

Deliverable D4.2

Infrastructural Model and code verification – v2

Editor(s): Michele Chiari
Matteo Pradella

Responsible Partner: Politecnico di Milano/Polimi

Status-Version: Final 1.0

Date: 24.11.2022

Distribution level (CO, PU): PU

DRAFT

D4.2 – Infrastructural Model and code verification – v2 Version 1.0. Date: 24.11.2022

Project Number: 101000162

Project Title: PIACERE

Title of Deliverable:
Verify the trustworthiness of Infrastructure as Code –
Infrastructural model verification

Due Date of Delivery to the EC 30.11.2022

Workpackage responsible for the
Deliverable:

WP4 Verify the trustworthiness of Infrastructure as Code

Editor(s): Politecnico di Milano/Polimi

Contributor(s):
Michele Chiari – Polimi,
Matteo Pradella – Polimi

Reviewer(s): Adrián Noguero - Go4IT

Approved by: All Partners

Recommended/mandatory read-
ers:

WP3, WP7

Abstract: This deliverable describes the development of the model
checking tool for IaC in the PIACERE project.
The DOML Model Checker (KR5) performs consistency
checks on DOML models provided by the user, highlight-
ing common mistakes and issues that might prevent the
specified infrastructure from being deployed success-
fully. KR5 can be run as a stand-alone service that can be
accessed through REST APIs and has been integrated
with the PIACERE IDE (KR2) to offer a graphical interface
to the user.
This deliverable describes KR5 in terms of user interface,
functionalities, software architecture and implementa-
tion choices.

Keyword List: DOML, Model Checker, Automatic Verification, SMT
Solver

Licensing information: This work is licensed under Creative Commons Attribu-
tion-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and nei-
ther Agency nor the Commission are responsible for any
use that may be made of the information contained
therein

DRAFT

http://creativecommons.org/licenses/by-sa/3.0/

D4.2 – Infrastructural Model and code verification – v2 Version 1.0. Date: 24.11.2022

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 07.10.2022 TOC Michele Chiari (Polimi)

V0.2 20.10.2022 Initial draft Michele Chiari (Polimi)

V0.3 28.10.2022 Post internal review version Michele Chiari (Polimi)

V0.4 17.11.2022 Appendix Matteo Pradella (Po-
limi)

V1.0 24.11.2022 Ready for submission Juncal Alonso (TEC-
NALIA)

DRAFT

D4.2 – Infrastructural Model and code verification – v2 Version 1.0. Date: 24.11.2022

Table of contents

TERMS AND ABBREVIATIONS ... 6

EXECUTIVE SUMMARY ... 7

1 INTRODUCTION .. 8

1.1 ABOUT THIS DELIVERABLE .. 8
1.2 DOCUMENT STRUCTURE .. 8

2 IMPLEMENTATION ... 9

2.1 PURPOSE ... 9
2.2 APPROACH .. 9
2.2.1 SMT SOLVERS AND Z3 ... 9
2.2.2 THE OBJECT CONSTRAINT LANGUAGE AND ITS ISSUES .. 10
2.3 CHANGES IN V2 ... 12
2.4 FUNCTIONAL DESCRIPTION .. 12
2.4.1 VALIDATION OF THE COMPONENT .. 14
2.4.2 FITTING INTO THE OVERALL PIACERE ARCHITECTURE .. 14
2.5 TECHNICAL DESCRIPTION ... 15
2.5.1 INTERFACE WITH THE IDE AND WORKFLOW ... 15
2.5.2 SOFTWARE ARCHITECTURE .. 16
2.5.3 TECHNICAL SPECIFICATIONS ... 17

3 DELIVERY AND USAGE .. 19

3.1 PACKAGE INFORMATION ... 19
3.2 INSTALLATION INSTRUCTIONS ... 20
3.2.1 RUNNING FROM SOURCES ... 20
3.2.2 BUILDING AND RUNNING THE DOCKER IMAGE ... 20
3.2.3 BUILDING THE DOCUMENTATION .. 20
3.3 USER MANUAL ... 21
3.4 LICENSING INFORMATION .. 22
3.5 DOWNLOAD ... 22

4 FUTURE PLANS ... 23

5 CONCLUSIONS .. 24

6 REFERENCES ... 25

7 APPENDIX .. 27

DRAFT

D4.2 – Infrastructural Model and code verification – v2 Version 1.0. Date: 24.11.2022

List of tables
TABLE 1. REQUIREMENTS FOR KR5 ... 12
TABLE 2. COMMON REQUIREMENTS CHECKED BY THE DMC ... 14
TABLE 3. RESPONSE FORMAT OF THE API ENDPOINT .. 21

List of figures
FIGURE 1. SEQUENCE DIAGRAM OF THE EXTERNAL AND INTERNAL BEHAVIOUR OF THE DMC AT A HIGH-LEVEL . 15
FIGURE 2. COMPONENT DIAGRAM OF THE DMC .. 16
FIGURE 3. INTERNAL SEQUENCE DIAGRAM OF THE DMC .. 17
FIGURE 4. RESPONSE OF THE DMC TO A REQUEST CONTAINING AN ERRONEOUS DOMLX MODEL................. 22

DRAFT

D4.2 – Infrastructural Model and code verification – v2 Version 1.0. Date: 24.11.2022

Terms and abbreviations

BNF Backus-Naur Form

CSP Cloud Service Provider

DevOps Development and Operation

DMC DOML Model Checker

DoA Description of Action

DOML DevSecOps Modelling Language

DOMLX DOML XMI format

EC European Commission

EMF Eclipse Modelling Framework

GA Grant Agreement to the project

HTML HyperText Markup Language

IaC Infrastructure as Code

IEP IaC execution platform

IM Intermediate Model

IMC Intermediate Model Checker

IOP IaC Optimization

KPI Key Performance Indicator

KR Key Result

MC Model Checker

OCL Object Constraint Language

RMDF Resource Model Definition

SAT Propositional Satisfiability

SMT Satisfiability Modulo Theories

SW Software

XMI XML Metadata Interchange

XML eXtensible Markup Language

 DRAFT

D4.2 – Infrastructural Model and code verification – v2 Version 1.0. Date: 24.11.2022

Executive Summary

This deliverable is the second in a series of three and supersedes D4.1. It describes the work that
the POLIMI contributors have done on the development of the DOML Model Checker (DMC,
KR5, previously called the Verification Tool), the model checking tool for IaC in the PIACERE pro-
ject. This is the result of task T4.1.

The DMC is part of the PIACERE verification tools, together with KR6 and KR7. While KR6 and
KR7 focus on issues in the IaC generated by the ICG, the DMC works directly on user-supplied
DOML models. It is part of the PIACERE design-time workflow, and it has been integrated with
the design-time tools, so that it can be invoked by the graphical user interface offered by the
IDE.

The DMC’s main purpose is to check DOML models for consistency and completeness issues. It
checks models against a set of pre-defined common requirements, and reports violations to the
user through error messages. It helps users in developing DOML models that can be used to
successfully deploy cloud applications on an appropriate infrastructure.

In this deliverable, we first present the purpose of the DMC in terms of the features it is required
to offer. We assess the level of fulfilment of such features by analysing the requirements laid
out within WP2.

We then discuss our choice of the approach underlying the implementation, by comparing it
with competing approaches and by taking into account the results of our experiments carried
out with the prototypes presented in the first version of this deliverable. The DMC has been
implemented by using an SMT solver as its backend. We discuss the benefits of this choice and
present the overall architecture of the tool.

The DMC is offered as a web service that can be reached through RESTful APIs. We describe the
usage of these APIs, and we provide instructions to install and use the tool.

Finally, we discuss our future plans for the DMC. Development will focus mainly on enhancing
coverage of the requirements defined within WP2. We plan to investigate the possibility of
providing additional automated error-fixing features.

The third and final version of this deliverable is planned for month 30 of the project, which will
be May 2023.

DRAFT

D4.2 – Infrastructural Model and code verification – v2 Version 1.0. Date: 24.11.2022

1 Introduction

The present deliverable describes the current state of the contribution by the Politecnico di Mi-
lano (POLIMI) partner to WP4 “Verify Trustworthiness of Infrastructure as Code”, with the aim
of producing KR5 “DOML Model Checker” (DMC). This deliverable is the second one in a series
of three deliverables. It provides updates to the previous deliverable D4.1, describing the activ-
ities concerning KR5 performed throughout the second year of the project.

1.1 About this deliverable

The purpose of WP4 is to assess the trustworthiness of IaC artifacts with respect to code quality,
and safety and security of the overall architecture and its components. KR5 contributes to this
aim by providing static analysis tools to ensure correctness, safety, performance, and data trans-
fer privacy of all application components.

In D4.1 we investigated possible solutions for the implementation of KR5 by developing two
software prototypes, one of them based on the Prolog programming language [1], and one
based on the Z3 Theorem Prover [2], a SMT (Satisfiability Modulo Theories) solver [3]. Our eval-
uation of the prototypes and the feedback received from the other partners led to the decision
to choose the Z3-based approach. KR5 has been thus developed by following this approach, and
we describe it in this deliverable.

1.2 Document structure

The document is divided in the following sections:

• Section 1 presents an overall description of this deliverable;

• Section 2 focuses on the purpose, implementation details, functional requirements
along with validation and technical description of KR5;

• Section 3 describes the delivery and usage of the developed tool;

• Section 4 lists the planned improvements to KR5;

• Section 5 summarizes the achievements of this deliverable and draws conclusions;

• Section 6 contains the bibliography.

 DRAFT

D4.2 – Infrastructural Model and code verification – v2 Version 1.0. Date: 24.11.2022

2 Implementation

2.1 Purpose

One of the main goals of the PIACERE framework is to enable users to easily specify and deploy
complex cloud applications and the underlying infrastructure with little effort. This kind of task
requires a considerable experience in cloud application design, and inexperienced users may
incur in mistakes that prevent them from obtaining a working deployment or expose them to
security and privacy risks. The DMC assists the user by identifying the most common mistakes
that may prevent a DOML model from describing a functional and safe infrastructural deploy-
ment.

In short, the DMC interprets a DOML model received in input by taking its semantics into account
and checks it against a collection of pre-defined properties entailing its consistency and correct-
ness.

2.2 Approach

During the first year of the project, we developed two prototypes for KR5 in order to choose
between two different approaches: Prolog and SMT solving.

The requirements for the approach implied that the ideal approach should

1) offer the greatest expressive power in terms of checkable requirements, and
2) be the best suited for modelling IaC.

Concerning point 1), the target technologies should allow for expressing the requirement spec-
ifications to be checked in languages that are well-known to be expressively powerful, and
whose expressiveness has been thoroughly characterized from the theoretical point of view.
Moreover, ease-of-use and a not excessively steep learning curve are other desirable features.

Point 2) restricts our choice to tools capable of modelling relational data. In fact, the DOML lan-
guage is largely declarative, and DOML models contain associations between different elements
of the described deployment.

According to our evaluation of the two prototypes presented in D4.1, we decided to choose the
approach based on the Z3 Theorem Prover. Thus, KR5 has been developed using this SMT solver
as its backend. We give a general description of SMT solving and Z3 in Section 2.2.1.

Since several tools developed by other WPs rely on the Eclipse framework, another possible
option for the backend would have been the Eclipse Modeling Framework (EMF), and its valida-
tion framework, with the Object Constraint Language (OCL). While this would have the ad-
vantage of an easier integration with an Xtext DOML parser, we decided to employ the SMT-
solver backend because it allows for more expressive specification languages. One of the rea-
sons for not choosing OCL we reported in D4.1 was the use of the Eclipse Theia framework for
the IDE, which still lacks full EMF and OCL integration. However, this decision was revoked, and
the IDE is being developed in the classic Eclipse framework. While this would allow us to use
OCL, there are other reasons why an SMT solver is a better choice, which we thoroughly analyze
in Section 2.2.2.

2.2.1 SMT Solvers and Z3

In this section, we briefly describe SMT solving, the approach we use to develop the backend of
the DMC.

DRAFT

D4.2 – Infrastructural Model and code verification – v2 Version 1.0. Date: 24.11.2022

Satisfiability Modulo Theories (SMT) solvers [3] have recently been introduced as an extension
of SAT solvers. SAT solvers are programs that receive in input a Boolean propositional formula
and look for an assignment of its variables that satisfies it. If no such assignment can be found,
it means the formula cannot be satisfied. Otherwise, the SAT solver returns a satisfying assign-
ment, which is a model for the formula.

SMT solvers are essentially SAT solvers that integrate solvers for specific first-order theories,
such as real numbers, integers, bit-vectors, arrays etc. Their inputs consist of quantifier-free
first-order formulas, possibly containing terms in the theories supported by the solver. SMT solv-
ers, too, try to find a satisfying assignment for variables in the formula, and return it if it exists.
Modern SMT solver often accept inputs in more expressive fragments of first-order logic, possi-
bly even containing quantifiers (although termination is not guaranteed in this case). Since SMT
solvers often support the definition of finite relations in their input languages, they are capable
of modeling IaC artifacts, and the rich assortment of available theories allows for very expressive
queries.

One of the most successful uses of SAT (and later SMT) solvers is model checking. The idea be-
hind SMT-based model checking is to model the system to be checked as an SMT formula. The
requirements against which to check the system are also expressed as SMT formulas, and their
negation is added in conjunction to the formula modelling the system. The formula obtained in
this way is then checked for satisfiability. If it is unsatisfiable, it means the system satisfies its
requirements. If it is satisfiable, the so-obtained variable assignment is a counterexample for the
system requirement to be checked.

Several SMT solvers are currently available on the market. We chose Z3 [4] [2] as our reference
solver because it is open source and is one of the most popular, which means the community
around it is quite large. Moreover, it has been developed within Microsoft Research, which gives
even more guarantees of continued support and robustness. The number of theories it supports
is also quite large, which gives us the possibility of modelling many aspects of the DOML.

Moreover, most SMT solvers support a unified input language, called SMTLIB, which makes it
easy to switch between different solvers (e.g., to pick the best performing one), and avoids ven-
dor lock-in.

2.2.2 The Object Constraint Language and its issues

The Object Constraint Language (OCL) is a modelling language that was added as an extension
to UML [5]. Whereas UML contains comprehensive features for describing the objects and clas-
ses that compose a system, the purpose of OCL is to augment system descriptions with business
rules, well-formedness rules and other semantic requirements about such objects and classes.
In particular, some (but not all) of the kinds of rules and requirements that OCL was devised to
express are [6]:

• Class invariants

• Initialization of class fields

• Specification of derived models

• Query operations

• Specification of constraints on operations and business rules

OCL has been devised as a mostly declarative language. It supports interacting with elements of
UML class diagrams, and it features a complex type system based on classes and inheritance.

 While OCL has been quite successful and has reached a rather wide adoption, some of its short-
comings have been highlighted throughout the years.

DRAFT

D4.2 – Infrastructural Model and code verification – v2 Version 1.0. Date: 24.11.2022

2.2.2.1 General issues

Vaziri and Jackson [7] examine some of such shortcomings, especially with respect to syntax and
ease-of-use. While the main purpose of their paper is to “advertise” the Alloy framework, de-
veloped by their group at MIT, some of the issues they identify are still relevant for evaluating
the use of OCL within the DMC in PIACERE. We list some of such issues in the following.

1. First, OCL is very tightly integrated into UML, from which it inherits a very complex type

system relying on classes, objects and inheritance. DOML has been specified based on

UML and, under the hood, it is object-oriented and uses inheritance. However, a DOML

user only needs to be familiar with the specific class hierarchy used in DOML to write

correct deployment models. On the other hand, the OCL type system is significantly

more general and, thus, more complex. This complexity and the necessity to directly

refer to UML concepts might be an obstacle to the definition of an independent require-

ment specification language for the DMC. If OCL was used, such a language would have

to be tightly coupled with UML concepts, being potentially confusing to a user that has

only seen the DOML syntax and knows very little of its intermediate EMF representation.

2. Although OCL has been devised as a declarative language, its syntax and semantics are

still quite “operational”. In particular, OCL requirements may sometimes need to be

written in the form of loops. Instead, we would like to rely on a completely declarative

language, since we want the DMC input language to also be as declarative as possible,

in order not to require programming knowledge to be used.

The Z3 SMT solver suffers from none of such shortcomings. With particular reference to no. 2,
Z3 uses fragments of first-order logic, which can be seen as one of the most declarative lan-
guages and is very close to human reasoning. This could also be an advantage when devising the
requirement specification language for the DMC.

2.2.2.2 Decidability and termination

Another issue with OCL is decidability of its constraints and queries. Due to the presence of re-
cursion and loops, OCL is undecidable in general, and evaluation of its expressions may not ter-
minate [6]. This may happen not only when analysing infinite models, but also when finite mod-
els contain relations with loops [7].

This can be an issue in terms of user experience because it would require imposing a timeout on
model checking, rendering it inconclusive in certain cases. While a workaround for this issue
could be to specify all pre-defined constraints so that their evaluation always terminates, the
issue would remain if we allowed the user to specify custom requirements. In this case, it could
be very difficult for the user to understand when their requirements’ evaluation may incur in
non-termination.

This issue is much easier to control when using Z3. In fact, Z3 relies on well-defined fragments
of first-order logic, for which it is easier to ensure termination. In particular, if we constrain our-
selves to finite models and theories, termination is ensured. Note that there is no reason to think
that this would be an excessive limitation, as the purpose of DOML is to model cloud deploy-
ments, which are unlikely to contain an infinite number of objects.

Although this does not rule out the possibility of timeouts for model checking, as Z3 could also
take an excessive time to solve constraints, the assurance of termination is still a useful improve-
ment.

DRAFT

D4.2 – Infrastructural Model and code verification – v2 Version 1.0. Date: 24.11.2022

2.2.2.3 Synthesis and automated repair

Another advantage of Z3 (and of SMT solvers in general) is that it natively supports model syn-
thesis. Suppose we have a DOML model with some issue which is detected by the DMC. We
would like to suggest to the user a possible way of fixing this issue, e.g., by changing some prop-
erty, or by adding some component. This would be quite arduous to achieve with OCL, as it has
been mostly devised as a “query” language, i.e., a language that only allows to check if some
requirements have been satisfied, or to identify system components that satisfy some property.
It is unclear whether it could be possible to also synthesize new model components by exploiting
OCL’s feature of defining derived models. Certainly, this would require separate work to specify
ways on correcting each class of model defects and would be hardly generalizable to user-spec-
ified requirements.

SMT solvers, on the other hand, natively support model synthesis. In fact, it suffices to describe
the model and the desired property, and an SMT solver can be queried for a new model satisfy-
ing the property. If no such model can be found without modifying the initial one, it is possible
to identify the offending component and remove it, so that the SMT engine can infer a new,
correct version of the component.

2.3 Changes in v2

The first version of this deliverable only consisted of two proof-of-concepts of the model
checker, developed with the aim of performing experiments to identify the most suitable ap-
proach to design its engine. These prototypes did not target the DOML because it was at a too
early stage of development, so one of them targeted TOSCA, and the other one an older—and
later discarded—version of the DOML [8].

The current version of the deliverable (v2) contains the final prototype of the model checker,
which can process IaC models in the most current DOML version, described in deliverable D3.2.
We describe its features, intended user interaction, integration with the PIACERE design-time
tools, and implementation in terms of architecture and employed techniques.

2.4 Functional Description

Partners of the PIACERE consortium have defined a set of requirements that KR5 must satisfy,
in terms of core features aimed at verification of DOML models and integration with other tools
developed within the PIACERE framework (the IDE in particular). These requirements are also
available in the PIACERE architectural specification [8], and we report those related to KR5 in
Table 1.

Table 1. Requirements for KR5

#REQ Description Status Requirement cover-
age at M24

REQ95 VT tools (model checker) must
be able read DOML language
(ex REQ56)

MUST HAVE advanced Full

REQ103 Verification Tool (model
checker) must verify the struc-
tural consistency of the DOML
models

MUST HAVE advanced Checks for common
inconsistencies in
DOML models

REQ104 Verification Tool (model
checker) must verify the cor-
rectness of DOML models,
with respect to some

MUST HAVE none

DRAFT

D4.2 – Infrastructural Model and code verification – v2 Version 1.0. Date: 24.11.2022

correctness properties pro-
vided in DOML

REQ105 Verification Tool (model
checker) must verify the com-
pleteness of DOML models

MUST HAVE basic Checks for some
commonly missing
components in DOML
models

The requirements of Table 1 can be summarized as follows:

• The model checker should offer APIs to allow other PIACERE tools (namely, the IDE) to
interact with it to check the correctness of DOML models. In particular, the DMC must
be able to parse and convert DOML models to a meaningful internal representation that
allows for reasoning on their semantics (REQ 95).

• The DMC must then verify the correctness of DOML models in three ways:
o It must verify the structural consistency of DOML models (REQ103), i.e., the ab-

sence of contradicting statements, duplicated or conflicting elements, and other
issues that may prevent the ICG to generate IaC code for a working deployment.

o It must verify the completeness of DOML models (REQ104), i.e., it must check
whether they contain all elements needed to obtain a deployment that actually
works at runtime. For instance, it should check that the model contains net-
works properly configured to let nodes communicate when needed by the ap-
plications deployed on them.

o It must be able to verify other requirements expressed by the user in a domain
specific language (REQ105). Thus, the user must be able to assert that their
DOML model has some feature of interest, and the model checker must conse-
quently check whether this is the case.

At this time, most of the requirements have been fulfilled, and the remaining ones are work-in-
progress.

REQ95 has been fulfilled by using an intermediate XML-based representation of DOML models
generated by the IDE. Thus, the actual parsing of DOML models only happens in the IDE, which
then communicates with the DMC through a machine-readable format. The DMC’s architecture
has been designed to make it flexible with respect to changes to the class hierarchy underlying
the DOML. Thus, it is possible to quickly adapt the DMC’s frontend to parse new versions of the
DOML and to support multiple DOML versions at the same time.

Requirements REQ103 and REQ 105 are being fulfilled by equipping the DMC with a collection
of default requirements that check properties of DOML models concerning their structural con-
sistency and completeness. This collection is continuously augmented with new requirements
motivated by new features added in new versions of the DOML and, most importantly, by the
feedback received from use case owners. We describe this collection of default (or common)
requirements in Table 2.

DRAFT

D4.2 – Infrastructural Model and code verification – v2 Version 1.0. Date: 24.11.2022

Table 2. Common Requirements checked by the DMC

Requirement Description

All virtual machines must be
connected to at least one net-
work interface.

Virtual machines can communicate with other compo-
nents of a deployment or with external clients only
through an appropriately configured network. This check
makes sure no virtual machines are locked in.

All software packages can see
the interfaces they need
through a common network.

This check makes sure all exposed and consumed soft-
ware interfaces at the application layer level have been
concretized through a network connection that allows the
involved components to communicate.

There are no duplicated inter-
faces.

Checks whether two or more interfaces have been as-
signed the same IP address.

All software components have
been deployed to some node.

Makes sure that all software components specified in the
application layer have been

associated to at least one node in the abstract infrastruc-
ture layer through the currently active deployment.

All abstract infrastructure ele-
ments are mapped to an ele-
ment in the active concretiza-
tion.

Makes sure all abstract infrastructure nodes are concre-
tized by the currently active concretization layer.

All elements in the active con-
cretization are mapped to some
abstract infrastructure element.

Makes sure each concrete infrastructure element is
mapped to a node in the Abstract Infrastructure Layer.

2.4.1 Validation of the Component

The DMC has been validated both internally to WP4 and externally by the use case providers.

The internal validation has been carried out by creating an extensive set of regression tests, at
least one for each one of the requirements reported in Table 2: for each requirement, we cre-
ated a DOML model that violates it. All such DOML models are distributed together with the
tool, to allow for regression testing.

The DMC has also been formally validated by the use case providers within Task 7.3 from WP7.
This activity has yielded valuable feedback, resulting in both bug fixes and addition of new fea-
tures, mostly in terms of new default requirements.

2.4.2 Fitting into the overall PIACERE Architecture

The DMC is part of the tools developed within WP4, together with the IaC Security Inspector
(KR6) and the IaC Component Security Inspector (KR7), with the aim of verifying the correctness
and trustworthiness of the IaC generated by the ICG. While KR6 and KR7 operate directly on the
final IaC code, KR5 analyzes DOML models before the resulting IaC is generated.

In the overall architecture, the DMC is part of the design-time tools, a set of software tools that
help the user in designing application and infrastructural deployments and in modeling them
through DOML. All these tools are integrated with the IDE, which provides the main graphical

DRAFT

D4.2 – Infrastructural Model and code verification – v2 Version 1.0. Date: 24.11.2022

interface with the PIACERE toolset for the users. After writing their DOML model with the help
of the syntax checking performed by the IDE, users can invoke the DMC through a right-click
menu entry in the IDE, to check it for errors. The IDE communicates with the DMC through a
RESTful API. The integration of the DMC with the IDE will be explained in more detail in the next
sections.

2.5 Technical Description

In this section, we report in detail how the DMC interacts with other design-time tools in the
PIACERE framework and describe its internal software architecture.

2.5.1 Interface with the IDE and Workflow

Figure 1 shows the sequence diagram of the DMC. In this section we comment on its external
behaviour, which consists of the interactions between the IDE and the DMC, while we describe
its internal behaviour in detail in Section 2.5.2.

Figure 1. Sequence diagram of the external and internal behaviour of the DMC at a high-level

The interaction between the IDE and the DMC is carried out through the DMC’s RESTful APIs.
The IDE initiates the verification process by sending to the DMC a request containing the DOML
model to be checked in DOML XMI (DOMLX) format, a machine-readable representation. The
DOMLX file is generated automatically by the IDE, which parses DOML files created by the user.
This allows the DMC to avoid the overhead due to DOML parsing, because the DOMLX format is
based on XML, which makes it relatively easy to parse.

Then, the DMC verifies the DOML model against a set of common, pre-defined requirements,
and sends the result back to the IDE. The result consists of a summary of the verification result,
which can be one of the following:

• Yes: the DOML model satisfies all requirements

• No: the DOML model violates at least one requirement

• Unknown: verification was inconclusive (e.g., because it timed out)

 DRAFT

D4.2 – Infrastructural Model and code verification – v2 Version 1.0. Date: 24.11.2022

If the result is “No”, the response also contains an error message that helps the use in under-
standing the issues with their DOML model and fix them. If more than one requirement is vio-
lated, the error message is actually the concatenation of multiple messages, one for each vio-
lated requirement.

In case the DMC incurs in an error while reading the DOMLX model, for instance because it is
malformed or because it is based on an unsupported DOML version, its response to the IDE
contains both an error and a debug message.

2.5.2 Software Architecture

In this section, we describe in detail the internal architecture of the DMC. A high-level overview
of its components is shown in Figure 2.

Figure 2. Component Diagram of the DMC

The DMC accepts requests from the IDE through a RESTful API specified in OpenAPI [10], a self-
documenting industry standard for specifying APIs. This enables its use by frontends other than
the PIACERE IDE, if needed. A request sent to the main endpoint of the APIs triggers the model
checking process, which is orchestrated by the Model Checker Controller.

The main verification process is performed by the Logic Engine, which consists of an SMT solver.
Thus, the input DOMLX model must be translated into an input format compatible with the soft-
ware APIs of the LE, called Target Logic Model Representation (TLMR). This activity is carried out
in several stages, each one managed by a different component:

• The DOMLX Parser parses the input DOML XMI files through an external library, trans-
lating them to custom Python objects. Since the DOML has been developed within the
Eclipse Modelling Framework, this component needs an Ecore specification of the clas-
ses, attributes and references defined for the DOML language. The resulting Python ob-
jects are, however, specific to each DOML version. To make it easier to support different
DOML versions within the DMC, they are translated to a more generic intermediate for-
mat.

• The Intermediate Model Converter converts DOML objects generated by the DOMLX
parser into a simpler data structure based on Python dictionaries, called Pythonic

DRAFT

D4.2 – Infrastructural Model and code verification – v2 Version 1.0. Date: 24.11.2022

Intermediate Representation. This translation is guided by DOML Metamodels, which
provide a machine-readable description of classes, attributes, and associations available
in the DOML (this is partially redundant with Ecore files), together with some additional
information on how to represent them internally.

• The Intermediate Model Checker (IMC) receives in input DOML models in the Pythonic
intermediate representation and translates them into the TLMR, which consists of First-
Order formulas employing some of the theories supported by the SMT solver imple-
menting the LE. The IMC also initiates and manages the proper verification process by
executing the LE and gathering its results. The common requirements against which the
model is checked are supplied by the MC Controller already in TLMR.

This architecture allows the DMC to be more general with respect to its input format: it is para-
metric on the description of the DOML supplied by the Ecore file and the DOML Metamodel.
Thus, to support different DOML versions, the DMC switches between different Ecore and met-
amodel files, and to add support for a new DOML version it suffices to provide new versions of
these files, possibly with minimal changes to the code.

Figure 3 shows in more detail the interactions between the components described above.

Figure 3. Internal Sequence Diagram of the DMC

2.5.3 Technical Specifications

The DMC has been written in the Python programming language [11], and its library dependen-
cies are managed through the Poetry [12] development tool. The REST APIs, specified in OpenAPI
[10], have been implemented with Connexion [12], a Python library that implements REST APIs
directly from their OpenAPI specification. The DOMLX parser is based on the pyecore library
[14]. The RestAPIs are documented through SwaggerUI [14], which generates online documen-
tation directly from OpenAPI specifications, and the general DMC documentation is written in
the reStructured Text format [15] and rendered with Sphinx [15]. The pytest [18] library is used
for managing regression tests.

 DRAFT

D4.2 – Infrastructural Model and code verification – v2 Version 1.0. Date: 24.11.2022

The DMC can be both run locally or through a Docker [18] container, whose Dockerfile is pro-
vided for easier setup (cf. Section 3.2 for instructions). The Docker image is based on the official
Python Debian image [19], and uses the Uvicorn [20] web server to deploy the REST APIs.

DRAFT

D4.2 – Infrastructural Model and code verification – v2 Version 1.0. Date: 24.11.2022

3 Delivery and usage

In this section we describe the contents of the package in which the DMC is distributed and give
usage and installation instructions.

3.1 Package information

The DMC is distributed as a source package, which allows for easily run the DMC directly or
through a Docker container. Since the DMC is written in Python, it does not need to be built to
be run.

The source package contains the following directories and files:

• docs – Directory containing the documentation sources as RST files and the configura-
tion files needed for building it

• mc_openapi – directory containing the DMC sources including REST APIs
o assets – directory containing files defining different supported versions of the

DOML (Ecore and metamodel files)
o doml_mc – sources of the model checker engine

▪ intermediate_model – type definitions and auxiliary functions for the
Pythonic intermediate representation

▪ xmi_parser – sources implementing the IM Converter
▪ z3encoding – type definitions and auxiliary functions for the TLMR
▪ common_reqs.py – common requirements in TLMR
▪ consistency_reqs.py – other consistency requirements for DOML mod-

els in TLMR
▪ imc.py – IMC sources
▪ mc.py – sources of the MC Controller
▪ mc_result.py – class definitions and auxiliary functions for managing

raw results of verification and error messages
o openapi

▪ model_checker.yaml – OpenAPI specification of the REST APIs
o app_config.py – configuration file related to Connexion
o bytes_uri.py – auxiliary file related to the implementation of the REST APIs
o handlers.py – definitions of the REST APIs handlers

• tests – pytest test files
o doml – DOML files used in regression tests
o test_mc_openapi.py – definitions of pytest regression tests

• dev-requirements.txt – list of Python packages required to run the DMC and regression
tests

• docker-compose.yaml – Docker-compose file for running the DMC container image and
setting up appropriate port bindings

• Dockerfile – definition of the Docker image (cf. Section XX for instructions on how to
build and run it)

• poetry.lock – Poetry configuration file

• pyproject.toml – Python project configuration file

• README.md – Readme containing basic running and building instructions

• requirements.txt – list of Python packages required to run the DMC

DRAFT

D4.2 – Infrastructural Model and code verification – v2 Version 1.0. Date: 24.11.2022

3.2 Installation instructions

The DMC can be run directly from its sources or by building and starting a Docker container. In
both cases, the source package must be either downloaded directly (cf. Section 3.5) or by cloning
the repository:

$ git clone https://github.com/michiari/piacere-mc-openapi

The repository contains three branches:

• main – development is tracked here. May contain unstable versions of the DMC.

• y1 – DMC version developed in the first year of the project (stable)

• y2 – DMC version developed in the second year of the project (stable)

The repository also contains tags for DMC releases.

3.2.1 Running from sources

This way of running the DMC is mainly intended for development purposes.

A recent (v3.9 or higher) version of the Python interpreter [22] and the Poetry [23] development
tool need to be already installed in the system.

First, all necessary dependencies need to be installed with

$ poetry install

Then, the server can be run with

$ poetry run python -m mc_openapi

By default, the server is run on port 8080 of localhost.

Regression tests may be run with

$ poetry run python -m pytest

3.2.2 Building and running the Docker image

A Dockerfile is provided in the root of the source tree that allows to quickly generate a Docker
image for running the DMC. First, the image must be built with

$ docker build -t wp4/dmc .

Then, the container must be run with

$ docker run -d -p 127.0.0.1:8080:80/tcp wp4/dmc

The Uvicorn server is bound to port 80 of the container. The command above binds this port to
port 8080 of localhost (of course the user may choose their preferred port configuration).

3.2.3 Building the documentation

The documentation is written in RST format and can be built with Sphinx. To do so, run

$ poetry shell

DRAFT

D4.2 – Infrastructural Model and code verification – v2 Version 1.0. Date: 24.11.2022

And then

$ cd docs
$ make html

The documentation will be rendered in HTML format in directory docs/_build.

3.3 User Manual

The RESTful API offered by the DMC is very simple, as it consists of one single endpoint. It is
documented through SwaggerUI, which can be reached at endpoint ui (e.g.,
http://127.0.0.1:8080/ui).

The main endpoint for the DMC is /modelcheck. It supports a POST request whose body
contains the DOML model to be checked in XMI format. Additionally, an optional string param-
eter called requirement can be specified, containing a user-defined requirement for the

DOML model to be checked against. However, the functionality behind the requirement param-
eter has not been implemented yet, so only requests containing a DOMLX file to be checked
against the default common requirements are supported. This POST request triggers the verifi-
cation process, and its result is sent back to the user as its response. The response format is
documented in Table 3.

A Gherkin scenario for the usage of the model checker is presented in the appendix.

Table 3. Response format of the API endpoint

HTTP
Code

Description Parameters

Name Description

200 OK

The verification process
was successful.

result One of sat (the DOML model satisfies
the requirements), unsat (the model
violates at least on requirement),
dontknow (the verification process
was inconclusive, e.g. because it timed
out)

description Explanation of the result. When some
requirements are violated, an error
message containing violating compo-
nents is reported.

400 Malformed Request

Usually because the
supplied DOMLX model
is malformed or of an
unsupported DOML
version.

message A user-friendly message describing the
error.

debug_message An error message useful to the devel-
opers to understand the cause of the
error.

timestamp Time and date of the erroneous re-
quest.

500 Internal error message A user-friendly message describing the
error.

DRAFT

D4.2 – Infrastructural Model and code verification – v2 Version 1.0. Date: 24.11.2022

Other kind of error in-
ternal to the webserver
or the DMC.

debug_message An error message useful to the devel-
opers to understand the cause of the
error.

timestamp Time and date of the erroneous re-
quest.

For example, sending a POST request to the /modelcheck endpoint containing the DOMLX file
test/doml/faas.domlx provided in the repository triggers the response shown in Figure 4. The
result is “unsat” because the model violates two requirements. The “description” field explains
which requirements are violated, also reporting the violating components by name.

Figure 4. Response of the DMC to a request containing an erroneous DOMLX model.

3.4 Licensing information

The DMC is licensed under the open-source Apache License 2.0 [24].

3.5 Download

The most updated versions of the DMC can be downloaded by cloning the following GitHub
repository:

https://github.com/michiari/piacere-mc-openapi

Stable versions can be downloaded from the PIACERE public repository, which is updated less
frequently:

https://git.code.tecnalia.com/piacere/public/the-platform/doml-model-checker

DRAFT

https://github.com/michiari/piacere-mc-openapi
https://git.code.tecnalia.com/piacere/public/the-platform/doml-model-checker

D4.2 – Infrastructural Model and code verification – v2 Version 1.0. Date: 24.11.2022

4 Future Plans

In the remaining six months allocated to development of the DMC we plan to extend its features
to further enhance the support of requirements listed in Table 1.

In particular, more standard requirements will be added to further advance support of REQ103
and REQ105. Moreover, a domain-specific language for defining custom requirements will be
defined to support user-supplied requirements, which will be directly included in DOML models
to satisfy REQ104. Although it is not requested by formal requirements, verification of user-sup-
plied requirements may be supported also through the optional “requirement” parameter of
the API endpoint.

We plan to further explore the possibilities enabled by the SMT solver backend by exploring the
possibility of synthesizing new components in input DOML models. In fact, it is possible to in-
struct the SMT solver to include additional components in a model. The SMT solver will then
automatically configure them in order to satisfy the requirements. The main purpose of this
activity is fixing erroneous or incomplete DOML models, or at least provide the user with sug-
gested fixes.

DRAFT

D4.2 – Infrastructural Model and code verification – v2 Version 1.0. Date: 24.11.2022

5 Conclusions

In this deliverable, we presented the work carried out by PoliMi on the KR5 within WP4. While
in the first version of this deliverable we only presented proof-of-concept prototypes that had
the only purpose of exploring possible solutions by experimenting with rapid prototyping, in the
second version we present a functioning version of the DMC, capable of reading and verifying
DOML models in the intermediate format offered by the EMF framework.

The DMC is open-source and can be run both directly from sources and through a Docker image,
which facilitates its deployment. The main way of using the DMC is through its RESTful APIs.
However, also been integrated with the PIACERE IDE, providing a user-friendly way of using it
within the PIACERE design-time tools.

This version of the DMC fulfils a considerable part of the requirements for KR5, and plans for
implementing all requirements completely have been laid out. Moreover, we plan to explore
the possibility of adding model synthesis features, to provide users with suggested fixes for er-
rors in their DOML models.

DRAFT

D4.2 – Infrastructural Model and code verification – v2 Version 1.0. Date: 24.11.2022

6 References

[1] W. F. Clocksin and C. S. Mellish, Programming in Prolog, Springer-Verlag, 2003.

[2] L. Mendonça de Moura and N. Bjørner, "Z3: An Efficient SMT Solver," in Tools and
Algorithms for the Construction and Analysis of Systems, TACAS 2008, Budapest, Hungary,
2008.

[3] C. W. Barret and C. Tinelli, "Satisfiability Modulo Theories," in Handbook of Model
Checking, Springer, 2018, pp. 305-343.

[4] Microsoft Research, "The Z3 Theorem Prover," [Online]. Available:
https://github.com/Z3Prover/z3. [Accessed 6 April 2022].

[5] The Object Management Group, Object Constraint Language, 2014.

[6] J. Cabot and M. Gogolla, "Object Constraint Language (OCL): A Definitive Guide," in Formal
Methods for Model-Driven Engineering - 12th International School on Formal Methods for
the Design of Computer, Communication, and Software Systems, SFM 2012, Bertinoro,
Italy, Springer, 2012, pp. 58-90.

[7] M. Vaziri and D. Jackson, "Some Shortcomings of OCL, the Object Constraint Language of
UML," in TOOLS 2000: 34th International Conference on Technology of Object-Oriented
Languages and Systems, Santa Barbara, CA, USA, 2000.

[8] T. Mendez Ayerbe, Design and development of a framework to enhance the portability of
cloud-based applications through model-driven engineering, Milano: Politecnico di
Milano, 2021.

[9] A. Černivec, A. De La Fuente Ruiz, A. Motta, C. Nava, C. Bonferini, E. Di Nitto, E. Morganti,
E. Osaba Icedo, J. López Lobo, G. Novakova Nedeltcheva, G. Benguria Elguezabal, I. Torres
Boigues, L. Blasi, C. Matija, P. Skrzypek and R. Piliszek, “PIACERE DevSecOps Framework
Requirements specification, architecture and integration strategy – v2,” The PIACERE
Consortium, 2022.

[10] SmartBear Software, "OpenAPI Specification," 2020. [Online]. Available:
https://swagger.io/specification/. [Accessed 19 10 2022].

[11] Python Software Foundation, "Python.org," 2022. [Online]. Available:
https://www.python.org/. [Accessed 19 10 2022].

[12] The Poetry Developers, "Poetry - Python dependency management and packaging made
easy," 2022. [Online]. Available: https://python-poetry.org/. [Accessed 19 10 2022].

[13] Zalando SE, "Swagger/OpenAPI First framework for Python on top of Flask with automatic
endpoint validation & OAuth2 support," 2022. [Online]. Available:
https://github.com/spec-first/connexion. [Accessed 19 10 2022].

[14] V. Aranega, "A Python(nic) Implementation of EMF/Ecore (Eclipse Modeling Framework),"
2022. [Online]. Available: https://github.com/pyecore/pyecore. [Accessed 19 10 2022].

DRAFT

D4.2 – Infrastructural Model and code verification – v2 Version 1.0. Date: 24.11.2022

[15] SmartBear Software, "REST API Documentation Tool Swagger UI," 2022. [Online].
Available: https://swagger.io/tools/swagger-ui/. [Accessed 19 10 2022].

[16] The Sphinx Developers, "reStructuredText," 2022. [Online]. Available:
https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html. [Accessed
19 10 2022].

[17] The Sphinx Developers, "Sphinx Python Documentation Generator," 2022. [Online].
Available: https://www.sphinx-doc.org/en/master/index.html. [Accessed 19 10 2022].

[18] The pytest Developers, "pytest: helps you write better programs," 2022. [Online].
Available: https://docs.pytest.org/. [Accessed 19 10 2022].

[19] Docker Inc., "Docker: Accelerated, Containerized Application Development," 2022.
[Online]. Available: https://www.docker.com/. [Accessed 19 10 2022].

[20] The Docker Community, "python - Official Image | Docker Hub," 2022. [Online]. Available:
https://hub.docker.com/_/python. [Accessed 19 10 2022].

[21] Encode OSS, "Uvicorn," 2022. [Online]. Available: https://www.uvicorn.org/. [Accessed 19
10 2022].

[22] Python Software Foundation, "BeginnersGuide/Download - Python Wiki," 2022. [Online].
Available: https://wiki.python.org/moin/BeginnersGuide/Download. [Accessed 20 10
2022].

[23] The Poetry Developers, "Poetry Installation Instructions," 2022. [Online]. Available:
https://python-poetry.org/docs/#installation. [Accessed 20 10 2022].

[24] The Apache Software Foundation, "Apache License, Version 2.0," 2004. [Online]. Available:
https://www.apache.org/licenses/LICENSE-2.0.html. [Accessed 20 10 2022].

 DRAFT

D4.2 – Infrastructural Model and code verification – v2 Version 1.0. Date: 24.11.2022

7 Appendix

Here the scenario of DOML verification is represented in Gherkin, a cucumber specification for-
mat.

Scenario: DOML Verification - Model Checker (KR5)

Given A DOMLX document

 And a check configuration is prepared

When a user navigates to the DOMLX document

 And right-clicks on it

 And selects "Piacere"

 And selects "Validate DOML"

Then a KR5 model checker is invoked

 And a <response> is returned

Examples: <response>

 | Response | Type | Content |

 | Correct | Success | |

 | Wrong | Error | <Error description> |

 | Fail | Error | <Failure reason> |

Wrong means the provided DOML document contains mistakes

Fail means verification failed for some reason (e.g., malformed model syntax, or time-
out) DRAFT

