecture

The Monitoring Controller is one of the components of the PIACERE architecture. It is part of the
Infrastructure Advisor package in the runtime phase of PIACERE (Figure 22). The Monitoring
Controller interacts with other components in the PIACERE ecosystem:

• PIACERE Runtime Controller (PRC) requests to the Monitoring Controller to start and
stop the monitoring of the concrete deployments.

• The Monitoring Controller forwards the start and stop deployment monitoring requests
to the PIACERE monitoring, self-learning and self-healing components. Specifically, to:

o Performance Monitoring
o Security Monitoring
o Performance Self-learning
o Security Self-learning
o Self-healing

Figure 22: PIACERE Runtime Diagram on its 2.0 version focussed in monitoring components.

5.1.4 Technical description

This subsection is devoted to describing the technical specification of this second prototype.
First, the main architecture of the prototype and the components are shown and described in
Section 5.1.4.1. Prototype Architecture. This subsection finishes with the technical specifications
of the developed system in Section 5.1.4.2 Technical Specifications.

5.1.4.1 Prototype architecture and components description

The main architecture of this second prototype is depicted in the following Figure 23. In this
architecture, seven different components can be distinguished: Connexion, Monitoring
Controller, and five clients to communicate with the rest of the components of PIACERE
monitoring, self-learning and self-healing components.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 53 of 107

www.piacere-project.eu

Figure 23: Monitoring Controller second prototype architecture.

This second prototype of the Monitoring Controller is composed by four components and we
are still deciding if self-healing requires to know that a concrete deployment has been activated.
We will integrate this fifth component if during the development of the last strategies we
identify the need to setup something in the self-healing component for each active deployment.

▪ Connexion: This is an open-source component from Zalando
https://github.com/zalando/connexion that enables the specification first approach in
python.

▪ Monitoring Controller: This is the main component where the forwarding and the
configuration are managed.

▪ Performance Monitoring Client: This will be an autogenerated component from the
OpenAPI of the performance monitoring with the openapi generator
https://github.com/OpenAPITools/openapi-generator.

▪ Security Monitoring Client: This will be also an autogenerated component with the
openapi generator.

▪ Performance Self-learning Client: This will be also an autogenerated component with
the openapi generator.

▪ Security Self-learning Client: This will be also an autogenerated component with the
openapi generator.

DRAFT

http://www.medina-project.eu/
https://github.com/zalando/connexion

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 54 of 107

www.piacere-project.eu

Planned component for the next iteration is:

▪ Self-healing Client: This will be also an autogenerated component with the openapi
generator.

5.1.4.2 Technical specifications

This prototype has been developed using Python, which is an interpreted class-based, high level,
object-oriented and general-purpose programming language. We have chosen Python as it is
easier to ready, learn and write and is ideal for the fast implementation of low complexity code
as the one we have to do in this component.

The component is packaged using Docker technology to simplify the Python requirements and
environment management. This is also a requirement for the future integration of PIACERE
components into the PIACERE framework.

5.2 Performance Monitoring

5.2.1 Functional description

The PIACERE Performance Monitoring component gathers performance and availability related
information from the infrastructure resources that form part of each of the deployments
managed by PIACERE. It also stores that information over the time so that it can be accessed by
other components to perform more complex analysis, such as the performance self-learning
component. Besides, it also monitors some metrics with respect to some thresholds in order to
issue notifications to other components, in case those thresholds are exceeded. Finally, it
aggregates metrics based on actual measurements and updates the characteristics of the
services listed in the Infrastructure Element Catalogue.

The Figure 24 describes the sequence diagram for the three main activities that the Performance
Monitoring should support apart from the user interface access and the data retrieval that are
not currently included in this release, as we are going to provide them using open-source
components already available.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 55 of 107

www.piacere-project.eu

Figure 24: Performance monitoring Sequence diagram.

The second implementation of the Performance Monitoring aims to:

▪ Automate the creation of dashboard specific to the deployments under request from its
API

▪ To provide information on those dashboards to the IDE
▪ To integrate dashboards for real-time and those coming from the information generated

from the self-learning component

The following figure represent the internal workflow of the performance monitoring
components and their internal parts. Based on the request from the user, typically done from
the IDE, the PRC request the activation of the deployment to the IEM and to the monitoring
stack.

The IEM deploys the IaC generated by the ICG that contains the monitoring agents. This will
create somewhere the infrastructure elements required by the application, and these
infrastructure elements will contain the monitoring agents.

The monitoring stack receives the deployment activation request from the PRC. It forwards this
request to lower level monitoring components such as performance monitoring controller. The

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 56 of 107

www.piacere-project.eu

performance monitoring controller configures appropriate dashboards that will take care of the
visualization of metrics with different purposes.

Figure 25: Performance monitoring internal workflow.

5.2.2 Requirements covered by this prototype

The user requirements from WP2 satisfied by this interim version are described in the Table 10.
All these requirements are being polished and adapted as the project advances and we gain
knowledge on the use cases and on the implemented components.

Table 10: Performance Monitoring related user requirements from WP2.

Req ID Description Implementation
Status

Requirement Coverage at M24

REQ46 IOP focused
infrastructure metrics

The monitoring
component shall gather
metrics from the
instances of the
infrastructural elements
at run time. These
metrics need to be
related to the NFR and
accessible to the IOP
(through the dynamic
part of the
infrastructural
catalogue).

planned The feature was planned to be
implemented in M12, we did not
finalise it as we have decide to
simplify the scales of the metrics to
simplify the understanding by the
pilots. It will be completed during the
next period.

REQ47 Full monitoring stack

The monitoring
component shall include
the needed elements in

Completed The Performance Monitoring
includes all the elements required to
monitor infrastructure elements: The
agents to gather the information, the
database to store the data, the
analysis and presentation layer to

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 57 of 107

www.piacere-project.eu

the stack to monitor the
infrastructural elements.

show the metrics and follow the
thresholds, and the component to
configure the deployments.

The elements are present, but they
still require some development that
should be completed in the following
months:

• Complete missing features
regarding notification of
threshold and IEC
(Infrastructure Element
Catalogue) feed.

REQ48 Self-learning focused
monitoring

The monitoring
component shall
transform the real time
values into the correct
format/type/nature for
the self learning
component.

Completed Real time data is stored and the
performance self-learning prototype
is actually capable of consuming that
information using the provided
interface.

REQ50 Monitor performance,
availability, and security

The monitoring
component shall
monitor the metrics
associated with the
defined measurable
NFRs (e.g. performance,
availability, and security
through the runtime
security monitoring).

In progress The Performance Monitor currently
gathers information from
infrastructure resource that can be
used to compute the performance
and availability metrics.

Dashboards are in place to represent
them and they are accessible from
the IDE.

In the following months, we plan to
simplify the metrics to percentual
scale. Besides, we will also try to
provide an aggregated performance
metric that gives high level view of
the overall health of the system.

REQ51 Deployment
nonfunctional
requirements tracking

The self-learning
component shall ensure
that the conditions are
met (compliance with
respect to SLO) and that
a failure or a non-
compliance of a NFRs is

In progress We have defined a predefined set of
thresholds based on the state of the
practice experiences. Now we are
implementing a simplification of the
scales of the metrics in order to
refactor the notifications base on
those simplified thresholds.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 58 of 107

www.piacere-project.eu

not likely to occur. This
implies the compliance
of a predefined set of
non-functional
requirements (e.g.
performance).

REQ52 Monitored data based
self-learning

Self-healing shall
consume the data
monitored and store it in
a time-series database
to create discriminative
complex statistical
variables and train a
predictor, which will
learn potential failure
patterns in order to
prevent the system from
falling into an NFR
violation situation.

Completed The Performance Monitoring
currently provides the time series
database for the usage by the
performance self learning
component. This covers a part of this
requirement, the other part is
covered by the performance self
learning component.

Dashboards for self-learning have
been implemented and are
accessible from the IDE for each
deployment.

REQ72 monitoring user
interface

The runtime monitoring
component should
provide an UI for the end
users to see the
monitored resources
and the corresponding
metrics/NFRs in real
time.

Completed The current version of the
Performance Monitoring includes a
graphical user interface that renders
the information coming from the
time series database.

We have introduced a deployment-
based dashboard that includes
information related to the NFR
thresholds coming from the DOML
specification.

REQ93 Self-healing should
classify the events
notified

In progress Self-healing component shall classify
the events received from the self
learning and derive corrective
actions.

We are receiving notifications from
some of the monitoring elements,
and those elements include the
typology. Currently we are extending
the strategies that may head to
additional or refined types from
some of the monitoring components.

The internal requirements satisfied by this interim version are described in the Table 11. All
these requirements are as well polished and adapted as the project advances.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 59 of 107

www.piacere-project.eu

Table 11: Performance Monitoring related internal requirements.

Title Implementation
Status

Requirement Coverage

Add code into
the project
source
repository

Completed The repository has been created and the code is being
uploaded regularly
https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/pm

Implement REST
API specification

Completed The final version of the OpenAPI has been defined
and put under configuration control
https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/pm/-
/blob/y2/git/pmc/openapi.yaml

The OpenAPI have been implemented and put in
integration.

Implement
specification first
approach

Completed In order to speed-up the implementation of changes
derived from the expected evolution of the REST API,
we have implemented a specification first approach
with openapi generator. Besides, the usage of openapi
generator brings additional benefits in the sense of
introduction of good practices in structuring and
configuring the code.

Prepare for
deployment

Completed In order to ensure that we are prepared to deploy the
component in the integration environment we have
integrated this component with the remaining
monitoring components in a Docker-compose file
that includes a reverse proxy to receive all the
requests using secure standard HTTPS protocol.
https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/pm

Provide fast
deployment
alternative for
deployment,
testing and
evaluation

Completed To allow a seamless infrastructure requirements free
alternative to test this component we have provide a
Vagrant based deployment option. This reduces the
list of software requirements to two: VirtualBox and
Vagrant.

These two tools (VirtualBox and Vagrant) are available
for most of the operating systems: Windows, Mac,
Linux, BSD, …

Include usage
documentation

Completed We have included usage documentation at different
levels:

▪ Docker-compose
https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/pm

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 60 of 107

www.piacere-project.eu

We update continuously the documentation as we
advance in the coding and pre-integration of the
monitoring components

Unitary test Planned We plan to include a testing framework to the code
JUnit in the performance monitoring controller.

Integration test Completed We have completed the end-to-end deployment
scenario for both the demo project and for the use
cases.

Continuous
integration

In progress Continuous integration has been implemented based
on gitlab-ci
https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/pm/-/blob/y2/.gitlab-
ci.yml

The integration approach requires to be migrated with
the rest of the components of PIACERE framework.

5.2.3 Fitting into overall PIACERE Architecture

The Performance Monitoring is one of the components of the PIACERE architecture. It is part of
the Infrastructure Advisor package in the runtime phase of PIACERE (Figure 22). The Monitoring
Controller interacts with other components in the PIACERE ecosystem:

▪ The Monitoring Controller request to start and stop the monitoring of the concrete
deployments to the Performance monitoring as well as other components.

▪ The infrastructure element catalogue receive from the Performance monitoring
information about the monitored infrastructure resources.

▪ The performance Self-learning will use the stored data by the performance monitoring
to forecast events in the infrastructure resources.

▪ The Self-healing receive notifications from the performance monitoring about non-
functional thresholds violations.

5.2.4 Technical description

This subsection is devoted to describing the technical specification of this second prototype.
First, the main architecture of the prototype and the components are shown and described in
Section 5.2.4.1. This subsection finishes with the technical specifications of the developed
system in Section 5.2.4.2 Technical Specifications.

5.2.4.1 Prototype architecture and components description

The main architecture of this second prototype is depicted in the following Figure 23. In this
architecture, four different components can be distinguished (highlighted in green):
Performance Monitoring Controller, Influxdb, Grafana and Performance Monitoring Agents.
Then main purpose of these components is described.

From the previous version we have added links from the IDE to the performance monitoring
dashboard to provide the users a easier access to the monitoring information.

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm/-/blob/y2/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm/-/blob/y2/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm/-/blob/y2/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm/-/blob/y2/.gitlab-ci.yml

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 61 of 107

www.piacere-project.eu

Figure 26: Performance Monitoring second prototype architecture.

This second prototype of the Performance Monitoring is composed by four components, three
of them will run together with the PIACERE runtime framework and the other one will run in the
deployed infrastructures. The components in the PIACERE runtime framework are:

▪ Performance Monitoring Controller: This is the main component that receives the start
and stop requests by the Monitoring controller and configures Grafana in consequence.

▪ Influxdb: is a time series database that will receive the information from all the
Performance Monitoring agents throughout all the active deployments: This is an open
source component15 that enables the storage of time series.

▪ Grafana is a time series rendering web interface that includes functionalities to keep
track of thresholds and sends notifications when the thresholds are exceeded. This is an
open source component16

The component running in the deployed infrastructures is the Performance Monitoring agent.
The monitoring agent gathers multiple parameters from the runtime infrastructures that run the
components of the deployed applications. The Performance Monitoring agent is implemented
using an open source component17.

15 https://www.influxdata.com/
16 https://grafana.com/
17 https://www.influxdata.com/time-series-platform/telegraf/

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 62 of 107

www.piacere-project.eu

5.2.4.2 Technical specifications

The Performance Monitoring Controller prototype has been developed using Java, more
specifically the Java Spring Boot framework18 that is an open source, enterprise-level framework
for creating standalone, production-grade applications. We have created the application using
the openapi generator technology, that starting from the OpenAPI specification is capable to
generate a Spring Boot architecture to implement that functionality.

Internally we have developed an client from the recent Grafana openApi
https://github.com/grafana/grafana/blob/main/public/api-spec.json this allow us to easily
adapt to higher versions of Grafana in case we need to evolve to bring new features or security
patches.

Additional dashboard has been integrated to show self-learning computed data, this has
introduced the usage of dashboard folders to aggregate the dashboard of each deployment.

5.3 Security Monitoring

5.3.1 Functional description

The Security monitoring system consists of subsystems (Wazuh deployment – manager and
agents - with specific components for data transformation) collecting data in order to provide
values for security metrics. As an additional option, it can provide the deployment of
Vulnerability Assessment Tool (VAT) that is capable of monitoring API end-points of the specific
Web Application. The system stores the (1) data aggregated by the (security) monitoring system
and (2) data generated by underlying anomaly detection system using dedicated ELK stack (raw
logs needed for building the model and real-time detection, and events as output of the anomaly
detection system. Sources of raw logs are configurable via Filebeat instance (agent), but
normally it already includes these files as sources: audit.log, cron, dmesg, messages, secure and
yum.log. Finally, it aggregates metrics based on actual measurements and updates the
characteristics of the services listed in the Infrastructure Element Catalogue.

The Figure 27 describes the sequence diagram of the Security Monitoring and Security Self-
learning processes.

18 https://spring.io/projects/spring-boot

DRAFT

http://www.medina-project.eu/
https://github.com/grafana/grafana/blob/main/public/api-spec.json
https://spring.io/projects/spring-boot

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 63 of 107

www.piacere-project.eu

Figure 27: Security Monitoring Sequence diagram.

The second implementation of the Security Monitoring:

• Provides the Controller, exposing Security Monitoring API and orchestrating underlying
services (Figure 28): Monitoring Manager and Model Trainer.

• Provides basic infrastructure based on ELK (part of Wazuh deployment) in order to
aggregate relevant security metrics and provide data feed to anomaly detection
components.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 64 of 107

www.piacere-project.eu

• Exposes integrated graphical user interface

5.3.2 Requirements covered by this prototype

The user requirements from WP2 satisfied by this interim version are described in Table 12.

Table 12: Security Monitoring and Security Self-learning Requirements related user requirements from
WP2.

Req ID Description Implementation
Status

Requirement Coverage at M24

REQ14 Runtime security monitoring
must provide monitoring
data from the
infrastructure's hosts w.r.t.
security metrics

In-progress Security Monitoring Controller
provides API call in order to get
the alerts/events from the
stored database.

REQ15 Runtime security monitoring
can provide monitoring data
from the application layer
(infrastructure's guest) w.r.t.
security metrics

In-progress This is possible through the
configuration of the Security
Monitoring Manager
(specifically, Wazuh
configuration). However,
additional default configuration
for the use cases needs to be
included in the agent’s
configuration.

REQ16 Runtime security monitoring
should contribute to
mitigation actions taken
when considering plans and
strategies for runtime self-
healing actions

In-progress Basic mitigation strategies have
already been defined. Currently,
we are having conversations
within WP6 how to advance on
the integration with the self-
healing components
(integration from the
components is already in
progress).

REQ17 Deployment of runtime
security monitoring should
happen seamlessly or with
minimal effort and
configuration required by
the user.

Done. The deployment code is partially
already available on the
project’s public repository.

REQ18 Runtime security monitoring
must be able to detect
different types of metrics in
run-time: integrity of IaC
configuration, potential
attacks to the infrastructure,
IaC security issues (known
CVEs of the environment).

Done. The data of these metrics are
already available in the Security
Monitoring infrastructure.
However, this is possible
through the configuration of the
Security Monitoring Manager
(specifically, Wazuh
configuration). The
configuration needs to be

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 65 of 107

www.piacere-project.eu

provided through the
configuration step.

REQ19 Runtime security monitoring
and alarm system (self-
learning) integration must
be implemented.

In-progress The integration of the self-
healing component is under
development. Deployments of
these components are available,
but some configuration steps
are still manual.

REQ21 Runtime security monitoring
and Runtime monitoring
infrastructure should be
integrated with minimal
extensions.

In-progress The integration is being done
through the deployment of the
Security Monitoring Agents and
their deployment code.

REQ50 The monitoring component
shall monitor the metrics
associated with the defined
measurable NFRs (e.g.
performance, availability,
and security through the
runtime security
monitoring)

In-progress DOML extension has already
been provided in order to
express basic rules on detection
and triggering actions based on
user input.

REQ51 The self-learning component
shall ensure that the
conditions are met
(compliance with respect to
SLO) and that a failure or a
non-compliance of a NFRs is
not likely to occur. This
implies the compliance of a
predefined set of non-
functional requirements
(e.g. performance)

In-progress The self-learning component of
security monitoring will build
appropriate model to be used
for detecting metrics with
respect to anomaly detection
(anomalies detected on the
infrastructure). In the proposed
DOML extensions, it is possible
to express new metrics and
related NFRs and rules for the
actions to be taken in the case of
fulfilling the rules. Still, the
implementation of the process
has not been finished until now.

The internal requirements satisfied by this interim version are described in the Table 13. All
these requirements are as well polished and adapted as the project advances.

Table 13: Security Monitoring related internal requirements.

Title Implementation
Status

Requirement Coverage

Add code into the
project source
repository

Completed The repository has been created and the code is being
uploaded regularly
https://git.code.tecnalia.com/piacere/private/t64-

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-controller

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 66 of 107

www.piacere-project.eu

runtime-security-monitoring/security-monitoring-
controller

and

https://git.code.tecnalia.com/piacere/private/t64-
runtime-security-monitoring/security-monitoring-
deployment

Implement REST
API specification

In progress An updated version (v1.1.1.) of the OpenAPI has been
defined and put under configuration control :
https://git.code.tecnalia.com/piacere/private/t64-
runtime-security-monitoring/security-monitoring-
controller/-
/blob/y2/swagger_server/swagger/swagger.yaml

Implement
specification first
approach

Completed In order to speed-up the implementation of changes
derived from the expected evolution of the REST API,
we have implemented a specification first approach
with OpenAPI generator.

Prepare for
deployment

Completed Part of the code provided on the Gitlab.

Provide fast
deployment
alternative for
deployment,
testing and
evaluation

Completed Part of the code provided on the Gitlab.

Include usage
documentation

Completed Part of the code provided on the Gitlab.

Unitary test Planned Not yet available

Integration test Planned Not yet available

Continuous
integration

Planned Not yet available

5.3.3 Fitting into overall PIACERE Architecture

The Security Monitoring is one of the components of the PIACERE architecture. It is part of the
Infrastructure Advisor package in the runtime phase of PIACERE (Figure 22). The Monitoring
Controller interacts with Security Monitoring:

▪ The Monitoring Controller requests to start and stop the monitoring of the concrete
deployments.

▪ The Infrastructure Element Catalogue receives from the Security Monitoring
information about the monitored infrastructure resources.

▪ The Security Self-learning will use the stored data by the security monitoring to build
models used by the anomaly detection process in the infrastructure resources.

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-controller
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-controller
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-deployment
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-deployment
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-deployment
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-controller/-/blob/y2/swagger_server/swagger/swagger.yaml
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-controller/-/blob/y2/swagger_server/swagger/swagger.yaml
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-controller/-/blob/y2/swagger_server/swagger/swagger.yaml
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-controller/-/blob/y2/swagger_server/swagger/swagger.yaml

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 67 of 107

www.piacere-project.eu

▪ The Self-healing receives notifications from the security monitoring about non-
functional thresholds violations.

5.3.4 Technical description

5.3.4.1 Prototype architecture and components description

Figure 28 depicts architecture of the Security Monitoring and Security Self-learning components.

Figure 28: Architecture of Security Monitoring and Security Self-learning.

Controller exposes underlying APIs of the Monitoring Manager and Model Trainer via RESTful
(OpenAPI spec) API. Model Trainer internally stores trained models in the internal Model
Repository. Anomaly Detection component uses the data feed provided by the Monitoring
Manager in order to detect anomalies based on the pre-built anomaly detection model built by
the Model Trainer (and stored within its internal component – Model Repository). Monitoring
Manager’s Agents residing on the underlying infrastructure provide continuous data feed into
the Monitoring Manager’s data storage. There are possibilities to extend Monitoring Manager’s
Agents with other modules such as Vulnerability Assessment Tool (VAT), in order to provide
different security-based metrics into the data feed, to be considered in the evaluation process.

5.3.4.2 Technical specifications

The Security Monitoring components are developed mainly using Python and Ansible
deployment scripts. OpenAPI specification has been developed for the Controller’s API (publicly
accessible at https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-
monitoring/security-monitoring-controller/-
/blob/main/swagger_server/swagger/swagger.yaml).

The Controller uses Flask framework and its underlying Authentication/Authorization
mechanisms. Through the API it provides, it exposes alerts where additional search queries are
possible.

Monitoring Manager is developed using deployment of Wazuh 4.2 which already provides
agents and ELK stack (based on OpenDistro Elasticsearch) used for storing a plethora of different
security metrics. It aggregates and stores alerts stemming from the Agents deployed on the
infrastructure. Filebeat deployment is part of these agents. Data stemming from ELK (specifically

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-monitoring-controller/-/blob/main/swagger_server/swagger/swagger.yaml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-monitoring-controller/-/blob/main/swagger_server/swagger/swagger.yaml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-monitoring-controller/-/blob/main/swagger_server/swagger/swagger.yaml

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 68 of 107

www.piacere-project.eu

from Filebeat19) is being consumed by the anomaly detection mechanism within the Security
Monitoring architecture. Monitoring Manager provides Kibana dashboard so that the user can
review all the alerts provided by the Security Monitoring Manager.

VAT is the tool developed by XLAB. Its deployment is optional at this point. The planned use of
the tool is to provide additional security metrics that could be expressed through NFRs.

5.4 Performance Self-learning

5.4.1 Functional description

After being started by the Performance Monitoring component, the Performance Self Learning
components follows an iterative process. It acquires data from the Performance Monitoring
database and analyses it. The analysis consists of a concept drift algorithm and an anomaly
detection algorithm, both operating at the same time. The online prediction process may send
a notification to the Self-Healing when the forecasted metric exceeds a threshold.

The following figure describes the sequence diagram for this iterative process.

Figure 29: Self-learning sequence diagram.

The following figure describes how the sequence diagram is implemented internally in the
performance self-learning. The self-learning iteratively processes metrics for each monitored
deployment. The processing starts with the checking if the training has done, if the training is
not done it check if enough metrics are in place to perform the initial model. Currently 200
metrics are used but that can be customised. After the initial model has been generated each
follow up metric is used in the online learning and prediction algorithm that also consider
anomalies and drifts. The outcome information is used to compare with the thresholds and
inform the self-healing if necessary. Besides, that information is stored back in the time series
database for its latter usage.

19 https://www.elastic.co/beats/filebeat

DRAFT

http://www.medina-project.eu/
https://www.elastic.co/beats/filebeat

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 69 of 107

www.piacere-project.eu

Figure 30: Self-learning workflow diagram.

5.4.2 Requirements covered by this prototype

The user requirements from WP2 satisfied by this interim version are described in the Table 14.

Table 14: Performance Self-learning Requirements related user requirements from WP2.

Req ID Description Implementation
Status

Requirement Coverage

REQ11 The learning algorithm
should be executed as fast
as possible as it must
provide an outcome before
more data arrives.

The anomaly detection
should have fast and easy
access to the monitoring
data.

Completed The whole Performance Self-
Learning component has direct
access to the data in the
Performance Monitoring
database.

At the moment execution is fast
enough in the initial test of pilots
but further analysis is planned for
Y3.

REQ51 The self-learning shall
ensure that the conditions
are met (compliance with
respect to SLO) and that a
failure or a non-compliance
of a NFRs is not likely to
occur. This implies the
compliance of a predefined
set of non-functional
requirements (e.g.
performance)

Completed The Performance Self-Learning
component is able to run fast by
filtering the data to be acquired.

REQ52 Self learning shall consume
the data monitored and
stored in a time-series
database to create

Completed Thanks to the integration of the
Performance Monitoring
database access implementation,
the Performance Self-Learning

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 70 of 107

www.piacere-project.eu

discriminative complex
statistical variables and
train a predictor which will
learn potential failure
patterns in order to prevent
the system from falling into
an NFR violation situation

component is able to consume
the data in an incremental way
and to create the necessary
variables.

The internal requirements satisfied by this interim version are described in the Table 15. All
these requirements are as well polished and adapted as the project advances.

Table 15: Performance Self Learning related internal requirements.

Title Implementation
Status

Requirement Coverage

Add code into
the project
source
repository

Completed The repository has been created and the code is being
uploaded regularly:
https://git.code.tecnalia.com/piacere/public/the-
platform/self-learning

Implement REST
API specification

Completed The OpenAPI has been defined and put under
configuration control:
https://git.code.tecnalia.com/piacere/public/the-
platform/self-learning/-/blob/y2/docs/self-learning-
openapi.yaml

Implement
specification
first approach

Completed In order to speed-up the implementation of changes
derived from the expected evolution of the REST API,
we have implemented a specification first approach
with OpenAPI generator.

Prepare for
deployment

Completed Part of the code provided on the Gitlab.

Provide fast
deployment
alternative for
deployment,
testing and
evaluation

Completed Following the Dependency specification for Python
Software Packages the required file is provided:
https://git.code.tecnalia.com/piacere/public/the-
platform/self-learning/-/blob/y2/requirements.txt

Include usage
documentation

In-progress Deployment information have been provided and
usage documentation is being working out based on
the feedback from the use case application.

Unitary test In-progress Not yet available.

Integration test In-progress The deployment and collection have been performed.
Additional test are required to be able to exemplify the
self-learning add value in a concrete scenario.

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/private/t62-self-learning/psl
https://git.code.tecnalia.com/piacere/private/t62-self-learning/psl
https://git.code.tecnalia.com/piacere/private/t62-self-learning/psl
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-/blob/y2/docs/self-learning-openapi.yaml
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-/blob/y2/docs/self-learning-openapi.yaml
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-/blob/y2/docs/self-learning-openapi.yaml
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-/blob/y2/docs/self-learning-openapi.yaml
https://www.python.org/dev/peps/pep-0508/
https://www.python.org/dev/peps/pep-0508/
https://git.code.tecnalia.com/piacere/private/t62-self-learning/psl/-/blob/5e234cff5aecd52537ee27f75f6f17e5f76fe481/requirements.txt

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 71 of 107

www.piacere-project.eu

Continuous
integration

Completed The component has been deployed with the rest of the
components of the PIACERE platform.

5.4.3 Fitting into overall PIACERE Architecture

The Performance Self Learning is one of the components of the PIACERE architecture. It is part
of the Infrastructure Advisor package in the runtime phase of PIACERE (Figure 22). The
Monitoring Controller interacts with the Performance Self Learning:

• The Monitoring Controller requests to start and stop the Performance Self Learning of
the concrete deployments.

• The Performance Self Learning will create different models and feed them with data
from the Performance Monitoring Controlled to be able to detect Concept Drift
phenomenon and detect anomalies.

• The Self-healing receives notifications from the Performance Self Learning component
about warnings in the deployments behaviour.

5.4.4 Technical description

5.4.4.1 Prototype architecture and components description

The Performance Self-learning component is composed by different solutions and approaches
to deal with its goal. In order to achieve its main objective, the Performance Self-learning is
composed by different subcomponents portrayed in the following Figure 31.

Figure 31: Architecture of the Self-learning component.

In this architecture, two main different components can be distinguished: PerformanceSelf
LearningCore and PerformanceSelfLearningAPI component. The PerformanceSelfLearningCore
component is also composed by two components: River and InfluxDB.

The prototype is split in two main components.

▪ PerformanceSelfLearningCore: This component will be in charge of loading or creating
Concept Drift and Anomaly Detection learning models whenever a deployment loading
has been notified or stopping the learning process on any unloading. This component
will also be in charge of feeding the models with data. Finally, once data is analysed,
SelfHealing component is notified in case of exceeding the idle threshold for the metric
being monitored.

 DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 72 of 107

www.piacere-project.eu

▪ PerformanceSelfLearningAPI: This component will be on charge on notifying the
PerformanceSelfLearningCore component of the loading or unloading of any
deployment.

The PerformanceSelfLearningCore is also split in two components:

▪ River: The library that implements the Concept Drift and Anomaly Detection algorithm
▪ InfluxDB: The time series database from which the PerformanceSelfLearningCore will

receive the data to feed the models.

5.4.4.2 Technical specifications

River is a library for developing online machine learning solutions in Python. It was created by
the combination of two of the most popular stream learning packages: scikit-multiflow and
creme. Its main innovation is the use of pipelines to transform data in the process of data
digestion. It also provides different learning models out of the box, specialized in jobs such as
anomaly detection, classification, clustering, regression, etc. The library also offers the Half
Space Trees (anomaly detection), Random Forest Regressor (incremental learning) and ADWIN
(drift detection) used in the component. River has been the basis for the development of the
incremental learning and anomaly detection, and it will also be the basis for the drift detection.
After using River with the toy dataset, we have successfully confirmed that it is the suitable
library to develop the Self-learning component in the PIACERE project.

For data provision, the official InfluxDB Python library is used, due to the use of InfluxDB as the
data storage. Its use is seamlessly integrated in the current implementation, allowing data
retrieval for different date ranges providing the ability to use online learning that best fits the
component.

This component will also requires the integration with different components with a RESTful API
to be aware of new deployments to be analysed and to warn the Self-Healing component about
any differing behaviour. A Flask server is used to provide the API easing the integration with
different components.

Due to the use of Python programming language by the previous libraries, Python has also been
selected as the main language of the prototype.

5.5 Security Self-learning

5.5.1 Functional description

The main purpose of the Security Self-learning component is to provide capabilities to train
anomaly detection models. It receives data from the Security Monitoring component (see Figure
27). As a first necessary step, a specified subset of the data has to be used to train a behavioural
model. This subset of data, along with the necessary configuration files, is provided to the Model
Trainer component (see Figure 28), which eventually stores every trained model in the Model
Repository (currently part of the Infrastructural Model Trainer, eventually could be part of the
Elements Catalogue as initially planned). Once a model is trained, this step is repeated only if
requested to do so. A trained model is loaded from the Model Repository to carry out anomaly
detection of the data collected by the Security Monitoring component. This task is thus carried
out as part of the Security Monitoring workflow. Under previously specified conditions, e.g. high
number of anomalies in a short time period, the Security Monitoring component will notify the
Self-healing component.

Internally, the Model Trainer needs to train two different machine-learning models: the log
parser and the anomaly detector. The log parser is in charge of transforming raw logs received

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 73 of 107

www.piacere-project.eu

from the Security Monitoring into structured logs. The log parser is thus trained in an
unsupervised way. Then, the anomaly detector is trained on the stream of structured logs to
learn patterns representing the normal behaviour. Afterwards, as already mentioned, a trained
log parser and anomaly detector will be loaded by the Anomaly Detection component of Security
Monitoring in order to provide an anomaly score for every incoming log message. Figure 32
illustrates this process.

Figure 32: Internal functioning of the Model Trainer.

The sequence diagram describing the functioning of the Security Self-learning component can
be seen in Figure 27, integrated with that of the Security Monitoring.

5.5.2 Requirements covered by this prototype

The user requirements are listed under Security Monitoring Implementation section in Table 12.
Internal requirements covered by this prototype are listed in Table 16.

Table 16: Internal requirements for Security Self-learning.

Title Implementation
Status

Requirement Coverage at M24

Add code into
the project
source repository

Completed The repository has been created and the code is being

uploaded regularly

https://git.code.tecnalia.com/piacere/private/t64-

runtime-security-monitoring/security-monitoring-

controller , available also on the public repository:

https://git.code.tecnalia.com/piacere/public/the-

platform/runtime-security-monitoring/security-

monitoring-controller/-/tree/main/

Implement REST
API specification

Completed A first version of the OpenAPI has been defined and
put under configuration control

Implement
specification first
approach

Completed In order to speed-up the implementation of changes
derived from the expected evolution of the REST API,
we have implemented a specification first approach
with OpenAPI generator.

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-controller
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-controller
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-controller
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-monitoring-controller/-/tree/main/
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-monitoring-controller/-/tree/main/
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-monitoring-controller/-/tree/main/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 74 of 107

www.piacere-project.eu

Prepare for
deployment

Completed Part of the private repository (not in project’s Gitlab).

Provide fast
deployment
alternative for
deployment,
testing and
evaluation

Completed Part of the private repository (not in project’s Gitlab).

Include usage
documentation

Completed Part of the private repository (not in project’s Gitlab).

Unitary test Completed Part of the private repository (not in project’s Gitlab).
CI instance in PIACERE already links to deployment of
the dashboards.

Integration test Completed CI instance in PIACERE already links to deployment of
the dashboards.

Continuous
integration

Completed CI instance in PIACERE already links to deployment of
the dashboards.

5.5.3 Fitting into overall PIACERE Architecture

Security Self-learning’s architecture and fitting into the overall PIACERE Architecture is
described in section 5.5.4.1.

5.5.4 Technical description

5.5.4.1 Prototype architecture and Components description

The Security Self Learning component consists of a single architecture element, referred to as
Model Trainer. Its architectural integration with that of the Security Monitoring is depicted in
Figure 28.

The Security Monitoring controller triggers via API the model training, providing the necessary
data and configuration files. As a result of the training process, a new log parser based on Drain
method, and a new anomaly detection model based on LogBERT are created. These objects
belong to the Model Trainer component (Figure 28) and are accessible via API as well.

Additionally, a dashboard is available as a submodule of the existing UI (see IDE Plug-
in/Dashboard in Figure 21, Figure 22 in section 4.2.2.2) to interact with the Model Trainer both
for the training of the log parsers and anomaly detection models, as well as for visualization of
intermediate and final results.

5.5.4.2 Technical specifications

Input:

▪ Data stemming from the Security Monitoring component. The data is already
aggregated from different sources by the Security Monitoring component using ELK,
which is directly accessed by the Model Trainer.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 75 of 107

www.piacere-project.eu

▪ Security Self-learning component uses dedicated Elasticsearch’s indexes that are
considered as input for the anomaly detection process.

Programming languages/tools:

▪ Python: popular data science and machine learning libraries are used, mainly numpy,
pandas, pytorch and transformers.

Dependencies:

▪ Grafana dashboard (deployment).
▪ ELK stack: storing raw log data.

5.6 Self-healing

5.6.1 Functional description

The PIACERE self-healing component receives events form the rest of the monitoring and self-
learning components and, based on the nature of the issue, it launches different fixing
strategies.

The Figure 33 shows the sequence diagram for the main activity that the self-healing should
implement: the notification processing workflow.

Figure 33: Self-healing sequence diagram.

The second implementation of the self-healing aims to:

▪ Wait for event notifications from the rest of the monitoring and self-learning
components in the IA (infrastructure Advisor).

▪ Classify the event to identify the corresponding strategy and other possible aspects in
the future such as its severity.

▪ Queue the strategies to be applied
▪ Request the execution of the fixing strategy to the PRC (PIACERE runtime controller)

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 76 of 107

www.piacere-project.eu

Apart from this workflow we have also implemented some supporting features to enable the
monitoring of the notifications received and the management of the types of notifications and
strategies applied to each of them.

The following figure represent the internal workflow of the self-healing components and their
internal parts.

Figure 34: Self-healing internal workflow.

5.6.2 Requirements covered by this prototype

The user requirements from WP2 satisfied by this interim version are described in the Table 17.
All these requirements are being polished and adapted as the project advances and we gain
knowledge on the use cases and on the implemented components.

Table 17: Self-healing related user requirements from WP2.

Req ID Description Implementation
Status

Requirement Coverage at
M24

REQ16 Runtime security monitoring
should contribute to
mitigation actions taken
when considering plans and
strategies for runtime self-
healing actions.

In progress The self-healing general
approach, related to types of
notifications and strategies has
been established

REQ17 Deployment of runtime
security monitoring should
happen seamlessly or with
minimal effort and
configuration required by the
user.

In progress The self-healing will receive
configuration request from the
monitoring controller

REQ46 The monitoring component
shall gather metrics from the
instances of the
infrastructural elements at
run time. These metrics need
to be related to the NFR and

In discussion Metrics will be fed by the
monitoring component about
performance and security. We
are evaluating the possibility of
feeding the Infrastructural
elements catalogue with

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 77 of 107

www.piacere-project.eu

accessible to the IOP (through
the dynamic part of the
infrastructural catalogue).

information about self-healing
actions.

REQ47 Full monitoring stack.

The monitoring component
shall include the needed
elements in the stack to
monitor the infrastructural
elements

In progress Self-healing components are
being dockerized and deployed
with container choreography
tools.

REQ92 Self-healing component shall
receive notifications from the
self-learning.

In progress Self-healing component
implements a REST API to
receive notifications from all
the components involved in
the application infrastructure
monitoring.

REQ93 Self-healing component shall
classify the events received
from the self-learning and
derive corrective actions.

In progress Self-healing provides a
classification field as part of
the notification message.

REQ94 Self-healing component shall
inform the run time controller
about the different
components to orchestrate
(the workflow to be
executed).

In progress We have implemented
deployment level strategies in
this level. In the next period we
are developing ansible
strategies that will enable the
specification of actions on
specific infrastructure
elements.

REQ97 The Self-healing components
provide feedback on the
DOML code, without doing
automatic writes. The end
user can choose to accept or
not the feedback received. (ex
REQ56&75).

In discussion

Not addressed

The information is planned to
be added to the Infrastructural
elements catalogue instead of
in the DOML

The internal requirements satisfied by this interim version are described in the Table 18. All
these requirements are as well polished and adapted as the project advances.

Table 18: Self-healing related internal requirements.

Title Implementation
Status

Requirement Coverage

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 78 of 107

www.piacere-project.eu

Implement
OpenAPI
specification

Completed It is available in the public repository.

Implement
specification first
approach

Completed The notification interface is implemented and it is
receiving notifications from other components in the
monitoring infrastructure.

5.6.3 Fitting into overall PIACERE Architecture

The Self-Healing is one of the components of the PIACERE architecture. It is part of the
Infrastructure Advisor package in the runtime phase of PIACERE (Figure 22). It interacts with
other tools in the PIACERE ecosystem:

▪ Performance Monitoring, Security Monitoring, Performance Self-Learning and Security
Self-Learning components send notifications to the Self-Healing component.

▪ Self-Healing component proposes self-healing workflow to the Runtime Controller
component.

5.6.4 Technical description

This subsection is devoted to describing the technical specification of this second prototype.
First, the main architecture and the components of the prototype are shown and described in
section 5.6.4.1. This subsection finishes with the technical specifications of the developed
system in Section 5.6.4.2.

5.6.4.1 Prototype architecture and components description

Self-healing architecture is based on a microservices style which splits the front-end, only for
testing purposes in this stage, and the backend, so that´s it´s easier to scale and survive
infrastructure issues.

In order to manage the events-oriented architecture, in this second prototype, Kafka streaming
solution has been chosen. DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 79 of 107

www.piacere-project.eu

Figure 35: Self-healing internal architecture.

This second prototype of the Self-healing is composed by two principal components, which main
purpose are briefly described as follows. It should be noted that further detail on these
components is provided in the upcoming Section 6.6.

▪ Self-healing service: this component manages all the logic of the self-healing. It
implements the necessary logic to treat the notifications received by the components
involved in the self-healing mechanism, exposing a REST service in order to simplify the
interaction, and the work for communicating with the runtime controller in order to
propose the self-healing mechanisms.

▪ Self-healing test frontend: This component has been developed to simplify the
integration and test of the self-healing with the rest of the components.

In addition, some considerations about the other components of the self-healing:

▪ Access control. JSON Web Token (JWT)20 mechanism is used. A stateless security
mechanism which uses a secure token that holds the user´s login name and authorities.

▪ Data persistence in MySQL database.
▪ JHipster Registry21. Service discovery using Netflix Eureka22.
▪ Apache Kafka23: Event streaming solution to capture real-time data from the related

components which need to send notifications to the Self-healing component.

20 https://jwt.io/introduction
21 https://www.jhipster.tech/
22 https://spring.io/projects/spring-cloud-netflix
23 https://kafka.apache.org/

DRAFT

http://www.medina-project.eu/
https://jwt.io/introduction
https://www.jhipster.tech/
https://spring.io/projects/spring-cloud-netflix
https://kafka.apache.org/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 80 of 107

www.piacere-project.eu

5.6.4.2 Technical specifications

This prototype has been developed using JHipster Framework, which provides all the needed
technologies and configuration options for a modern web application and microservice
architecture.

This framework uses Spring Boot to develop, deploy and test the application.

In the client side, the test frontend gateway uses Yeoman, Webpack, Angular and Bootstrap
technologies.

In the server side the Self-healing microservice uses Maven, Spring, Spring MVC Rest, Spring
Data JPA and Netflix OSS.

The technology used to manage the events received is Kafka.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 81 of 107

www.piacere-project.eu

6 Conclusions

Along this document, we have presented the current state of the development of the PIACERE
run-time monitoring and self-learning, self-healing platform, together with the rationale that
supports the decisions taken in this period.

As we have stated in the executive summary, the objective in this period has been to start the
piloting of the features regarding the performance and security monitoring, self-learning and
self-healing components.

During this period, we have deployed all components in the integration platform, and we have
fully covered de IaC deployment from the IDE including the agent deployment and the
configuration of the monitoring components to track that deployment. We have achieve the
testing of the deployment in the context of one of the pilots gathering valuable feedback for the
next iteration.

During the next months, we will complete in the integration and the implementation of the
remaining workflows of the PIACERE frameworks and the new self-healing strategies.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 82 of 107

www.piacere-project.eu

References

[1] S. Peyrott, “An Introduction to Microservices, Part 1,” 4 09 2015. [Online]. Available:
https://auth0.com/blog/an-introduction-to-microservices-part-1/. [Accessed 15 11 2021].

[2] J. Alonso, L. Orue-Echevarria and M. Escalante, “Contribution to the uptake of Cloud Computing
solutions: Design of a cloud services intermediator to foster an ecosystem of trusted,
interoperable and legal compliant cloud services.,” Proceedings of the 15th International
Conference on Web Information Systems and Technologies (WEBIST), Vienna, 2019.

[3] J. Alonso, M. Huarte and L. Orue-Echevarria, “ACSmI: A solution to address the challenges of
Cloud services federation and monitoring towards the Cloud Continuum,” International Journal
of Computational Science and Engineering, 2021.

[4] DECIDE Consortium;, “D5.4 Final Advanced Cloud Service meta-Intermediator,” 2019.

[5] International Organization for Standardization, “ISO/IEC 19086:1-2016 Clod computing -Service
level agreement (SLA) framework,” 2016.

[6] J. Alcaraz Calero and J. Gutiérrez Aguado, “Comparative analysis of architectures for monitoring
cloud computing infrastructures,” Future Generation Computer Systems, vol. 47, pp. pp.16-30,
2015.

[7] DECIDE Consortium, “DECIDE D3.15 Final multi-cloud native application composite CSLA
definition,” 2019.

[8] Y. Verginadis, “D3.4: Workload optimisation recommendation and adaptation enactment,”
H2020 Melodic, 2019.

[9] N. M. Fuentes-García, J. Camacho and G. Maciá-Fernández, “Present and Future of Network
Security Monitoring,” IEEE Access, vol. 1, no. 1, p. 99, 2021.

[10] “ossec (Open Source HIDS SECurity),” [Online]. Available: https://www.ossec.net/. [Accessed
2021].

[11] “Zeek (formerly Bro),” [Online]. Available: https://zeek.org/. [Accessed 2021].

[12] “wazuh,” [Online]. Available: https://wazuh.com/. [Accessed 2021].

[13] Telegraf, “Telegraf is the Agent for Collecting & Reporting Metrics & Data,” [Online]. Available:
https://www.influxdata.com/time-series-platform/telegraf/. [Accessed November 2017].

[14] C. Doersch and A. Zisserman, “Multi-task self-supervised visual learning,” in Proceedings of the
IEEE International Conference on Computer Vision, 2017.

[15] A. Gogna and A. Majumdar, “Semi supervised autoencoder,” in International Conference on
Neural Information Processing, 2016.

[16] K. Pathak and J. Kapila, “Reinforcement evolutionary learning method for self-learning,” arXiv
preprint, no. arXiv:1810.03198, 2018.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 83 of 107

www.piacere-project.eu

[17] T. Cerquitelli, S. Proto, F. Ventura, D. Apiletti and E. Baralis, “Automating concept-drift detection
by self-evaluating predictive model degradation,” arXiv preprint, no. arXiv:1907.08120, 2019.

[18] J. Lu, A. Liu, Y. Song and G. Zhang, “Data-driven decision support under concept drift in streamed
big data,” Complex and Intelligent Systems, vol. 6, no. 1, pp. 157--163, 2020.

[19] A. kishore Ramakrishnan, D. Preuveneers and Y. Berbers, “Enabling self-learning in dynamic and
open IoT environments,” Procedia Computer Science, vol. 32, pp. 207--214, 2014.

[20] A. Carreño, I. Inza and J. A. Lozano, “Analyzing rare event, anomaly, novelty and outlier
detection terms under the supervised classification framework,” Artificial Intelligence Review,
pp. 1--20, 2019.

[21] V. Chandola, A. Banerjee and V. Kumar, “Anomaly detection: A survey,” ACM computing surveys
(CSUR), vol. 41, no. 3, pp. 1--58, 2009.

[22] H. M. Gomes, J. Read, A. Bifet, J. P. Barddal and J. Gama, “Machine learning for streaming data:
state of the art, challenges, and opportunities,” ACM SIGKDD Explorations Newsletter, vol. 21,
no. 2, pp. 6-22, 2019.

[23] J. L. Lobo, “New perspectives and methods for stream learning in the presence of concept drift,”
2018.

[24] P. Domingos and G. Hulten, “A general framework for mining massive data streams,” Journal of
Computational and Graphical Statistics, vol. 12, no. 4, pp. 945--949, 2003.

[25] Hawkins and Douglas M., Identification of Outliers, Springer Netherlands, 1980.

[26] C. Aggarwal, Outlier Analysis, Springer International Publishing, 2017.

[27] B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola and R. C. Williamson, “Estimating the
Support of a High-Dimensional Distribution,” Neural Comput., vol. 13, no. 7, p. 1443–1471,
2001-07.

[28] C. Cortes and V. Vapnik, “Support Vector Networks,” Machine Learning, vol. 20, pp. 273-297,
1995.

[29] M. M. Breunig, H.-P. Kriegel, R. T. Ng and J. Sander, “LOF: identifying density-based local
outliers,” in ACM sigmod record, 2000.

[30] F. T. Liu, K. M. Ting y Z.-H. Zhou, «Isolation Forest,» de Proceedings of the 2008 Eighth IEEE
International Conference on Data Mining, 2008.

[31] S. C. Tan, K. M. Ting and T. F. Liu, “Fast Anomaly Detection for Streaming Data,” in Proceedings
of the Twenty-Second International Joint Conference on Artificial Intelligence - Volume Volume
Two, 2011.

[32] P. J. Rousseeuw and K. V. Driessen, “A Fast Algorithm for the Minimum Covariance Determinant
Estimator,” Technometrics, vol. 41, no. 3, pp. 212-223, 1999.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 84 of 107

www.piacere-project.eu

[33] P. J. Rousseeuw, “Least Median of Squares Regression,” Journal of the American Statistical
Association, vol. 79, no. 388, pp. 871-880, 1984.

[34] H.-K. Peng, “Multi-scale compositionality,” PLoS One, 2015.

[35] W. Sun, A. Javaid, Q. Niyaz and M. Alam, “Deep Learning Approach for Network Intrusion
Detection System,” in Bio-inspired Information and Communications Technologies (formerly
BIONETICS), Brussels, 2015.

[36] T. Luo and S. Nagarajan, “Distributed Anomaly Detection Using Autoencoder Neural Networks
in WSN for IoT,” in 2018 IEEE International Conference on Communications (ICC), 2018.

[37] I. Kakanakova and S. stoyanov, “Outlier Detection via Deep Learning Architecture,” in 18th
International Conference on Computer Systems and Technologies, New York, 2017.

[38] W. Zhang, W. Guo, X. Liu, Y. Liu, J. Zhou, B. Li, Q. Lu and S. Yang, “LSTM-Based Analysis of
Industrial IoT Equipment,” IEEE Access, 2018.

[39] B. A. Mudassar, J. H. Ko and S. Mukhopadhyay, “An Unsupervised Anomalous Event Detection
Framework with Class Aware Source Separation,” in 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2018.

[40] F. Awwadl, “Power profiling of microcontroller's instruction set for runtime hardware Trojans
detection without golden circuit models,” in Design, Automation Test in Europe Conference
Exhibition, 2017.

[41] S. Faghih-Roohi, S. Hajizadeh, A. Núñez, R. Babuska and B. D. Schutter, “Deep convolutional
neural networks for detection of rail surface defects,” in 2016 International Joint Conference on
Neural Networks (IJCNN), 2016.

[42] L. N. Nielsen, K. A. Steen, R. N. Jørgensen and H. Karstoft, “DeepAnomaly: Combining
Background Subtraction and Deep Learning for Detecting Obstacles and Anomalies in an
Agricultural Field,” Sensors, 2016.

[43] A. Fuentes, S. Yoon, S. C. Kim and D. S. Park, “A Robust Deep-Learning-Based Detector for Real-
Time Tomato Plant Diseases and Pests Recognition,” Sensors, 2017.

[44] W. Yan and L. Yu, “On Accurate and Reliable Anomaly Detection for Gas Turbine Combustors: A
Deep Learning Approach,” arXiv:1908.09238 [cs, stat], 2019.

[45] J. Dai, H. Song, G. Sheng and X. Jiang, “Cleaning Method for Status Monitoring Data of Power
Equipment Based on Stacked Denoising Autoencoders,” IEEE Access, 2017.

[46] H. Luo and S. Zhong, “Gas turbine engine gas path anomaly detection using deep learning with
Gaussian distribution,” in 2017 Prognostics and System Health Management Conference (PHM-
Harbin), 2017.

[47] L. Banjanovic-Mehmedovic, A. Hajdarevic, M. Kantardzic, F. Mehmedovic and I. Dzananovic,
“Neural network-based data-driven modelling of anomaly detection in thermal power plant,”
Automatika, 2017.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 85 of 107

www.piacere-project.eu

[48] N. Nguyen Thi, V. L. Cao and N.-A. Le-Khac, “One-Class Collective Anomaly Detection Based on
LSTM-RNNs,” Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXVI:
Special Issue on Data and Security Engineering, 2017.

[49] M. Du, “Deeplog: Anomaly detection and diagnosis from system logs through deep learning.,”
in 2017 ACM SIGSAC Conference on Computer and Communications Security, 2017.

[50] M. Du and F. Li., “Spell: Streaming parsing of system event logs,” in 2016 IEEE 16th International
Conference on Data Mining (ICDM)., 2016.

[51] Meng, Weibin and e. al, “LogAnomaly: Unsupervised Detection of Sequential and Quantitative
Anomalies in Unstructured Logs,” IJCAI, 2019.

[52] Mikolov, Tomas and e. al, “Efficient estimation of word representations in vector space,” arXiv,
2013.

[53] Zhang and Shenglin, “Syslog processing for switch failure diagnosis and prediction in datacenter
networks,” in IEEE/ACM 25th International Symposium on Quality of Service (IWQoS)., 2017.

[54] Zhang and Xu, “Robust log-based anomaly detection on unstable log data,” in Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2019.

[55] P. He and e. al., “Drain: An online log parsing approach with fixed depth tree,” in 2017 IEEE
international conference on web services (ICWS)., 2017.

[56] S. Huang and e. al., “HitAnomaly: Hierarchical Transformers for Anomaly Detection in System
Log,” IEEE Transactions on Network and Service Management 17.4 (2020):, 2020.

[57] A. Vaswani, “Attention is all you need,” Advances in neural information processing systems,
2017.

[58] V.-H. Le and H. Zhang, “Log-based Anomaly Detection Without Log Parsing,” arXiv, 2021.

[59] Devlin, Jacob and e. al., “Bert: Pre-training of deep bidirectional transformers for language
understanding,” arXiv 1810.04805, 2018.

[60] Guo, Haixuan, S. Yuan and X. Wu, “"LogBERT: Log Anomaly Detection via BERT,” arXiv, 2021.

[61] H. Ott and e. al., “Robust and Transferable Anomaly Detection in Log Data using Pre-Trained
Language Models,” arXiv, 2021.

[62] W. Xu and e. al, “Detecting large-scale system problems by mining console logs,” in ACM SIGOPS
22nd symposium on Operating systems principles, 2009.

[63] “VAST Challenge 2011. 2011. MC2 - Computer Networking Operations,” 2011. [Online].
Available:
https://www.cs.umd.edu/hcil/varepository/VAST%20Challenge%202011/challenges/MC2%20-
%20Computer%20Networking%20Operations/. [Accessed 2021].

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 86 of 107

www.piacere-project.eu

[64] K. Veeramachaneni, “AI training a big data machine to defend,” in 2016 IEEE 2nd International
Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on
High Performance and Smart Computing (HPSC), and Security (IDS)., 2016.

[65] A. Tuor, “Deep learning for unsupervised insider threat detection in structured cybersecurity
data streams.,” in Workshops at the Thirty-First AAAI Conference on Artificial Intelligence. 2017.,
2017.

[66] J. Glasser and B. Lindauer, “Bridging the gap: A pragmatic approach to generating insider threat
data,” in 2013 IEEE Security and Privacy Workshops. IEEE, 2013.

[67] M. Bahri, A. Bifet, J. Gama, H. M. Gomes and S. Maniu, “Data stream analysis: Foundations,
major tasks and tools,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
p. e1405.

[68] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama and G. Zhang, “Learning under concept drift: A review,” IEEE
Transactions on Knowledge and Data Engineering, vol. 31, no. 12, pp. 2346--2363, 2018.

[69] G. I. Webb, R. Hyde, H. Cao, H. L. Nguyen and F. Petitjean, “Characterizing concept drift,” Data
Mining and Knowledge Discovery, vol. 30, no. 4, pp. 964--994, 2016.

[70] H. Hu, M. Kantardzic and T. S. Sethi, “No Free Lunch Theorem for concept drift detection in
streaming data classification: A review,” Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, vol. 10, no. 2, p. e1327, 2020.

[71] R. S. M. Barros and S. G. T. C. Santos, “A large-scale comparison of concept drift detectors,”
Information Sciences, vol. 451, pp. 348--370, 2018.

[72] L. L. Minku and X. Yao, “DDD: A new ensemble approach for dealing with concept drift,” IEEE
transactions on knowledge and data engineering, vol. 24, no. 4, pp. 619--633, 2011.

[73] J. L. Lobo, J. Del Ser, I. Laña, M. N. Bilbao and N. Kasabov, “Drift detection over non-stationary
data streams using evolving spiking neural networks,” in International symposium on intelligent
and distributed computing, 2018.

[74] R. S. M. Barros and S. G. T. C. Santos, “A large-scale comparison of concept drift detectors,”
Information Sciences, vol. 451, pp. 348--370, 2018.

[75] J. Gama, P. Medas, G. Castillo and P. Rodrigues, “Learning with drift detection,” in Brazilian
symposium on artificial intelligence, 2004.

[76] M. Baena-García, J. del Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavalda and R. Morales-Bueno,
“Early drift detection method,” in Fourth international workshop on knowledge discovery from
data streams, 2006.

[77] A. Bifet and R. Gavalda, “Learning from time-changing data with adaptive windowing,” in
Proceedings of the 2007 SIAM international conference on data mining, 2007.

[78] E. S. Page, “Continuous inspection schemes,” Biometrika, vol. 41, no. 1/2, pp. 100--115, 1954.

[79] I. Frias-Blanco, J. del Campo-Ávila, G. Ramos-Jimenez, R. Morales-Bueno, A. Ortiz-Diaz and Y.
Caballero-Mota, “Online and non-parametric drift detection methods based on Hoeffding’s

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 87 of 107

www.piacere-project.eu

bounds,” IEEE Transactions on Knowledge and Data Engineering, vol. 27, no. 3, pp. 810--823,
2014.

[80] F. Pinagè, E. M. dos Santos and J. Gama, “A drift detection method based on dynamic classifier
selection,” Data Mining and Knowledge Discovery, vol. 34, no. 1, pp. 50--74, 2020.

[81] A. Liu, J. Lu and G. Zhang, “Concept Drift Detection via Equal Intensity k-means Space
Partitioning,” IEEE transactions on cybernetics, 2020.

[82] A. Pesaranghader, H. Viktor and E. Paquet, “Reservoir of diverse adaptive learners and stacking
fast hoeffding drift detection methods for evolving data streams,” Machine Learning, vol. 107,
no. 11, pp. 1711--1743, 2018.

[83] T. Escovedo, A. Koshiyama, A. A. da Cruz and M. Vellasco, “DetectA: abrupt concept drift
detection in non-stationary environments,” Applied Soft Computing, vol. 62, pp. 119--133, 2018.

[84] Q.-H. Duong, H. Ramampiaro, K. Norvaag, P. Fournier-Viger and T.-L. Dam, “High utility drift
detection in quantitative data streams,” Knowledge-Based Systems, vol. 157, pp. 34--51, 2018.

[85] S. Micevska, A. Awad and S. Sakr, “SDDM: an interpretable statistical concept drift detection
method for data streams,” Journal of Intelligent Information Systems, pp. 1--26, 2021.

[86] R. F. de Mello, Y. a. G. C. H. Vaz and A. Bifet, “On learning guarantees to unsupervised concept
drift detection on data streams,” Expert Systems with Applications, vol. 117, pp. 90--102, 2019.

[87] O. A. Mahdi, E. Pardede, N. Ali and J. Cao, “Fast reaction to sudden concept drift in the absence
of class labels,” Applied Sciences, vol. 10, no. 2, p. 606, 2020.

[88] J. Barr, “New – CloudFormation Drift Detection,” 2018. [Online]. Available:
https://aws.amazon.com/es/blogs/aws/new-cloudformation-drift-detection/. [Accessed
2021].

[89] J. Ž. I. B. A. P. M. &. B. A. Gama, “A survey on concept drift adaptation,” ACM computing surveys
(CSUR), vol. 46, no. 4, pp. 1--37, 2014.

[90] A. Bifet and R. Gavalda, “Learning from time-changing data with adaptive windowing,” in
Proceedings of the 2007 SIAM international conference on data mining, Minneapolis, 2007.

[91] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” Computer, vol. 36, no. 1,
pp. 41--50, 2003.

[92] E. D. Nitto, L. Florio and D. A. Tamburri, “Autonomic Decentralized Microservices: The Gru
Approach and Its Evaluation,” Microservices: Science and Engineering, 2020.

[93] L. F. Maimó, Á. L. P. Gómez, F. J. G. Clemente, M. G. Pérez and G. M. Pérez, “A Self-Adaptive
Deep Learning-Based System for Anomaly Detection in 5G Networks,” IEEE Access, 2018.

[94] Y. Yang, X. Zheng, W. Guo, X. Liu and V. Chang, “Privacy-preserving smart IoT-based healthcare
big data storage and self-adaptive access control system,” Information Sciences, 2019.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 88 of 107

www.piacere-project.eu

[95] A. Alhosban, K. Hashmi, Z. Malik and B. Medjahed, “Self-healing framework for Cloud-based
services,” in ACS International Conference on Computer Systems and Applications (AICCSA),
2013.

[96] M. Azaiez and W. Chainbi, “A Multi-agent System Architecture for Self-Healing Cloud
Infrastructure,” in International Conference on Internet of things and Cloud Computing, New
York, 2016.

[97] S. S. Gill, I. Chana, M. Singh and R. Buyya, “RADAR: Self-configuring and self-healing in resource
management for enhancing quality of cloud services,” Concurrency and Computation: Practice
and Experience, 2019.

[98] W. Li, P. Zhang and Z. Yang, “A Framework for Self-Healing Service Compositions in Cloud
Computing Environments,” in IEEE 19th International Conference on Web Services, 2012.

[99] J. P. Magalhães and L. M. Silva, “A Framework for Self-Healing and Self-Adaptation of Cloud-
Hosted Web-Based Applications,” in IEEE 5th International Conference on Cloud Computing
Technology and Science, 2013.

[100] J. P. Magalhães and L. M. Silva, “SHõWA: A Self-Healing Framework for Web-Based
Applications,” in ACM Transactions on Autonomous and Adaptive Systems, 2015.

[101] P. K. Rajput and G. Sikka, “Multi-agent architecture for fault recovery in self-healing systems,” J
Ambient Intell Human Compu, 2021.

[102] E. Rios, E. Iturbe and M. C. Palacios, “Self-healing Multi-Cloud Application Modelling,” in 12th
International Conference on Availability, Reliability and Security, New York, 2017.

[103] A. Mosallanejad, R. Atan, M. A. Murad and R. Abdullah, “A hierarchical self-healing SLA for cloud
computing,” in International Journal of Digital Information and Wireless Communications
(IJDIWC), 2014.

[104] T. Wang, J. Xu, W. Zhang, Z. Gu and H. Zhong, “Self-adaptive cloud monitoring with online
anomaly detection,” in Future Generation Computer Systems, 2018.

[105] C. Schneider, A. Barker and S. Dobson, “A survey of self-healing systems frameworks,” Software:
Practice and Experience, vol. 45, 2015.

[106] H. Psaier and S. Dustdar, “A survey on self-healing systems: approaches and systems,”
Computing, vol. 91, 2011.

[107] S. Taherizadeh, A. C. Jones, I. Taylor, Z. Zhao and V. Stankovski, “Monitoring self-adaptive
applications within edge computing frameworks: A state-of-the-art review,” Journal of Systems
and Software, 2018.

[108] N. Esfahani and S. Malek, “Uncertainty in Self-Adaptive Software Systems,” Software
Engineering for Self-Adaptive Systems II, 2013.

[109] D. Weyns, “Software Engineering of Self-Adaptive Systems: An Organised Tour and Future
Challenges,” Handbook of Software Engineering, 2019.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 89 of 107

www.piacere-project.eu

[110] A. Bifet, J. Read, I. Zliobaite, B. Pfahringer and G. Holmes, “Pitfalls in benchmarking data stream
classification and how to avoid them,” in Joint European conference on machine learning and
knowledge discovery in databases, 2013.

[111] S. H. Bach and M. A. Maloof, “Paired learners for concept drift,” in 2008 Eighth IEEE International
Conference on Data Mining, 2008.

[112] R. S. Barros, D. R. Cabral, P. M. Goncalves Jr and S. G. Santos, “RDDM: Reactive drift detection
method,” Expert Systems with Applications, vol. 90, pp. 344--355, 2017.

[113] M. Basseville, I. V. Nikiforov and others, Detection of abrupt changes: theory and application,
vol. 104, Prentice hall Englewood Cliffs, 1993.

[114] A. Bifet, “Classifier concept drift detection and the illusion of progress,” in International
Conference on Artificial Intelligence and Soft Computing, 2017.

[115] A. Bifet, “Classifier Concept Drift Detection and the Illusion of Progress,” in International
Conference on Artificial Intelligence and Soft Computing, 2017.

[116] R. S. M. de Barros, J. I. G. Hidalgo and D. R. de Lima Cabral, “Wilcoxon rank sum test drift
detector,” Neurocomputing, vol. 275, pp. 1954--1963, 2018.

[117] F. Gustafsson and F. Gustafsson, Adaptive Filtering and Change Detection, vol. 1, Citeseer, 2000.

[118] W. Hoeffding, “Probability inequalities for sums of bounded random variables,” Journal of the
American Statistical Association, vol. 58, no. 301, pp. 13--30, 1963.

[119] D. T. J. Huang, Y. S. Koh, G. Dobbie and R. Pears, “Detecting volatility shift in data streams,” in
2014 IEEE International Conference on Data Mining, 2014.

[120] K. Nishida and K. Yamauchi, “Detecting concept drift using statistical testing,” in International
conference on discovery science, 2007.

[121] A. Pesaranghader and H. L. Viktor, “Fast hoeffding drift detection method for evolving data
streams,” in Joint European conference on machine learning and knowledge discovery in
databases, 2016.

[122] S. Roberts, “Control chart tests based on geometric moving averages,” Technometrics, vol. 42,
no. 1, pp. 97--101, 2000.

[123] G. J. Ross, N. M. Adams, D. K. Tasoulis and D. J. Hand, “Exponentially weighted moving average
charts for detecting concept drift,” Pattern recognition letters, vol. 33, no. 2, pp. 191--198, 2012.

[124] J.-i. Takeuchi and K. Yamanishi, “A unifying framework for detecting outliers and change points
from time series,” IEEE transactions on Knowledge and Data Engineering, vol. 18, no. 4, pp. 482-
-492, 2006.

[125] F. Wilcoxon, “Individual comparisons by ranking methods,” in Breakthroughs in statistics,
Springer, 1992, pp. 196--202.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 90 of 107

www.piacere-project.eu

[126] I. Zliobaite, “How good is the electricity benchmark for evaluating concept drift adaptation,”
arXiv preprint, no. arXiv:1301.3524, 2013.

[127] I. Zliobaite, A. Bifet, J. Read, B. Pfahringer and G. Holmes, “Evaluation methods and decision
theory for classification of streaming data with temporal dependence,” Machine Learning, vol.
98, no. 3, pp. 455--482, 2015.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 91 of 107

www.piacere-project.eu

Annex A. Delivery and Usage

6.1 Monitoring Controller

6.1.1 Installation instructions

There are many ways to run this component:

▪ Run the component in isolation
▪ Run with Docker
▪ Run with a Docker compose
▪ Run with Vagrant

Each approach is described into its corresponding README in the PIACERE code repository.

6.1.1.1 Component in isolation

The installation of the component in isolation is described at:
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/mc/mc

The requirement to run the component in isolation is to have Python 3.5.2+. In order to execute
the component we have to carry out three steps:

▪ Download the code
▪ Install the requirements
▪ Launch the Python module

To download the code we will use git:

git clone https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/mc/mc.git

To install the requirements we will use pip, so we will require to have the pip3 python tool:

cd mc

pip3 install -r requirements.txt

NOTE: the module has been developed on linux and therefore even if Python is multi-platform,
we cannot ensure that the requirements are multiplatform as well. Therefore, running this step
in non linux systems may have some issues.

To launch the Python module we require to have the port 8080 available and run:

python3 -m mc

6.1.1.2 Docker

The installation with Docker is also described at:
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/mc/mc

The requirements to run the component with Docker is to have Docker installed, we have used
Docker version 20.10.10 with linux/amd64 architecture. In order to execute the component we
have to carry out three steps:

▪ Download the code
▪ Build the image
▪ Run the image

To download the code we will use git:

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/mc/mc
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/mc/mc.git

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 92 of 107

www.piacere-project.eu

git clone https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/mc/mc.git

To build the image:

cd mc

docker build -t mc .

NOTE: the image relies on linux kernel, therefore it requires a Docker installation able to run
linux based machines.

To run the image in a container we require to have the port 8080 available and run:

docker run -p 8080:8080 mc

6.1.1.3 Docker compose

The installation with docker-compose is described at:
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/pm/pm-deploy.

This docker-compose is a partial integration of components of WP6 currently we cover two
components: monitoring controller and performance monitoring in the future we will cover all
the remaining components: (security monitoring, performance self-learning, security self-
learning and self-healing.).

The requirements to run the component with Docker is to have Docker installed, we have used
Docker version 20.10.10 with linux/amd64 architecture and docker-compose version 1.29.0 . In
order to execute the component, we have to carry out three steps:

▪ Download the code
▪ Setup relevant variables
▪ Build the images
▪ Run the docker-compose

To download the code we will use git:

git clone –recurse-submodules https://git.code.tecnalia.com/piacere/private/t61-runtime-

monitoring/pm/pm-deploy.git

To setup relevant variables we need to identify the variables without values, and give value to
them:

echo list variables to be setup

cat .env | grep -e ".*=\s*$"

Assign values to those variables. The current set of values are the ones show bellow, but the are
subject to change as the development advance, therefore it is advisable to check the current list
using the instruction above (cat …)

export SERVER_HOST=192.168.56.1.nip.io

NOTE: https://nip.io is a service that allows doing a mapping between any IP to a hostname.

To build the images:

cd pm-deploy

docker-compose build

NOTE: the image relies on linux kernel, therefore it requires a Docker installation able to run
Linux-based machines.

To run the docker-compose we will need the port 443 available:

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/mc/mc.git
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/pm/pm-deploy

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 93 of 107

www.piacere-project.eu

docker-compose up

6.1.1.4 Vagrant

The installation with Vagrant is described at: https://git.code.tecnalia.com/piacere/private/t61-
runtime-monitoring/pm/pm-vagrant. This vagrant runs the partial integration docker-compose
described above.

The requirements to run the component with Vagrant is to have VirtualBox and Vagrant
installed, we have used VirtualBox version 6.1.22 and Vagrant version 2.2.16. In order to execute
the component, we have to carry out three steps:

▪ Download the code
▪ Start the Vagrant machine
▪ Build the images
▪ Run the docker-compose

To download the code we will use git:

git clone –recurse-submodules https://git.code.tecnalia.com/piacere/private/t61-runtime-

monitoring/pm/pm-vagrant.git

To start the Vagrant machine

cd pm-vagrant

vagrant up

To build the images:

vagrant ssh

cd /vagrant-project/git/pm-deploy/

docker-compose --env-file /vagrant-project/.local/develop/.env build

To run the docker-compose:

docker-compose --env-file /vagrant-project/.local/develop/.env up -d --no-build --

remove-orphans

6.1.2 User Manual

The Monitoring controller can be used through its REST API, described at:
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/mc/-
/blob/y2/src/mc/openapi/openapi.yaml

In order to access that API in the running component, we need to specify the HTTP schema, the
host and the port. Then it will be possible to access the REST API documentation in the same
running instance where we can invoke the services:

For the component in isolation, the way to access the swagger UI, showing the REST API, will be
http://localhost:8080/api/v1/ui/, in the rest of the execution options the access will depend on
the server and the port specified and it will look like
https://192.168.56.1.nip.io:8443/mc/api/v1/ui/

In that address we will find the standard swagger UI shown in Figure 36. The swagger UI will list
the operations available and it will allow us to invoke them.

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/pm/pm-vagrant
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/pm/pm-vagrant
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/mc/-/blob/y2/src/mc/openapi/openapi.yaml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/mc/-/blob/y2/src/mc/openapi/openapi.yaml
http://localhost:8080/api/v1/ui/
https://192.168.56.1.nip.io:8443/mc/api/v1/ui/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 94 of 107

www.piacere-project.eu

Figure 36: Monitoring Controller swagger ui.

Anyway, even if the swagger UI provides a valuable resource to understand and test the API, the
real way to use the component will be to integrate it with other components. To do so the best
way is to get profit from the OpenAPI based client code generators such as:

▪ Openapi-generator: https://github.com/OpenAPITools/openapi-generator
▪ Swagger-codegen: https://github.com/swagger-api/swagger-codegen

6.1.3 Licensing information

To be defined

6.1.4 Download

The component code is available at PIACERE code repository at:
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/mc/mc

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/mc/mc

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 95 of 107

www.piacere-project.eu

6.2 Performance Monitoring

6.2.1 Installation instructions

This component shares the part of the development environment with the Monitoring
controller. In that sense it shares some of their ways to be executed:

▪ Run with a docker compose
▪ Run with Vagrant

Besides, as this component is composed by separate running services, it makes no sense to apply
some of the execution methods available in the Monitoring controller such as: run the
component in isolation or run with docker. However, focussing in the Performance monitoring
controller there can be situations, such as during development, where it can make sense to run
this component in isolation. For this specific case we provide specific guidelines.

Each approach is described into its corresponding README in the PIACERE code repository.

6.2.1.1 Performance monitoring controller in isolation

The installation of the component in isolation is described at:
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/pm/pmc

The requirements to run the component in isolation is to have java and maven. In order to
execute the component we have to carry out two steps:

▪ Download the code
▪ Launch the spring boot application

To download the code we will use git:

git clone https://git.code.tecnalia.com/piacere/private/t61-runtime-

monitoring/pm/pmc.git

To run the spring boot application

mvn run

6.2.1.2 Docker compose

The installation with docker-compose is described at:
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/pm/pm-deploy.

This docker-compose is a partial integration of WP6 components. Currently we cover two
components: monitoring controller and performance monitoring in the future we will cover all
the remaining components: (security monitoring, performance self-learning, security self-
learning and self-healing.). The usage details are available above in section 6.1.1.3.

6.2.1.3 Vagrant

The installation with vagrant is described at: https://git.code.tecnalia.com/piacere/private/t61-
runtime-monitoring/pm/pm-vagrant. This vagrant runs the partial integration docker-compose
described above. The usage details are available above in section 6.1.1.4.

6.2.2 User Manual

This component has three different sub-components. In the following subsections we provide
the user manual for each of them.

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/pm/pmc
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/pm/pmc.git
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/pm/pmc.git
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/pm/pm-deploy
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/pm/pm-vagrant
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/pm/pm-vagrant

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 96 of 107

www.piacere-project.eu

6.2.2.1 Performance Monitoring controller

The Performance Monitoring controller is used through its REST API, described at:
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm/-
/tree/y2/git/pmc/openapi.yaml

In order to access that API in the running component, we need to specify the HTTP schema, the
host and the port. Then It will be possible to access the REST API documentation in the same
running instance where we can invoke the services:

For the component in isolation, the way to access the swagger UI, showing the REST API, will be
http://localhost:8080/pmc/api/v1/ui/, in the rest of the execution options the access will
depend on the server and the port specified and it will look like
https://192.168.56.1.nip.io:8443/pmc/api/v1/ui/

In that address we will find the standard swagger UI shown in Figure 37. The swagger UI will list
the operations available and it will allow us to invoke them.

Figure 37: Performance Monitoring Controller swagger ui.

Anyway, even if the swagger UI provides a valuable resource to understand and test the API, the
real way to use the component will be to integrate it with other components. To do so the best
way is to get profit from the OpenAPI based client code generators such as:

▪ Openapi-generator: https://github.com/OpenAPITools/openapi-generator

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/pm/pmc/-/blob/main/openapi.yaml
http://localhost:8080/pmc/api/v1/ui/
https://192.168.56.1.nip.io:8443/pmc/api/v1/ui/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 97 of 107

www.piacere-project.eu

▪ Swagger-codegen: https://github.com/swagger-api/swagger-codegen

6.2.2.2 Influxdb

Influxdb will be used following the standard user guideline
https://docs.influxdata.com/influxdb/v2.0/. The instance will be available in different URLs
depending on the execution method selected. For example, if we use the Vagrant method, it will
be accessible at https://influxdb.192.168.56.1.nip.io:8443/. As another example, as shown in
the Figure 38, in our internal continuous integration framework the component is accessible at
https://influxdb.piacere.esilab.org:8443/

Figure 38: Influxdb.

6.2.2.3 Grafana

Grafana will be accessible at https://192.168.56.1.nip.io:8443/grafana/

Grafana will be used following the standard user guideline
https://grafana.com/docs/grafana/latest/getting-started/getting-started/. The instance will be
available in different URLs depending on the execution method selected. For example, if we use
the Vagrant method, it will be accessible at https://192.168.56.1.nip.io:8443/grafana, as shown
in the Figure 39. As another example, in our internal continuous integration framework, the
component is accessible at https://piacere.esilab.org:8443/grafana

DRAFT

http://www.medina-project.eu/
https://github.com/swagger-api/swagger-codegen
https://docs.influxdata.com/influxdb/v2.0/
https://influxdb.192.168.56.1.nip.io:8443/
https://influxdb.piacere.esilab.org:8443/
https://192.168.56.1.nip.io:8443/grafana
https://grafana.com/docs/grafana/latest/getting-started/getting-started/
https://192.168.56.1.nip.io:8443/grafana
https://piacere.esilab.org:8443/grafana

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 98 of 107

www.piacere-project.eu

Figure 39: Grafana

6.2.3 Licensing information

Currently the code is owned by Tecnalia, and the license is still to be defined in D6.3.

6.2.4 Download

The component code is available in the PIACERE code repository at:
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm.

Besides, a testing oriented agent infrastructure can be deployed using the code available at
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/pm/pma-deploy. This
enables the feeding of data into the piacere monitoring platform without requiring to perform
real deployments that may involve some costs.

6.3 Security Monitoring

6.3.1 Security Monitoring Service

The Security Monitoring Service is expected to be deployed eventually as a set of containers.
However, currently the deployment is available using specific Ansible playbook on top of an
environment (i.e., inventory built either manually or using the Vagrant tool). The deployment
consists of (Figure 28):

▪ Security Monitoring Controller: API entry point for underlying components (also the
Model trainer of the Security Self-learning). It is also in charge of regularly pushing
events towards external services such as Self-healing components.

▪ Security Monitoring Manager (includes Kibana dashboard): collects all the necessary
events from the Security Manager Agents from the infrastructures and provides data
feed to the Model Trainer service (of the Security Self-learning)

▪ Security Manager Agents: these are in charge of collecting monitoring data and
forwarding this towards the Manager for analytics and storage.

▪ Security Self-learning component. It is not part of the basic deployment package.
Currently it is being offered only as SaaS model and is loosely-coupled integrated with
other monitoring components.

6.3.2 Installation Instructions

Installation of the Security Monitoring components consists of the Controller and the Monitoring
Manager.

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/pm/pma-deploy

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 99 of 107

www.piacere-project.eu

6.3.2.1 Installing Controller

The code resides on the project’s repository (also on the public counterpart
https://git.code.tecnalia.com/piacere/public):

▪ Private: https://git.code.tecnalia.com/piacere/private/t64-runtime-security-
monitoring/security-monitoring-controller

▪ Public- counterpart: https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-security-monitoring/security-monitoring-controller

$ git clone git@git.code.tecnalia.com:piacere/private/t64-runtime-security-

monitoring/security-monitoring-controller.git

To run the server, please execute the following from the root directory:

pip3 install -r requirements.txt
python3 -m swagger_server

To run the server on a Docker container, please execute the following from the root directory:

building the image
docker build -t swagger_server .

starting up a container
docker run -p 8080:8080 swagger_server

6.3.2.2 Installing Monitoring Manager

These are summary of the code available on the repository:

https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-
monitoring-deployment

First, checkout Wazuh's tag v4.2.7 into the current directory:

$ git clone https://github.com/wazuh/wazuh-ansible.git

$ git checkout tags/v4.2.7

You need to update 2 files:

- wazuh-ansible/playbooks/wazuh-agent.yml
- wazuh-ansible/playbooks/wazuh-odfe-single.yml

And provide IPs of the manager and the agents. IPs can be found in the inventory file of the
Ansible script: https://git.code.tecnalia.com/piacere/private/t64-runtime-security-
monitoring/security-monitoring-deployment/-/blob/develop/security-monitoring-
ansible/environments/vagrant-1manager-2agents/inventory.txt

Provision Wazuh server and Wazuh agents:

$ cd security-monitoring-ansible

$ ENVIRONMENT=vagrant-1manager-2agents make create provision

6.3.3 User Manual

6.3.3.1 Controller

Figure 40 depicts Security Monitoring’s API as it is served by the Security Monitoring Controller
after it is made available (deployed).

Open your browser to here:

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-controller
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-controller
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-monitoring-controller
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-monitoring-controller
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-deployment
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-deployment
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-deployment/-/blob/develop/security-monitoring-ansible/environments/vagrant-1manager-2agents/inventory.txt
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-deployment/-/blob/develop/security-monitoring-ansible/environments/vagrant-1manager-2agents/inventory.txt
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-deployment/-/blob/develop/security-monitoring-ansible/environments/vagrant-1manager-2agents/inventory.txt

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 100 of 107

www.piacere-project.eu

http://localhost:8080/security-monitoring/v1/ui/

Your Swagger definition lives here:

http://localhost:8080/security-monitoring/v1/swagger.json

Figure 40: Security Monitoring part of the Security Monitoring Controller API.

6.3.3.2 Monitoring Manager

Check the running instances:

- Navigate browser to: https://192.168.33.10:5601 (the IP from the inventory file), login
with default credentials admin:changeme. Navigate to wazuh section on the left hand-
side.

- You should see 2 agents registered and running with Wazuh.

List of indices:

curl -X GET https://192.168.33.10:9200/_cat/indices?v -u admin:changeme -k

List all entries in the index wazuh-alerts:

$ curl -X GET https://192.168.33.10:9200/wazuh-alerts-4.x-2021.11.03/_search -u

admin:changeme -k

6.3.4 Licensing information

The code is Apache 2.0 licensed.

6.3.5 Download

▪ Private repository: The Security Monitoring Controller’s code is available on the project
repositories: https://git.code.tecnalia.com/piacere/private/t64-runtime-security-
monitoring/security-monitoring-controller

DRAFT

http://www.medina-project.eu/
http://localhost:8080/security-monitoring/v1/ui/
http://localhost:8080/security-monitoring/v1/swagger.json
https://192.168.33.10:5601/
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-controller
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-controller

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 101 of 107

www.piacere-project.eu

▪ Public repository: https://git.code.tecnalia.com/piacere/public/the-platform/runtime-
security-monitoring/security-monitoring-controller

The Security Monitoring Deployment code is available here:

▪ Private repository: https://git.code.tecnalia.com/piacere/private/t64-runtime-security-
monitoring/security-monitoring-deployment/-/tree/develop

▪ Public repository: https://git.code.tecnalia.com/piacere/public/the-platform/runtime-
security-monitoring/security-monitoring-controller

6.4 Performance Self-learning

6.4.1 Performance Self-learning Service

The structure of the Performance Self-learning is split in two main sections. The first section, the
libraries (folder “libs”), contains functional code used for dataset manipulation, input/output
and learning.

• dataset.py: It contains the utility functions used to manipulate datasets and transform
them to be ready to be feed to learning algorithms.

• Io.py: Input/output code used for data retrieval from different sources like the
filesystem or a given database.

• learning.py: Everything related to learning algorithms to predict different outcomes
from the data.

The second main section is the Performance Self-learning engine (folder “src”) used to receive
notifications of different deployments, acquire and feed data to learning algorithms and send
notifications to the SelfHealing component.

An essential part of the code is also the generated swagger client used to notify the SelfHealing
component.

6.4.2 Installation Instructions

The Performance Self-learning is run as a standalone component at the moment. The code must
be downloaded from a git repository, setup properly and then it can be executed.

To download the code, we have to clone the repository:

git clone https://git.code.tecnalia.com/piacere/private/t62-self-learning/psl.git

Once the repository has been cloned, the library requirements must be installed. Move to the
cloned repository directory and install requirements:

cd psl

pip3 install -r requirements.txt

In the last step, the connection parameters must be setup. Rename the `connection.ini.sample`
in the src directory as `connection.ini` and set the correct values in the file.

Finally, we can execute the component with the following command:

python3 -mc src/main.py

6.4.3 User Manual

The Performance Self-learning component behaviour expects notifications through the RESTful
API. The specification of the API can be found at:

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-monitoring-controller
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-monitoring-controller
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-deployment/-/tree/develop
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-deployment/-/tree/develop
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-monitoring-controller
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-monitoring-controller
https://git.code.tecnalia.com/piacere/private/t62-self-learning/psl.git

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 102 of 107

www.piacere-project.eu

https://git.code.tecnalia.com/piacere/private/t62-self-learning/psl/-

/blob/main/docs/self-learning-openapi.yaml

Figure 41: Performance Self-learning OpenAPI.

Once the component is running, no more interactions than the call to those two endpoints are
necessary. The following example commands show how to call those endpoints.

Add a model:

curl -X 'POST' 'http://localhost:8080/psl/api/v1/models/add/1' -H 'accept:

application/json' -d ''

Delete a model:

curl -X 'DELETE' 'http://localhost:8080/psl/api/v1/models/del/1' -H 'accept:

application/json'

6.4.4 Licensing information

Currently the code is owned by Tecnalia, and the license is still to be defined in D6.3.

6.4.5 Download

The Performance Self Learning’s code is available on the project repository:

https://git.code.tecnalia.com/piacere/private/t62-self-learning/psl.git

6.5 Security Self-learning

6.5.1 Security Self-Learning Service

The Security Self-Learning service is expected to be deployed as a single microservice that will
be exposed to the Security Monitoring Controller and will coordinate the whole training process,
from the connection to the data source containing raw logs, to the training of the log parser and
AD model and their storage in the Model Repository

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/private/t62-self-learning/psl/-/blob/main/docs/self-learning-openapi.yaml
https://git.code.tecnalia.com/piacere/private/t62-self-learning/psl/-/blob/main/docs/self-learning-openapi.yaml
https://git.code.tecnalia.com/piacere/private/t62-self-learning/psl.git
https://git.code.tecnalia.com/piacere/private/t62-self-learning/psl.git

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 103 of 107

www.piacere-project.eu

6.5.2 Installation Instructions

All the different services composing the Security Self-Learning are currently running as
standalone services which have to be manually executed. In all cases, conda24 environments are
used to handle dependencies in an isolated manner. The codebase is closed and hosted on
private repositories.

6.5.3 User Manual

As describer earlier in this document, the interaction with the Security Self-Learning service will
be done exclusively by the Security Monitoring controller, which exposes an API (included below
in Figure 42) for such purposes.

Example of reading all available ad_models trained by the self_learning instance that are
available to be used by the Security Monitoring Anomaly Detector:

curl -X 'GET' 'https://localhost:8080/security-monitoring/v1/ad_models' -H 'accept:

application/json'

Result (returning object with parent train_id reference and other details of the model:

[

 {

 "id": "3fa85f64-5717-4562-b3fc-2c963f66afa6",

 "train_id": "3fa85f64-5717-4562-b3fc-2c963f66afa6",

 "name": "string",

 "description": "string",

 "configuration": "string"

 }

]

24 https://docs.conda.io/en/latest/

DRAFT

http://www.medina-project.eu/
https://docs.conda.io/en/latest/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 104 of 107

www.piacere-project.eu

Figure 42: Self-learning API provided by Security Controller.

The dashboard is based on Grafana and is provided as an informative tool that would provide
insights on the intermediate steps and results of the training process. The design of the exact
functionalities that it will include is an on-going process.

6.5.4 Licensing information

Currently is closed source, owned by XLAB.

6.5.5 Download

The Security Monitoring Controller’s code is available on the project repository. The Controller
provides API endpoints to the Security Self-learning component:
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-
monitoring-controller

6.6 Self-healing

6.6.1.1 Self-healing service

The main structure of the prototype developed in this second stage of the project is composed
by the packages shown in the following Figure 43.

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-controller
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-controller

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 105 of 107

www.piacere-project.eu

Figure 43: Self-healing project structure.

Each of these packages has its own objective and its context within the whole prototype.
Furthermore, these packages are also comprised by several JAVA classes. With all this, the main
purpose and composition of each component is as follows:

▪ com.piacere.selfhealing.service.aop.logging: this package is composed by
LoggingAspect.java, which defines the aspect for logging execution of service and
repository Spring components.

▪ com.piacere.selfhealing.service.client: Composed by UserFeignClientInterceptor.java
which implements RequestInterceptor.java. This class checks and add JWT token to the
request header.

▪ com.piacere.selfhealing.service.config: this package contains all classes related to
configuration purposes.

▪ com.piacere.selfhealing.service.consumer: this package contains classes to consume
messages from the queue configured.

▪ com.piacere.selfhealing.service.domain: this package contains data model classes.
▪ com.piacere.selfhealing.service.domain.enumeration: this package contains enum

objects.
▪ com.piacere.selfhealing.service.producer: this package contains classes to produce

messages to the queue configured.
▪ com.piacere.selfhealing.service.repository: this package contains Spring Data SQL

repository classes.
▪ com.piacere.selfhealing.service.security: this package contains Spring Security related

classes for security management.
▪ com.piacere.selfhealing.service.security.jwt: this package contains Java Web Token

security configuration related classes.
▪ com.piacere.selfhealing.service.serde: this package contains classes to

serialize/deserialize queue messages received.
▪ com.piacere.selfhealing.service.service: this package contains self healing services for

CRUD operations and other requirements needed.
▪ com.piacere.selfhealing.service.service.dto: this package contains self healing data

transfer objects.
▪ com.piacere.selfhealing.service.service.mapper: this package contains mapping classes

to map data transfer objects.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 106 of 107

www.piacere-project.eu

▪ com.piacere.selfhealing.service.web.rest: this package contains classes to expose Self-
healing rest end points.

▪ com.piacere.selfhealing.service.web.rest.errors: this package contains error classes used
in the rest end points.

6.6.1.2 Kafka streaming solution

In the context of Self-healing component, it has been implemented the necessary logic to
manage the notifications received with the Kafka streaming solution.

 The configuration needed:

Figure 44: Self-healing configuration.

▪ Topic: Topic queuing.iec_self_healing.self_healing_message has been defined to associate
all the events related to the Self-healing logic.

▪ In the context of Kafka, we need one producer and one subscriber to manage the events
received

• Producer: In charge of sending messages to the topic defined.

Figure 45: Self-healing producer.

• Consumer: In charge of processing the messages asynchronously.

Figure 46: Self-healing consumer.

6.6.2 Installation instructions

This project is executed in a Docker container.

There are docker compose files for each environment development/production.

To execute this project in the production environment, the next docker-compose files are used
by the gitlab-ci continuous integration configuration:

▪ docker-compose.yaml, main file with all the services needed by the self-healing
component.

▪ docker-compose-dev.yaml, traefik and portainer services configuration.

DRAFT

http://www.medina-project.eu/

D6.2 – PIACERE run-time monitoring Version 1.0 – Final. Date: 02.12.2022

and self-learning, self-healing platform - v2

© PIACERE Consortium Contract No. GA 101000162 Page 107 of 107

www.piacere-project.eu

▪ docker-compose-traefik-tecnalia-selfsigned.yaml, traefik configuration for Tecnalia
internal server.

▪ docker-compose-expose.yaml, traefik configuration to expose ports.

To execute this project in a development environment the docker-compose-local-dev.yaml file
is needed:

▪ git clone https://git.code.tecnalia.com/piacere/private/t63-self-healing/sh-deploy.git
▪ docker-compose -f docker-compose-local-dev.yaml up --build -d
▪ cd ./git/selfHealingService
▪ ./mvnw -Pdev,api-docs -Dskip-tests
▪ cd ../../git/selfHealingGateway
▪ ./mvnw -Pdev,webapp,api-docs -Dskip-tests

Frontends Available services after initialization:

▪ JHipster registry: http://localhost:8761
▪ Self-healing test web app: http://localhost:8080
▪ Self-healing Api Documentation:

 http://localhost:8080/services/selfhealingservice/v3/api-docs

6.6.3 User manual

To test the self-healing functionalities:

▪ Login to the web app with user/password: admin/admin
▪ In the administration menu, access openApi.
▪ Choose SelfHealingService.
▪ Post a message through the Self-healing notify rest service.
▪ In this web app, entities menu, can be seen the message received and its status.

Figure 47: Messages received in the Self-Healing component.

6.6.4 Licensing information

Information about license not included yet

6.6.5 Download

The code is available in Tecnalia GitLab repository:

https://git.code.tecnalia.com/piacere/private/t63-self-healing/sh-deploy

DRAFT

http://www.medina-project.eu/
http://localhost:8761/
http://localhost:8080/
http://localhost:8080/services/iecbackend/v3/api-docs
https://git.code.tecnalia.com/piacere/private/t63-self-healing/sh-deploy

