
Cloud-native 5G experimental platform with
over-the-air transmissions and end-to-end monitoring

Sergio Barrachina-Muñoz, Miquel Payaró, and Josep Mangues-Bafalluy
Services as Networks (SaS)

Centre Tecnològic Telecomunicacions Catalunya (CTTC/CERCA)
Barcelona, Spain

{sergio.barrachina, miquel.payaro, josep.mangues}@cttc.cat

Abstract—5G represents a revolutionary shift with respect
to previous generations given its design centered on network
softwarization. Within such a change of paradigm, cloud-native
solutions are widely regarded as the future of vertical application
development because of their enhanced flexibility and adaptability
to complex and dynamic scenarios. In this context, we present
an experimental framework with over-the-air transmissions that
tackles two critical aspects for enhancing the lifecycle manage-
ment of 5G and beyond networks: cloud-native deployments of
5G core network functions (NFs) and end-to-end monitoring.
First, we deploy Open5GS and Prometheus-based monitoring
as containerized network functions (CNFs) in a Kubernetes
cluster spanning a multi-tier network with a multi-access edge
computing (MEC) host. We then demonstrate the end-to-end
monitoring system by showcasing via Grafana dashboards both
infrastructure resources and radio metrics of two scenarios; one
devoted to user plane function (UPF) re-selection and the other
to user mobility.

Index Terms—5G, cloud-native, Open5GS, Kubernetes, moni-
toring, MEC, experimental platform

I. INTRODUCTION

5G and beyond (B5G) networks are set to address the
demands of a fully connected and mobile society, enabling
a wide variety of services and applications over the same
infrastructure. Further, 5G adopts edge computing as a key
paradigm evolving from centralized architectures towards mul-
tiple points-of-presence (PoPs) of edge nodes. In turn, this
enables multi-access edge computing (MEC) applications for
low-latency and high bandwidth like virtual and augmented
reality (VR/AR). In this context, projects like MARSAL [1],
[2] propose a new paradigm of elastic virtual infrastructures
that integrate transparently a variety of novel radio access,
networking, management, and security technologies to deliver
end-to-end transfer, processing, and storage services in an
efficient and secured way.

To materialize the MARSAL vision in 5G and B5G net-
works, two elements are key: cloud-native deployments within
the network function virtualization (NFV) paradigm and end-
to-end monitoring. As for the former, cloud-native infras-
tructures make it possible to share infrastructure resources,
enabling their dynamic allocation to meet the service level
agreements (SLAs) of existing and future demanding use
cases. Cloud-native technologies also reduce time to market,
respond sooner to customer demands, and facilitate the life-
cycle management and automation of the network. Therefore,
they are widely regarded as the future of vertical application
development with enhanced flexibility, scalability, and reduced
cost.

Monitoring is the second key aspect this paper deals with,
as it is critical to manage such complex cloud-native in-
frastructures and to increase operational efficiency. Indeed, a
paramount factor for 5G is end-to-end real-time monitoring,
gathering infrastructure metrics (i.e., compute, storage, and
network) as well as domain-specific metrics of components
such as gNBs or MEC services. Gathering these metrics
supports the lifecycle management of services running over
the 5G network and favors intelligent reconfiguration and
alerting to involved tenants and stakeholders, spanning from
infrastructure owners, operators, slice owners, or service/ap-
plication developers. Certainly, multi-tenant networks must
support network slices, which require monitoring key per-
formance indicators (KPIs), commonly belonging to different
technological domains and managed by different entities. For
instance, a network operator shall focus on the KPIs of the
components running the network slice (e.g., RAN, cloud/edge,
routers), while the slice owner may consider high-level KPIs
(e.g., end-to-end delay) for SLA validation [3]. In both cases,
monitoring turns into an imperative aspect.

Even though there are valuable works in the literature on
cellular networks devoted to cloud-native deployments and
monitoring, only a few of them (partially) treat both aspects
together. In contrast, this paper deals with both aspects by
presenting a cloud-native experimental platform for MEC-
enabled 5G networks endowed with an end-to-end monitoring
system. The platform is easily deployable via Helm charts.1

So, the main contributions are as follows:
• Cloud-native 5G core deployment with Open5GS in a

multi-PoP Kubernetes cluster, where each NF runs as a
separate containerized NF (CNF).

• End-to-end containerized monitoring gathering both in-
frastructure and radio/RAN metrics via CNFs.

• Integration of a commercial gNB (Amarisoft Callbox)
into the 5G testbed and development of a custom sam-
pling function for pulling gNB metrics (e.g., downlink/u-
plink bitrate).

• Showcasing of the monitoring system through the visu-
alization of different metrics in Grafana dashboards. Two
toy scenarios are considered; one for UPF re-selection
and the other for UE mobility.

The rest of the article is structured as follows. Section
§II discusses the related work, section §III describes the
main components of the experimental platform and the MEC-

1All of the source code of our experimental platform [4] is open.

ar
X

iv
:2

20
7.

11
93

6v
1 

 [
cs

.N
I]

  2
5 

Ju
l 2

02
2



enabled testbed, section §IV depicts the end-to-end monitoring
system, and section §V showcases and validates the whole
framework. Finally, we our conclusions and future work is
collected in section §VI.

II. RELATED WORK

There are several works in the literature dealing either with
cloud-native 5G deployments or end-to-end monitoring sys-
tems for 5G networks. However, none of them fully addresses
both aspects together as we discuss next.

As for cloud-native deployments, a method to orchestrate
and manage a container-based C-RAN using Kubernetes and
OpenAirInterface (OAI) is presented in [5]. Authors in [6]
introduce an open-source infrastructure for 5G RAN devel-
opment where DevOps simplifies the deployment of end-
to-end applications to the edge. Also, Kube5G is proposed
in [7] for building and packaging a cloud-native telco NF
through nested layers, and a 5G cloud-native environment
based on Kubernetes and Openshift Operator is introduced
in [8]. Recently, an integration of KubeFed for deploying
workloads in multiple clusters and Network Service Mesh
for providing connectivity across cluster boundaries has been
proposed in [9]. The aforementioned works make valuable
efforts towards cloud-native deployments. However, none of
them realizes a full 5G core, but different variations of 4G’s
evolved packet core (EPC). Further, they do not focus on
monitoring.

As for papers dealing with monitoring, authors in [10]
present SONATA, a multi-PoP monitoring framework of NFV
services involving both containers and virtual machines. How-
ever, monitoring is discussed from an architectural perspective,
and no actual 5G core is deployed. Instead, authors in [11],
[12] present an approach to deliver monitoring and telemetry
mechanisms as a service using Prometheus and Netdata over
an Open5GS network, but no containerization is provided.
Similarly, a monitoring framework introducing metrics collec-
tors deployed per network slice using Prometheus is devised
in [3], but no containerized deployment of the 5G core is
provided either. In [13], authors investigate the effect of
inter-NF dependencies in terms of resource consumption in
a Free5GC network deployed in Kubernetes. However, only
limited monitoring (e.g., RAN parameters are not considered)
is undertaken through custom Python scripts. Finally, [14]
introduces the 5GROWTH service platform with an AI-driven
automated 5G end-to-end slicing. However, no 5G core is
deployed.

Unlike the previous works, the framework proposed in this
paper jointly provides full cloud-native deployment of both
5G core and end-to-end monitoring (including RAN) through
CNFs orchestrated via Kubernetes. Besides, the framework is
visually demonstrated through two scenarios reflecting a series
of events in the context of UPF re-selection and user mobility.

III. CLOUD-NATIVE 5G EXPERIMENTAL PLATFORM

The 5G architecture consists of two parts that have remark-
ably changed from previous generations: the new radio access
network (NG-RAN) supporting the new radio (NR) and the
5G Core Network (5GC). In this section, we describe the main

Fig. 1: 5G System Architecture in reference point representa-
tion (based on [15]). Some NFs and interfaces are not included
for the sake of representation.

components of our experimental platform and propose a MEC-
enabled testbed to demonstrate the end-to-end monitoring
system.

A. Open-source 5G core

The movement toward softwarization of telecommunication
networks has deeply influenced the creation of the 5G core
(5GC) [16]. Rather than relying on monolithic elements, 5G
adopts a service-based architecture (SBA) composed of NFs
that modularize the tasks of the core. As shown in Fig. 1,
these NFs interact through Service-Based Interfaces (SBIs),
which employ Representational State Transfer (REST) inter-
faces. A key feature of such SBA modularization is network
slicing, which benefits from softwarization and cloudification.
In essence, slices represent logical instances of the network
that can be tailored to optimize services and thus cope with
different service level agreements (SLAs) according to the use
case. Further, within the SBA, we may find the NWDAF (Net-
work Data Analytics Function) and the MDAF (Management
Data Analytics Function) for generating insights from NFs data
and taking actions to enhance performance, including slice
selection and control [17].

This new architecture allows 5G stakeholders much more
flexibility and openness, paving the way for an environment
where open-source perfectly suits. In this regard, some alter-
natives of open-source 5GC are available, such as OpenAirIn-
terface [18] CN, Free5GC [19], and Open5GS [20]. In our
experimental framework, we use Open5GS v2.4.0, since it
includes most of the 5GC NFs defined in 3GPP and also allows
deploying more than one UPF instance, thus supporting MEC-
enabled networks. Nevertheless, our experimental framework
is designed to also work with other open-source 5G cores under
acceptable adjustments.2

B. Cloud-native deployment of the 5G core

5G is expected to support use cases that go beyond raw
throughput performance, where the focus is to be put on
service flexibility and agility. In this regard, the procedure to
deploy 5G NFs has a critical impact. In essence, these func-
tions can be instantiated as physical NFs (PNFs), virtual NFs
(VNFs), or containerized NFs (CNFs). Naturally, VNFs gained
momentum against siloed PNFs since the conceptualization
of the modularized 5G SBA because of the virtualization
benefits in terms of efficiency, scalability, or cost. Recently,

2Preliminary deployments of our containerized framework with OpenAir-
Interface CN and Free5GC have been already successfully validated.



Fig. 2: Helm and Kubernetes flowchart. The Open5GS chart is
composed of the NF templates in blue (e.g., AMF), whereas
the monitoring chart includes templates for kube-prometheus
in red and the Amarisoft sampling function in yellow.

it is the turn of Containerized Network Function (CNFs) to
gain momentum among operators [21] against conventional
Virtualized Network Function (VNFs) due to their higher
degree of scalability, efficiency for operation and management,
energy-saving, and suitability for resource-constrained edge
applications.

According to Docker [22], a container is a standard unit of
software that packages up code and all its dependencies, so
the application runs quickly and reliably from one computing
environment to another. This makes a container image a
lightweight, standalone, executable package of software that
includes everything needed to run an application. Container
deployments, which may span multiple hosts, are managed
with an orchestrator responsible for automating container cre-
ation, deletion, and modification without service disruption.
Notice that such tasks on containers match the NFV lifecycle
management. In this work, we adopt Kubernetes [23] as a
container orchestrator, since it is the de facto solution in
multiple industries for high-demand services with complex
configurations.

As explained in the following subsections, we deploy both
the 5GC NFs and monitoring system within the same Kuber-
netes cluster using Helm charts [24], a collection of files that
describe a related set of Kubernetes resources (see Fig. 2).3

This way, the whole framework is deployed in just two com-
mands, one for installing the monitoring system and the other
for installing Open5GS. Once the deployments are instantiated,
connectivity among containers and toward external services
must be provided. In particular, our Kubernetes cluster relies
on Calico [25], a well-known container network interfaces
(CNIs) plugin to implement such networking capabilities.

C. Experimental RAN integration

The radio access network (RAN) is another critical compo-
nent of 5G networks, since it provides individual users with
wireless connectivity to the core and external data networks.
There are different alternatives when it comes to experimenting
with 5G RAN, which can be classified in simulated/emulated
(e.g, UERANSIM [26]) and physical/real (e.g., Amarisoft). In
this work, in order to provide actual over-the-air-transmissions,

3Notice that all the NFs in Open5GS can be compiled and deployed
separately, making it a suitable candidate for evaluating the performance of
distributed and cloud-native deployments of the 5GC.

Fig. 3: MEC-enabled 5G testbed. Data planes are shown in
green (dashed arrow for the MEC data plane). Monitoring
connections are represented with red dashed arrows.

we rely on Amarisoft’s AMARI Callbox Ultimate [27] acting
as a gNB with high-performing NR capabilities. Nevertheless,
other RAN alternatives like UERANSIM have been also suc-
cessfully integrated within the testbed without requiring any
configuration changes in the Open5GS Helm chart.

Notice that the RAN in our framework is essentially a
physical NF (PNF), whereas the 5GC and monitoring system
are built on CNFs. As for how to integrate the AMARI
gNB with the Open5GS core, we shall indicate the AMF’s
IP address in the gNB configuration file to establish the NG
Application Protocol (NGAP) connection. In our case, since
the AMF runs as a CNF, a custom Kubernetes service exposes
the AMF functionality to let the gNB point to the master node
IP rather than to the AMF’s pod IP. This is a common practice,
since pod IPs may change after deletion, while services remain
fixed.

D. A MEC-enabled 5G testbed

Testbeds are essential in telco research, as new architectures,
techniques, and features can be conveniently assessed and
validated in the lab before going into field trial campaigns.
In this work, we implement and integrate the testbed shown in
Fig 3 to showcase our cloud-native end-to-end 5G experimen-
tal platform. In particular, the 5G network is composed (from
left to right) of the following elements: two UEs emulated with
Amarisoft AMARI UE Simbox Series [28], with UE1 always
targeting best-effort services while UE2 may target both best-
effort and time-critical MEC applications (e.g., AR/VR); an
Amarisoft Callbox acting as a stand-alone 5G gNB; an edge
node running the MEC UPF and an iperf [29] server; a core
node running the Open5GS CNFs and another iperf server;
a monitoring node hosting the monitoring containers; and a
master node managing the Kubernetes cluster. In the current
testbed implementation, since the focus is on the monitoring
of the RAN and core domain components, the access and
transport networks have been simplified to Ethernet links in a
local area network. As shown in the Kubernetes representation
in Fig. 4, the cluster is composed of the aforementioned nodes
(master, core, edge, and monitoring). Therefore, the master is
responsible for deploying, controlling, deleting, and updating
the containers of each of the nodes.



Fig. 4: Kubernetes deployment. Notice that UE2 gets an IP
address depending on its assigned UPF, i.e., 10.45.0.3 and
10.46.0.2 for the core UPF and MEC UPF, respectively.

Remarkably, all the 5GC NFs are deployed in one click
(through Helm) in the core and edge host. In particular, the
core runs all the Open5GS NFs available in v2.4.0, including
both critical (e.g., AMF or SMF) and secondary NFs (BSF).
Besides, for the sake of enabling MEC platforms, the presented
cloud-native deployment provides two UPFs: one located at the
core and the other, at the edge node. This way, each UPF serves
as a PDU session anchor and provides a connection point to
different access networks, one being the conventional Internet,
and the other any data network that can benefit from MEC
processing capabilities, like AR/VR application components.

Finally, the monitoring node is in charge of running all
the containers related to the end-to-end monitoring of the
components. To that aim, and as explained in §IV, kube-
prometheus [30] is deployed for monitoring Kubernetes ele-
ments, while a custom sampling function is developed to pull
metrics from the Amarisoft Callbox API. So, these monitoring
CNFs can be viewed as 5G’s application functions (AFs)
within 5G’s SBA.

IV. END-TO-END MONITORING: FROM CORE TO RAN

We depict below the monitoring system designed for our
5G experimental framework. We shall emphasize two main
characteristics that make it a valuable asset: it is cloud-native,
meaning that specific CNFs are deployed for monitoring
purposes, and it is end-to-end, meaning that deployed CNFs
pull metrics both from the core and the RAN domains. The
data is gathered into a centralized database where metrics are
then plotted in dashboards.

A. Monitoring with Prometheus

Monitoring is the practice of examining behavioral data
from infrastructure, network events, and user interactions.
Thus, in order to let network administrators gather metrics of
interest and manage unexpected events, a proper monitoring
system must be able to collect data from multiple sources.

In this work, we primarily rely on Prometheus [31], since
it is an open-source monitoring and alerting toolkit that can
be easily integrated with Kubernetes to support automatic
deployment, letting agents be automatically discovered via

service discovery. The Prometheus server also opens interfaces
to third-party applications, like web UI or Grafana. We refer
the reader to [32] for a comparison on monitoring tools
focused on 5G networks. In particular, we use Prometheus
in two different approaches to tackle infrastructure and RAN
monitoring. For the former, we use kube-prometheus [30] and
rely on a custom sampling function for the latter.

1) Kube-prometheus for infrastructure: To monitor the us-
age of infrastructure resources, such as compute, storage, and
network, we rely on kube-prometeus stack, an easy to oper-
ate end-to-end Kubernetes cluster monitoring stack that uses
Prometheus Operator. The stack is pre-configured to collect
metrics from all Kubernetes components – meaning resources
are measured at different levels, such as pod, workspace,
Kubernetes node, or host – and it also delivers a default set
of dashboards and alerting rules. Therefore, we can deploy
a full off-the-shelf cluster monitoring tool with a single Helm
command. Among the metrics gathered with kube-prometheus,
we find CPU, memory, transmit/receive networking, etc. Some
of them are presented at node level in §V-A.

2) Custom sampling function for RAN: For our monitoring
purposes, the Amarisoft Callbox can be accessed through a
remote API using the WebSocket protocol, which establishes
a persistent connection between the client (Amarisoft sampling
CNF in monitoring node) and the server (Amarisoft Callbox
itself). This API exposes different metrics at gNB/radio level,
including (per user and cell id) uplink and downlink bitrate,
modulation coding scheme (MCS), channel quality indicator
(CQI), or signal-to-noise-ratio (SNR). The custom sampling
function we developed, available at the referred repository [4],
is a containerized Python script that opens a WebSocket against
the Callbox API and exposes some metrics of interest to the
Prometheus scraper. We showcase some of these RAN metrics
in §V-B.

B. Visualizing metrics with Grafana

Once the data is being gathered, it is usually convenient
to visualize it to quickly grasp the behavior of the network
at different domains. For such a task, we use Grafana [33],
a multi-platform open-source analytics and interactive visu-
alization web application that is also included in the kube-
prometheus stack. We modified the corresponding chart with
the inclusion of two Grafana dashboard descriptors in JSON
format for the experiments in §V-A and §V-B, respectively.

V. USE CASE EVALUATION

This section showcases and validates the presented end-
to-end monitoring framework by displaying different metrics,
including both infrastructure and RAN parameters. It does
so through two use case experiments based on the testbed
displayed in Fig. 3 and Fig. 4. The first experiment deals
with UPF re-selection in MEC-enabled 5G networks, and
the second focuses on RAN (gNB) measurements under UE
mobility. The considered events are listed in Table I.

A. UPF re-selection in MEC platforms

As for Experiment #1, we trigger the following series
of events: first (1), the 5GC CNFs are deployed through
the installation of Helm charts, and the session management



Fig. 5: Grafana dashboard for experiment #1 (UPF re-selection). Events are numerated within red circles.

function (SMF) assigns both UEs to the core UPF. Second
(2), UE1 starts a 100 Mbps UDP downlink iperf connection
from an iperf server located in the core node. Then (3), UE2
initiates an iperf of the same characteristics until (4), where
the iperf stops and the SMF re-assigns UE2 to the MEC UPF.
A new iperf connection is then started by UE2 pointing to the
edge node iperf server in (5) until (6), the moment at which
both UEs stop their corresponding iperf connections. Finally,
the whole deployment (5GC CNFs) is terminated, and the
Open5GS containers are deleted in the core and edge nodes.

Fig. 5 shows the Grafana dashboard used for Experiment #1
consisting of three panels: two for infrastructure metrics (node
CPU and networking transmit) measured at the core and edge
nodes, and one for a RAN metric (downlink bitrate) measured
at the Amarisoft Callbox acting as gNB. The temporal events
are highlighted with red circles. In (1), we observe a peak of
CPU caused by the deployment of the 5GC CNFs in the nodes.
In (2), CPU and network transmit increase due to the iperf
traffic triggered by UE1. In (3), UE2’s traffic raises the CPU
and transmit networking of the core node, since UE2 is also
assigned to the core UPF. Instead, when UE2 is assigned to
the MEC UPF (5), CPU and networking resources are shared
between the core and edge node. Finally, we observe a peak
on CPU in (7) corresponding to the CNFs termination.

This use case shows the potential value of the presented
monitoring framework in 5G deployments, where important
metrics from different domains (e.g., infrastructure and RAN)
can be assessed in an integrated and automated end-to-end
manner.

TABLE I: List of events in experiments #1 (UPF re-selection)
and #2 (UE mobility).

Event Description

#1.1 5GC CNFs deployed and UEs assigned to core UPF
#1.2 UE1 starts a 100 Mbps UDP downlink iperf connection
#1.3 UE2 starts a 100 Mbps UDP downlink iperf connection
#1.4 UE2 iperf stopped and assigned to MEC UPF
#1.5 UE2 restarts a 100 Mbps UDP downlink iperf connection
#1.6 Both UEs stop their corresponding iperf connections
#1.7 Whole deployment (5GC CNFs) is terminated

#2.1 UE1 starts a 120 Mbps uplink iperf to the core node
#2.2 gNB reduces the receiver gain 4dB (-4 dB aggregated)
#2.3 gNB reduces the receiver gain 4dB (-8 dB aggregated)
#2.4 gNB reduces the receiver gain 4dB (-12 dB aggregated)

Fig. 6: Grafana dashboard for Experiment #2 (UE mobility).
Events are numerated within red circles.

B. UE mobility

Finally, to test the containerized Amarisoft sampling func-
tion, in Experiment #2 we focus solely on RAN metrics. To
do so, we show in Fig. 6 a Grafana dashboard corresponding
to a scenario where UE1 moves away from the gNB, resulting
in higher path loss (lower SNR) and lower MCS and, conse-
quently, lower bit rates. In particular, the series of events is
as follows: (1) UE1 starts a 120 Mbps uplink iperf connection
to the core node, and from (2) to (4) we sequentially reduce
by 4 dB the receiver gain at the gNB through the Amarisoft
API to emulate UE1 moving away. As expected, this results
in higher path loss and lower SNR at the gNB, consequently
achieving lower MCS and lower bitrate.

Experiment #2 has therefore demonstrated the suitability
of the developed Amarisoft sampling function in terms of
integrating pure RAN metrics into the whole monitoring
framework. Providing such end-to-end monitoring is of crit-
ical importance to let 5G network administrators control and
manage their services, especially when it comes to end-to-end
network slicing.

VI. CONCLUSIONS

In this work, we have implemented, tested, and validated
a cloud-native 5G framework with containerized end-to-end
monitoring. Using a MEC-enabled 5G testbed with over-the-
air transmissions, we depict how to integrate a fully operative
5G framework using CNFs in a multi-node Kubernetes cluster,
including an open-source 5G core, a commercial RAN, and an
end-to-end monitoring system. We demonstrate the multi-UPF
and monitoring capabilities of the framework via Grafana dash-
boards that display different metrics of interest, gathered both
from the infrastructure and radio/RAN domains. Therefore, we



expect this paper helps the community in easily deploying 5G
monitoring through an integrated and automated end-to-end
manner.

As for future work, we are endowing our experimental
platform with intelligence so that, e.g., different configurations
for the placement of NFs can be adopted as a function of
certain events or alerts triggered by the monitoring platform.
Besides, we plan to provide an in-depth comparison of our
framework when deployed with other relevant open-source 5G
cores.

ACKNOWLEDGMENT

This work has been partially funded by the MARSAL
project from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101017171.

REFERENCES

[1] I. P. Chochliouros, A. Kostopoulos, M. Payaró, C. Verikoukis, S. D.
C. d. Vimercati, E. Vinogradov, V. Ranjbar, J. Vardakas, M. A. Rahman,
P. Soumplis et al., “Machine learning-based, networking and computing
infrastructure resource management,” in IFIP International Conference
on Artificial Intelligence Applications and Innovations. Springer, 2021,
pp. 85–94.

[2] J. S. Vardakas, K. Ramantas, E. Datsika, M. Payaró, S. Pollin, E. Vino-
gradov, M. Varvarigos, P. Kokkinos, R. González-Sánchez, J. J. V. Olmos
et al., “Towards machine-learning-based 5g and beyond intelligent net-
works: The marsal project vision,” in 2021 IEEE International Mediter-
ranean Conference on Communications and Networking (MeditCom).
IEEE, 2021, pp. 488–493.

[3] M. Mekki, S. Arora, and A. Ksentini, “A scalable monitoring framework
for network slicing in 5g and beyond mobile networks,” IEEE Transac-
tions on Network and Service Management, 2021.

[4] S. Barrachina-Muñoz, “Cloud-native 5G experimental platform with end-
to-end monitoring,” https://doi.org/10.5281/zenodo.6075481, 2022.

[5] C. Novaes, C. Nahum, I. Trindade, D. Cederholm, G. Patra, and
A. Klautau, “Virtualized c-ran orchestration with docker, kubernetes and
openairinterface,” in XXXVII SIMPOSIO BRASILEIRO DE TELECO-
MUNICACOES E PROCESSAMENTO DE SINAIS, 2020.

[6] J. Haavisto, M. Arif, L. Lovén, T. Leppänen, and J. Riekki, “Open-
source RANs in Practice: an Over-the-air Deployment for 5G MEC,” in
2019 European Conference on Networks and Communications (EuCNC).
IEEE, 2019, pp. 495–500.

[7] O. Arouk and N. Nikaein, “Kube5G: A cloud-native 5G service plat-
form,” in GLOBECOM 2020-2020 IEEE Global Communications Con-
ference. IEEE, 2020, pp. 1–6.

[8] ——, “5G cloud-native: network management and automation,” in
NOMS 2020-2020 IEEE/IFIP Network Operations and Management
Symposium. IEEE, 2020, pp. 1–2.

[9] L. Osmani, T. Kauppinen, M. Komu, and S. Tarkoma, “Multi-cloud
connectivity for kubernetes in 5g networks,” IEEE Communications
Magazine, vol. 59, no. 10, pp. 42–47, 2021.

[10] P. Trakadas, P. Karkazis, H.-C. Leligou, T. Zahariadis, W. Tavernier,
T. Soenen, S. Van Rossem, and L. Miguel Contreras Murillo, “Scalable
monitoring for multiple virtualized infrastructures for 5g services,” in
SoftNetworking 2018, The International Symposium on Advances in
Software Defined Networking and Network Functions Virtualization,
2018, pp. 1–4.

[11] D. Giannopoulos, P. Papaioannou, C. Tranoris, and S. Denazis, “Monitor-
ing as a service over a 5g network slice,” in 2021 Joint European Con-
ference on Networks and Communications & 6G Summit (EuCNC/6G
Summit). IEEE, 2021, pp. 329–334.

[12] D. Giannopoulos, P. Papaioannou, L. Ntzogani, C. Tranoris, and S. De-
nazis, “A holistic approach for 5g network slice monitoring,” in 2021
IEEE International Mediterranean Conference on Communications and
Networking (MeditCom). IEEE, 2021, pp. 240–245.

[13] E. Goshi, M. Jarschel, R. Pries, M. He, and W. Kellerer, “Investigating
inter-nf dependencies in cloud-native 5g core networks,” in 2021 17th
International Conference on Network and Service Management (CNSM).
IEEE, 2021, pp. 370–374.

[14] X. Li, A. Garcia-Saavedra, X. Costa-Perez, C. J. Bernardos,
C. Guimarães, K. Antevski, J. Mangues-Bafalluy, J. Baranda, E. Zeydan,
D. Corujo et al., “5growth: An end-to-end service platform for automated
deployment and management of vertical services over 5g networks,”
IEEE Communications Magazine, vol. 59, no. 3, pp. 84–90, 2021.

[15] 3GPP, “System architecture for the 5G System (5GS),” 3rd Generation
Partnership Project (3GPP), Technical Specification (TS) 23.501, 09
2021, v17.2.0.

[16] “Whitepaper: The status of open source for 5g,” 5G Americas,
Tech. Rep. MSU-CSE-06-2, 2019. [Online]. Available: https://www.
5gamericas.org/the-status-of-open-source-for-5g/

[17] E. Pateromichelakis, F. Moggio, C. Mannweiler, P. Arnold, M. Shariat,
M. Einhaus, Q. Wei, Ö. Bulakci, and A. De Domenico, “End-to-end
data analytics framework for 5G architecture,” IEEE Access, vol. 7, pp.
40 295–40 312, 2019.

[18] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and
C. Bonnet, “OpenAirInterface: A flexible platform for 5G research,”
ACM SIGCOMM Computer Communication Review, vol. 44, no. 5, pp.
33–38, 2014.

[19] “Free5GC,” https://www.free5gc.org/, accessed: 2022-02-07.
[20] “Open5GS,” https://open5gs.org/, accessed: 2022-02-07.
[21] B. Chun, J. Ha, S. Oh, H. Cho, and M. Jeong, “Kubernetes enhancement

for 5G NFV infrastructure,” in 2019 International Conference on Infor-
mation and Communication Technology Convergence (ICTC). IEEE,
2019, pp. 1327–1329.

[22] “Use containers to build, share and run your applications,” https://www.
docker.com/resources/what-container, accessed: 2022-02-07.

[23] “Kubernetes website,” https://kubernetes.io/, accessed: 2022-02-14.
[24] “Helm charts,” https://helm.sh/docs/topics/charts/, accessed: 2022-02-07.
[25] “What is Calico,” https://projectcalico.docs.tigera.io/about/about-calico,

accessed: 2022-02-07.
[26] “UERANSIM GitHub repository,” https://github.com/aligungr/

UERANSIM, accessed: 2022-02-08.
[27] “AMARI Callbox Ultimate,” https://www.amarisoft.com/app/uploads/

2022/01/AMARI-Callbox-Ultimate.pdf, accessed: 2022-02-08.
[28] “AMARI UE Simbox Series,” https://www.amarisoft.com/app/uploads/

2021/12/AMARI-UE-Simbox-E-Series.pdf, accessed: 2022-02-08.
[29] “Iperf website,” https://iperf.fr/iperf-doc.php, accessed: 2022-02-09.
[30] “Kube-prometheus GitHub repository,” https://github.com/

prometheus-operator/kube-prometheus, accessed: 2022-02-08.
[31] B. Rabenstein and J. Volz, “Prometheus: A next-generation monitoring

system (talk).” Dublin: USENIX Association, May 2015.
[32] Y. Tseng, G. Aravinthan, B. Berde, S. Imadaliz, D. Houatra, and

H. Qiu, “Re-think monitoring services for 5G network: challenges and
perspectives,” in 2019 6th IEEE International Conference on Cyber
Security and Cloud Computing (CSCloud)/2019 5th IEEE International
Conference on Edge Computing and Scalable Cloud (EdgeCom). IEEE,
2019, pp. 34–39.

[33] “Grafana website,” https://grafana.com/, accessed: 2022-02-08.

https://doi.org/10.5281/zenodo.6075481
https://www.5gamericas.org/the-status-of-open-source-for-5g/
https://www.5gamericas.org/the-status-of-open-source-for-5g/
https://www.free5gc.org/
https://open5gs.org/
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://kubernetes.io/
https://helm.sh/docs/topics/charts/
https://projectcalico.docs.tigera.io/about/about-calico
https://github.com/aligungr/UERANSIM
https://github.com/aligungr/UERANSIM
https://www.amarisoft.com/app/uploads/2022/01/AMARI-Callbox-Ultimate.pdf
https://www.amarisoft.com/app/uploads/2022/01/AMARI-Callbox-Ultimate.pdf
https://www.amarisoft.com/app/uploads/2021/12/AMARI-UE-Simbox-E-Series.pdf
https://www.amarisoft.com/app/uploads/2021/12/AMARI-UE-Simbox-E-Series.pdf
https://iperf.fr/iperf-doc.php
https://github.com/prometheus-operator/kube-prometheus
https://github.com/prometheus-operator/kube-prometheus
https://grafana.com/

	I Introduction
	II Related work
	III Cloud-native 5G experimental platform
	III-A Open-source 5G core
	III-B Cloud-native deployment of the 5G core
	III-C Experimental RAN integration
	III-D A MEC-enabled 5G testbed

	IV End-to-end monitoring: from core to RAN
	IV-A Monitoring with Prometheus
	IV-A1 Kube-prometheus for infrastructure
	IV-A2 Custom sampling function for RAN

	IV-B Visualizing metrics with Grafana

	V Use case evaluation
	V-A UPF re-selection in MEC platforms
	V-B UE mobility

	VI Conclusions
	References

