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Abstract— State estimation for traffic networks is a particu-
larly challenging problem in view of their large dimensionality,
and since models are often inaccurate and the interaction pat-
terns unpredictable. In this article, we approach the problem by
mixing aggregation-based complexity reduction and nonlinear
filtering. We subdivide vehicles into groups and derive a lower-
dimensional approximate model where vehicles belonging to
the same group are represented by a unique random variable
matching their average characteristics. Then, we propose a
procedure to estimate the statistical properties of the group
variables from partial measurements. Connections to car-
following models are discussed, and the developed methodology
is illustrated through numerical simulations.

I. INTRODUCTION

According to the fifth IPCC report on mitigation of climate
change [1], in 2010 the transport sector was responsible for
approximately 23% of total energy-related CO2 emissions [1,
Chapter 8]. Moreover, “Greenhouse gas (GHG) emissions
from the transport sector have more than doubled since
1970, and have increased at a faster rate than any other
energy end-use sector . . . Around 80% of this increase
has come from road vehicles” [1, Section 8.1, p. 605]. The
negative environmental impact of road traffic is exacerbated
in the presence of congestion, which also has several other
consequences of financial and social nature. As road traffic
increases every year, regulating traffic flows efficiently is
becoming an ever more important control challenge.

Whether control is actuated through traffic lights, pricing
mechanisms, ramp meters, or self-driving cars, every control
policy needs information on the current traffic conditions.
As measurements are generally limited, most of the required
information must be estimated. However, state estimation
for traffic networks is a particularly challenging problem;
the available mathematical models, such as car-following
equations [2]–[4], are typically inaccurate and cover only
limited situations, and the interaction patterns change unpre-
dictably. As a consequence, approaches based on canonical
deterministic observer theory (e.g., [5]–[7]), where a precise
knowledge of the vehicles’ models and the interaction topol-
ogy is required, are typically ruled out.
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Instead, stochastic and filtering-based methods [8]–[10]
are structurally more suited to handle the large uncertainty
characterizing traffic applications. However, typical numeric
implementations, such as those based on Monte Carlo meth-
ods and particle filters [8], [9], [11], do not scale well
with the dimension of the state space. Therefore, their
applicability is anyway limited for traffic networks, which
are often of large scale. A possible approach mitigating the
effects of a large dimensionality is the Ensemble Kalman
Filter [9], [12]–[14]. By mixing an extended Kalman filtering
design and Monte Carlo approximations, it avoids storing and
computing explicitly the estimate covariance matrix, which
for large dimensions may be intractable, and marginals are
instead inferred from the particles empirical distribution.
Unfortunately, the full dimensionality of the state space is
maintained.

In this article, we pursue a different approach mixing
nonlinear filtering and a priori model reduction by clustering.
We consider a possibly large number of vehicles modeled as
Markov processes. We first subdivide the vehicles into a fixed
number of groups (for instance, self-driving and human-
driven cars, motorbikes or trucks). For each group, we define
a representative “group variable” modeling the “average”
individual. Then, we construct a reduced model describing
the evolution of the group variables. The model delivers, for
each group, an approximate distribution of which the vehicles
belonging to the group can be seen as samples. Finally, we
devise a procedure to estimate the lower-dimensional group
model from partial observations.

The idea of reducing complexity by clustering is certainly
not new [15]. To name a few related works, complexity
reduction based on equivalence relations is used in [16] to
simplify control designs in Boolean networks. The prob-
lem of clustering and estimation of the aggregated states
in networks of linear systems is studied in [17]. In [18]
and [19], model similarity-based clustering and mean-field
approximations are combined to simplify the policy design
in major-minor LQG games. Mean-field approximations are
also used in [20], where self and human-driven vehicles
are modeled by means of a set of interconnected PDEs.
Condensation of the network’s connected components is used
in [21] to decompose the optimization problem underlying
the control policy design into a sequence of lower-complexity
problems. Condensation of weakly connected components is
also used in [22] to estimate the travel time in large traffic
networks. Nevertheless, at the best of authors’ knowledge,
the integration of similarity-based clustering and filtering of
large-scale traffic networks is novel.



Organization. In Section II, we detail the traffic net-
work’s model and the main assumptions. In Section III, we
develop the group-based lower-dimensional approximation
of the original network. In Section IV, we introduce the
measurement model and relate it to the group variables.
In Section V, we detail the proposed estimation procedure.
In Section VI, we make a parallel with microscopic car-
following models and, finally, in Section VII we present
some numerical simulations.

Notation. We denote by R and N the set of real and natural
numbers, respectively. If ≤ is a preorder on S, for every
x, y ∈ S we let x : y = S≥x∩S≤y . Non-strict set inclusion is
denoted by ⊆. By A\B we denote the set difference between
A and B. If B = {b} is a singleton, we write A\b for A\{b}.
If B = (xi)i=1,...,n is an n-tuple, we write A \ B for A \
{x1, . . . , xn}. If (xi)i∈I is a family indexed by I and I ⊆ I,
we let xI := (xi)i∈I . All probability distributions introduced
in the following are defined on an underlying probability
space (Ω,Σ, P ). Throughout the article, “density” is used as
short-hand for “probability density function”.

II. THE FRAMEWORK

A. Traffic Networks

We consider a set V of n ∈ N>0 vehicles driving on a
cyclic road. We denote by σ1 (i) the vehicle immediately
in front of i ∈ V , and by σ−1 (i) the one immediately
behindI. We assume each driver is influenced only by the
first d vehicles in front and the first d vehicles behind,
for some arbitrary d ∈ {1, . . . , n − 1}. For each i ∈
V , we define the tuples Bi :=

(
σ−d (i) , . . . , σ−1 (i)

)
∈

Vd and Fi :=
(
σ1 (i) , . . . , σd (i)

)
∈ Vd called, respec-

tively, the backward and forward neighborhood of i and
collecting, respectively, the first d vehicles behind and in
front of i, on which the driving choices of i depends.
For notation convenience, we let ∆i := (Bi, i, Fi) =(
σ−d (i) , . . . , σ−1 (i) , i, σ1 (i) , . . . , σd (i)

)
∈ Vd, to which

we refer as the dependency tuple of i.
We suppose that each vehicle belongs to exactly one

among m pre-specified groups clustering vehicles according
to an arbitrary criterion. For instance, groups may distinguish
self-driving or human-driven cars, motorcycles, and trucks.
Formally, a group assignment G = (Gk)k=1,...,m is a
sequence of m non-empty disjoint sets G1, . . . , Gm ⊆ V
covering V . We denote by G the set of all possible group
assignments and, for notation convenience, we let K :=
{1, . . . ,m}. In the following, we identify groups Gk with
their indices k and call the elements of K groups as well.

We associate with each vehicle i ∈ V a parameter hi
ranging in a given subset H ⊆ Rnh , nh ∈ N>0, and repre-
senting the vehicle’s unique characteristics in terms of way of
driving and interacting with the other vehicles. For instance,
hi may coincide with the parameters defining a car-following
model [2], [4]. We denote by HV the set of all possible
parameter assignments i 7→ hi. With these definitions in

IFormally, σ : V → V is a bijection with the property that for any two
i, j ∈ V there exists k ∈ N such that σk (i) = j.

mind, we define a traffic network as a tuple (V, σ,G, h)
where G : Ω → G is a random group assignment, and
h : Ω → HV a random parameter assignment. For notation
convenience, for each i ∈ V we define the variable gi in
such a way that, for each ω ∈ Ω, gi (ω) equals the (unique)
k ∈ K such that i ∈ Gk (ω). We let g := (gi)i∈V ∈ Kn.

Throughout the paper, we focus on traffic networks satis-
fying the following group-homogeneity assumption.

Assumption 1: There exists a (known) ρ = (ρi)i∈K ∈
(0, 1)

m such that, for every ḡ = (ḡi)i∈V ∈ Kn,

P (g = ḡ) =
∏
i∈V

ρḡi ◁

This assumption states that the probability of the vehicle
i ∈ V to be in the group Gk is equal to ρk and that this
event is independent of the groups of all the other vehicles.

The interaction network previously defined by σ is sup-
posed static, since σ does not depend on time. Nevertheless,
this is done only for ease of exposition and we underline that,
at least for what concerns the estimation procedure presented
in Section V, time invariance of the interaction topology is
not actually required, provided that the homogeneity of group
distributions asked by Assumption 1 holds at all times t ∈ N.

B. Vehicles Dynamics

Each vehicle i ∈ V is modeled by means of a (discrete-
time) stochastic process (ω, t) ∈ Ω × N 7→ xti (ω) =
(dti (ω) , v

t
i (ω) , θ

t
i (ω)) ∈ X := R≥0 × R≥0 × Θ, in which

dti (ω) ∈ R≥0 is the distance of vehicle i to its successor
σ(i), vti (ω) ∈ R≥0 is the vehicle’s cruise speed, and
θti (ω) ∈ Θ ⊆ Rnθ , nθ ∈ N, gathers additional vehicle-
specific state variables that can be used to accommodate
different advanced car-following models. In the following,
we let xt := (xti)i∈V ∈ Xn, and we omit the argument ω
when not strictly necessary.

As the vehicles are arranged in a cycle, the length of the
road is given by ℓ :=

∑
i∈V d

0
i . Notice that this definition

implies that, in addition to the subdivision into groups and
the individual parameters, in our setting also the road length
ℓ is a random variable. Instead of fixing ℓ beforehand,
proceeding in this way allows us to handle cyclic roads
while preserving independence of the initial conditions x0i ,
as implied by the forthcoming Assumption 2.

Assumption 2: There exist (known) λ : H × K → [0,∞]
and π0 : X ×H → [0,∞] satisfying∫

H
λ (η, k) dη = 1, ∀k ∈ K,∫

X
π0 (ξ, h) dξ = 1, ∀h ∈ H,

such that, for all i ∈ V , the variables x0i , hi, and gi have
joint density

ψ0 (ξ, η, k) = ρkπ
0 (ξ, h)λ (η, k) . (1)

◁
In Assumption 2, λ plays the role of a density function
for hi given that i ∈ Gk, and models the fact that the
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Fig. 1. Factor graph [23] of the stochastic model (2).

parameters corresponding to vehicles in the same group
are identically distributed (although, we stress, they are not
equal). Likewise, π0 plays the role of a density function
for the initial condition x0i given the value of the parameter
hi. In the following, we adopt the more suggestive notation
λ (·|k) := λ (·, k) and π0(·|h) := π0(·, h), and we shall do
the same for all functions having a similar interpretation.

Regarding the distribution of the vehicles’ variables at
times t > 0, we make the following Markov assumption.

Assumption 3: There exists a family
(
πt|t−1

)
t∈N>0

of
(known) functions πt|t−1 : X × X 2d+1 × H → [0,∞]
satisfying∫

X
πt|t−1 (ξ|χ, η) dξ = 1, ∀ (χ, η) ∈ X 2d+1 ×H,

such that, for each t ∈ N, the variables x0:t, h and g have
joint density

Ψ0:t
(
x0:t, h, g

)
= Ψ0

(
x0, h, g

)∏
i∈V

t∏
τ=1

πτ |τ−1
(
xτi |xτ−1

∆i
, hi

)
(2)

with Ψ0
(
x0, h, g

)
:=

∏
i∈V ψ

0
(
x0i , hi, gi

)
. ◁

The quantity πt|t−1
(
xτi |x

τ−1
∆i

, hi
)

is interpreted as the
density of xti given the value of the parameter hi of i and
that of the state variables xt−1

j at time t− 1 for all vehicles
j in the dependency tuple ∆i of i. Later in Section VI, we
discuss a method to construct πt|t−1 from the knowledge
of a difference equation satisfied by the state variables xti.
We underline that Assumption 3 implies independence of x0i
from

(
x0j , hj , gj

)
for all j ∈ V \ i.

Under Assumption 3, we can write

Ψ0:t
(
x0:t, h, g

)
=

=
∏
i∈V

ρgiπ
0
(
x0i |hi

)
λ (hi|gi)

t∏
τ=1

πτ |τ−1
(
xτi |xτ−1

∆i
, hi

)
.

Additionally, the joint density (2) can be described graph-
ically using the factor graph [23] in Figure 1. Finally, we
define the conditional distributions relating the variables at
time t and those at time t− 1 as

Ψt|t−1
(
xt, h, g|xt−1

)
=
∏
i∈V

ρgiλ (hi|gi)πt|t−1
(
xti|xt−1

∆i
, hi

)
.

(3)
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Fig. 2. Factor graph [23] of the stochastic model (4).

III. GROUP-BASED DIMENSIONALITY REDUCTION

As the cardinality n of V increases, working with the
joint distribution Ψ0:t may easily become impractical due to
the rapid increase with n of the dimension of the vehicles’
state space. In this section, we develop a low-dimensional
approximation of Ψ0:t by clustering vehicles belonging to
the same group and representing them with a single “group
variable” modeling the “average” individual of the group.
The methodology developed in this section is a fundamental
part of the estimation procedure presented in Section V.

A. Main Idea

The basic idea is to substitute the state xtGk
of all vehicles

in a group Gk with a single representative group variable ztk
distributed in a way that matches the average group char-
acteristics. Then, we substitute the model joint distribution
Ψ0:t with a function of the form (cf. (2))

Ψ̂0:t
(
z0:t

)
:=

∏
k∈K

γ0k
(
z0k
) t∏
τ=1

γ
τ |τ−1
k

(
zτk |zτ−1

)
, (4)

in which zt := (ztk)k∈K, z0:t = (zτ )τ=0,...,t, and γ0k and
γ
t|t−1
k are functions playing the same role, respectively, of
π0 and πt|t−1 in (1) and (2). Specifically, γ0k models the
density of the group variable z0k, which is representative
of the initial condition x0i of all vehicles i belonging to
the same group Gk. The initial conditions of such vehicles,
indeed, may be thought as being distributed according to γ0k .
Instead, γt|t−1

k

(
·|zt−1

)
represents the density of the group

variable ztk given the value of zt−1 at previous time t − 1.
The joint density (4) can be described graphically using the
factor graph [23] in Figure 2.

We underline that, since we only keep m group variables,
one for each group, the resulting model concerns probability
distributions over a state space of a dimension that scales
in m but not in n as long as m is fixed independently
on n. For instance, in the example of Section VII, we
only use m = 2 groups (human-driven and self-driving
vehicles) independently on n. Nevertheless, we also remark
that the approximation involves averages over all group
characteristics (the parameters hi), so as clustering together
vehicles with high variability may result in an inaccurate
approximation.

In the remainder of this section, we construct and charac-
terize the functions γ0k and γt|t−1

k .

B. Construction of γ0k
For each i ∈ V , the joint density of

(
x0i , h, g

)
can be

obtained as

α0
i

(
x0i , h, g

)
=

∫
Xn−1

Ψ0
(
x0, h, g

)
dx0V\i.



With δi,j denoting the Kronecker delta function, we define
γ0k : X → [0,∞] as the marginal

γ0k (·) :=
1

ck

∑
g∈Kn

∫
HV

∑
i∈V

δgi,k α
0
i (·, h, g) dh,

in which ck is the normalization constant

ck :=

∫
X

∑
g∈Kn

∫
HV

∑
i∈V

δgi,k α
0
i (ξ, h, g) dh dξ.

The following lemma expresses γ0k in terms of the known
quantities π0 and η.

Lemma 1: Under Assumptions 1, 2, and 3,

γ0k
(
z0k
)
=

∫
H
π0

(
z0k|η

)
λ (η|k) dη, ∀k ∈ K.

□
It is worth noticing that, according to Lemma 1, γ0k equals

the average of the initial-state densities π0 (·|hi) over all
parameters hi associated with group Gk.

C. Construction of γt|t−1
k

For each t ∈ N>0, we define

Ψ
t|t−1 (

xt, h, g
∣∣zt−1

)
:= Ψt|t−1

(
xt, h, g

∣∣∣(ztgi)i∈V

)
,

which is obtained by substituting each xt−1
i with its group

variable zt−1
gi in (3). Then, along the lines of the previous

section, for each i ∈ V , we define

α
t|t−1
i

(
xti, h, g

∣∣zt−1
)
:=

∫
Xn−1

Ψ
t|t−1 (

xt, h, g
∣∣zt−1

)
dxtV\i.

Finally, we let

γ
t|t−1
k (·|zt−1) :=

1

bk

∑
g∈Kn

∑
i∈V

δgi,k

∫
HV

α
t|t−1
i (·, h, g|zt−1) dh

in which bk := ρkn is a normalization constant. The
following lemma expresses γt|t−1

k in terms of λ and πt|t−1.
To simplify the notation, for ν ∈ V2d and t ∈ N, we
let ztk∪ν := (ztν1

, . . . , ztνd
, ztk, z

t
νd+1

, . . . , zt2d). The variable
ztk∪ν approximates the dependency tuple of the representative
variable ztk when the backward neighbors belong to the
groups (νq)q=1,...,d and the forward neighbors to the groups
(νq)q=d+1,...,2d.

Lemma 2: Under Assumptions 1, 2, and 3,

γ
t|t−1
k (·|zt−1)=

∑
ν∈K2d

2d∏
q=1

ρνq

∫
H
πt|t−1(·|zt−1

k∪ν , η)λ(η|k) dη.

□
It is worth observing that, according to Lemma 2,
γ
t|t−1
k (·|zt−1) equals the average over all possible param-

eters associated with group Gk and all possible neighboring
groups of the transition probabilities πt|t−1 (cf. Lemma 1).

IV. THE MEASUREMENT MODEL

In this section we consider the problem of transferring the
information about individual vehicles coming from measure-
ments to information about group variables. In particular,
we suppose that, at each time t ∈ N>0, we are given a
sequence of measurements yt := (yti)i∈Ut regarding a subset
U t ⊆ V of vehicles with cardinality ut, where each yti
is a random variable taking values in a (common) subset
Y ⊆ Rny . Moreover, we suppose we know the likelihood of
such outcomes according to the following assumption.

Assumption 4: For each t ∈ N>0, there exists a (known)
function µt : Yut ×X ut ×Kut → [0,∞], satisfying∫

Yut

µt (ζ|χ, k) dζ = 1, ∀(χ, k) ∈ X ut ×Kut ,

such that y0:t, x0:t, h and g have joint density

Υ0:t
(
y0:t, x0:t, h, g

)
= Ψ

(
x0:t, h, g

) t∏
τ=1

µτ (yτ |xτUτ , gUτ ) .

◁
For each t ∈ N>0, µτ (·|xτUτ , gUτ ) represents the density

of yt given the value of the groups gUτ and all state variables
xti with i ∈ U t. A method to construct µ from an individual
measurement model is discussed in Section VI.

Next, we define the function µ̂t : Yut ×Xm → [0,∞] as

µ̂t
(
yt|zt

)
:= µt

(
yt

∣∣∣(ztgi)i∈Ut , gUτ

)
, (5)

which is obtained from µt by substituting each xti with the
corresponding group variable ztgi . Finally, according to (4)
and Assumption 4, in the terms given in (5) we approximate
the joint density of y0:t and z0:t as

Υ̂0:t
(
y0:t, z0:t

)
=
∏
k∈K

γ0
(
z0k
) t∏
τ=1

γ
τ |τ−1
k

(
zτk |zτ−1

)
µ̂τ (yτ |zτ ).

(6)

V. THE FILTERING PROCEDURE

In this section, we propose a filtering procedure employing
the low-dimensionality model developed in Section III and
the measurement model of Section IV to estimate, for each
k ∈ V and t ∈ N , statistics about the group variables. In
particular, we are interested in approximating integrals of
the form

It
(
Φt

)
=

∫
Xm(t+1)

Φt (ξ) ζ0:t
(
ξ|y0:t

)
dξ

where, for all t ∈ N, Φt : Xm(t+1) → R is a “test function”
describing the properties of the vehicles of interest (e.g., the
projection Φt((dτk, v

τ
k , θ

τ
k)k∈K,τ∈0:t) = vtj gives the velocity

of a vehicle in the j-th group at time t), and

ζt (·|y) :=
Υ̂
(
y0:t, ·

)∫
Xm(t+1) Υ̂ (y0:t, ξ) dξ

can be interpreted as the posterior distribution of the group
variables given the available measurements.



The main idea behind the proposed procedure is to use
a Sequential Monte Carlo (SMC) approach. This method-
ology mixes prediction steps, where the functions πt|t−1

(Lemma 2) are employed, and correction steps, where the
measurement model µ̂t (equation (5)) is used. The functions
λ and π0 are instead used in the initialization phase. In
particular, at each t ∈ N, the methodology extracts S samples
zts, associates with each sample a weight wt

s ∈ [0, 1], and
then approximates It as

It
(
Φt

)
≈ Ît

(
Φt

)
:=

S∑
s=1

wt
sΦ

t
(
zts
)
.

Since (6) can be seen as a classical Hidden Markov
Model (HMM), we propose to use a bootstrap particle
filter with multinomial resampling [8], [11]. However, in
certain conditions, it is possible to use more advanced
versions such as the auxiliary particle filter [24], or use
other resampling techniques in case of high path degener-
acy. The overall approximation procedure is detailed below:

Algorithm: Estimation of It (Φt)

A. Initialization:
1. Propagation: For each group k ∈ K:

(a) Extract S samples (h0k,s)s∈S from λ(·|k).
(b) Extract S samples (z0k,s)s∈S in such a way that, for

each s = 1, . . . , S, z0k,s is sampled from π0(·|h0k,s).
2. Concatenation: Set z0s = (z0k,s)k∈K
3. Weighting: Define the weights w0

s := 1/S, ∀s ∈ S.
B. Iteration: For each t ∈ N>0:

1. Resampling: Extract S samples (ats)s∈S ∈ SS ran-
domly in such a way that, for each s, q ∈ S , ats = q
with probability wt−1

q .
2. Propagation: for each group k ∈ K:

(a) Extract S samples (htk,s)s∈S from λ(·|k).
(b) for each possible position q ∈ {1, . . . , 2d} in the

neighborhood, extract S samples (gtk,q,s)s∈S ran-
domly in such a way that, for every q ∈ {1, . . . , 2d},
every s ∈ S, and every r ∈ K, gtk,q,s = r with
probability ρr.

(c) Extract S samples (ztk,s)s∈S in such a way
that, for every s ∈ S , ztk,s is sampled from
πt|t−1(·|χt

k,s, h
t
k,s), with χt

k,s the (2d+ 1)-ple

χt
k,s :=

(
zt−1
gt
k,1,s,a

t
s
, . . . , zt−1

gt
k,d,s,a

t
s
, zt−1

k,at
s
,

zt−1
gt
k,d+1,s,a

t
s
, . . . , zt−1

gt
k,2d,s,a

t
s

)
.

3. Concatenation: Set zts :=
(
zt−1
s , (ztk,s)k∈K

)
4. Weighting: After receiving the measurement outcomes
yt, define the weights

wt
s :=

wt
s∑

q∈S w
t
q

, ∀s ∈ S,

in which wt
s := µ̂t

(
yt
∣∣(ztk,s)k∈K

)
, ∀s ∈ S

VI. DISTRIBUTIONS FROM DIFFERENCE EQUATIONS

In this section, we discuss how the functions πt|t−1 and µ,
appearing in Assumptions 2, 3 and 4 and supposed known,
can be computed when the state variable xti of each vehicle
satisfies a (stochastic) difference equation of a certain kind.
The class of models considered includes the relevant case of
car-following models, which are widespread in the modeling
of human-driven and self-driven vehicles [2], [4].

We suppose that x satisfies

xt+1
i = f

(
xt∆i

, hi, w
t
i

)
, yti = ϱ

(
xi, ν

t
i

)
, (7)

for all t ∈ N, in which f : X 2d+1 × H × W → X , ϱ :
X × Q → Y , and, for each i ∈ V , wi =

(
wt

i,j

)
j=1,...,nx

:

Ω×N → W ⊆ Rnx , nx = 2+nθ, and νi =
(
νti,j

)
j=1,...,ny

:

Ω × N → Q ⊆ Rny are stochastic processes and ∆i is
the dependency tuple of vehicle i. We restrict the class of
equations to those satisfying the following assumptions.

Assumption 5: For each (χ, η) ∈ X 2d+1 × H (resp.
χ ∈ X ), the function f(χ, η, ·) (resp. ϱ(χ, ·)) is invertible
and continuously differentiable on an open set including W
(resp. Q). ◁

Assumption 6: For each t ∈ N, all processes wt
i,j and νtr,q ,

i, r ∈ V , j = 1, . . . , nx, q = 1, . . . , ny , are independent to
one another. Moreover, (wt

i,j)j=1,...,nx
(resp. (νtr,q)q=1,...,ny

)
have (known) joint density φw : W → [0,∞] (resp. φν :
Q → [0,∞]). ◁

Notice that the invertibility property in Assumption 5 is
not too restrictive, as the zero function (ω, t) 7→ 0 can
be seen as a stochastic process with density φ(·) = δ(·),
and thus “dummy” inputs may be added if needed. Under
Assumptions 5 and 6, for each fixed (χ, η) ∈ X 2d+1 × H
and t ∈ N , the random variable ω 7→ f(χ, η, wt

i(ω)) satisfies
(denote, for simplicity, fχ,η(·) = f(χ, η, ·))

P
(
f
(
χ, η, wt

i

)
∈ X

)
= P

(
wt

i ∈ f−1
χ,η (X)

)
=

∫
f−1
χ,η(X)

φw

(
wt

i

)
dwt

i

=

∫
X

φw

(
f−1
χ,η (ξ)

) ∣∣detD (
f−1
χ,η

)
(ξ)

∣∣ dξ,
where D(f−1

χ,η) denotes the Jacobian matrix of f−1
χ,η . Hence,

f(χ, η, wt
i(·)) has density φw

(
f−1
χ,η (·)

) ∣∣detD (
f−1
χ,η

)
(·)

∣∣.
Moreover, similar arguments show that, for every χ ∈ X ,
ϱ(χ, νti (·)) has density φν

(
ϱ−1
χ (·)

) ∣∣detD (
ϱ−1
χ

)
(·)

∣∣.
The previous computations thus justify taking

πt|t−1 (ξ|χ, η) := φw

(
f−1
χ,η (ξ)

) ∣∣detD (
f−1
χ,η

)
(ξ)

∣∣ ,
for all (ξ, χ, η) ∈ X × X 2d+1 ×H, and

µt (ζ|χ) :=
∏
i∈Ut

φν

(
ϱ−1
χ (ζi)

) ∣∣detD (
ϱ−1
χ

)
(ζi)

∣∣
for all (ζ, χ) ∈ Yut ×X ut .

Remark 1: It is important to notice that the filtering proce-
dure presented in Section V only requires the computation of
the density µ̂t and the sampling from πt|t−1(·|χ, h), π0(·|h)
and λ(·|k), for each χ ∈ X 2d+1, h ∈ H and k ∈ K.



Therefore, it is not necessary to sample from µ̂t and to know
the density πt|t−1(·|χ, h), instead we only need to be able to
evaluate the density µt and the sampling function f . Hence,
for the procedure, Assumptions 5 and 6 can be relaxed for
the function f .

VII. NUMERICAL SIMULATIONS

We consider a traffic network populated by self-driving
and human-driven vehicles, which we subdivide into m = 2
groups, distinguishing self-driven vehicles, identified by the
group index A := 1, and human-driven vehicles, identified
by the index H := 2.

Self-driving vehicles behave according to the IDM (Intel-
ligent Driver Model) car-following model [2]. According to
this model, vehicles act rationally, avoid collisions (in most
situations), try to maintain a desired velocity, and acquire
perfect measurements of their own state and of that of
the vehicle ahead. This is a deterministic model, therefore,
recalling (7), the function f does not depend on the stochastic
process wt

i and the density πt|t−1 is a Dirac delta. Since self-
driving vehicles act in a predetermined way, for simplicity
we assume that they all have the same parameters, reported
in Table I. Therefore, the density λ (·|A) is a Dirac delta
centered at the reported parameters.

Instead, we model human-driven vehicles according to
the HDM (Human Driver Model) metamodel applied to the
IDM as described in [3]. HDM adds human behavior to
the IDM car-following logic by considering a finite reaction
time of the driver, imperfect estimation of the state of
other vehicles, the ability to react to more than one vehicle
ahead, and the implied use of constant velocity assumption
when estimating the distance to the other vehicles. This is
a stochastic model where the estimation error is modeled
using multiple independent Wiener processes. It is important
to notice that, for human-driven vehicles, θti contains the
state of the Wiener processes. Since human drivers can have
different and unmeasurable characteristic, the parameters of
the human-driven vehicles are selected randomly from the
ranges reported in Table I. In particular, it is possible to
sample from λ (·|H) by sampling, independently for each
human-driven vehicle, from a uniform distribution defined
on the specified range.

The sampling time of all simulations is 0.1 s. The initial
density π0(·|h) is defined in such a way that v0i = 0m/s
and d0i = 40m, ∀i ∈ V . The Wiener processes for the
human-driven vehicles are initialized to 0. Figure 3 shows
two possible realizations of the stochastic model (2) with
n = 20 vehicles, ρA = 0.25 and ρH = 0.75.

We suppose that some vehicles can communicate peri-
odically some measurements reporting their velocity and
distance to the vehicle directly ahead with a small amount
of noise. In particular, we will assume that Y ∈ R2

≥0 and

µτ
(
(yτi )i∈Uτ |xτUτ , gUτ

)
=

=
∏
i∈Uτ

N
(
yτi

∣∣∣∣[ dτi
vτi

]
,

[
δgi 0
0 νgi

])

Parameter Self-driven Human-driven
Algorithm IDM HDM

Desired velocity, v0 [m/s] 33.3 [26, 34]
Safe time headway, T [s] 1.6 [1.4, 2]

Maximum acceleration, a [m/s2] 0.73 [0.55, 0.75]
Desired deceleration, b [m/s2] 1.67 [1.6, 2]
Acceleration exponent, δ [·] 4 {4}

Jam distance, s0 [m] 2 [3, 6]
Reaction time, T ′ [s] - [0.2, 1.2]

Number of anticipated vehicles, na [·] - {1, . . . , 7}
Relative distance error, Vs [·] - [0.03, 0.08]
Inverse TTC error, rc [1/s] - [0.005, 0.015]
Error correlation time, τ [s] - [17, 23]

TABLE I
PARAMETERS OF THE CAR-FOLLOWING MODELS USED FOR THE TWO

GROUP OF DRIVERS. FOR DETAILS ABOUT THE PARAMETERS, THE

READER IS REFERRED TO [2] AND [3].

where N (· |µ,Σ) is the density of a normal distribution
with mean µ and covariance matrix Σ, δA = 6, δH = 80,
νA = νH = 0.75. By using such measurements, we then
consider the problem of estimating the average states of the
vehicles in both groups. Specifically, we aim to approximate
It (Φt) with Φt(z0:t) = (d

t

A, v
t
A, d

t

H, v
t
H), where d

t

A and vtA
are, respectively, the distance and velocity components of
ztA and d

t

H and vtH those of ztH. To this aim, we compute
the estimation Ît (Φt) by using the procedure presented in
Section V in three different situations:

A. ut = 0, ∀t ∈ N
B. ut = 20, at t = 250, t = 500, t = 750, and t = 1000,

while ut = 0 at all other times. This corresponds to
having a new set of measurements every 25 s. At each
time, Half of the measurements are from self-driven
vehicles and half from human-driven.

C. Same as B, but all measurements are from self-driven
vehicles.

In all cases, we let ρA = 0.25 and ρH = 0.75. Case A is an
open loop simulation that employs only the knowledge of the
general model. Vice versa, cases B and C can be seen as two
filtering problems with partial information. The evaluation
of Ît (Φt) is compared with that of an oracle obtained by
simulating model (2) on 50 different traffic networks with
n = 200 and by computing the samples mean of Φt. The
measurements of cases B and C are taken from one of
these 50 simulations. The estimation are performed using
the procedure explained in Section V with S = 100.

Figure 4 compares the estimation error, computed as the
normalized difference between the estimation and the oracle,
of the three different cases. Here we can observe that the
proposed reduced model is able to track the test function Φ
with small error (around 1%-3% of the value of the oracle),
even with very few number of measurements.

VIII. CONCLUSIONS

We have proposed an estimation method for large-scale
traffic networks based on a priori complexity reduction
and nonlinear filtering. Complexity reduction is obtained
by clustering vehicles into groups and maintaining a single
representative variable for each group. Proceeding in this way
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Fig. 3. Example showing two possible trajectories of the velocities and
inter-vehicle distances obtained by using the model (2) with the settings
explained in Section VII. Green lines refer to human-driven vehicles. Red
lines to self-driving vehicles.

0 50 100

t[s]

-0.05

0

0.05

~ d
A
["
]

0 50 100

t[s]

-0.05

0

0.05

~v A
["
]

0 50 100

t[s]

-0.05

0

0.05

~ d
H
["
]

0 50 100

t[s]

-0.05

0

0.05

~v H
["
]

Fig. 4. Relative estimation error in case A (red lines), case B (blue lines)
and C (green lines) with respect to the oracle for all the 4 components of
Ît

(
Φt

)
. Left plots refer to self-driven vehicles. Right plots refer to human-

driven vehicles. Top plots refer to the estimation of the distances. Bottom
plots refer to the estimation of the velocities.

allows using efficient, albeit approximate, estimation tech-
niques, such as that presented in Section V. The numerical
simulations reported in Section VII show that the proposed
methodology delivers a good estimate of the groups’ mean
velocity and inter-vehicles distance in the case in which
vehicles are modeled using a mixture of IDM and HDM
car-following equations.
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