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Abstract— We address state estimation in the presence of
faults and unknown disturbances combining unknown input
observers (UIOs) and sliding mode observers. We consider a
well-established UIO design for linear time-invariant systems
and augment it with a nonlinear sliding mode action. This latter
term deals with matched disturbances affecting the actuation
channels, such as actuator faults, while the UIO provides
geometric decoupling from the remaining exogenous inputs.
We thoroughly present the analysis of the proposed observer,
together with existence conditions stemming from the joint
design. We also investigate how our design geometrically relates
with other known results in the field of unknown-input state
estimation, and discuss its benefits and pitfalls. An advantage
of our design is that it allows reconstruction of the fault in
finite time, under just boundedness assumptions, while other
disturbances are rejected by the UIO. Numerical simulations
show the effectiveness of the proposed method.

Index Terms— Observers for linear systems, fault estimation,
uncertain systems.

I. INTRODUCTION

Unknown input observers (UIOs) are useful tools for
estimating the state of a system affected by disturbances, and
they have found particular interest in several areas, ranging
from fault detection and isolation [1], [2] to cyber-security
[3] in a wide spectrum of applications [4], [5]. Sliding
mode observers [6], on the other hand, have also acquired
popularity for fault detection and reconstruction in several
applications [7]–[10] and even for control system security
[11]. Both unknown-input and sliding mode observers allow
for the reconstruction of the disturbances that are being
rejected [7], [10], [12], however their feasibility involves
satisfaction of certain rank conditions (cf. [2], [6]).

In this paper, we distinguish between matched and un-
matched disturbances, namely entering the system dynamics
through the input (e.g., actuator faults) and some other
disjoint channels, respectively. This leads to our motivating
question for this work: is it possible to devise an alternative
design based on UIO and sliding mode observers such that
the geometric conditions for decoupling can be relaxed? To
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this end, we propose a novel design of a UIO endowed
with a sliding mode nonlinear action, with the aim to
achieve decoupling from unmatched disturbances through the
linear gains, while the nonlinear term guarantees rejection
of matched disturbances. We investigate the design of the
UIO in the coordinate frame induced by the transformations
needed for the sliding mode design. As for the nonlinear
term, we choose the unit vector approach [6], whose need
for a Lyapunov candidate leads us to the formulation of
a linear matrix inequality (LMI) condition to obtain the
observer gains. Error analysis is conducted and the relation-
ship between observer gains in the two frames is discussed.
This coupling between the two observer strategies entails
intertwined existence conditions that we also investigate and
reformulate in terms of the original system matrices. We
reach the conclusion that the necessary geometric conditions
needed for our proposed observer are the same as those for
a UIO for an equivalent system with lumped disturbances.

Sliding mode approaches to the problem of estimation
with unknown inputs have been considered in [13] and [14].
However, the main contribution of this paper is distinct from
these works. Notably, in [13] a sliding mode design to deal
with the unknown inputs under weaker rank conditions is
proposed, whereas dealing with unmatched disturbance is
not addressed.

In terms of benefits, our proposed method comes with
the advantages of the two observer strategies it implements:
no assumptions regarding the bounds of the unmatched
disturbances need to be made (unlike for pure sliding mode
strategy). As for the matched disturbance and for the pur-
pose of fault reconstruction, we benefit from the sliding
mode, i.e., finite-time convergence, robustness, and milder
conditions on the fault signal to be reconstructed [15].
For instance, sliding mode reconstruction does not require
state augmentation [12], [16] or explicit derivatives of the
measurements [17].

Throughout the paper, the following notations are consid-
ered. In stands for the n× n identity matrix. 0n×m is an
n×m all-zeros matrix. | · | denotes the standard 2-norm.
For a matrix A ∈ Rn×m, A† stands for the pseudo inverse
of A such that if A is full row rank, A† = A>(AA>)−1 and
if A is full column rank, A† = (A>A)−1A>. We denote a
positive (negative) definite matrix M as M � (≺) 0. Im and
Ker are the image and the kernel (or null space) of a matrix,
respectively. dim(V ) is the dimension of the space V , and
⊕ denotes the direct sum of two linear subspaces.

The rest of the paper is organized as follows. In Section II,
we state the problem and lay some basic assumptions neces-
sary for the robust UIO design. In Section III, we obtain the



robust UIO representation and provide convergence analysis.
In Section IV, we analyze algebraic conditions involved in
the design of the robust UIO. A numerical simulation of an
aircraft is given in Section V, and finally the conclusions
are drawn in Section VI. The paper is supplemented with an
appendix with detailed proofs and simulation parameters.

II. PROBLEM FORMULATION AND OBJECTIVES

We consider a linear time-invariant system described by
the following dynamical equation:

ẋ = Ax+B(u+ φ) +Dw,

y = Cx,
(1)

where x ∈ Rn is the state vector, u ∈ Rm is the control input,
φ ∈ Rm is a matched disturbance (for instance an actuator
fault), w ∈ Rq is an unknown (and unmatched) external
disturbance, and y ∈ Rp is the measurement/output vector.
The vector dimensions are such that m ≤ p ≤ n. The
fact that we distinguish between matched and unmatched
disturbances translates into the condition

ImB ∩ ImD = 0. (2)

The following assumptions are made for the dynamical
system (1).

Assumption 1: The disturbance φ is bounded, i.e.,

|φ(t)| ≤ φ∗,

for all t, where φ∗ is a known scalar. /
Assumption 2: The matrix D is full column rank. /
Assumption 3: The following condition holds:

rankCD = rankD. (3)

/
We remark that Assumption 2 does not harm generality,

as it is always possible to obtain a full column rank rep-
resentation by means of singular value decomposition and
by grouping the linearly dependent components in a new
disturbance w′. These last three assumptions are functional
towards the existence of a UIO for (1). In particular, As-
sumption 3 is a necessary condition for the existence of the
standard UIO [2]. Detectability of a certain matrix pair is
also needed but it is embedded in the feasibility of an LMI
in our presentation, as we discuss later. As in the standard
UIO design [2], to decouple w it is needed that

(In −HC)D = 0n×1,

M = In −HC,
(4)

which under Assumption 3 has the following solution:

H = D(CD)†.

We aim to design an observer O for (1) producing an es-
timate x̂ of x, that satisfies the following observer definition.

Definition 1: Let e = x − x̂ be the estimation error. We
say O is an observer for (1) if

lim
t→∞

e(t) = 0n×1,

for all initial conditions x0 and disturbances w and φ. /

Based on the estimation error and by using the equivalent
output injection method [7], it will be possible to estimate
the value of the fault signal φ, that will be discussed later.

In the next section, we propose a UIO design whose error
is decoupled with w and which uses a nonlinear robustifying
term in order to deal with the fault φ.

III. ROBUST UIO DESIGN

In this section, we provide design details and convergence
properties of the robust UIO. Before doing so, we go through
several changes of coordinates, closely following the pre-
sentation of sliding mode theory [6]. In this new coordinate
frame, the observer is capable to reject the matched distur-
bances thanks to the nonlinear term, whereas the geometric
decoupling guaranteed by the UIO structure still holds. To
this end, we make the following additional assumption [6],
under which the aforementioned transformation is feasible.

Assumption 4: The following holds:

rankCMB = m. (5)

/

We first consider a similarity transformation

U =
[
KerC C>

]>
,

which takes the system in the form (cf. [6, Ch. 5.4])

ζ̇ = Aζ + B(u+ φ) +Dw,
y = Cζ.

(6)

In particular, D = UD and C = CU−1 where C =[
0p×(n−p) Ip

]
. The observer to be designed is intended

for the system (6), however, since U defines an isomorphism,
convergence of the estimation error holds irrespective of the
coordinate frame.

Proceeding with a typical UIO design for (6), the decou-
pling condition (4) becomes

(In −HC)D = 0n×1,

M = In −HC.
(7a)
(7b)

It can be immediately verified that rank CD = rankCD.
Moreover, since U is full rank, one can observe that
rankD = rankD and as a result, condition (3) also holds
in this frame, i.e., rank (CD) = rankD. Therefore, the
following solution for H can be obtained [2]:

H = D(CD)† = UH.

As far as (5) is concerned, noting that M = UMU−1, it
also holds that rank CMB = m. Let now S = MB be
partitioned as follows:

S =MB =

[
S1

S2

]
,

with S1 ∈ R(n−p)×m and S2 ∈ Rp×m. Then, since
rank CMB = m, there exists a similarity transformation T



given by [6, Ch. 5.4]

T =

[
In−p −S1S

†
2

0p×(n−p) T >
]
,

where S†2 is the left pseudo-inverse of S2, and T ∈ Rp×p is
orthogonal and satisfies

T >S2 =

[
0(p−m)×m

S̄

]
, (8)

with S̄ ∈ Rm×m nonsingular. Moreover,

TS =

[
0(n−p)×m
T >S2

]
. (9)

Through T , we define a new vector ξ = Tζ applied to (6)
and the composite transformation R = TU . Hence, in the
new coordinates, the robust UIO has the following form:

ż = N̄z + TSu+ L̄y +

[
0(n−p)×p

Ip

]
ν,

ξ̂ = z + H̄y,

(10)

with N̄ = TNT−1, N = MA− KC, L̄ = T (K + NH),
and H̄ = TH, where K is the observer gain to be designed.
Moreover, ν is a robustifying term designed as follows:

ν =

ρ|S̄|
P2e2
|P2e2|

if e2 6= 0p×1,

0p×1 otherwise,
(11)

where ρ and P2 are design parameters and

e2 = T >(y − CR−1ξ̂). (12)

It can be verified (see Appendix B) that the vector e2 collects
the last p components of the estimation error, i.e.,

e2 =
[
0p×(n−p) Ip

]
e. (13)

They are the components in the image of C and those
affected by the nonlinear term.

We now present the main result of the paper, showing
the stability of the proposed observer following standard
Lyapunov arguments.

Theorem 1: System (10) is an observer for (1) in the sense
of Definition 1 if ρ > φ∗ and if there exist a block-diagonal
matrix P = diag(P1, P2) � 0, with P1 ∈ R(n−p)×(n−p) � 0
and P2 ∈ Rp×p � 0, and a matrix K̄ such that

PT ĀT−1 + T−>Ā>T>P
− K̄CT−1 − T−>C>K̄> ≺ 0,

(14)

where Ā =MA. In this condition, if such a solution exists,
then the gain of the UIO is given by K = T−1P−1K̄.

Proof: Let e = ξ − ξ̂. By considering (1) and (10)
and from (7), it can be shown that (see Appendix A) the
evolution of the estimation error e is given by

ė = N̄e+ TSφ−
[
0(n−p)×p

Ip

]
ν. (15)

To prove the convergence of the estimation errors to zero,

we choose the Lyapunov function V = e>Pe. Evaluating V̇
along the trajectories of (15) gives

V̇ = e>(PN̄ + N̄>P )e

+ 2e>
(
PTSφ− P

[
0(n−p)×p

Ip

]
ν

)
.

(16)

From (9) and (13) and thanks to the block-diagonal structure
of P , one obtains

e>PTSφ = e>2 P2T >S2φ,

e>P

[
0(n−p)×p

Ip

]
ν = e>2 P2ν.

(17)

According to (17) and by substituting (11) into it, one gets

e>
(
PTSφ− P

[
0(n−p)×p

Ip

]
ν

)
≤ |e2||P2||T >S2||φ| − ρ|S̄|e>2 P2

P2e2
|P2e2|

.

(18)

By considering Assumption 1 and (8), from (18) we have

e>
(
PTSφ− P

[
0(n−p)×p

Ip

]
ν

)
≤ −(ρ− φ∗)|S̄||P2||e2|.

(19)

Now, since ρ > φ∗, by considering (19), (16) becomes

V̇ ≤ e>(PN̄ + N̄>P )e. (20)

According to the definition of N̄ and Ā, by expanding PN̄+
N̄>P , we obtain

PN̄ + N̄>P = PT ĀT−1 + (T ĀT−1)>P

− PTKCT−1 − (TKCT−1)>P.
(21)

Finally, by defining K̄ = PTK, from (14) and (21), it
follows that V̇ in (20) is negative definite, then the estimation
error converges to zero (regardless of initial conditions, φ,
and w), which concludes the proof.

Based on the results of Theorem 1, an estimate of the state
vector x has been obtained. Now, based on the term e2, we
can reconstruct the fault signal φ by using the equivalent
output injection method as follows [7]:

φ̂ = ρ|S2|S†2
P2e2

|P2e2|+ δ
, (22)

where φ̂ is the estimate of the fault φ and δ is a positive
scalar parameter in the continuous approximation of ν.

Remark 1: Since K̄ = PTK, the LMI (14) can be
restated as follows:

PT ĀT−1 + T−>Ā>T>P
− PTKCT−1 − T−>C>K>T>P ≺ 0.

(23)

According to (23) and the Lyapunov stability criterion, the
necessary condition for the LMI (14) to have a solution is
that T ĀT−1 +TKCT−1 should be Hurwitz stable for some
K, that is, Ā + KC should be Hurwitz stable for some K.
Therefore, the necessary condition for solvability of the LMI
(14) is that the pair (C, Ā) should be detectable. Notice that



this condition is equivalent – in the transformed coordinates
– to that in [2, Thm. 1]; however, given the particular block-
diagonal structure of P in Theorem 1, it is only necessary
in our case. /

The design presented in this section relies on the condition
(5), which in turn requires computing the matrix M , whose
characterization depends on the decoupling conditions (4). A
simpler characterization in terms of the original system (1)
matrices is given in the next section.

IV. GEOMETRIC CHARACTERIZATION

In this section, we mainly address our initial question
whether the geometric condition needed for the design of the
proposed robust UIO are any weaker than the ones needed
to reject both the input and the disturbance using a UIO
(or equivalently a sliding mode observer). As anticipated,
we prove here that the proposed design is in fact equivalent
in terms of geometric conditions (see Remark 1 for a short
discussion on the detectability condition).

To prove this, consider the “lumped disturbance” system
derived from (1):

ẋ = Ax+ D̄υ,

y = Cx,
(24)

where D̄ =
[
B D

]
and υ =

[
u+ φ> w>

]>
. In the next

theorem, we show that the rank conditions necessary for our
proposed mixed design are in fact equivalent to the necessary
rank conditions for the existence of a UIO for (24).

Theorem 2: Assumptions 3 and 4 are equivalent to the
rank condition for the existence of a UIO for (24), that is,{

rankCD = rankD

rankCMB = m
⇐⇒ rankCD̄ = rank D̄.

Proof: We prove the theorem in two parts. As a
common step for both parts, due to Sylvester’s rank formula
[18, Ch. 3], the following equivalence holds:

rank D̄ = rankCD̄ ⇐⇒ KerC ∩ Im
[
B D

]
= 0. (25)

The right-hand side of (25) amounts to satisfying at the same
time {

KerC ∩ ImD = 0,

KerC ∩ ImB = 0.

(26a)
(26b)

The following identity is also needed for the rest of the
proof:

CM = C(In −HC) = (Ip − CH)C

= (Ip −QQ†)C,
(27)

where Q = CD.
(Sufficiency) Condition (26a) is trivially satisfied by hy-

pothesis. For (26b), we need to show that

rankCMB = m =⇒ KerC ∩ ImB = 0. (28)

We prove by contrapositive: assume that there exists a
nonzero v ∈ KerC ∩ ImB, then it is immediately seen that

CMBv = (Ip −QQ†)CBv = 0p×1,

which contradicts the fact that rankCMB = m. Therefore,
it must be that KerC ∩ ImB = 0. Having verified both
conditions (26), by equivalence with (25), we have proved
sufficiency.

(Necessity) Assume now that rankCD̄ = rank D̄. By
reversing our previous argument, (26a) is equivalent to
rankCD = rankD, which completes the first part of the
necessity proof. Now we prove that if (26a) holds, then

KerC ∩ ImB = 0 =⇒ rankCMB = m. (29)

Assume that KerC ∩ ImB = 0 but rankCMB < m. From
(27), we have that

CMB = (Ip −QQ†)CB,

then we can find a nonzero vector w ∈ ImCB such that
(Ip −QQ†)w = 0p×1, or equivalently w = QQ†w, i.e, w ∈
ImCD. We have found a nonzero vector that is both ImCD
and ImCB, which contradicts (25) under (2) and (26a) (it
is easy to see that in this case (25) is equivalent to ImCD∩
ImCB = 0). Therefore, it must be that rankCMB = m as
well, which concludes the proof.

Remark 2: Notice that (28) and (29) cannot be combined
in an equivalence statement, because (29) depends on (26a)
holding. /

The proof of Theorem 2 also gives us further geometric in-
sight on system design. In fact, although checking condition
(5) is straightforward, its link with the system matrices is
not as obvious. The problem is then the following: when (5)
is not satisfied, what adjustments could the system engineer
make to the sensing and actuation equipment in order to
verify it?

Since the necessary geometric conditions are equivalent
for both designs, conditions (26a) and (26b) are in fact as
well necessary for the feasibility of the proposed design.
Hence, for a certain matrix D, a system designer might
have the freedom to choose B, or at least C, so that the
proposed observer structure is possible to find through the
transformations described in Sec. III.

To conclude the section, as stressed in the Introduction,
the proposed method has the advantages of the sliding
mode approach when rejecting and reconstructing matched
disturbances, i.e., robustness, convergence in finite time, and
only requiring boundedness of φ for fault reconstruction
(state augmentation methods assume vanishing higher order
derivatives [12]), while imposing no constraints on w.

V. SIMULATION RESULTS

In this section, the effectiveness of the proposed robust
UIO is evaluated via a numerical example. In particular,
we consider the aircraft model presented in [6, Ch. 4.5],
whose system parameters are reported for completeness in
Appendix C. For the reader’s convenience, we recall that the
components of the state vector x ∈ R5 are, in order, pitch
angle (rad), pitch rate (rad/s), angle of attack (rad), elevator
deflection (rad), and flap deflection (rad). The control vari-
able u ∈ R2, instead, consists of the elevator command (rad)



Fig. 1. Estimation error for each state component of the state. In the top
right corner, an expanded inset better displays the initial transient.

and the flap command (rad). In addition, we also include the
unmatched disturbance w into the design affecting the angle
of attack, and that we model it as a random signal uniformly
distributed in the interval [−1, 1].

We consider φ affecting the second component of the
control u to be a sine wave with amplitude 1 and angular
frequency 5 rad/s, hence φ∗ = 1. We choose this function as
an example of a fault signal that has nonzero derivatives of
any order, for which an augmented observer would perform
poorly (cf. [15]). The initial condition for the system is
randomly chosen in the interval [0, 1] for each component
of the state. Moreover, the nonlinear gain is set to ρ = 4.

Without loss of generality, the control input is selected as
u = −Fx, where F ∈ R2×5 (see Appendix C) is obtained by
pole assignment. The closed-loop eigenvalues are selected as
in [6] to be {−5.6± i4.2,−1.0,−20.0,−20.0}. The UIO is
built based on the proposed scheme in Theorem 1 where P2

and K̄ are obtained by solving (14). The other parameters
are derived by the transformation described in Sec. III.

The system is simulated using Simulink® over a time
horizon of 4 s, using a Bogacki–Shampine variable step
solver with tolerance 10−4. The estimation error is shown
in Fig. 1. By considering (22) with δ = 10−3 and by using
the estimated states, we also provide an estimate φ̂ of the
fault φ. The reconstructed fault is shown in Fig. 2, verifying
the accuracy of the proposed method.

VI. CONCLUDING REMARKS

A UIO augmented with a nonlinear sliding mode term was
presented in this paper. While both methodologies are pre-
cious tools available to the FDI practitioner, their joint design
and stability properties were investigated here. Furthermore,
we studied the relationship between our mixed approach and
a classic UIO for a “lumped disturbance” system, showing
that the geometric conditions enabling our design are in
fact equivalent to those for the UIO design. Nevertheless,
the proposed observer has the advantages of sliding mode
estimation, and can be useful for reconstructing certain
classes of faults where other methods may not perform as

Fig. 2. Comparison of the fault signal (dashed line) and its estimate (solid
line).

well. Alternative designs that achieve this result with relaxed
constraints are object of future research.
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APPENDIX

A. Derivation of (15)

Since e = ξ − ξ̂, from (10), it follows that

e = ξ − z − H̄y. (30)

Since y = CT−1ξ and H̄ = TH, (30) yields

e = T (I −HC)T−1ξ − z,

which by considering (7b), can be restated as

e = TMT−1ξ − z. (31)

According to (6) and since ζ = T−1ξ, one gets

ξ̇ = TAT−1ξ + TB(u+ φ) + TDw. (32)

According to the definition of Ā, by taking the time deriva-
tive of (31) along (10) and (32), we have

ė =T ĀT−1ξ + TMB(u+ φ) + TMDw

− N̄z − TSu− L̄y −
[
0(n−p)×p

Ip

]
ν.

(33)

By adding and subtracting T ĀT−1ξ̂ to the right-hand side
of (33), by considering (7) and according to the definition of
S, we obtain

ė =T ĀT−1e+ T ĀT−1ξ̂ + TSφ

− N̄z − L̄y −
[
0(n−p)×p

Ip

]
ν.

(34)

Recall that N̄ = TNT−1, N = Ā−KC, L̄ = T (K+NH),
and H̄ = TH. These relationships lead to the following:

T ĀT−1ξ̂ − N̄z − L̄y = T ĀT−1ξ̂ − T (Ā −KC)T−1z
− T

(
K + (Ā −KC)T−1H̄

)
y,

which since z = ξ̂ − H̄y, can be simplified as follows:

T ĀT−1ξ̂ − N̄z − L̄y = TKCT−1ξ̂ − TKy. (35)

Moreover, since y = CT−1ξ, by the definition of error, it
follows from (35) that

T ĀT−1ξ̂ − N̄z − L̄y = −TKCT−1e. (36)

Finally, by substituting (36) into (34) and according to the
definition of N , we finally obtain (15).

B. Proof that e2 =
[
0p×(n−p) Ip

]
e

From (12) and since R−1 = U−1T−1 and x = U−1T−1ξ,
we have

e2 = T >CU−1T−1(ξ − ξ̂). (37)

We recall that CU−1 = C =
[
0p×(n−p) Ip

]
. Therefore,

according to the definition of T one gets

CU−1T−1 =
[
0p×(n−p) T

]
. (38)

From (37) and (38) it follows that

e2 = T >
[
0p×(n−p) T

]
(ξ − ξ̂). (39)

By considering (39) and according to the definition of e, one
gets

e2 = T >T
[
0p×(n−p) Ip

]
e,

and since T >T = I , we finally obtain

e2 =
[
0p×(n−p) Ip

]
e.

C. Simulation Parameters in Section V

In this section, the parameters used for simulation are pre-
sented. We keep 4 significant digits for noninteger elements
in all matrices except for A (using 2 significant digits).

A =


0 1.00 0 0 0
0 −1.99 −13.41 −18.95 −3.60
0 1.00 −1.74 −0.08 −0.59
0 0 0 −20.00 0
0 0 0 0 −20.00

 ,

B =

[
0 0 0 20 0
0 0 0 0 20

]>
, C =

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,

D =
[
0 0 1 0 0

]>
,

F =

[
−1.2640 −0.4285 0.3995 0.3909 0.0704
−0.7854 −0.1397 −0.5342 0.0745 0.0326

]
,

P =


16.8938 0 0 0 0

0 20.3096 0 0 0
0 0 20.3096 0 0
0 0 0 5.0353 0
0 0 0 0 5.0353

 ,

T =


1 0 0 0 0
0 0 −1 0 0
0 −1 0 0 0
0 0 0 0 −1
0 0 0 −1 0

 , H =


0 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

K̄ =


−20.3096 226.5455 320.1370 60.8176

0 −35.4989 0 0
−35.4989 0 0 0

0 0 0 64.0927
0 0 64.0927 0

 ,

L̄ =


−1.2022 13.4100 18.9500 3.6000

0 0 0 0
−1.7479 0 0 0

0 0 0 12.7288
0 0 12.7288 0

 .


