

Deliverable D5.2

IaC Execution Manager Prototype – v2

Editor(s): Josu Díaz de Arcaya

Responsible Partner: Tecnalia

Status-Version: v1.0

Date: 30.11.2022

Distribution level (CO, PU): PU

DRAFT

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 2 of 36

www.piacere-project.eu

Project Number: 101000162

Project Title: PIACERE

Title of Deliverable: IaC Execution Manager Prototype

Due Date of Delivery to the EC 30.11.2022

Workpackage responsible for the
Deliverable:

WP5 - Package, release and configure IaC

Editor(s): Josu Díaz de Arcaya (Tecnalia Research & Innovation)

Contributor(s): Josu Díaz de Arcaya (Tecnalia Research & Innovation)

Reviewer(s): Giuseppe Celozzi (Ericsson)

Approved by: All partners

Recommended/mandatory
readers:

WP2, WP3, WP5, WP6,WP7/ WP8

Abstract: The main outcomes of Task 5.2 - PIACERE IaC Execution
Manager Prototype are presented in this deliverable.
This deliverable corresponds to Key Result 10.

Keyword List: IaC Execution Manager

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein.

 DRAFT

http://www.medina-project.eu/
http://creativecommons.org/licenses/by-sa/3.0/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 3 of 36

www.piacere-project.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 13.10.2022 First draft version Tecnalia

v0.2 25.11.2022 Review Ericsson

v0.3 28.11.2022 Address Comments Tecnalia

v1.0 30.11.2022 Ready for submission Tecnalia

DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 4 of 36

www.piacere-project.eu

Table of contents

Terms and abbreviations ... 6

Executive Summary ... 7

1 Introduction .. 8

1.1 About this deliverable ... 8

1.2 Document structure .. 8

2 Tools aiding in the operationalization life cycle .. 9

2.1 Current state of art .. 9

2.1.1 Orchestration in H2020 projects ... 9

2.2 Analysis of shortcomings ... 9

2.2.1 Applicability in the current project ... 10

2.3 PIACERE IaC Execution Manager goals .. 11

2.4 PIACERE IaC Execution Manager’s relevance to use cases ... 11

3 Implementation ... 12

3.1 Changes in v2 .. 12

3.2 Requirements covered by this prototype ... 13

3.3 Functional description ... 14

3.3.1 Fitting into overall PIACERE Architecture .. 15

3.4 Technical description .. 16

3.4.1 Prototype architecture .. 16

3.4.2 Component description ... 17

3.4.3 Component interactions ... 17

3.4.4 Technical specifications ... 19

3.4.5 Project skeleton ... 20

3.4.6 Public and private cloud provisioners ... 21

3.4.7 Challenges and pitfalls ... 22

4 Delivery and usage .. 24

4.1 Package information ... 24

4.2 Installation instructions ... 25

4.3 User Manual .. 29

4.4 Licensing information .. 31

4.5 Download .. 31

5 Conclusions ... 32

6 References ... 33

Appendix ... 35

 List of tables

TABLE 1 - REQUIREMENTS THAT NEED TO BE ADDRESSED BY THE IEM AND ITS CURRENT FULFILMENT STATUS.. 13

DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 5 of 36

www.piacere-project.eu

TABLE 2 - EXCERPT SHOWING THE BUILT AND EXECUTION OF THE IEM CONTAINER 28
TABLE 3 - EXCERPT SHOWING THE RELEVANT URL'S OF THE IEM .. 31

List of figures

FIGURE 1 – PIACERE RUNTIME DEPLOY DIAGRAM (VERSION 2.1) .. 15
FIGURE 2 - PIACERE RUNTIME MONITORING (VERSION 2.1) ... 16
FIGURE 3 - ARCHITECTURE OF THE DIFFERENT ELEMENTS COMPRISING THE IEM EXECUTION MANAGER 16
FIGURE 4 - SEQUENCE DIAGRAM FOR THE PROCESS OF KICKING OFF A DEPLOYMENT 17
FIGURE 5 – SEQUENCE DIAGRAM OF THE PROCESS OF REQUESTING THE STATUS OF A GIVEN DEPLOYMENT 18
FIGURE 6 - SEQUENCE DIAGRAM FOR THE PROCESS OF TEARING DOWN A DEPLOYMENT 19
FIGURE 7 - SAMPLE PROJECT WITH VARIOUS SEQUENTIAL STAGES. ... 20
FIGURE 8 - CONFIGURATION FILE STATING THE SEQUENTIAL EXECUTION ORDER OF THE DEPLOYMENT. 20
FIGURE 9 - NGINX STAGE FOLDER STRUCTURE. .. 21
FIGURE 10 - CONFIGURATION INFORMATION FOR THE NGINX STAGE. ... 21
FIGURE 11 - CREDENTIALS SECTION THAT ARE FED INTO THE IEM TO KICK OFF A DEPLOYMENT. 22
FIGURE 12 – ROOT FOLDER FOR PIACERE'S IEM COMPONENT .. 24
FIGURE 13 – CONTINUOUS INTEGRATION AND DEPLOYMENT PIPELINE FOR THE IEM PROJECT 24
FIGURE 14 – SONARQUBE DASHBOARD OF THE IEM COMPONENT... 25
FIGURE 15 - EXCERPT SHOWING THE INSTALLATION STEPS FOR VIRTUALENV IN A LINUX BOX 26
FIGURE 16 - EXCERPT SHOWING THE CREATION OF A VIRTUAL ENVIRONMENT .. 26
FIGURE 17 - EXCERPT SHOWING THE ACTIVATION OF THE FRESHLY CREATED VIRTUAL ENVIRONMENT 26
FIGURE 18 - EXCERPT SHOWING HOW TO FINALIZE OR DEACTIVATE A VIRTUAL ENVIRONMENT 26
FIGURE 19 - EXCERPT SHOWING THE CONTENT OF THE REQUIREMENTS.TXT FILE AND HOW TO INSTALL THEM .. 27
FIGURE 20 - EXCERPT SHOWING A SUCCESSFUL EXECUTION OF THE TEST OF THE IEM 27
FIGURE 21 - EXCERPT SHOWING HOW TO KICK OFF THE IEM ... 28
FIGURE 22 - EXCERPT SHOWING THE DOCKERFILE THAT WILL BE USED TO GENERATE THE CONTAINERIZED IMAGE

OF THE IEM .. 28
FIGURE 23 - OPENAPI SPECIFICATION FOR THE INTERACTION WITH THE IEM COMPONENT 29
FIGURE 24 - REQUEST BODY FOR THE PUT /DEPLOYMENTS/ ENDPOINT .. 29
FIGURE 25 - EXCERPT SHOWING THE MAIN.PY FILE IN WHICH THE DIFFERENT ENDPOINTS FOR THE IEM RESIDE 30
FIGURE 26 - EXCERPT SHOWING THE CLASS HOLDING THE MODELS USED FOR THE COMMUNICATION WITH THE

REST API ... 30
FIGURE 27 - EXCERPT SHOWING HOW TO INITIALIZE THE IEM WITH THE UVICORN SERVER 31
 DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 6 of 36

www.piacere-project.eu

Terms and abbreviations

CE Canary Environment

CLI Command Line Interface

CSE Canary Sandbox Environment: term used in DoA instead of CE

CSP Cloud Service Provider

DevOps Development and Operations

DevSecOps Development, Security and Operations

DoA Description of Action

EC European Commission

GA Grant Agreement to the project

HW Hardware

IaC Infrastructure as Code

IEP IaC Execution Platform

IOP IaC Optimizer

KPI Key Performance Indicator

KR Key Result

SW Software

SaaS Software as a Service

IEM IaC Execution Manager

IaC Infrastructure as Code

DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 7 of 36

www.piacere-project.eu

Executive Summary

This document contains the technical description of the IaC Execution Manager prototype (IEM)
that is being developed within the context of work package 5 - Package, release and configure
Infrastructure as Code - of the PIACERE project. The IEM is the central piece that handles the
execution of the IaC code being generated in the early stages of the PIACERE framework. It
supports different IaC technologies present in the market and provides a common interface to
execute the deployments of the different elements present in the PIACERE project. In addition,
the current prototype handles the redeployment and tearing down of existing deployments.

A state of the art of the different technologies that can be used for the provisioning,
configuration, and orchestration of the different infrastructural devices that can be found in a
production deployment is offered. This has served us to provide evidence and reasoning for the
selection of the technologies that the IEM prototype is going to utilize. In addition, the PIACERE
requirements for the IEM are presented, including which ones are currently covered and which
ones will be covered in future releases of this prototype. Regarding these requirements, 66% of
them are already partially implemented. Next, the software component is explained, sequence
diagrams are provided for a better understanding, and the installation process and how to use
it is also clarified in depth.

At its current stage, this prototype is viable for the deployment of different IaC technologies that
cover the provisioning and the configuration of the infrastructural devices required for the
projects utilizing the PIACERE framework. It provides a unified interface for other components
so they can interact with the IEM in a unified manner. It can also be deployed in production
utilizing container-based technologies which makes this prototype viable to be operationalized
in public and private cloud provides, and on premises. For this prototype, the IEM supports two
well established technologies (i.e., Ansible and Terraform) that are able to provision the
different infrastructural devices required by the use cases, and the configuration of each of these
infrastructural devices so they can accommodate the applications to be allocated. In addition,
the interaction with this component has been hardened with authentication technologies so
that its services cannot be misused by malicious third parties. Next, a persistence layer
implemented to provide other components with metrics and data regarding past and present
deployments. Finally, integration efforts have been conducted with other PIACERE components
to interact successfully.

As for the future steps, some other technologies regarding the provisioning, configuration, and
deployment orchestration might be included in the IEM, if they are required by the different use
cases. Finally, further integration efforts will be conducted to make sure its operation and
integration with the rest of the PIACERE ecosystem operates seamlessly. In addition, the IEM is
going to be able to trigger specific strategies that will act on an existing deployment.

DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 8 of 36

www.piacere-project.eu

1 Introduction

This section offers a summary about the content of this document and showcases the document
structure in detail.

1.1 About this deliverable

This document revolves around the IEM prototype which is part of the wider PIACERE
framework. The IEM serves the purpose of deployment and redeployment of the different
scenarios that are developed by the PIACERE use cases. Being at month M24 of the project, the
prototype described here is the second version, that is going to be integrated in the PIACERE
integrated framework version 2 at M27. In this document, we elaborate on the different
technologies and alternatives that can be used for the development of this prototype. The
purpose of this software deliverable is addressing PIACERE’s KR10. In addition, detailed
information on the software component is provided alongside its functionalities. Finally, future
goals and conclusions are presented.

1.2 Document structure

This document is an extension of the one delivered on the first year of the project (D5.1 [1]). The
parts that have not been modified during this second year are referenced to the proper
deliverable. However, updated content and relevant sections have been kept and addressed in
this same document for completeness. The document is structured in the following way.

Section 2 contains a description of the different technologies in the industry that can be utilized
to implement Infrastructure as Code technologies, it also showcases the technologies utilized by
the use cases and the relevance of this IEM prototype for the different use cases. The complete
state of the art is referenced to the previous year deliverable, and only new material in this
regard has been kept. Section 3 revolves around the current implementation of the IEM
prototype. In it, the requirements currently covered by this prototype are shown. Requirements
that will be covered during future developments of this project are also showcased and marked
as such and have been updated. In addition, a functional and technical description is offered for
a better understanding of the prototype. The existing architecture diagrams have been updated
from last year, and a fresh new one for the runtime monitoring, and the role of the IEM in this
field is included. Section 4 offers detailed information about the installation of the prototype
and how to use it from scratch. Then, the conclusions are presented in Section 5. Finally, Section
6 showcases the features of the IEM in the Gherkin format, which promotes the usability of this
component within the project. DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 9 of 36

www.piacere-project.eu

2 Tools aiding in the operationalization life cycle

2.1 Current state of art

In [1] the complete state of the art of relevant technologies that have been assessed in the
development of this component can be found. In addition, the applicability of these tools in the
context of the PIACERE project alongside their shortcomings is offered.

An interesting technology which may become handy for the purpose of the project is Packer by
HashiCorp [2], which promotes the creation and management of machine images for the
different public and private cloud providers from source. Given the fact that on of the scenarios
of the IEM is the deployment of projects in different providers Packer might reduce the
differences between them, hence minimizing the configuration problem caused by image
heterogeneity.

2.1.1 Orchestration in H2020 projects

There are a few Horizon 2020 projects that dive into the concept of orchestration, the SERRANO
[18] project introduces an abstraction layer that reshapes edge, cloud and high performance
computing resources into a unified infrastructure, as well as facilitating its automated and
cognitive orchestration. Next, the CHARITY [19] project tackles the underlying issues of
technological developments in the field of virtual reality, augmented reality and holography by
utilizing new cloud computing architectures and the continuous and autonomous orchestration
of computing and network resources. The RADON [20] project has the goal of delivering
software faster, easier, and cheaper, by broadening the adoption of serverless computing
technologies. Towards this end, it applies function-level scaling and billing, and automated
orchestration and reuse of microservices and data pipelines. The ELEGANT [21] project tackles
the underlying problems of utilizing IoT and Big Data technologies such as interoperability,
reliability, safety, and security. It proposes to alleviate these hurdles with a framework that
offers lightweight virtualization, automatic code extraction compatible with the utilized
technologies, intelligent orchestration, and cybersecurity mechanisms, amongst others. In DICE
[25], a Dicer deployment engine was developed and is the origin of the xOpera project. In this
sense, the IEM component of PIACERE operates in the field of the deployment orchestration. On
one hand, declarative technologies such as Terraform provide a definition of the final state of a
deployment. On the other hand, imperative languages such as Ansible define a set of actions
that need to be executed sequentially. The IEM is able to utilize these technologies that operate
different stages of the application's deployment life cycle into a single component. These stages
have been defined in previous steps of the PIACERE framework. Finally, the Gaia-X [9] project is
a European initiated project that promotes the creation of the next generation of data
infrastructure. An alignment of the IEM with this project would be beneficial for both in order
to promote the reusability of both the code and the ideas behind.

2.2 Analysis of shortcomings

In the field of configuration management, there are two different approaches the tools propose
for tackling this stage. The first one is to use an agent-based approach, in which each of the
infrastructural devices holds an agent which communicates with an orchestrator and manages
the configuration of the device. The second one is more decentralized, the infrastructural
devices are left as they are, and the configuration is made through standard methods such as
secure shell connections. The second approach is the one used by Ansible, which is the selected
tool for the configuration within the PIACERE framework. It is less intrusive, straightforward and
require less configuration at the beginning. This is a big advantage, PIACERE focuses mainly on
deployments performed from scratch.

DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 10 of 36

www.piacere-project.eu

The infrastructure provisioning is another important field of technologies for the IEM. In it, some
of the tools focus exclusively on a single cloud provider. This becomes a big issue, given that the
PIACERE framework aspires to interact with multiple providers, depending on the use case. For
this reason, Terraform is more flexible since it can interact with multiple public and private cloud
providers and is comprised of a myriad of plugins to perform different tasks in the field of the
infrastructure provisioning. The redeployment of the infrastructure is also one of the IEM’s main
duties, the utilization of a technology such as Terraform facilitates the partial redeployment of
certain parts of the infrastructure should it be needed. This might be the designated approach
in bigger infrastructures in which downtime should be minimized. On the contrary, a full
redeployment is also possible if the more phased approach is not required, and a starting with
a blank slate is more appropriate.

Finally, the operationalization of a given deployment can be accomplished with container and
deployment orchestration solutions. The first ones are focused on the deployment, monitoring,
and orchestration of container-based applications. They have undergone a rapid adoption in
industry, and in major cloud providers. On the other hand, the latter specializes in the
operationalization of generic applications. However, these set of tools have not reached the
same level of maturity of their container-based counterparts. The orchestration of the
applications is obtained utilizing docker compose. However, this technology has been designed
to be executed on the local environment, whereas the IEM requires the remote execution. The
IEM takes care of this issue by targeting the remote docker socket available in the provisioned
infrastructure.

One of the main threats in the implementation of this component is that the technologies that
are utilized underneath are specifically tailored to be executed independently, hence they tend
to follow the fail-fast approach which might be not ideal for the integrated approach the IEM
provides. Due to this, the IEM takes care of the execution lifecycle of these technologies and
triggers an automatic redeployment when required, without having to bother the end user with
these nuances. This is possible due to the fact the projects operationalized within PIACERE are
idempotent. However, this kind of redeployments might be risky. For instance, in case a false
positive is detected a series of iterative redeployments might be triggered, we minimize this risk
by pro viding a threshold over which no more redeployments are executed. In addition, there
might be a lingering root cause that can be trickier to identify due to the attempted
redeployments performed by this tool, or a significant the infrastructure might incur into
significant downtimes.

2.2.1 Applicability in the current project

The different tools and technologies analysed in this project are of paramount importance for
the development of the IaC Execution Manager. Given that the IEM aspires to provide a common
interface for other components of the PIACERE framework to execute their deployments, some
of the tools analysed in this chapter have been selected to fulfil PIACERE’s goals. The
provisioning and configuration of infrastructural elements is one of the key values of the IEM,
and this provisioning of these infrastructural elements is going to be done with Terraform. The
selection of this tool has been done due to its extreme popularity, which carries a large
community, and it is expected to be production ready. In addition, it can be used to orchestrate
deployments in the most popular private and public cloud providers.

Next, the configuration of the afore mentioned infrastructural elements will be accomplished
using Ansible. Similar to Terraform, Ansible provides a large community and a wide catalogue of
plugins that can be used to accomplish all the needs that will arise within the PIACERE project.
These two tools are considered to be extremely trustworthy, while also providing excellent

DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 11 of 36

www.piacere-project.eu

flexibility to reach the project’s goals. Finally, the deployment of the use case’s applications is to
be achieved

2.3 PIACERE IaC Execution Manager goals

The PIACERE IaC Execution Environment is an important part of the PIACERE effort. The provided
component – IEM (Infrastructure Execution Manager) – plays a central role in all workflows
supported by PIACERE: it enables the IaC code to actually run. The primary goal of IEM is to
provide a tooling around chosen, supported IaC execution tools, such as Ansible or Terraform.
This tooling would understand and handle the differences between the different execution tools
and would be able to extract information relevant to the PIACERE framework. This information
includes the details on the IaC run process itself as well as its results (e.g., the created cloud
resources (such as VMs), time taken to be created, among others) and all the relevant
modifications made in the infrastructure layer.

A non-goal for IEM is to provide a new tool to run IaC – only known, existing, open-source tools
will be used with IEM. IEM will not replace any of these tools, nor is its goal to directly enhance
their capabilities.

2.4 PIACERE IaC Execution Manager’s relevance to use cases

The IEM is fundamental for reaching PIACERE’s goals, and so it is for the use cases. The IEM’s
overarching goal is to provide a common interface for the deployment of different Infrastructure
as Code technologies in a unified way. In addition, it will offer metrics and metadata regarding
these deployments to other components within the PIACERE framework. The use cases’ needs
in terms of technology have been elicited in deliverable D7.1 [9] and the IEM has been designed
and implemented with those needs in mind. Hence, this component serves as main point for
managing the different deployment scenarios that will be implemented within the PIACERE
framework, and it incorporates all the required technologies to interact with the different public
and private cloud providers required by the use cases.

DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 12 of 36

www.piacere-project.eu

3 Implementation

This section is devoted to the details regarding the implementation of the IaC Execution
Manager. In Section 3.2 the requirements that have been identified by the project for the IEM
to address are presented. Next, Section 3.3 showcases the functional description and how the
IEM fits in the overall PIACERE architecture. Section 3.4 explains the technical description of the
project, including the architecture of the prototype, a description of each of the components
within the IEM, and the technical specifications of the project.

3.1 Changes in v2

In this second iteration, the IEM component comes with new features mainly focussed on the
usability, and development of enhanced functionalities for the use cases and the rest of the
PIACERE components. In addition, the integration with the overall PIACERE ecosystem has been
the cornerstone that has driven the development efforts during the year.

One of the most remarkable features of this year has been the implementation of new
Infrastructure as Code engines within the IEM core functionalities. Previously, the prototype
version was developed around the integration with the AWS public cloud provider. However,
much of the efforts of this iteration have focussed on the integration of the OpenStack private
cloud provider. In addition, this orchestrator is the one selected by other PIACERE tools, hence
this effort has contributed towards a better integration with the overall architecture. The
outcome of this effort is that the PIACERE demo example is fully supported by the IEM in the
OpenStack environment. Some of the features that have been successfully implemented are the
provisioning of different flavours of virtual machines, the associated networking within and
towards the created infrastructural devices, and the appropriate credential handling of the
provisioned environment, amongst others.

Next, the very first prototype of the IEM relied on terraform itself for the configuration
management of the various infrastructural devices with ansible. During this year, an
intermediate structure has been adopted based con YAML configuration files for the integration
and bundling of the different languages that the IEM is able to handle. This approach not only
solves the current implementation of the different languages but also provides means for future
technologies that may be necessary in the further iterations but are not yet adopted by the
different tools of the PIACERE framework. On a similar note, this approach has been adopted by
other tools such as the ICG to provide an integrated solution.

An important effort has been conducted for the implementation of the persistence layer. This
feature facilitates the tracking of current and past deployments and their status. This way, the
different problems, pitfalls, and successful executions that have taken place are logged and can
be queried by the user for further research. This layer represents and important advancement
for other tools such as the IDE, which utilizes for providing appropriate feedback to the
stakeholders.

Credential handling has driven much attention during this second year not only for the IEM but
also in the consortium. In particular, the different cloud providers, and infrastructural devices
the IEM interacts with have their differences in the way the handle their credentials. Firstly, a
generalization of the different credentials was required and has been adopted for current and
future orchestrators. Secondly, the way these credentials are safely handled and disposed
needed to be implemented. Finally, the integration with the PRC, another pivotal component of
PIACERE, has been conducted.

Finally, many more features have been implemented during this year. Some of the most relevant
ones are related with the testing, code quality and coverage of the developed software. The

DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 13 of 36

www.piacere-project.eu

documentation is now integrated with the same repository so that the IEM becomes more
usable by the consortium and third parties. Monitoring features have been implemented so that
the runtime of the provisioned infrastructural devices can be tracked. Summarizing, the focus of
this year has been on adding and enhancing functionalities required by the consortium and in
the integration efforts required for running as part of the PIACERE ecosystem.

This deliverable follows the approach of a rolling deliverable, meaning that the content from the
first prototype that remains relevant has been kept, and the different sections have been
updated, and amended when required. The introduction in Section 1 has been updated
reflecting changes in the content of the deliverable, and the document structure. In Section 2,
the large majority of the state of the art has been referenced back to the previous deliverable,
the orchestration in H2020 remains mostly the same but new references have been added at
the end, and the shortcomings sections has been amended with the problems the IEM has
tackled during this second iteration. Section 3 contains a lengthy explanation of the efforts and
accomplishments of this second prototype. In addition, the requirements sections have been
updated to reflect this work, and the relevant diagrams have been replaced or appended if
required. The project skeleton subsection reflects the work that has been carried out towards
the integration of the different IaC technologies and PIACERE components. In Section 4, delivery
and usage, the information gathered from the first prototype still applies, but several figures
have been replaced to offer a more accurate description of the current state, and the licensing
information has been filled out. Finally, the conclusions have been updated, and an appendix
with the main features of the IEM is provided.

3.2 Requirements covered by this prototype

The following table shows all the requirements that need to be addressed by the IEM throughout
the PIACERE project, extracted from WP2 deliverable D2.1 [10] However, not all of them need
to be necessarily completed at this stage of the project, as they might include interaction with
other components or might have not been classified as high priority to be included in the first
year of the project.

Table 1 - Requirements that need to be addressed by the IEM and its current fulfilment status.

Req ID Description Status Requirement Coverage at M24

WP5.1-REQ1 The IEM shall allow
redeployment and
reconfiguration, both full and
partial, as allowed by the used
IaC technology.

Satisfied The IEM covers this requirement
in its current development status.
However, it relies on the IaC code
being idempotent so this must
remain the case.

WP5.1-REQ2 The IEM will log the whole IaC
execution run, making
metadata and metrics (time it
took to run) about the
creation of resources
available to the rest of the
PIACERE components.

Satisfied The IEM will cover this
requirement with a relation
database in which the related
metrics for past and present
executions of the given
deployments will be registered.

WP5.1-REQ3 IEM should be able to execute
IaC generated by ICG for
selected IaC languages (e.g.,
Ansible/Terraform)

Satisfied The IEM covers in its current form
the execution of two different IaC
technologies: Terraform and
Ansible.

WP5.1-REQ4 IEM shall register the status of
past and present executions

Satisfied The IEM will cover this
requirement with a relation
database in which the related

DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 14 of 36

www.piacere-project.eu

and enable an appropriate
way to query it.

metrics for past and present
executions of the given
deployments will be registered.

WP5.1-REQ5 IEM should be able to
communicate with the
relevant actors
(orchestrators, infrastructural
elements) in a secure way.

Partially
Satisfied

The IEM communicates with the
relevant actors by utilizing the
secrets provided by the PRC.
However, this effort will continue
throughout the second year of
the project in order to guarantee
that these secrets are used
correctly.

WP5.1-REQ6 IEM should be able to utilize
the required credentials in a
secure way.

Partially
Satisfied

The IEM stores is able to utilize
the credentials in a secure way.
However, further efforts in this
direction will be undergone
during the second year of the
project.

WP5.1-REQ7 IEM should be able to clean up
the resources being allocated.

Satisfied This component is able to clean
up the resources being allocated
by the different deployments.

WP5.1-REQ8 IEM shall work against the
production environment and
the canary environment.

Satisfied The IEM is able to utilize the
production environment, mainly
private and public providers. The
integration with the canary
environment will be tested during
this year of the project.

3.3 Functional description

The IaC Execution Manager is the component in charge of kicking off the different deployments
taking place within the PIACERE framework. In addition, it oversees the subsequent
redeployments and the finalization of the given deployments. In summary, the IEM is able to
prepare and provision the infrastructure and install the corresponding software elements
required by the deployment to run seamlessly.

One of its key features is its ability to execute different Infrastructure as Code technologies
together, so the whole process of deployment and redeployment of the infrastructural elements
is controlled in a centralized manner. For this prototype, the IEM can understand and execute
two technologies covering different stages of the infrastructure deployment: Terraform for the
provisioning of the different infrastructural elements required by the deployments in the
different public and private cloud providers, and Ansible for the configuration of such
infrastructural elements. In addition, the IEM has been designed so that additional IaC
technologies that have not been considered as part of this prototype can be integrated in
advance without cumbersome adjustments in its overall architecture.

Further releases of this component will include the ability to retrieve metrics about the status
of past and present deployments. These metrics can be utilized by the different components
that coexist in the PIACERE infrastructure to fulfil their goals.

DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 15 of 36

www.piacere-project.eu

3.3.1 Fitting into overall PIACERE Architecture

The IEM is the component of the PIACERE architecture that executes the DOML and the IaC code
being created on previous stages of the PIACERE workflow. The component which interacts the
most with the IEM is the Runtime Controller (PRC), as can be seen in Figure . The main
interactions are as follows:

• The PRC communicates with the IEM to trigger a deployment. In order to do so, it hands
over the following information:

o The location of the deployment that is going to be executed by the IEM.
o The commit id referencing the version of the deployment that needs to be

executed.
o The secrets that are necessary for the execution of the given deployment. These

secrets will be treated and stored appropriately.

• The IEM communicates with the IaC Repository to get the deployment referenced by
the PRC. This deployment is the one that will be triggered by the IEM.

• The IEM will be able to store metadata and metrics about past and present deployments
for the rest of the elements in the architecture to query and utilize for their goals.

Figure 1 – PIACERE Runtime Deploy Diagram (version 2.1)

In the following diagram, the PIACERE runtime monitoring workflow diagram is displayed. The
IEM is yet again pivotal in this endeavour. This is because it provides means to other components

DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 16 of 36

www.piacere-project.eu

in the architecture for triggering specific actions on already running components. This way, the
monitoring and self-healing of the architecture can be accomplished.

Figure 2 - PIACERE Runtime Monitoring (version 2.1)

3.4 Technical description

This subsection contains the details regarding the technical description of the IEM component.
First, the overall architecture of the IEM component is showcased. Then, each component in the
IEM is described in detail. Finally, the technical specifications of each of the components are
described in detail.

3.4.1 Prototype architecture

The architecture components that comprise the entirety of the IEM component are depicted in
the following Figure . These is a REST API that is in charge of managing the interaction with the
IEM. The Core of the system where the business logic resided and is able to forward the different
actions appropriately. The Persistence component which is in charge of storing the metrics and
metadata related with past and present deployments. Finally, the executors are able to
understand the IaC code being forwarded to the IEM and execute it against the different public
and private cloud providers. In the next subsection each of these components are explained in
further detail.

Figure 3 - Architecture of the different elements comprising the IEM Execution Manager

DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 17 of 36

www.piacere-project.eu

3.4.2 Component description

The first prototype of the IEM component is comprised of the subcomponents described above.
In this section, we take a closer look at each and explain their functionality in further detail.

• REST API: this subcomponent is the entry point of all the requests that the IEM need to
process. The interaction with this component is through this technology, and a OpenAPI
specification file is provided so the interaction with it becomes as seamless as possible.

• Core: this subcomponent contains the business logic of the IEM component. It oversees
forwarding the different calls of other PIACERE components appropriately. In addition,
it is able to interact with other PIACERE components such as the IaC Repository, which
is the component where the different deployments are stored for the IEM to utilize.

• Persistence: this subcomponent contains the persistence logic that the IEM component
is going to utilize. It is a relational database that will provide the data required for the
requests for information by other components. This is information and metadata for
past and present executions of the different components. Most of the development for
this subcomponent has been undergone during the second year of the project.

• Executors: the executors are the subcomponents in charge of the execution of the
different technologies that the IEM supports. For this very first prototype, two different
IaC technologies are supported: i) Ansible for the configuration of the different
dependencies that the deployment requires, ii) Terraform for the provisioning of the
infrastructural elements required for the deployments to be successfully executed, iii)
docker for the application lifecycle management.

3.4.3 Component interactions

In this section the interaction of the IEM for two important PIACERE workflows are depicted and
explained in detail. These are the start of a deployment and the request of the status of a given
deployment. The former has been implemented for this very first prototype of the IEM
component, with the exception of the persistence layer. The latter has been undergone during
the coming year of the project and is depicted in this deliverable for a better understanding of
the component duties.

Figure 4 - Sequence Diagram for the process of kicking off a deployment

DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 18 of 36

www.piacere-project.eu

The Figure 4Figure above oversees the process of kicking off a deployment within the PIACERE
ecosystem. A deployment is started by the Runtime Controller. Given that a deployment might
take a long time to finalize, this has been identified as an asynchronous task and an immediate
response is sent back to the PRC. For all it knows, the PRC will only have the information about
the deployment being properly initialized, but it will not know how that given deployment has
gone (this process is depicted and explained in further detail in the following Figure). The
security of this communication has been developed during the coming year of the project. The
request is forwarded to the Core subsystem, which will immediately be recorded in the
persistence subcomponent (to be implemented in year two). Next, the Core subcomponent
retrieves the appropriate deployment for the DOML & IaC Repository, only to execute it against
the resource provider. This deployment is expected to be in a mixture of the two technologies
currently supported by the PIACERE framework (Ansible and Terraform). Once the deployment
is finalized, which might take a long time, the result of this deployment is persisted so it can be
queried by other components.

Figure 5 – Sequence diagram of the process of requesting the status of a given deployment

The Figure 5 above exemplifies the process of querying the status of a given deployment. This
functionality has already been implemented as part of this prototype during the second year of
the project. In this diagram, the PRC initiates the process of requesting the status of a past or
present deployment. This petition is received by the REST API and forwarded to the core
subcomponent. Then, the core subcomponent will retrieve this information from the
persistence layer and return it to the Rest API, so the PRC can get an immediate response to its
petition. This process could be complemented with a notification mechanism if required by the
stakeholders. However, this has not been implemented as yet and might be something to
consider in future releases if required by the users.

DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 19 of 36

www.piacere-project.eu

Figure 6 - Sequence Diagram for the process of tearing down a deployment

In the above diagram, the sequence of the tearing down a deployment in the given infrastructure
is showcased. This process heavily relies on the capabilities of the infrastructure provider for
destroying the provisioned servers. The workflow is analogous to the deployment.

3.4.4 Technical specifications

The prototype has been developed in the Python programming language, specifically version
3.9.5. It has been selected because python is very proficient at interacting with the currently
used IaC technologies (Terraform, Ansible), and provides an easy manner to add additional
technologies in the future.

The input and output interactions of this component are supported by FastAPI, which provides
a myriad of functionalities for the implementation of REST interfaces, which is the primary way
of interacting with the IEM component. In addition, it provides functionalities for providing an
OpenAPI implementation that can be used by other components in the PIACERE infrastructure,
as it not only provides an easy way to understand the inputs and outputs required by this
component, but also an automatic way to generate the server and client sides if desired.

The persistence layer is in essence a relation database. This piece of the component has been
completed during the second year of the project. The persistence layer has been implemented
using SQLite, and it contains a set of relational tables that will store the metrics, metadata, and
information related to past and presents deployments.

The IaC code that have been selected to use within the PIACERE framework have been Terraform
and Ansible. The former is a well-known technology utilized in the field of infrastructural device
provisioning and can interact with a large variety of public and private cloud providers (e.g. AWS,
Azure, Google Cloud). The latter, on the other hand, is an established tool in industry that is
commonly used for the configuration of the infrastructural devices required for the deployment.
It has a myriad of modules that can be used for the different nuances that comprise a software
project deployment such as dependency management, services configuration, and configuration
management.

Access to the IEM is hardened with an API key that needs to be fed into the system every single
time that an action is required to be taken.

Finally, the actual delivery of the component in a containerized manner, with the docker
technology.

DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 20 of 36

www.piacere-project.eu

3.4.5 Project skeleton

One of the benefits of using the IEM for the project’s life-cycle management of projects is that
it provides an abstraction over the provisioning, configuration, and application orchestration in
a common tool. To this end, the various underlying technologies utilized to accomplish this
endeavor are glued together in a common bundle, and the IEM oversees the seamless sequential
execution of them. In its current state, the IEM has two different processing engines: the 1)
ansible configuration management, and the 2) terraform provisioning tools. The interaction and
swapping between these two processing engines are handled through simple configuration files
written in YAML.

Figure 7 - Sample project with various sequential stages.

In Figure 7 the root folder of a project is displayed; the different folders represent different
stages that are going to be sequentially executed. The information on the order is specified in
the configuration file that can be seen in Figure 8.

Figure 8 - Configuration file stating the sequential execution order of the deployment.

This file is very easy to be consumed both humans and programmatically. If we dive into the
nginx stage a similar structure can be seen, Figure 9 showcases that this stage contains the
configuration information for an ansible executor, and the credentials that are to be used during
this execution in the form of a jinja file.

DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 21 of 36

www.piacere-project.eu

Figure 9 - nginx stage folder structure.

Finally, a configuration file can be found in this folder that will specify the IEM how to handle
this stage. This information can be seen in Figure 10, and the following information is detailed:

• Input: The various inputs that are to be fed into this stage in the form of environment
variables.

• Output: The various outputs that are to be used by subsequent stages, that will be
written into environment variables.

• Engine: the specific engine that is to be used within this stage, in this particular example
the ansible execution engine will be used.

Figure 10 - Configuration information for the nginx stage.

Using this methodology and syntax the IEM is able to handle projects written in various
provisioning, configuration, and orchestration languages that are currently in use alongside
future engines that are not yet envisioned or even available at the time of writing this document.

3.4.6 Public and private cloud provisioners

The IEM has been designed so its execution is agnostic from the cloud provider, the credentials
are fed into the IEM in the deployment request as can be seen in Figure 11. In its present form,
credential handles for Azure, and AWS public cloud providers, and the OpenStack public cloud
providers are in place.

DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 22 of 36

www.piacere-project.eu

Figure 11 - credentials section that are fed into the IEM to kick off a deployment.

During this second year of the project, the IEM has been successfully tested against both
OpenStack, and AWS. In addition, the validation has been successfully performed against the
OpenStack public cloud provider.

3.4.7 Challenges and pitfalls

The integration of different provisioning, configuration, and application orchestration tools
comes at a cost. Each of different technologies are specifically tailored to be executed
independently and trying to glue them together into a common interface requires tackling
challenges that are not present otherwise.

A good example of this behavior is the ansible engine integrated within the IEM. Ansible tends
to fail easily should there be connectivity issues, or any other unexpected problem during its
execution. This is not a problem when running it interactively, as an idempotent definition of
the ansible project only would require another run to finish successfully in most cases. However,
this behavior can be particularly inconvenient when used as part of a framework, as a failure in
any stage would result in a failure of the whole deployment, which can take a long time to
reproduce. There are many possible reasons for a failure in the deployment, and the IEM can
only do its best with some of them, such as connectivity issues. Furthermore, other types of
failures such as the lack of available resources should be evaluated independently. Due to this,
the IEM is able to detect these problems during runtime and keep retrying for a predefined
number of times to overcome them without requiring manual intervention, hence the user is
unaware of such failures resulting in a better user experience. This kind of issues will be reported
in the database so the user can always track the potential failures.

Being able to handle the credentials in a unified secure way can be cumbersome in application
having to be used by multiple users. In this regard, the IEM does not persist any credentials into
physical storage, instead treats them as environment variables that become isolated to the
different users that require the unified deployment capabilities this tool offers. This approach

DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 23 of 36

www.piacere-project.eu

has been taken because the persistence of credentials such as certificates might raise some
challenges in terms of resource isolation that environment variables do not have. In addition,
the orchestrators the IEM is communicating with such as AWS, Azure, or OpenStack promote
the use of environment variables during runtime. Finally, the risk of certificates being submitted
to source code repositories, even thought it is something the user should never do, and it would
be entirely his fault, is yet another thing not to be concerned by using environment variables.

DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 24 of 36

www.piacere-project.eu

4 Delivery and usage

This section offers information on the package itself. First, information about the structure of
the repository is provided. Then, instructions on how to install the package are offered. Thirdly,
a manual on how to utilize the IEM component is explained in detail. Finally, licensing
information and downloading instructions are provided.

4.1 Package information

This section gives an overview on the structure of the IEM component. The root structure for
the component is showcased in the following image, information about the most relevant files
and folders are then explained.

Figure 12 – Root folder for PIACERE's IEM component

The “doc” folder contains the documentation regarding the IEM component implementation. In
particular the sequence diagram that explain the interaction of the IEM with the rest of the
components resided under this folder.

 Figure 13 – Continuous Integration and Deployment pipeline for the IEM project

Next, the “.gitlab-ci.yml” file provides continuous integration and deployment details about the
project. In this file three main stages are defined.

• The “package” stage is in charge of assuring that the IEM is able to be containerized
following the instructions in the “Dockerfile” file, which resides under this very same
root folder.

• Next, the “test” stage executes all the test files that have been defined in the project,
should a test fail, the entire pipeline would stop and the developer should address the
issue immediately.

DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 25 of 36

www.piacere-project.eu

• Finally, the “scan” stage will utilize the sonarqube tool to scan the source code for issues
and provide an integrated dashboard with all the information regarding the project. This
dashboard is showcased in the following image (Figure).

Figure 14 – SonarQube dashboard of the IEM component

As it can be seen the project is healthy and the coverage is up to 77.9% which is appropriate for
this stage of the development phase. However, further efforts will be done in order to raise the
coverage threshold further.

Next, the “openapi.json” file provides information about how to interact with the IEM, this file
will be utilized by other components in order to assure the communication is as seamless as
possible. Further information about this file is explained in Section 4.3.

Finally, the “iem” folder contains the whole source code for the IEM component alongside the
tests that make sure the code works correctly. The central code file is the “main.py” file located
under this folder and is the one in charge of importing and calling the necessary modules for
running the IEM.

4.2 Installation instructions

The IEM prototype can be found in Tecnalia’s GitLab repository (download instructions at the
end), and it is also provided as a compressed folder. There are a few files that are of paramount
importance for getting the IEM prototype up and running. The first one is the “requirements.txt”
file, which offers an up-to-date list of the IEM dependencies alongside their specific version. It
would be better to install these requirements in a virtual environment in order not to mess with
the local installation of similar packages. There are many different ways to start a virtual
environment, and specific instructions are out of the scope of this deliverable. Hence, in this
document brief instructions towards the installation and use of a tool for creating virtual
environments (virtualenv) are provided. The installation of the virtualenv can be accomplished
with the following command. DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 26 of 36

www.piacere-project.eu

Figure 15 - Excerpt showing the installation steps for virtualenv in a linux box

Now, with the virtualenv executable, a virtualenv can be created by running the following
command.

Figure 16 - Excerpt showing the creation of a virtual environment

Then, in order to start this freshly created environment, the following snippet shows how to do
this and start working with the new environment.

Figure 17 - Excerpt showing the activation of the freshly created virtual environment

It becomes useful to know to get out of the environment which is called deactivate. Next, an
example on how to accomplish this is shown.

Figure 18 - Excerpt showing how to finalize or deactivate a virtual environment

Now that a proper virtual environment has been created and it is ready to be used, the
“requirements.txt” becomes handy. In the following image it can be seen the content of it, which
the precise libraries alongside their version that need to be installed in order to run the IEM

DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 27 of 36

www.piacere-project.eu

prototype. It also showcases how to install these requirements with the python package
manager.

Figure 19 - Excerpt showing the content of the requirements.txt file and how to install them

Unfortunately, not all the requirements can be centralized in this manner since the Terraform
client needs to be installed separately. Please refer to the official documentation1 to get this
done. At the time of writing this document, the IEM component makes use of the local AWS
credentials. Similarly, please refer to the official documentation to let the IEM use these local
credentials.

At this stage, all the IEM dependencies should be installed and ready to be used. In order to
make sure that this is in fact the case, the following image shows how to run the different tests
that make sure the prototype is properly working.

Figure 20 - Excerpt showing a successful execution of the test of the IEM

After checking that all the tests have run successfully, the IEM is ready to be executed with the
uvicorn server. The following excerpt shows how to perform this. If everything goes right, this
should open a web server in port 8000 of the local computer.

1 https://learn.hashicorp.com/tutorials/Terraform/install-cli

DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 28 of 36

www.piacere-project.eu

Figure 21 - Excerpt showing how to kick off the IEM

At this stage, the IEM development environment should be up and running. However, the IEM
component will be deployed containerized with the docker framework. There is a Dockerfile that
helps in making this happen. The following excerpt shows the content of this file. This Dockerfile
is based on the official image provided by the terraform team. Given the installation of this
particular tool can be the most time consuming and error prone, we resort to this image in order
to achieve better quality and efficiency.

Figure 22 - Excerpt showing the Dockerfile that will be used to generate the containerized image of the
IEM

From this point, the docker image can be generated with the build command, and it gets tagged
with the IEM name. Next, an instance of that image is run exposing port 8000 on the local
computer.

Table 2 - Excerpt showing the built and execution of the IEM container

$ docker build --build-arg API_KEY=$API_KEY -t optima-piacere-docker-
dev.artifact.tecnalia.com/wp5/iem-api:y1 .

DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 29 of 36

www.piacere-project.eu

$ docker run -p 8000:8000 optima-piacere-docker-

dev.artifact.tecnalia.com/wp5/iem-api:y1

4.3 User Manual

This subsection gives an overview on how the communication with the IEM should take place.
In particular, this is detailed in an OpenAPI specification file which different components can
adhere to, in order to utilize the different functionalities provided by the IEM.

Figure 23 - OpenAPI specification for the interaction with the IEM component

The Figure above showcases a screenshot of the OpenAPI specification file that resides in the
IEM’s GitLab repository. For the first prototype, four endpoints have been defined for the
interaction of PIACERE components with the IEM. The details on how these endpoints provide
to the components is detailed below:

• GET /deployments/: it provides information about all the deployments that are currently
taking place within the PIACERE framework.

• POST /deployments/: kick off a deployment, if the deployment has already been started
in a previous iteration, it updates the given deployment with the new configuration. The
figure below showcases the request body to be used within this deployment.

Figure 24 - Request Body for the PUT /deployments/ endpoint

• GET /deployments/{deployment_id}: it yields detailed information about the status of a
given deployment. The deployment to be retrieved should be passed as a path
paremeter.

• POST /deployments/{deployment_id}: the deployment specified in the deployment_id
path parameter will be torn down.

DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 30 of 36

www.piacere-project.eu

In the second prototype of the IEM tool all these endpoints have become fully functional and
tested throughout the second year of the project. They also provide other components with
connection information with the IEM from early on the project.

In terms of the source code, the central point for the IEM is the “main.py” file. There, all the
endpoints necessary to interact with this component are defined. The following excerpt
showcases how this is obtained using the FastAPI framework.

Figure 25 - Excerpt showing the main.py file in which the different endpoints for the IEM reside

This very same file also contains the definition for the inputs and outputs that will be necessary
to provide the different endpoints. This way the OpenAPI is able to provide accurate information
for other components to use the IEM interfaces. This information can be found in further detail
in the “utils.py” file, in which the different responses are specified, as can be seen in the
following excerpt.

Figure 26 - Excerpt showing the class holding the models used for the communication with the REST API

Finally, the prototype can be invoked using uvicorn, which is a ASGI (Asynchronous Server
Gateway Interface) server implementation, as can be seen in the following excerpt.

DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 31 of 36

www.piacere-project.eu

Figure 27 - Excerpt showing how to initialize the IEM with the uvicorn server

This command will open a web server, the OpenAPI specification, and the documentation in the
following addresses respectively.

Table 3 - Excerpt showing the relevant url's of the IEM

http://127.0.0.1:8000

http://127.0.0.1:8000/docs

http://127.0.0.1:8000/redoc

4.4 Licensing information

This component is offered under Apache 2.0 license. Detailed information can be found in the
GitLab repository.

https://git.code.tecnalia.com/piacere/public/the-platform/iem/-/blob/y1/LICENSE

4.5 Download

The source code for the IEM prototype is available Tecnalia’s GitLab repository. In order to get
all the necessary files to utilize it, use the following link:

https://git.code.tecnalia.com/piacere/private/t51-iem/iem DRAFT

http://www.medina-project.eu/
http://127.0.0.1:8000/
http://127.0.0.1:8000/redoc
http://127.0.0.1:8000/redoc
https://git.code.tecnalia.com/piacere/public/the-platform/iem/-/blob/y1/LICENSE
https://git.code.tecnalia.com/piacere/private/t51-iem/iem

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 32 of 36

www.piacere-project.eu

5 Conclusions

This document revolves around the second prototype of the IaC Execution Manager (IEM). The
goal of this platform is to plan, prepare, and provision the infrastructural and software elements
for an application to seamlessly run.

In this second prototype the IEM is able to utilize heterogeneous Infrastructure as Code
technologies, as Ansible and Terraform, comprised in a common interface, to successfully
operationalize the different use cases in the PIACERE framework. The IEM is a key piece of the
PIACERE framework, since it is the component in charge of interacting with different private and
public cloud providers, with the orchestrator and with heterogeneous infrastructural elements.
This way, the Infrastructure as Code being generated in previous stages of the PIACERE workflow
is executed within this component.

The innovation of the IEM lies on unifying the provisioning, configuration, deployment, and
orchestration stages of the application life cycle in a single component, and with a common
interface. Hence, PIACERE is able to singlehandedly manage the application life cycle utilizing
multiple technologies for the operationalization of applications in a common way.

As part of this second prototype, the different endpoints that are used by the IEM have been
secured with token-based technologies. In addition, a persistence layer has been implemented
to provide other components in the PIACERE framework with information and data about past
and present deployments. At the moment, this prototype has focused on two well-known
technologies (i.e., Terraform and Ansible) that have been identified as key by the use cases, but
it is designed so that other relevant technologies can be easily integrated in future releases (e.g.,
docker-compose, Kubernetes) if desired.

Future iterations of this prototype will include a docker engine for managing the lifecycle of the
applications to be deployed by the use cases. In addition, the possibility of triggering specific
actions for the self-healing of the infrastructure will be supported. Finally, it will focus on the
reliability of the whole component and its different endpoints, and on the integration with the
other different PIACERE components within the infrastructure. In addition, the use of additional
public and private cloud providers may be necessary.

 DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 33 of 36

www.piacere-project.eu

6 References

[1] PIACERE Consortium, “D5.1 IaC execution platform prototype,” 2021.

[2] HashiCorp, «Packer,» [En línea]. Available: https://www.packer.io/. [Último acceso: 15 11
2022].

[3] SERRANO, “TRANSPARENT APPLICATION DEPLOYMENT IN A SECURE, ACCELERATED AND
COGNITIVE CLOUD CONTINUUM,” [Online]. Available:
https://cordis.europa.eu/project/id/101017168. [Accessed 9 11 2021].

[4] CHARITY, “Cloud for Holography and Cross Reality,” [Online]. Available:
https://cordis.europa.eu/project/id/101016509. [Accessed 9 11 2021].

[5] RADON, “Rational decomposition and orchestration for serverless computing,” [Online].
Available: https://cordis.europa.eu/project/id/825040. [Accessed 9 11 2021].

[6] ELEGANT, “Secure and Seamless Edge-to-Cloud Analytics,” [Online]. Available:
https://cordis.europa.eu/project/id/957286. [Accessed 9 11 2021].

[7] DICE, “Data Infrastructure Capacity for EOSC,” [Online]. Available:
https://cordis.europa.eu/project/id/101017207. [Accessed 26 11 2021].

[8] Gaia-X, [En línea]. Available: https://www.data-
infrastructure.eu/GAIAX/Navigation/EN/Home/home.html. [Último acceso: 15 11 2022].

[9] PIACERE Consortium, “D7.1 PIACERE use case definition,” 2021.

[10] PIACERE Consortium, «D2.1 PIACERE DevSecOps Framework Requirements specification,
architecture and integration strategy,» 2021.

[11] Apache Brooklyn, [Online]. Available: https://brooklyn.apache.org/. [Accessed 8 11 2021].

[12] XLAB, [Online]. Available: https://github.com/xlab-si/xopera-opera. [Accessed 26 11
2021].

[13] HashiCorp, [Online]. Available: https://www.terraform.io/. [Accessed 8 11 2021].

[14] Apache Hadoop, “Apache Hadoop YARN,” [Online]. Available:
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YARN.html.
[Accessed 8 11 2021].

[15] AWS, “AWS CloudFormation,” [Online]. Available:
https://aws.amazon.com/es/cloudformation/. [Accessed 8 11 2021].

[16] CFEngine, “CFEngine,” [Online]. Available: https://cfengine.com/.

[17] CHEF, “CHEF,” [Online]. Available: https://www.chef.io/products/chef-infra.

DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 34 of 36

www.piacere-project.eu

[18] Mesosphere Inc., “Marathon - A container orchestration platform form Mesos and
DC/OS,” [Online]. Available: https://mesosphere.github.io/marathon/. [Accessed 8 11
2021].

[19] Cloudify Platform Ltd., “Multi Cloud Orchestration: Turn Glue Code Into Certified
Environments,” [Online]. Available: https://cloudify.co/. [Accessed 8 11 2021].

[20] OpenStack, “OpenStack,” [Online]. Available: https://www.openstack.org/. [Accessed 8 11
2021].

[21] The Linux Foundation, “Production-Grade Container Orchestration,” [Online]. Available:
https://kubernetes.io/. [Accessed 8 11 2021].

[22] puppet, “puppet,” [Online]. Available: https://puppet.com/.

[23] Rancher Labs, “Rancher,” [Online]. Available: https://rancher.com/. [Accessed 26 11
2021].

[24] Red Hat, “Red Hat Ansible,” [Online]. Available: https://www.ansible.com/.

[25] SaltStack Enterprise, “Salt Project,” [Online]. Available: https://saltproject.io/.

[26] Spinnaker, “Spinnaker,” [Online]. Available: https://spinnaker.io/. [Accessed 8 11 2021].

[27] URBANAGE Consortium, “URBANAGE_D3.1_Data Management Layer,” 2022.

[28] Terraform, “Terraform,” 3 3 2022. [Online]. Available: Terraform.

[29] Docker Inc, “Swarm mode overview,” [Online]. Available:
https://docs.docker.com/engine/swarm/. [Accessed 8 11 2021].

[30] OpenStack, “OpenStack,” 3 3 2022. [Online]. Available: https://www.openstack.org/.

[31] XLAB, “xOpera SaaS,” [Online]. Available: https://saas-xopera.xlab.si/ui/. [Accessed 26 11
2021].

[32] L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune and J. Wilkes, “Large-scale cluster
management at Google with Borg,” in Proceedings of the Tenth European Conference on
Computer Systems, 2012.

DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 35 of 36

www.piacere-project.eu

Appendix

In this appendix, the different scenarios for the IEM are represented in Gherkin, a cucumber
specification format.

Feature: PIACERE Run Time

The input of this scenario is detailed in the following

https://git.code.tecnalia.com/piacere/private/t51-iem/iem/-

/blob/y2/openapi.json#/deployments/deploy_deployments__post

Scenario: Deploy a fresh project which comprises terraform, ansible,

and docker

Given a project bundle in the relevant IaC technologies (terraform,

ansible, docker-compose), the deployment id, and the required cloud

credentials

 When the user triggers the deployment

 Then the IEM is invoked

 And executes the stages of the bundle asyncronously

 And the user is notified that the deployment has been accepted

The input of this scenario is detailed in the following

https://git.code.tecnalia.com/piacere/private/t51-iem/iem/-

/blob/y2/openapi.json#/deployments/read_status_deployment_deployments_

_deployment_id__get

Scenario: Query the status of a running project

Given the deployment id of an already existing project

 When the user queries the status of the project

 Then the IEM is invoked

 And the user is notified of the status

The input of this scenario is detailed in the following

https://git.code.tecnalia.com/piacere/private/t51-iem/iem/-

/blob/y2/openapi.json#/deployments/undeploy_undeploy__post

Scenario: Undeploy a project

Given the deployment id of an already existing project and the

required cloud credentials

 When the user triggers the undeployment

 Then the IEM is invoked

 And tears down the entire deployment asyncronously

 And the user is notified that the undeployment has been accepted

The input of this scenario is detailed in the following

https://git.code.tecnalia.com/piacere/private/t51-iem/iem/-

/blob/y2/openapi.json#/deployments/read_status_deployment_deployments_

_deployment_id__get

Scenario: Query the status of an undeployed project

Given the deployment id of an undeployed project

 When the user queries the status of the project

 Then the IEM is invoked

 And the user is notified of the status

In it, the following scenarios are defined so other tools can assess how to utilize the IEM toolkit
properly.
• Deploy a fresh project: this scenario represents a fresh multilingual IaC deployment in
which the IEM can perform a fresh deployment of the different technologies that comprise the
project.

DRAFT

http://www.medina-project.eu/

D5.2 – IaC Execution Manager v2 Version 1.0 – Final. Date: 30.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 36 of 36

www.piacere-project.eu

• Query the status of a running project: the IEM can provide feedback on the various
projects that have been executed, in conjunction with relevant messages that may be handy for
problem resolution.
• Undeploy a project: in this scenario the IEM can tear down a previously deployed project
that is no longer necessary or needs to be reassessed.
• Query the status of an undeployed project: this scenario provides feedback on a
deployment that is no longer running on the infrastructure provider.

DRAFT

http://www.medina-project.eu/

