

Deliverable D4.5

IaC Code security and components security inspection v2

Editor(s): Matija Cankar

Responsible Partner: XLAB d.o.o.

Status-Version: 1.0 Final Version

Date: 28.11.2022

Distribution level (CO, PU): Public

DRAFT

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 2 of 41

www.piacere-project.eu

Project Number: 101000162

Project Title: PIACERE

Title of Deliverable: IaC Code security and components security inspection v2

Due Date of Delivery to the EC 30.11.2022

Workpackage responsible for the
Deliverable:

WP4 - Verify the trustworthiness of Infrastructure as a
code

Editor(s): Matija Cankar (XLAB)

Contributor(s):
Anže Luzar (XLAB), Matija Cankar (XLAB), Nenad Petrović
(XLAB)

Reviewer(s): Juncal Alonso (TECNALIA)

Approved by: All Partners

Recommended/mandatory
readers:

WP2, WP3, WP5, WP8

Abstract: This deliverable will present the outcome of Task T4.2
and Task T4.3. The deliverable comprises both a
software prototype [KR6-KR7] and a Technical
Specification Report. The document will include the
Security Inspector technical design and implementation
aspects. The document will also include the Security
Inspector technical design and implementation aspects

Keyword List: IaC, SAST, IaC Security, DevOps, DevSecOps

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein

 DRAFT

http://www.medina-project.eu/
http://creativecommons.org/licenses/by-sa/3.0/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 3 of 41

www.piacere-project.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 21.08.202x First version of ToC XLAB

v0.2 18.10.2022 First draft XLAB

v0.3 21.11.2022 Version for internal review XLAB

v0.4 23.11.2022 Comments and suggestions received
by consortium partners

Tecnalia

v0.5 25.11.2022 Final version XLAB

v1.0 28.11.2022 Ready for submission Tecnalia

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 4 of 41

www.piacere-project.eu

Table of contents

Terms and abbreviations ... 6

Executive Summary ... 7

1 Introduction .. 8

1.1 About this deliverable ... 8

1.2 Document structure .. 8

2 Implementation ... 9

2.1 Changes in v2 .. 9

2.2 Functional description ... 10

2.2.1 Fitting into overall PIACERE Architecture .. 14

2.3 Technical description .. 14

2.3.1 IaC Security Inspector updates – Y2 .. 15

2.3.2 Component Security Inspector updates Y2 ... 15

2.3.3 Extended scan workflow ... 16

2.3.4 Database model .. 39

2.3.3. Scan projects and configuration .. 21

2.3.5 Compatibility matrix .. 21

2.3.3. Scan output summary ... 22

2.3.6 Prototype architecture .. 24

2.3.7 Components description ... 26

2.3.8 Technical specifications ... 27

3 Delivery and usage .. 28

3.1 Package information ... 28

3.2 Installation instructions ... 29

3.3 User Manual .. 30

3.3.1 Scan result persistence .. 33

3.3.2. Scan projects and configuration .. 33

3.3.3. Extending the scan workflow with new check tools ... 34

3.4. Licensing information .. 36

3.5. Download .. 36

4. Conclusions ... 37

5. References ... 38

APPENDIX: <Appendix title> .. 39

 List of tables

TABLE 1 Y1 REQUIREMENTS... 10
TABLE 2 FUNCTIONAL REQUIREMENTS ... 11
TABLE 3 LIST OF OLD, NEW AND ABANDONED CHECKS OF KR6 AN KR7 ... 15

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 5 of 41

www.piacere-project.eu

TABLE 4 CHECK LIST DETERMINATION IN VARIOUS SCENARIOS .. 18
HOWEVER, IN FUTURE IT IS PLANNED TO FURTHER INVESTIGATE COMPATIBLE FILE TYPES AND WHICH KIND OF SCAN

TOOLS CAN BE LEVERAGED IN SPECIFIC CONTEXT. IN CASE THAT THE FILE DOES NOT BELONG TO ANY OF THE

CATEGORIES FROM THE LEFT, THEN NO SCAN WILL BE PERFORMED. THE PURPOSE OF SUCH APPROACH IS TO

AVOID EXECUTION OF INCOMPATIBLE SCAN TOOLS AND POSSIBLE REDUCE THE TIME NEEDED FOR SCAN

PROCESS OF THE IAC ARCHIVE.TABLE 5 COMPATIBILITY MATRIX OVERVIEW .. 22
TABLE 6 DETAILS OF IAC SCAN RUNNER COMPONENT ACTIONS ... 26
TABLE 7 . ENVIRONMENT VARIABLES FOR PERSISTENCE SETTINGS ENABLE/DISABLE 30
TABLE 8 SCAN RESULTS PERSISTENCE API ... 33
TABLE 9 SCAN PROJECT AND CONFIGURATION API OVERVIEW ... 33
TABLE 10 ENVIRONMENT VARIABLES FOR PERSISTENCE SETTINGS ENABLE/DISABLE 40

List of figures

FIGURE 1. PIACERE DESIGN TIME COMPONENTS .. 14
FIGURE 2 HIGH-LEVEL WORKFLOW OF UPDATED IAC AND COMPONENT SECURITY INSPECTORS 16
FIGURE 3 USE-CASE DIAGRAM SHOWING NEW FEATURES (GRAY) RELATED TO PROJECT CONFIGURATION AND

RESULT PERSISTENCE OF IAC AND COMPONENT SECURITY INSPECTORS .. 17
FIGURE 4 IAC SCAN RUNNER: PROJECT CREATION AND SETTING THE CONFIGURATION 19
FIGURE 5 UPDATED IAC SCAN RUNNER SCAN WORKFLOW WITH RESULT PERSISTENCE AND PRE-DEFINED

CONFIGURATION .. 20
FIGURE 6 . ILLUSTRATION OF SCAN PROJECT AND CONFIGURATION WORKFLOW .. 21
FIGURE 7 HTML PAGE VISUALIZING SCAN SUMMARY ... 24
FIGURE 8 IAC SCAN RUNNER COMPONENT SCHEMA .. 25
FIGURE 9 IAC SCAN RUNNER PROTOTYPE COMPONENTS DIAGRAM .. 26
FIGURE 10 DOCKER HUB REPOSITORY FOR IAC SCAN RUNNER .. 28
FIGURE 11 IAC SCANNER DOCUMENTATION PAGE HOSTED ON GITHUB PAGES .. 29
FIGURE 12 STARTING IAC SCAN RUNNER AND MONGODB PERSISTENCE LAYER WITH DOCKER COMPOSE 29
FIGURE 13 SWAGGER UI FOR VISUAL ACCESS TO IAC SCAN RUNNER REST API .. 31
FIGURE 14 SWAGGER UI IAC ARCHIVE SCAN INTERFACE ... 32
FIGURE 15 UI IAC ARCHIVE SCAN RESULTS ... 32
FIGURE 16 SCAN WORKFLOW EXTENSION STEPS ... 34
FIGURE 17 ER DIAGRAM OF UNDERLYING DATABASE MODEL FOR SCAN RESULT PERSISTENCE AND PROJECT

CONFIGURATION .. 40
 DRAFT

http://www.medina-project.eu/
file:///C:/Users/106776/Fundacion%20Tecnalia%20Research%20&%20Innovation/SP-REPEXT.083815%20-%20Documentos/WP4/Deliverables/D4.5%20Final/Final%20Submitted/D4.5-IaC%20Code%20security%20and%20components%20security%20inspection-v1.0_clean.docx%23_Toc120531649
file:///C:/Users/106776/Fundacion%20Tecnalia%20Research%20&%20Innovation/SP-REPEXT.083815%20-%20Documentos/WP4/Deliverables/D4.5%20Final/Final%20Submitted/D4.5-IaC%20Code%20security%20and%20components%20security%20inspection-v1.0_clean.docx%23_Toc120531649

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 6 of 41

www.piacere-project.eu

Terms and abbreviations

API Application Programming Interface

ASAP As soon as possible

CI Continuous integration

CVE Common Vulnerabilities and Exposures

CSAR Cloud Service Archive

CSP Cloud Service Provider

DB Database

DevOps Development and Operations

DevSecOps Development, Security and Operations

DoA Description of Action

EC European Commission

GA Grant Agreement to the project

GUI Graphical User Interface

HCL HashiCorp Configuration Language (Terraform HCL)

IaC Infrastructure as Code

IEP IaC execution platform

IOP IaC Optimization

JSON JavaScript Object Notation

KPI Key Performance Indicator

SW Software

SAST Static Application Security Testing

SCA Software Composition Analysis

SotA State of the Art

TOSCA Topology and Orchestration Specification for Cloud Applications

UI User Interface

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 7 of 41

www.piacere-project.eu

Executive Summary

This Is a second technical deliverable from a series of three, describing the progress and plans
of the IaC Security Inspector and Component security inspector (KR6 and KR7). The mentioned
results are output of tasks T4.2 and T4.3 from the WP4.

This deliverable shows the progress of the IaC Security Inspector and Component security
inspector (KR6 and KR7) during the second year of PIACERE project. In this document, the
components are referred to as a single entity merging them together, called IaC Scan Runner.
The focus is on new features and capabilities, emphasizing the novelties with respect to previous
year, that we describe as innovations.

The first innovation focuses on improved scan result aggregation, together with their ranking
according to their outcome and persistence for later browsing. This means that user can receives
more informational result and ordered by specific ranking.

The second innovation focuses on speedup and efficiency. For that, a concept of compatibility
matrix was introduced enabling the execution of relevant checks only within the scan workflow,
so the overall processing time is reduced as checks for non-existent file types are skipped.
Moreover, the aspects of scan-related preferences are considered with main aim to enable re-
use in case of similar archives.

The goal of presented two innovations is to both improve the response time of overall PIACERE
IDE workflow, but also to make it more user-friendly by giving the extended result summary and
ability to browse the results in more convenient way. Finally, some elements related to
extendibility with new tools and providing support for novel IaC standards are considered, but
mainly left for future work until the end of the project.

The mission of this work package remains the same – find and spot as many IaC issues as possible
that could affect the deployed application.

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 8 of 41

www.piacere-project.eu

1 Introduction

This document represents the second technical deliverable out of three which are planned,
summarizing the current progress and future related to the development of IaC Scan Runner
(KR6 and KR7). The results presented in this document are the outputs of tasks T4.2 and T4.3
from the WP4.

In the first year we focused mostly on IaC Security Inspector and integration part. Therefore, in
the second year we focused more on IaC Component Inspector and introducing an updated
version of IaC Scan Runner, combining results of both inspectors, with persistence layer which
focuses on enhancement of the following aspects:

- more sophisticated scan result information summarization and visualization

- storage of scan results and later browsing them

- keeping scan configuration parameters and enable its re-use for further scans

- organizing scan tasks within projects to reduce time needed for configuration

- reduce the scan execution time by avoiding non-compatible file types

- improve the extendibility allowing to add new check tools to the scan workflow

- new scans integrated

- component scanning expanded to Ansible Collections

However, it would be still possible to use IaC Scan Runner in a stateless manner (without relying
on persistence layer), in a way already described within the previous document [1]. In that case,
specific set of settings (as will be described later in this document) has to be applied in order to
ensure backwards compatibility.

1.1 About this deliverable

The main aim of this deliverable is to explain the new usage scenarios and improvements within
the second version of IaC Scan Runner, enabled thanks to introduction of persistence layer. The
main parts targeted to be improved, compared to the previous version will be mentioned. First,
we want to make the obtained results more readable to humans and easily retrievable even
later in time. On the other side, as it might happen that particular user would like to perform a
set of scans with the same settings against multiple IaC archives of the same type, then we also
have goal to enable re-use of scan tool configuration in order to reduce the time needed for
manual settings. Finally, the reduction of execution time required for huge IaC archives is aimed
to be achieved by avoiding calling scan workflow tools that target files that are not actually
present within the provided IaC.

1.2 Document structure

 The rest of this document has the following structure:

• Section 1 presents an overall description of the delivery and its main goal is provided.

• Section 2 focuses on the implementation of the improvements with repsect to the
previous version of the tool. In the Section 2.1 Approach discuss how we decide which
checks to cover.

• Section 3 describes the delivery and usage of the developed tools.

• Section 4 lists the conclusions

• Section 5 lists references and citations used throught the document, and

• Appendix: The details of IaC Scan Runner database schema.

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 9 of 41

www.piacere-project.eu

2 Implementation

The main purpose of the delivered prototype remains the same as described in the previous
version of the deliverable. It aims to help DevOps Engineers minimising the potential issues with
using their code, which should be done in two main steps. The first one is execution of static
application security testing (SAST) tools against the IaC code which performs analysis before the
deployment. On the other side, the second is creation of live tests and specialised monitoring
that finds issues during the application lifecycle. In this context, our work focuses on providing
tools where SAST tool management can be applied on the IaC cases with ease.

This document summarizes the implementation until the second year. All the functionalities
from the first year [1] are completed, while the focus here is on the new extensions introduced
in the second year, aiming to cover the following aspects with goal to improve the usability of
the tool and overall user experience:

- Visual result summary and scan result prioritization
- Browsing the results of previously performed scans
- Reduce time needed for configuration by introducing re-usable scan configurations
- Improve scanning speed by performing only relevant checks for detected file types

The features, apart from scan configuration management are fully implemented. On the other
side, result processing and scan compatibility are expected to be extended in future if support
for new checks has to be included.

2.1 Approach

We follow the same approach as it was planned in D4.4 [1], this means that, primarily, the needs
of stakeholders responsible for PIACERE use cases were taken into account regarding the
process of check tool selection. Together we prepared a list of checks and make decision of
which could be included in IaC Scan Runners. Based on analysis of their usage scenarios, it was
identified that the Terraform HCL, Ansible and docker (hadolint) are the must have. .
Additionally we included all available open source checks that have som potential use PIACERE
use cases or were planned already in the proposal stage – like TOSCA YAML.

The decision of why integrate other checks are:

- Exploitation: if we cover more checks, this means user can have one service for multiple
languages and project. As PIACERE framework is meant to be exploited also per-partes,
we know that this provides a new potential edge to the IaC Scan Runner as it can be user
to cover all other potential checks.

- Future-proof result: PIACERE framework is not limited only to Terraform, Ansible and
Docker. DOML is not language specific, therefore, in future it could support any other
language, e.g. python or shell.

- Other support languages. Some checks do not target directly the IaC languages, but the
snippets or pieces of code that frequently can become a part of the IaC. This is the
reason that we use also HTML or JavaScript, as both are very popular in web
technologies.

- Gap analysis: Most of the IaC languages have stable progress and updates, except
Ansible, which is very promising, but involved an important architectural change in
past – most of the non-core functionalities it is covered by so-called Collections, that
are Ansible libraries, puggable components that enrich Ansible capabilities. The
Ansible Collecitons are do not have a specific check, therefore we saw the opportunity
to fill this gap – use cases in PIACERE need that and the community is very eager to
have this kind of tool. The need for this kind of tool was demonstrated also on

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 10 of 41

www.piacere-project.eu

AnsibleFest – an industrial event in US where XLAB contributed with specific talks and
workshops.

From that reasoning we compiled a final list of the checks which is available in Table 3.

2.2 Changes in v2

As already introduced in introduction, a various set of changes were made during the second
iteration of development. They fall into the following categories:

Extension of the outputs and responses: When it comes to scan result outputs, both JSON and
HTML results were extended with additional information that would ease their further usage.
First, we process individual logs in order to determine the outcome of the check – passed or
failed (in case that problems were detected). Additionally, HTML result summary was extended,
so the outcome of checks affects the way they are visualized in order to cover the aspects of
scan result prioritization. On the other side, auxiliary info, such as timestamp and execution
duration is also added to the results.

Extended coverage of scan checks: New checks were added to fulfil the planned support
presented in a table in D4.4. Besides, the full report for result summarization and prioritization
is currently available for the checks, which is discussed within compatibility matrix-related
subsection.

Result persistency and sub-query: to improve scan result management and configuration we
introduced the persistence layer, which enables to temporarily store results and gives ability to
browse them later. Moreover, another novelty is the ability to organize scans within projects,
which will share the common configuration and save the user's time when it comes to scans of
similar IaC archives.

Describing alternative scenarios and demonstrate features: A Gherkin/Cucumber notation was
used to describe all possible scenario workflows of the IaC Scan runner and allow users to better
understand it potential and allow to respond with feedback.

The changes were successfully integrated into the service, each detail will be described in the
following sections.

2.3 Functional description

The functional description of the IaC Security tools was observed in threefold:

• Y1 requirements and feedback

• Y2 requirements

• Component features described in Gherkin/Cucumber notation.

The Y1 requirements (Table 1) were accomplished according to the project plan, except the
requirement REQ80 was abandoned as it did not have a sense. Inspection is made over the
whole IaC bundle regardless if the content is prepared for Canary environment or for any other
staging (testing, production) environment.

Table 1 Y1 requirements

 REQ # Description Complexity
/Task

Acceptance Priority Status

 REQ23 IaC Code Security Inspector
must analyse IaC code

Medium ACCEPTED MUST HAVE Done

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 11 of 41

www.piacere-project.eu

w.r.t. security issues of the
modules used in the IaC.

T4.2

 REQ24 Security Components
Inspector must analyse and
rank components and their
dependencies used in the
IaC.

Medium

T4.3

ACCEPTED MUST HAVE Done,
improve
ments
in
REQ106

 REQ65 IaC Security Inspector and
Component Security
Inspector should hide
specificities and
technicalities of the
current solutions in an
integrated IDE.

Low

T4.2, T4.3,

WP3

ACCEPTED MUST HAVE DONE

 REQ66 IaC Code security inspector
must provide an interface
(CLI or REST API) to
integrate with other tools
or CI/CD workflows.

Medium

T4.2, T2.2

ACCEPTED MUST HAVE DONE.

 REQ67 IaC Component security
inspector must provide an
interface (CLI or REST API)
to integrate with other
tools or CI/CD workflows.

Medium

T4.2

T2.2

ACCEPTED MUST HAVE DONE

After the integration of the Y1 results into the PIACERE environment we started productive
conversations with use case providers, stakeholders and integrational team working on IDE.
Together we set up the list of improvements and defined a set of new requirements presented
in Table 2. Table shows the overview of new functional requirements for IaC Security Inspector
and IaC Component Inspector.

Table 2 Functional requirements

Req ID Description Status Requirement
Coverage at M24

REQ106 The organization of scan results
should respect the scan outcome

Partially done,
output
summarization
missing for some
tools

Both JSON and HTML
responses are
updated, so results are
organized into several
different categories
with respect to check
outcome.

REQ108 Management of scan results after
the scan process is finished
(supporting short term
persistence)

Done Scan results are stored
in summarized form
(JSON output) into
persistence layer.

REQ109 Scan configuration management Partially done,
initial REST API
available

Added support for
projects with user-
defined configuration

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 12 of 41

www.piacere-project.eu

which can be re-used
for multiple scan tasks.

More in detail:

• REQ106: Output of individual scan tools should be separated into different categories,
according to the actual outcome. In that context, we introduce the following categories:
1) Problems – check tool has detected issues 2) Passed – No problems were detected 3)
No files – in case when particular check did not find relevant files to be scanned.
Additionally, we also introduce one more category – Info, which refers to checks in wider
sense that have different type of outcome, presenting useful information about the
scanned IaC archive (such as number of files). On top of that, HTML output has been
updated with visualization in tabular form, where checks that detected are shown first,
while the others are placed below in the mentioned order (Passed, No files, Info). When
it comes to completeness of this requirement implementation, summarization of output
for some of the check tools is still work in progress.

• REQ108: Output of scan in JSON form is entirely stored thanks to persistence layer.
Apart from check outcomes, some additional auxiliary info is included, such as name of
IaC archive, timestamp when scan was performed and duration of scan task execution.
Apart from that, basic functionalities enabling visualization, filtering and deletion of
the scan results are also present. Finally, functionality enabling period deletion of old
scan results is also included. All the planned activities related to implementation of this
requirement are completed.

• REQ109: Scan management configuration. Scans are organized into projects with
common configuration that includes both the list of enabled checks and configuration
parameters required for some of the individual tools. The main goal of this requirement
is to reduce the time needed for manual scan configuration set up each time scan is
performed thanks to persistence and re-use of already created user-defined
configurations. Additionally, simple API enabling filtering by project id and deletion of
projects is also included. While all the basic capabilities related to scan project
management have been already implemented, tool configuration-related
functionalities are still in progress. Despite that the list of enabled tools can be stored,
the persisted parameters (such as secrets, ids or tokens) are still not leveraged for
configuration of individual checks.

To better understand the needs of the users and discuss the requirements, we prepared the
scenarios in Gherkin/Cucumber notation. The notation allows very simple and plain descriptions
of the application use and demonstrate it’s potential. Beside the easier conversation with the
stakeholders, the notation will be a basic cornerstone for the QA team to set acceptance criteria
and help use-cases to set the validation scenarios. The IaC Scan Runner features are presented
in the following listing.

Feature: IaC Scan Runner - scan project creation, configuration and

re-use

 As a PIACERE user I want to create a new scan project with common

configuration for further reuse across multiple IaC archive scan runs

Scenario: Create new scan project (KR6 and KR7)

Given A generated IaC code from DOML

When user navigates to the IaC document/zip

And right-click on the file

And selects option "New scan project"

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 13 of 41

www.piacere-project.eu

Then new project id is returned to the user

And project with empty configuration and default enabled check list is

created into database

Scenario: Set existing scan project parameters (KR6 and KR7)

Given a generated IaC code from DOML

When user navigates to the IaC document/zip

And right-click on the file

And selects option "Config existing scan project"

Then scan project prompt configuration appears

And user enters previously generated project id

And user provides set of parameters (secrets, tokens, credentials) for

individual tools

And user selects the list of enabled check tools

When user confirms configuration parameters

Then project configuration parameters are updated in database

Scenario: Initiate IaC Scan runner for pre-defined scan project

configuration (KR6 and KR7)

Given A generated IaC code from DOML

When user navigates to the IaC document/zip

And right-click on the file

And selects "Scan for existing project"

Then prompt asking for project id appears

And user set response type (HTML or JSON)

[Optional] And user gives the list of preferred checks

Then IaC scan runner is invoked for intersection(enabled, [preferred])

checks

And a response is returned

Scenario: Scan tool response visualization (KR6 and KR7)

Given a generated IaC code from DOML

When user navigates to the IaC document/zip,

And right-click on the file

And selects option "View all scans"

Then list of all scan tasks appears

[Alternative 1]

And user selects one of them by doing left click

And selects result type (JSON or HTML)

Then scan result details are retrieved from database

And response file generated in project directory

And result is shown in window (mini-browser for HTML, text editor for

JSON)

[Alternative 2]

And user selects one of them by doing right click

Then prompt for scan result deletion appears

And user confirms deletion of scan result

And scan result is removed from database

Scenario: Scan project management (KR6 and KR7)

Given a generated IaC code from DOML

When user navigates to the IaC document/zip,

And right-click on the file

And selects option "View all projects"

Then list of all projects by current user appears

[Alternative 1]

And user selects one of them by left-clicking

Then list of all scan results for given project appears

[Alternative 2]

And user selects one of them by right-clicking

Then prompt for scan project deletion appears

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 14 of 41

www.piacere-project.eu

And user confirms deletion of scan project

And scan project is removed from database

2.3.1 Fitting into overall PIACERE Architecture

The results described in this deliverable, the IaC Security Inspector and IaC Component Security
Inspector fit into the Vulnerability tool section of PIACERE Design Tools [2]. The services can be
initiated by IDE after IaC will be generated from the DOML language. The inputs of the IaC
Security Inspector and Component inspector are simplified be simplified to allow scanning IaC
packages (such as zip or tar files). The outputs will be formatted as JSON and will be sorted by
tools. The IaC generated from the DOML in inspected by IaC Security Inspector and IaC
Component Security Inspector, depicted as KR6 and KR7 (IaC Scan Runner) in Figure 1.

Figure 1. PIACERE design time components

Within the PIACERE framework, only IDE currently access the IaC Scan Runner through its API.
Other components do not interact with it for now, but in the future could be useful to add the
IaC Scan Runner also in the CI/CD jobs, to re-check the IaC just before continuous delivery step.
The IaC from the design phase is unchanged, but there are two corner cases which we would
catch with this additional step. First, it might be, that user would forget to run the IaC Scan
runner in the design time, and in this case, we would catch potential issues. Secondly, the IaC
components and IaC languages are improving trough the time, this means that even a perfect
IaC today, might have many vulnerabilities or misconfigurations tomorrow or after one month.
To maintain the IaC in a top-notch shape, it is necessary to schedule IaC scanning just before
use, and continuously when the application is already in runtime. Many potential issues could
be detected this way.

2.4 Technical description

The IaC Security Inspector [KR6] and Component security Inspector [KR7] are components of
the software result called IaC Scan Runner. In this section we first in detail present the updates
of KR6 and KR7, which focus on the respective fields. In the last subsection we present the
updates that can be attributed to both KRs and are done directly on IaC Scan Runner. These
updates are mainly covering user experience, integrational aspects and internal processing of
individual scans and results.

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 15 of 41

www.piacere-project.eu

2.4.1 IaC Security Inspector updates – Y2

The security inspector has gained much more checks after the D4.4 deliverable. Many of new
checks were already available in Y1 version of the IaC Scan Runner. Old, new, and abandoned
checks are listed in the Table 3. The planned list from D4.4 [1] has been extended for three
checks – cloc, Snyk and SonarCloud – and we selected three to not be integrated for now.
Together we now support 22 checks, which is 14 checks more than it was integrated in the report
time of D4.4. The summary of current state related to available checks is given in Table 3.

Table 3 List of old, new and abandoned checks of KR6 an KR7

IaC Check Target IaC entity Enabled (by default) New from D4.4

xOpera TOSCA parser TOSCA yes yes

Tosca-parser TOSCA-parser No abandoned

Ansible Lint Ansible yes no

Steampunk Scanner Ansible no yes

TFLint Terraform yes no

tfsec Terraform yes no

Terrascan Terraform yes no

Terrafirma Terraform No abandoned

yamllint YAML yes no

Pylint Python yes no

Bandit Python yes no

PyUp Python No abandoned

Safety Python packages yes no

Gitleaks Git repositories yes yes

git-secrets Git repositories yes yes

Markdown lint Markdown files yes yes

hadolint Docker yes yes

Gixy Nginx configuration yes yes

ShellCheck Shell scripts yes yes

ESLint JavaScript yes yes

TypeScript ESLint TypeScript yes yes

HTMLHint HTML yes yes

stylelint CSS and other styles yes yes

Checkstyle Java yes yes

cloc Multiple components yes yes

Snyk Multiple components no yes

SonarScanner Multiple components no yes

Reference on the documentation page (GitHub)1.

2.4.2 Component Security Inspector updates Y2

In the second year of the project, we focused also on improving the performance of component
scanners. From PIACERE use-cases, customers and IaC practitioners we get the feedback about
the component inspection of Ansible. The Ansible was in recent years divided from one single
component to a core component developed by core team and collections, that can be
maintained by opensource community or any stakeholder. This means that whenever you write

1 https://xlab-si.github.io/iac-scanner-docs/02-runner.html

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 16 of 41

www.piacere-project.eu

an Ansible code you are relying to collections that can vary in maturity, concepts and more -
means it is significantly prone to errors. The collections are maintained and upgraded during the
time, which means, if we try to update the IaC code, we need to spot the differences between
the old version and new version and try to figure out if we need to make any actions on our IaC
code. In comparison to other language component checks this one is the most critical. Due to
that drastic change in the Ansible architecture, the lack of component inspecting tools is more
evident here than in others.

To tackle this matter a special team inside XLAB is evolving IaC related tools for enterprises and
end customers. From the ideas of IaC Scan Runner and customers we evolved XLAB’s
Steampunk Scanner to a Steampunk Spotter. This tool is proprietary and will be available for
Enterprise PIACERE users through IaC Scan Runner to improve the component scanning.

Steampunk Spotter ensures trustable automation by providing an assisted automation writing
tool that analyzes and offers recommendations for different types of Ansible content (task files,
playbooks, roles, collections). Currently Spotter targets scanning and analyzing Ansible content
but will extend its support to other IaC tools, such as Terraform and Pulumi in the future. IaC
Scan Runner uses Spotter CLI to interact with Spotter and to scan Ansible content.

The best thing about the Component Security Inspector using the Steampunk Spotter is the idea,
that Spotter sometimes can update and automatically rewrite the IaC files. This means that
when the DOML is translated to IaC by the ICG component, the resulting IaC could be easily
upgraded by the IaC Scan Runner without changing the DOML or upgrading ICG. This idea is very
promising and still under the investigation of how practically develop and provide the
functionality to the users.

2.4.3 Extended scan workflow

The updated high-level workflow of IaC Scan Runner focusing on new features is depicted in
Figure 2. In this version, as it can be seen, there are three main novelties: 1) compatibility
determination step – ensuring that scan will be performed only for compatible files within IaC
archive 2) re-use of user-defined configuration – that hold information about individual tool
configuration and enabled checks 3) result persistence – storing the result summary, enabled
thanks to introduction of persistence layer. However, in case that underlying database is
unavailable, the tool will be used in stateless mode without storing the scan results and scan
project configuration, as it was completely described in the previous document.

Figure 2 High-level workflow of updated IaC and Component Security Inspectors

Moreover, Figure 3 and Figure 5 show the use case and sequence diagram focusing on the
extension with respect to previous version showing the new capabilities enabled by persistence
layer in more details, respectively. When it comes to user perspective, in persistence-enabled
mode, it is now possible to create scan projects and assign individual scan tasks to projects.

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 17 of 41

www.piacere-project.eu

Apart from individual tool configurations parameters, projects also persist the information
about the enabled checks, so user does not have to enable/disable specific checks each time
similar IaC archive is scanned. Additionally, basic capabilities related to scan result and project
browsing and management are added to the API. Finally, it is also possible to enable or disable
periodic job that will clean scan results older than 14 days.

In the first step of the sequence, it is possible to create a new scan project. As outcome, project
id is returned to the user/IDE. After that, user/IDE is able to update the list of checks that will be
executed against IaC archive by enabling or disabling individual checks of the scan workflow.
Additionally, there might be some tools which require client-specific or configuration details,
such as tokens, secrets, passwords etc. In order to ensure extendibility with such scan workflow
tools in future, we also give the ability to the user/IDE to provide such parameters and persist
them for later re-use, along with list of enabled checks. In such scenario, such checks are
removed from the list of enabled checks if additional parameters are not provided. Finally, once
the project is created and configuration finished, the scan of IaC archie will be performed. The
first new step of scanning process is preliminary IaC archive file type list construction, in order
to find out which kinds of scripts are present within the archive. After that, the list of file types
is used as input of compatibility matrix with aim to retrieve the list of actual checks that are
compatible with the provided IaC archive. Such approach is used in order to reduce the time
needed for execution of non-compatible checks that are irrelevant for the given archive type.
Therefore, the previously defined list of selected and enabled checks are filtered in order to
distinguish only the ones that are compatible with the archive. Furthermore, there are several
possible scenarios for final check list construction, depending on presence of certain input
parameters, as shown in Table 2.

On the other side, if tool is used in non-persistent mode or while projects are not used even in
persistent mode, there is still update of the flow due to introduction of compatibility matrix
mechanism. In that case, the initial list of enabled checks is the same as the one in the previous
version of the tool. While there is an initial default list of enabled checks, users can further
enable/disable them individually. Moreover, there are two possible situations when it comes to

Figure 3 Use-case diagram showing new features (gray) related to project configuration and result
persistence of IaC and Component Security Inspectors

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 18 of 41

www.piacere-project.eu

the checks that will be executed, depending if the list of selected checks is provided or no. These
two cases are summarized on the bottom of Table 4 .

Table 4 Check list determination in various scenarios

Persistence Selected
checks

Enabled checks Projectid Final list

Yes Non-empty Non-empty Provided Selected ∩ Enabled
(and Configured) ∩
Compatible

Yes Empty Non-empty Provided Enabled (and
Configured) ∩
Compatible

Yes Non-empty Empty Not
provided

Selected ∩ Default ∩
Compatible

Yes Empty Empty Not
provided

Default ∩ Compatible

No Non-empty Default with
additional
enabled/disabled

- Selected ∩ Enabled ∩
Compatible

No Empty Default with
additional
enabled/disabled

- Enabled ∩
Compatible

After that, once the final list of checks to be executed is known, IaC Scan Runner provides the
archive to target scan workflows and collects the returned logs. Moreover, the returned logs for
various checks are processed in order to create a scan result summary. In this case, for each
distinct scan workflow tool, specific string or pattern is searched within the returned log in order
to determine whether the check passed or failed. Otherwise, if check was enabled and
configured, but not found within the list of compatible checks, then its status will be recorded
as “No files” within the results summary. Two types of summaries can be returned to the
user/IDE, depending on the selected response type: 1) JSON – raw JSON file, the same form is
persisted within the database 2) HTML page – tabular, overview of scan results containing
various visual annotations (colours, sorting) to ease the result insight from the perspective of
end-users, together with other useful information about the executed scan.

Furthermore, later, it is possible to browse the projects and corresponding scans. User/IDE can
see all their projects and select the one that they want to browse. After that, the list of individual
scans performed within the same project. Moreover, user selects one among the scans, so
additional details about the scan can be visualized.

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 19 of 41

www.piacere-project.eu

Figure 4 IaC Scan Runner: project creation and setting the configuration

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 20 of 41

www.piacere-project.eu

Figure 5 Updated IaC Scan Runner scan workflow with result persistence and pre-defined configuration

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 21 of 41

www.piacere-project.eu

2.3.3. Scan projects and configuration

Another concept relevant to IaC archive scanning process is a scan project. It consists of one or
more IaC scan runs belonging to a particular user and sharing the same settings and tool
configuration.

IaC Scan Runner can be used in both transient and persistence-enabled mode. When it comes
to transient mode, user-related data is not persisted, so scan projects and configurations are
only relevant to persistent mode. Moreover, even in persistent mode, user configuration
management can be enabled or disabled (only scan results would be stored into DB).

However, in case when it is enabled, it is necessary to provide project id for each scan run task.
After that, the project id is used to load project-related info from the document store. First, the
list of enabled checks is loaded and compared against the list of returned compatible checks.
Additionally, the assigned active configuration is loaded for setting up some of the check tools
(if available). Moreover, the parameters are extracted from active configuration to set-up the
parameters relevant to specific scan tools, such as secrets, tokens or licenses (if required by
some of them which are not free). However, it is assumed that set of default free check tools is
present even without additional configuration in open-source variant of IaC Scan Runner. Finally,
the retrieved parameters are used for tool configuration, and scan is performed for the scan
checks that are intersection of enabled, compatible and configured tools. The previously
described scan project configuration management workflow is depicted in Figure 6.

Figure 6 . Illustration of scan project and configuration workflow

2.4.4 Compatibility matrix

Another novel concept introduced to IaC Scan Runner tool in this version is compatibility matrix.
Its purpose is to aid the analysis of the submitted IaC archive in pre-scanning phase in order to
determine the checks that are compatible with the file types present inside the archive itself.

Table 5 summarizes the current version of compatibility matrix, while it is still work in progress.
The first column denotes the name of particular file type, while the second shows list of
compatible scan tools which are suitable for that file type. As it can be seen, there are two special
categories:

1) other – for all the file types that are not targeted by particular scanning tools
2) common – general checks that are performed against any IaC archive submitted

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 22 of 41

www.piacere-project.eu

However, in future it is planned to further investigate compatible file types and which kind of
scan tools can be leveraged in specific context. In case that the file does not belong to any of the
categories from the left, then no scan will be performed. The purpose of such approach is to
avoid execution of incompatible scan tools and possible reduce the time needed for scan process
of the IaC archive.

Table 5 Compatibility matrix overview

File type Scan workflow

Terraform tfsec, tflint, terrascan

Yaml yamllint

Shell shellcheck

Python pylint, bandit, pyup-safety

Ansible ansible-lint, steampunk-scanner

Java checkstyle

JavaScript ts-lint, es-lint

Html htmlhint

Docker hadolint

Common git-leaks, git-secrets, cloc

2.3.3. Scan output summary

This section describes the new features and updated format related to scan result
summarization and their visualization, taking into account both the generated JSON and HTML
web page which is shown to the end user.

2.3.3.1 JSON

In current version of the scanner tool, the information returned as output is extended and
represents a summary of the individual checks performed against the user-provided IaC archive.
For each of the scan runs executed, the following fields are contained

• scan - the name of the tool applied

• status - what is the outcome of scan:
o passed – the check passes, no problems detected
o problems - there is an issue detected by the particular scanning tool
o info – results of scans that provide additional information about the IaC archive

(like cloc, for example which provides file types and number of code lines per
file), so they are neither “passed” or “problems”

o no files – no scanning was performed, as there were no compatible files

• files - list of files scanned using that particular tool

• log - contents of particular scan tool log in raw textual format

• verdict – the final outcome of the scan, which has value “passed” only if there are no
scans that returned “problems” as result. Otherwise, it takes value “problems”. For
evaluation of the final verdict, the scan results with “info” outcome are not taken into
account.

Apart from result summary fields denoting scan outcomes as previously described, the following
additional fields are also included when scan record is persisted into database, containing
additional auxiliary info:

• time – date/time in format "%m/%d/%Y, %H:%M:%S", representing the moment when
the result summary of a scan was persisted into document store

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 23 of 41

www.piacere-project.eu

• uuid – an identifier (uuid4 type [3]), randomly generated for each scan run, which is used
in order to distinguish the submitted scan tasks, while the user of the tool itself is aware
of this value, apart from Mongo DB’s _id that is used only internally

• archive – the name of IaC archive containing files that were scanned

• execution-duration – time required for scanning the given archive for selected list of
compatible scans, given in seconds

• projectid [optional] – identifier corresponding to the scan project with assigned enabled
check list and configuration parameters. If not set or persistence disabled, the default
check list will be used.

The form of the returned JSON output is illustrated in what follows:

{ “scan_tool1”: { “log”: “log_text_tool1”, “files”: [“file1”…”filen”],

“status”: “Passed”},

...

{“ scan_toolM”: { “log”: “log_text_toolK”, “files”: [“file1”…”filej”],

“status”: “Passed”},

…

{“ scan_toolM”: { “log”: “log_text_toolM”, “files”: [“file1”…”filek”],

“status”: “Info”},

“uuid”: “uuid4”,

“archive”: “archive_name.zip”

“time”: "%m/%d/%Y, %H:%M:%S”,

“execution-duration”: “TIME_SEC”

“verdict”: “Passed”

“projectid”: “project1”

} DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 24 of 41

www.piacere-project.eu

2.3.3.2 HTML summary

Beside presented JSON option to retrieve results, it is also possible to retrieve the output of a
scan process in form of HTML page. It is generated based on the previously described JSON file
and includes the mentioned fields, represented in tabular form, as shown in Figure 7.

Figure 7 HTML page visualizing scan summary

As it can be seen, the page consists of the two main parts: auxiliary info and scan results. The
first table provides the following information to the user:

• archive name – what is the name of the scanned IaC zip archive

• run on – the timestamp of the moment when scanning of the provided archive was
performed

• time spent (seconds) - processing time which was spent for IaC archive scanning for the
selected checks that are compatible

• final verdict – the overall outcome of the check, which has value “Passed” only in case
that no problems were reported by any of the scanning tools.

The second part depicts scan result summarization and additionally, it includes the aspects of
scan outcome prioritization, considering the actual status of the performed scans and leveraging
them in context of visualization. Therefore, the scan results will be grouped according to the
outcome and coloured the following way:

• Problems – red colour, shown first

• Passed – green colour, second

• Info – yellow colour, third

• No files – greyed out, fourth

2.4.5 Prototype architecture

IaC Scan Runner is invoked via PIACERE IDE and interacts with it via REST API. Figure 8 provides
high-level overview describing the interaction of IaC Scan Runner Components. Compared to
previous version of the document, the main novelty are Scan Database and Project Database
components (orange-coloured blocks). The first one encapsulates the capabilities related to scan
result storage, management, and retrieval. Additionally, it is possible to organize scan tasks into
projects as well, for what is responsible the second one. Moreover, we can assign a scan

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 25 of 41

www.piacere-project.eu

configuration to a project, which can be later re-used for further scans within that project and
avoid the repeating manual steps.

Figure 8 IaC Scan Runner component schema

On the other side, Figure 9 and Table 6 gives more detailed insight into main components of IaC
Scan Runner on lower level that are leveraged by PIACERE IDE during the user interaction.

Each time new scan is performed by right-clicking on IaC archive, a scan request is sent to the
ScanRunner component, forwarding the archive name, project id and list of preferred scans.
After that, the corresponding scan project and its configuration are loaded, so the list of
executed checks can be determined. Finally, IaC archive is scanned by each of these checks and
retrieved results stored into database thanks to ResultsPersistence component.

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 26 of 41

www.piacere-project.eu

Additionally, it is possible to create new projects within IDE relying on ScanProject component
once the IaC archive is loaded. On the other side, there is also functionality to list all the projects
by right clicking on IaC archive inside IDE. Furthermore, it is possible to browse the scan results
by projects once they are returned.

Finally, IaC Scan Runner also provides the ability to persist scan project preferences which can
be later re-used. For that purpose, ProjectConfig component enables management of both the
list of enabled scan workflow checks and tool-specific parameters that are used for their proper
configuration.

Figure 9 IaC Scan Runner prototype components diagram

2.4.6 Components description

Table 6 gives an overview of most important components together with their description.

Table 6 Details of IaC Scan Runner component actions

Component Description

ScanRunner The main component that performs the whole scan
workflow for provided IaC archive

ResultsPersistence Data layer component responsible for management of scan
result records – their insertion, deletion and retrieval.

ScanProject Data layer component enabling the creation of new scan
projects, assigning corresponding configuration to them
and loading their configuration and preferences before scan
workflow execution.

ProjectConfig Data layer component for managing the creation of scan
project configuration, which make possible the re-use of
previously created user preferences. It gives ability to
persist the list of enabled scan workflow checks and
corresponding tool-specific parameters.

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 27 of 41

www.piacere-project.eu

ScanWorkflowTools A collection of individual external scan tools that can be
invoked by ScanRunner and represent the part of its IaC
archive scan workflow.

2.4.7 Technical specifications

The new version of IaC Scan Runner includes addition of persistence layer for purpose of scan

result storage and project configuration re-use. In our case, we make use of MongoDB [4],

which is a document-oriented NoSQL cross-platform database. In our case, MongoDB

Community is used, as it is open-source variant. It relies on JSON-alike documents with

optional schemas. MongoDB stores data in form of JavaScript objects, referred to as

documents. Official MongoDB database drivers are available for wide range of language, while

Python is among them. Unlike relational SQL tables, MongoDB does not impose structural

limits – data schemas are not enforced, so practically anything can be stored there. The main

concepts of MongoDB are given as follows:

1) document – individual object which is persisted, analogous to row in relational database

table

2) field – a single item of data within the considered document, similar to relational

database column

3) collection – a set of documents similar to each other, analogous to SQL tables

4) database – a set of related collections, analogous to SQL database

5) schema – data structure definition, which is not obligatory in case of MongoDB, but still

can be leveraged for validation purposes.

We decide to use MongoDB due to its flexibility when it comes to schema modification, as it

will ease extendibility with new features and enhancement of output results with additional

useful information in future. On the other side, IaC Scan Runner itself produces JSON results as

outputs, which is compatible with Mongo.

In case of IaC Scan Runner, pymongo [5] library is used to persist and retrieve data from

MongoDB document store from Python source code of IaC Scan Runner. It represents a high-

level encapsulation of MongoDB basic functionality, such as CRUD operations.

However, the MongoDB instance itself is recommended to be run in an isolated environment,
in form of a Docker container running distinct service which interacts with IaC Scan Runner.

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 28 of 41

www.piacere-project.eu

3 Delivery and usage

3.1 Package information

The packaging information is the same as in deliverable D4.4, with very minor changes. For the
sake of completeness, we are providing the same text here.

The IaC Scan Runner module is delivered as a Docker application including a service accessible
through an API. The xscanner/runner [6] Docker image (Figure 10) is updated and published
regularly on Docker Hub. The CLI that is currently able to run the API is available as iac-scan-
runner Python package and is published on PyPI [7]. Both, API and CLI use semantic versioning
for new releases and the latest available version is 0.1.9.

Figure 10 Docker Hub repository for IaC Scan Runner

Some of the IaC Scan Runner services are already available to the PIACERE consortium partners
on public links:

• REST API: https://scanner.xopera.piacere.esilab.org/iac-scan-runner/

• Swagger UI: https://scanner.xopera.piacere.esilab.org/iac-scan-runner/swagger/

• ReDoc: https://scanner.xopera.piacere.esilab.org/iac-scan-runner/redoc/

• Documentation: https://scanner.xopera.piacere.esilab.org/docs/

The IaC Scanner REST API is protected by HTTP Basic Auth, to avoid the use from boots and
robots.

A screenshot of GitHub Pages documentation for IaC Scan Runner from https://xlab-
si.github.io/iac-scanner-docs/02-runner.html is given in Figure 11.

DRAFT

http://www.medina-project.eu/
https://scanner.xopera.piacere.esilab.org/iac-scan-runner/
https://scanner.xopera.piacere.esilab.org/iac-scan-runner/swagger/
https://scanner.xopera.piacere.esilab.org/iac-scan-runner/redoc/
https://scanner.xopera.piacere.esilab.org/docs/
https://xlab-si.github.io/iac-scanner-docs/02-runner.html
https://xlab-si.github.io/iac-scanner-docs/02-runner.html

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 29 of 41

www.piacere-project.eu

Figure 11 IaC Scanner documentation page hosted on GitHub Pages

3.2 Installation instructions

Compared to previous version, of the main difference is a requirement to run Mongo DB
document instance for purpose of scan result persistence. In our case, we deploy it as Docker
container. Therefore, the machine running IaC Scan Runner should have Docker Engine installed.

In order to ensure the creation of running Mongo DB instance for result persistence, it is
necessary to run Docker Compose [8] script inside the root of the project with the following
command

docker compose up –d

which will spawn two containers: IaC Scan Runner and Mongo DB (named “mongoservice”). The
database is accessed externally via port 27017, while Scan Runner uses 8080, like shown below
in Figure 12.

Figure 12 Starting IaC Scan Runner and MongoDB persistence layer with Docker Compose

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 30 of 41

www.piacere-project.eu

However, it is still possible to use IaC Scan Runner without Mongo DB, so the scan results and
project configuration will not be persisted into document store (but still dumped and returned
as HTML pages or JSON to the user). For that purpose, it is necessary to check the values of the
following environment variables, as shown in Table 7.

Table 7 . Environment variables for persistence settings enable/disable

Variable Meaning

MONGODB_CONNECTION_STRING The connection string used by pymongo in order to connect
do a database running inside container. The default value for
enabling persistence with respect to our Docker Compose
file would be:

mongodb://mongoservice:27017/

SCAN_PERSISTENCE Enables or disables using persistence at all. There are two
possible values:

“enable” - if we want to use database for scan result
persistence

“disable” - scan results will not be persisted

However, even enabling the persistence with improper
connection string will result turning the persistence
capabilities off

USER_MANAGEMENT Enables or disables all the capabilities related to scan project
and configuration management assigned to specific tool
users

Moreover, internal tool folders for output generation will be created after running install-

checks.sh as well. Here, we are able to detect three directories:

1) json_dumps – holding the summaries of scan results
2) generated_html – web page reports generated based on JSON result

summaries
3) logs – textual reports created by individual tools. Furthermore, this directory

holds distinct folder for each of the scans that were run, while individual logs
generated as result of scan workflow execution are contained inside.

After creation of these folders as one of outcomes created by running install-checks.sh, IaC Scan
Runner is ready to be used.

3.3 User Manual

The IaC Scan Runner offers REST API, which can be tested/used via Swagger UI [9] that provides
GUI, as shown in screenshot from Figure 13. Once the Docker Compose is up and iac-scan-runner
service running, it is accessible via locahost:8080/swagger.

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 31 of 41

www.piacere-project.eu

Figure 13 Swagger UI for visual access to IaC Scan Runner REST API

The most important method related to IaC archive is scan. Its input form is given as screenshot

in Figure 14. As it can be seen, it is now possible to also provide identifier of a scan project, so
the assigned scan configuration can be re-used. Additionally, it is also possible to proceed
without project id, so the tool will consider the default configurations and scan tools enabled.
After that, it is also possible to select whether the returned outcome would be JSON format or
HTML summary (JSON is default). On the other side, there is also the possibility to specify the
preferred checks that will be executed against IaC if they are compatible with the provided file
types and properly configured. They are added as list of distinct strings within the checks section
of the form. Furthermore, user has to specify the desired IaC archive from the disk which is about
to be scanned. Finally, the scan process is started by clicking the “Execute” button of the form.
Once the scanning of the provided IaC archive is finished, the result is shown below within
Response body field, as displayed within Figure 15. It is possible to download the generated
result in JSON form by clicking on Download button. DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 32 of 41

www.piacere-project.eu

Figure 14 Swagger UI IaC archive scan interface

Figure 15 UI IaC archive scan results

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 33 of 41

www.piacere-project.eu

In what follows, the currently available REST API will be described from two perspectives: scan
results management and scan projects together with configuration aspects.

3.3.1 Scan result persistence

For each scan run triggered by user providing an IaC archive and selecting the list of desired
scans, the aggregated results are stored into Mongo DB [] document store.

However, the persisted scans can be periodically cleaned-up by activating clean_old_scans
service. Every day at 00:00, this periodic task is scheduled to check the age of all the scan
outcome results currently residing within the document store and remove all of them that are
older than 14 days.

In Table 8 , an overview of API which provides access to capabilities related to scan result
persistence is given.

Table 8 Scan results persistence API

API call Parameters Method

type

Description

/results/{uuid} uuid – A valid uuid4
value corresponding
to a scan record
persisted in database

GET Returns the scan result from
database with the provided uuid
value as identifier.

Otherwise, returns all the persisted
scan task information from the
document store if uuid is not
provided.

/results/{uuid} DELETE Delete the scan result from
database with matching uuid value.

/scan_cleanup/

{enable}
enable – acts as
enabler in case of
value “1”, while
disables the cron job if
“0” is provided

PUT Activates or deactivates cron job
that will daily check the age of the
existing scans in the database and
clean each of them older than 14
days.

3.3.2. Scan projects and configuration

Table 9 gives an overview of the API calls which are relevant for scan projects and configuration
management-related features.

Table 9 Scan project and configuration API overview

API call Parameters Method

type

Description

/new_project Creatorid – identifier of
a user who created the
scan project

POST Creates a new scan project
with randomly assgned
uuid4 identifier for given
identifier of creator.

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 34 of 41

www.piacere-project.eu

/projects GET Returns all the projects by
particular user. If creatorid
parameter is not provided,
then all the scan projects
will be returned.

/set_project_config Projectid – identifier of
a project whose config
we want to modify

POST Changes the currently
active configuration for
the desired project.

Configid – identifier of
config which we want to
assign to the desired
scan project

/new_config Creatorid – identifier of
a user who created the
configuration for a scan
project

POST Creates a new scan project
configuration.

/set_config_params Configid – identifier of
config which we want to
update with new
parameter values

POST Assigns the set of check
tool parameters to the
desired scan project
configuration.

Parameters – a string
which represents
dictionary of check tool-
related parameters,
such as access tokens or
secrets

3.3.3. Extending the scan workflow with new check tools

At certain point, it might be required to include new check tools within the scan workflow, with
aim to provide wider coverage of IaC standards and project types. Therefore, in this subsection,
a sequence of required steps for that purpose is identified and described. However, the steps
have to be performed manually as it will be described, but it is planned to automatize this
procedure in future via API and provide user-friendly interface that will aid the user while
importing new tools that will become part of the available catalogue that makes the scan
workflow. Figure 16 depicts the required steps which have to be taken in order to extend the
scan workflow with a new tool.

Figure 16 Scan workflow extension steps

3.3.3.1. Step 1 – Adding tool-specific class to checks directory

First, it is required to add a new tool-specific Python class to the checks directory inside IaC Scan
Runner’s source code:

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 35 of 41

www.piacere-project.eu

iac-scan-runner/src/iac_scan_runner/checks/new_tool.py

The class of a new tool inherits the existing Check class, which provides generalization of scan
workflow tools. Moreover, it is necessary to provide implementation of the following methods:

 1) def configure(self, config_filename: Optional[str],

secret: Optional[SecretStr])

 2) def run(self, directory: str)

While the first one aims to provide the necessary tool-specific parameters in order to set it up
(such as passwords, client ids and tokens), another one specifies how the tool itself is invoked
via API or CLI and its raw output returned.

3.3.3.2. Step 2 – Adding the check tool class instance within ScanRunner constructor

Once the new class derived from Check is added to the IaC Scan Runner’s source code, it is also
required to modify the source code of its main class, called ScanRunner. When it comes to
modifications of this class, it is required first to import the tool-specific class, create a new check
tool-specific class instance and adding it to the dictionary of IaC checks inside def
init_checks(self).

A. Importing the check tool class

from iac_scan_runner.checks.tfsec import TfsecCheck

B. Creating new instance of check tool object inside init_checks

"""Initiate predefined check objects"""

 new_tool = NewToolCheck()

C. Adding it to self.iac_checks dictionary inside init_checks

self.iac_checks = {

new_tool.name: new_tool,

…

}

3.3.3.3. Step 3 – Adding the check tool to the compatibility matrix inside
Compatibility class

On the other side, inside file src/iac_scan_runner/compatibility.py, the

dictionary which represents compatibility matrix should be extended as well. There are two
possible cases: a) new file type should be added as a key, together with list of relevant tools as
value b) new tool should be added to the compatibility list for the existing file type.

 compatibility_matrix = {

 "new_type": ["new_tool_1", "new_tool_2"],

 …

 "old_typeK": ["tool_1", … "tool_N", "new_tool_3"]

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 36 of 41

www.piacere-project.eu

 }

3.3.3.4. Step – Providing the support for result summarization

Finally, the last step in sequence of required modifications for scan workflow extension is to
modify class ResultsSummary (src/iac_scan_runner/results_summary.py).
Precisely, it is required to append a part of the code to its method summarize_outcome that
will look for specific strings which are tool-specific and can be used to identify whether the check
passed or failed. Inside the loop that traverses the compatible checks, for each new tool the
following structure of if-else should be included:

 if check == "new_tool":

 if outcome.find("Check pass string") > -1:

 self.outcomes[check]["status"] = "Passed"

 return "Passed"

 else:

 self.outcomes[check]["status"] = "Problems"

 return "Problems"

3.4. Licensing information

IaC Scan Runner is licensed under open-source Apache License 2.0.

3.5. Download

IaC Scan Runner’s current source code (regularly updated) is publicly available on GitHub within
the following repository: https://github.com/xlab-si/iac-scan-runner and the documentation is
available on GitHub pages: https://xlab-si.github.io/iac-scanner-docs/.

 DRAFT

http://www.medina-project.eu/
https://github.com/xlab-si/iac-scan-runner
https://xlab-si.github.io/iac-scanner-docs/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 37 of 41

www.piacere-project.eu

4. Conclusions

In the second iteration of deliverable IaC Code security and component inspection we present
the progress of second year on the PIACERE IaC Security Inspector [KR6] and Component
Security Inspector [KR7]. Both key results gained much attention, the KR6 plans of checks to be
integrated was finalised and those are now integrated and operational in Y2 version. The
component checker scans were also concluded, and we focused on filling the gaps of the use
cases and Ansible users. With that we integrated the Steampunk Spotter in component check
portfolio and also contributed with the improvement of that tool with the ideas gathered from
the PIACERE project. The details of the process of choosing the checks was discussed in Section
2.1. Approach.

Another important progress was dedicated to the integrational and user experience of the KRs.
The IaC Scan Runner that holds and manages both KRs has been improved by the result ranking
and persistent features allowing the report management from result also after the scan has been
successfully finished. This required a significant reconstruction of the application.

In the final phase we will finalise open tasks and focus on debugging, dissemination and
exploitation of activities. Also worth to mention is that results of this deliverable were presented
in scientific articles [10] [11].

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 38 of 41

www.piacere-project.eu

5. References

[1] M. C. A. Luzar and G. Celozzi, "D4.4-IaC Code security and components security inspection-
v1.0," 2021. [Online]. Available: https://www.piacere-
project.eu/sites/d8piacere/files/Deliverables/D4.4-
IaC%20Code%20security%20and%20components%20security%20inspection-
v1_V1.0_20211130.pdf. [Accessed 21 November 2022].

[2] E. Morganti, A. Motta, L. Blasi, C. Nava and C. Bonferini, “D2.1 PIACERE DevSecOps
Framework Requirements specification, architecture and integration strategy - v1,” 2021.

[3] "UUID (Universal Unique Identifier)," [Online]. Available:
https://www.techtarget.com/searchapparchitecture/definition/UUID-Universal-Unique-
Identifier. [Accessed 20 November 2022].

[4] "MongoDB," [Online]. Available: https://www.mongodb.com/. [Accessed 21 November
2022].

[5] "PyMongo 4.3.3 Documentation," [Online]. Available:
https://pymongo.readthedocs.io/en/stable/. [Accessed 21 November 2022].

[6] “IaC Scan Runner Docker image,” [Online]. Available:
https://hub.docker.com/r/xscanner/runner.

[7] “Python Package Index (PyPI),” [Online]. Available: https://pypi.org/project/iac-scan-
runner/.

[8] "Docker Compose," [Online]. Available: https://docs.docker.com/compose/. [Accessed 20
November 2022].

[9] "Swagger UI," [Online]. Available: https://swagger.io/tools/swagger-ui/. [Accessed 20
November 2022].

[10] J. Alonso, P. Radoslaw and C. Matija, "Embracing IaC through the DevSecOps philosophy:
Concepts, challenges, and a reference framework," IEEE Software, 2022.

[11] N. Petrović, M. Cankar and A. Luzar, "Automated Approach to IaC Code Inspection Using
Python-Based DevSecOps Tool," in 2022 30th Telecommunications Forum (TELFOR),
Belgrade, 2022.

[12] "IaC Scan Runner," [Online]. Available: https://xlab-si.github.io/iac-scanner-docs/02-
runner.html. [Accessed 21 November 2022].

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 39 of 41

www.piacere-project.eu

APPENDIX: IaC Scan Runner – current database model

Database model

The underlying database enabling persistence of relevant data is a Mongo DB document store,
which is depicted as entity-relationship diagram as shown in Figure 17.

 As it can be seen, the scan results are organized by projects, which can be created by users. For
each of the project, the relevant info consists of the following:

1) userid [optional] – identifier of a user who created the scan project. Relevant only for
multi-user environment [still not implemented]

2) projectid – unique project identifier

3) time – the moment when the project was created

4) active_config – a reference to identifier of a configuration, as each project can have a
configuration assigned.

At one point in time, project can have up to one project configuration active. The relevant
project configuration info consists of the following:

1) configid – identifier of a configuration file

2) parameters – a dictionary of tool-specific parameters, such as secrets (username,
password or token) for scan checks that require additional configuration

3) checklist – the list of checks that are enabled within a scan project.

When it comes to individual scan results, for each of them the following info is relevant:

1) scanid – identifier of a scan task

2) projectid [optional] – identifier of a project to which particular scan execution belongs.
Can be left out or empty in non-persistent mode, then default checks will be considered.
Depending on this value, various combination of scan workflow tools will be taken into
account for execution.

3) archive – name of the user-provided IaC archive

4) execution-duration – time spent for scan workflow execution

5) outcomes – list containing the results of the performed scan workflows against the IaC
archive

5.1 name – the reference the particular scan workflow tool

5.2. status – whether the check reported problems or no

5.2 files - list of files scanned using that particular tool

5.3 log - contents of particular scan tool log in raw textual format

6) verdict – the final outcome of the scan, dependent on individual scan results

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 40 of 41

www.piacere-project.eu

Figure 17 ER diagram of underlying database model for scan result persistence and project configuration

Internal details of the IaC Scan Runner implementation

IaC Scan Runner directory contains the following files and folders, which are summarized
together with their role in Table 10 Environment variables for persistence settings
enable/disable.

Table 10 Environment variables for persistence settings enable/disable

Name Type Description

src Folder Folder which consists of all the Python source code files (.py)
that make the IaC Scan Runner tool

tools Folder Contains the executable files for distinct check tools that are
compatible with the current scan workflow. Its content is
generated when all the dependencies are downloaded either
from requirements.txt or while building Docker image.

outputs Folder Directory where the files generated during the execution of
scan workflow are placed. These folders are generated as part
of install_checks.sh sequence of operations. Furthermore, it
contains three sub-directories:

1) logs – raw logs directly from check tools, one folder
with textual files per scan execution

2) json_dumps – outcomes summarized in form of JSON
file, one file per scan

generated_html – HTML summaries of the scan results, one file
per scan

examples Folder A collection of Python scripts which show how the interaction
to various aspects of IaC Scan Runner is performed via its REST
API, such as project creation, assigning configuration to a new
project and performing scan.

config Folder A set of configuration files (YAML and others) required for
various scan workflow tools.

requirements Txt List of IaC Scan Runner dependencies which must be installed
before running

DRAFT

http://www.medina-project.eu/

D4.5- IaC Code security and components
security inspection v2 Version 1.0 – Final. Date: 28.11.2022

© PIACERE Consortium Contract No. GA 101000162 Page 41 of 41

www.piacere-project.eu

install_checks Sh A shell script that performs a sequence of steps that aim to
prepare IaC Scan Runner for scan task execution, such as
checking if all the required folders exist and their creation if
missing, together with setting the relevant environment
variables

Dockerfile Text
without
extension

Describing how Docker image for containerized IaC Scan
Runner is created

docker-
compose

YAML A configuration file defining the services required for IaC Scan
Runner, specifying the ports they use, exposing them to the
outer world and setting the corresponding environment
variables.

DRAFT

http://www.medina-project.eu/

