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1 Basic Information

This section contains some important information before you start. It describes how
this document and the package shall be read and what requirements we have on data
types.

1.1 Installation

RigiComp can be downloaded from Zenodo with doi:10.5281/zenodo.7457820.
RigiComp itself does not need to be installed but it needs Mathematica [11] to
be used. Copy RigiComp.wl to your working directory and load it in Mathematica
with

Example

In[1]:= Get["RigiComp.wl"]

RigiComp was developed and tested with Mathematica 12.

1.2 How to use

RigiComp runs in Mathematica. As such for every command ?Command a message
with a brief description is printed. For further help please read this document. On
page 31 there is an index including all the commands described here.
This documents describes aims and output of all commands and contains input descrip-
tions

Input

Function[a,b]
a description of a (data type of a)
b description of b (data type of b)

and examples
Example

In[2]:= Function[a,b]
Out[2]= output

For some commands there are options for adjustment. If there is more than one they
are described in a box

3

https://doi.org/10.5281/zenodo.7457820


Options

Option1 description of option 1 default

Option2 description of option 2 default

For most of the commands syntax information is given such that, when working in a
notebook, Mathematica would highlight for instance when there are too few or too
many input elements.

1.3 Data Types and Requirements

In RigiComp we only consider simple connected graphs without loops. Graphs can be
represented in two different ways, by the built in Mathematica Graph data type and
by an integer representation (see Section 2 for details). Most commands do allow both
of them as input arguments. In this document we are not emphasizing on this any more
but rather pick a convenient representation for each example. Since the Graph data type
is not viewed nicely on the command line we usually either take integer representations
or edge lists for the output style.
Note that a graph is always assumed to have vertices {1, 2, . . . , n}. Some commands
would crash if this is not the case. In order to avoid this transform your graph first
using StandardGraph.
In Mathematica edges have a data type UndirectedEdge[v1,v2]. In case a function
of RigiComp needs an edge we require {v1,v2} instead.
Many rigidity arguments depend on the dimension in which the graph is supposed to
be. Since two dimensional rigidity is the most common one, in many functions of Rigi-
Comp one can omit the specification of the dimension to stay in dimension two. In this
document, however, we always specify the dimension.
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2 Graphs and Representations

Mathematica provides a data type Graph which is convenient to use but sometimes less
convenient to store. For this reason RigiComp also works with an integer representation
of graphs (compare also [2, 9, 1, 3, 7]). This representation is obtained from taking the
upper triangular part of the adjacency matrix and interpret it as binary digits. The
decimal number we get from this is our integer representation.

0 1 1
1 0 1
1 1 0

 (111)2 = 7

1 3

4 2


0 0 1 1
0 0 1 1
1 1 0 1
1 1 1 0

 (011111)2 = 31

Since we do not allow multiedges, loops or isolated vertices the representation is unique.
The following example shows how to get the integer representation for the triangle
graph.

Example

In[3]:= Graph2G[Graph[{{1,2},{1,3},{2,3}}]]
Out[3]= 7

The inverse functions is the following
Example

In[4]:= G2Graph[7]

On the command line this will return Graph[<3>, <3>] but when using a notebook the
output will be shown as a figure. G2Graph allows all Options that the built in Graph
accepts.
RigiComp has also a shorthand for producing and reading from Graph6 data format
(where the header >>graph6<< is omitted):

Example

In[5]:= G2Gs[7]
Out[5]= Bw
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Similarly Gs2Graph and Graph2Gs transfer between Mathematica Graph data type
and the Graph6 data type.
Sometimes it is convenient to work with edge lists. We can transform to and from those
by

Example

In[6]:= G2Edges[7]
Out[6]= {{1, 2}, {1, 3}, {2, 3}}
In[7]:= Edges2G[{{1, 2}, {1, 3}, {2, 3}}]
Out[7]= 7

Mathematica provides the function EdgeList which is applied to a Graph object. The
result is a list of objects of type UndirectedEdge. Since RigiComp usually works with
edges as lists, we have GEdges.

Example

In[8]:= graph=Graph[{1,2},{UndirectedEdge[1,2],UndirectedEdge[2,3]}]
In[9]:= GEdges[graph]
Out[9]= {{1,2},{2,3}}

Similarly to edges we can get the adjacency matrix from integer representations.
Example

In[10]:= G2Mat[7]
Out[10]= {{0, 1, 1}, {1, 0, 1}, {1, 1, 0}}
In[11]:= Mat2G[{{0, 1, 1}, {1, 0, 1}, {1, 1, 0}}]
Out[11]= 7

When we do graph constructions we want to make sure to construct each graph isomor-
phically just once. Therefore, we use a normal form, which currently is based on the
Mathematica command CanonicalGraph. Working with integer representations we
use GraphNormalForm. Then the graphs represented by 30 and 45 are both a 4-cycle
and isomorphic. The normal representative is 30. Note that this might depend on the
version of Mathematica.

Example

In[12]:= GraphNormalForm[45]
Out[12]= 30
In[13]:= G2Edges[45]
Out[13]= {{1, 2}, {1, 4}, {2, 3}, {3, 4}}
In[14]:= G2Edges[30]
Out[14]= {{1, 3}, {1, 4}, {2, 3}, {2, 4}}
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Sometimes we do not need a normal form, but we would like to have a graph with
consecutive vertex names {1, 2, . . . , n}. This is necessary for many of the commands in
this package. We get such a graph by applying StandardGraph.

Example

In[15]:= GEdges[StandardGraph[Graph[{3, 4, 6},
UndirectedEdge@@@{{3, 4}, {4, 6}, {6, 3}}]]]

Out[15]= {{1, 2}, {2, 3}, {3, 1}}

Note for the example that UndirectedEdge@@@ transforms the following list from a list
of pairs to a list of undirected edges.
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3 Constructions

In rigidity theory there is a collection of constructions which in some cases preserve
rigidity of a graph. RigiComp has implemented many of them. Note, however, that
not all of them do always preserve rigidity and they do not check rigidity themselves.
See Section 4 for details on checking rigidity.

3.1 Extensions

A classical type of construction are k-extensions or sometimes also called Henneberg
moves.

Definition 3.1.
Let G = (V,E) be a graph considered in dimension d and F ⊂ E with |F | = k and let
v 6∈ V . Let H = (W,F ) be the induced graph of F . Let further S be a set of vertices
with S ∩W = ∅ and |S| + |W | = d + k. We define Ev = {{v, u} |u ∈ W ∪ S}. Then
G′ = (V ∪ {v}, (E \ F ) ∪ Ev) is called a d-dimensional k-extension of G.

In RigiComp we can do such constructions in two different ways. We can either specify
the deleted edges and chosen vertices, or we can do all such extensions that are pos-
sible on the input graph. The first one, though, only works for 0- and 1-extensions.
K0Extension takes as input a graph and a list of vertices. From this list the dimen-
sion is determined, since the list needs to have as many vertices as the dimension of
the space we want the extension to take place in. The output is a graph in integer
representation.

Input

K0Extension[g, v]
g graph (integer or Graph)
v list of d vertices, where d defines the dimension (list)

Example

In[16]:= edges={{1, 2}, {1, 3}, {2, 3}};
In[17]:= G2Edges[K0Extension[Edges2G[edges], {1, 2}]]
Out[17]= {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}}
In[18]:= edges={{1, 2}, {1, 3}, {1, 4}, {2, 3}, {3, 4}};
In[19]:= G2Edges[K0Extension[Edges2G[edges], {1, 2, 3}]]
Out[19]= {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 5}, {3, 4}, {3, 5}}

K1Extension takes as input a graph, a pair of vertices that are an edge in the graph and
a list of additional vertices. Again the dimension is determined from the latter. The
output is a graph in integer representation.
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Input

K1Extension[g, e, v]
g graph (integer or Graph)
e edge (list of 2 vertices)
v list of d-1 vertices, where d defines the dimension (list)

Example

In[20]:= edges={{1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}};
In[21]:= G2Edges[K1Extension[Edges2G[edges], {1, 3}, {4}]]
Out[21]= {{1, 4}, {1, 5}, {2, 3}, {2, 4}, {3, 4}, {3, 5}, {4, 5}}
In[22]:= edges={{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5}};
In[23]:= G2Edges[K1Extension[Edges2G[edges],{1,4},{2,3,5}]]
Out[23]= {{1, 5}, {1, 6}, {2, 3}, {2, 4}, {2, 5}, {2, 6}, {3, 4},

{3, 5}, {3, 6}, {4, 6}, {5, 6}}

In order to get all possible extensions of a given graph in some dimension, we use
KExtensions with the shorthand of K0Extensions and K1Extensions. KExtensions
constructs k-extensions of the input graph for k ≤ d− 1, where d is the dimension. The
output is a list of integer representations in normal form (i. e. all graphs in the list are
non-isomorphic).

Input

KExtensions[g,d]
g graph (integer or Graph)
d dimension (integer)

Example

In[24]:= K0Extensions[254,2]
Out[24]= {3326, 3934, 4011, 10479, 12511}
In[25]:= K1Extensions[254,2]
Out[25]= {3934, 4011, 6891, 7672, 7916}
In[26]:= KExtensions[254,2]
Out[26]= {3326, 3934, 4011, 6891, 7672, 7916, 10479, 12511}

In general the k can be specified by setting the option SetStart and SetLimit.
Options

SetStart integer for the minimal k to be used for the extension 0

SetLimit integer for the maximal k to be used for the extension d-1
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Example

In[27]:= K1Extensions[511, 3]
Out[27]= {7935, 8187, 16350}
In[28]:= KExtensions[511, 3, SetStart -> 1, SetLimit -> 1]
Out[28]= {7935, 8187, 16350}

Sometimes special cases of extensions are of interest. For instance 2-extensions can
be distinguished by whether the two chosen edges share a vertex (V-Replacement) or
not (X-Replacement). Note that, these extensions do not necessarily preserve rigid-
ity.

Example

In[29]:= VReplacement[511, 3]
Out[29]= {4095, 7679, 7935, 8187}
In[30]:= XReplacement[511, 3]
Out[30]= {7935, 8187}
In[31]:= KExtensions[511, 3, SetStart -> 2]
Out[31]= {4095, 7679, 7935, 8187}

In other cases we want to distinguish k-extensions on the edges that are induced on the
chosen vertices. For instance in a 0-extension in dimension two there can be an edge
between the two chosen vertices or not. For some of these we have short hand functions.
For instance K0ExtensionD2Sub1 only constructs 0-extensions where there is an edge
between the vertices, where K0ExtensionD2Sub0 does the opposite. Similarly we have
short hands for K1ExtensionD2Sub7, K1ExtensionD2Sub3, K1ExtensionD2Sub1 which
consider 1-extensions in dimension two where the chosen edge with the additional vertex
form a triangle, a path or a single edge, respectively. In general we can set the option
UseSubgraphOnChosenVertices of KExtensions which by default is False but can be
set to an integer representation of a graph.

Example

In[32]:= KExtensions[7916, 2, SetStart -> 1,
UseSubgraphOnChosenVertices -> 7]

Out[32]= {1256267}
In[33]:= K1ExtensionD2Sub7[7916]
Out[33]= {1256267}

3.2 Coning

The coning operation is usually used for construction graphs that are considered in one
dimension higher. It is known that coning preserves some rigidity properties.
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Definition 3.2.
Let G = (V,E) be a graph and let u 6∈ V . Then the cone of G is the graph (V ∪{u}, E ∪
{{u, v} | v ∈ V }).

RigiComp does this construction with the Coning command.
Input

Coning[g]
g graph (integer or Graph)

Example

In[34]:= Coning[31]
Out[34]= 511

3.3 Vertex-Splitting

In vertex-splitting a vertex is split into two and the original incident edges are dis-
tributed.

Definition 3.3.
Let G = (V,E) be a graph with v ∈ V and let V1∪W ∪V2 be a partition of the neighbors
of v where |W | = d− 1 for dimension d. The vertex-splitting operation deletes the edges
{v, w2} with w2 ∈ V2, adds a new vertex v̄ and adds the edges {v̄, w} for all w ∈ W ,
{v, v̄} as well as {v̄, w2} for all w2 ∈ V2 .

Similarly to the k-extensions we can either do one specific vertex-split or construct all
possible ones, both with VertexSplitting and different input arguments.

Input

VertexSplitting[g,d,v,W,V1]
VertexSplitting[g,d]

g graph (integer or Graph)
d dimension (integer)
v vertex of g (integer)
W d-1 neighbors of v in g (list)
V1 neighbors of v not in W (list, possibly empty)

Example

In[35]:= edges = {{1, 4}, {1, 5}, {1, 6}, {2, 3}, {2, 5}, {2, 6}, {3, 4},
{3, 6}, {4, 5}};

In[36]:= GEdges[VertexSplitting[Graph[edges], 2, 1, {4}, {6}]]
Out[36]= {{1, 4}, {1, 5}, {2, 3}, {2, 5}, {2, 6}, {3, 4}, {3, 6}, {4, 5},

{7, 4}, {7, 1}, {7, 6}}
In[37]:= VertexSplitting[7916, 2]
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Out[37]= {127575, 1256267, 112525, 1269995}

The specific construction gives error messages if the input is invalid.

3.4 Spider-Splitting

In spider-splitting a vertex is split into two and the original incident edges are distributed.
This operation is sometimes also called diamond-splitting, or vertex-to-4-cycle operation.
Often it is only defined for dimension two for rigidity reasons but we give a somehow
general definition.

Definition 3.4.
Let G = (V,E) be a graph and v ∈ V with d neighbors W = {w1, . . . , wd}. The re-
maining neighbors of v are partitioned in two sets N1 and N2 (possibly empty). Let
v′ 6∈ V . Then spider-splitting yields the graph G′ = (V ∪ {v′}, (E \ {{u, v} |u ∈ N2}) ∪
{{u, v′} |u ∈ N2 ∪W}).

Similarly to the vertex-splitting we can either do one specific vertex-split or construct
all possible ones, both with SpiderSplitting and different input arguments. There
are aliases DiamondSplitting and VertexToC4Splitting. Note that for the specific
operation the dimension is determined from the set W .

Input

SpiderSplitting[g,v,W,V1]
SpiderSplitting[g,d]

g graph (integer or Graph)
d dimension (integer)
v vertex of g (integer)
W d neighbors of v in g (list), d is determined from W
V1 neighbors of v not in W (list, possibly empty)

Example

In[38]:= edges = {{1, 4}, {1, 5}, {1, 6}, {2, 3}, {2, 5}, {2, 6}, {3, 4},
{3, 6}, {4, 5}};

In[39]:= GEdges[SpiderSplitting[Graph[edges], 1, {4, 5}, {}]]
Out[39]= {{1, 4}, {1, 5}, {1, 6}, {2, 3}, {2, 5}, {2, 6}, {3, 4}, {3, 6},

{4, 5}, {7, 4}, {7, 5}}
In[40]:= SpiderSplitting[7916, 2]
Out[40]= {127575, 120478}

12



3.5 Reductions

The inverse of k-extensions are k-reductions. RigiComp does not yet allow general k-
reductions, but the most common ones for k ∈ {0, 1}. Similarly to the extensions we can
either do one particular one specifying the vertex to be deleted, or get all reductions on
all suitable vertices. For 0-reductions the process is clear, so K0Reduction just removes
a given degree two vertex.

Input

K0Reduction[g,d,v]
g graph (integer or Graph)
d dimension (integer)
v vertex of g with degree d (integer)

Example

In[41]:= GEdges[K0Reduction[Graph[{{1, 2}, {1, 3}, {2, 3}}], 2, 3]]
Out[41]= {{1, 2}}

To do all possible single step 0-reductions we use K0Reductions. Here we get a list
of (possibly isomorphic) graphs obtained from the input by a 0-reduction. We can use
normal forms with the option UseNormalForm (which by default is False). The option
Unify deletes duplicates.

Input

K0Reductions[g,d]
g graph (integer or Graph)
d dimension (integer)

Options

UseNormalForm specify whether output is normalized False

Unify specify whether isomorphic output is ignored False

Example

In[42]:= K0Reductions[223, 2]
Out[42]= {31, 199, 217}
In[43]:= K0Reductions[223, 2, UseNormalForm -> True]
Out[43]= {31, 31, 31}
In[44]:= K0Reductions[223, 2, UseNormalForm -> True, Unify -> True]
Out[44]= {31}

For 1-reductions the process is not so immediate, since we need to add an edge and we
have up to three possibilities for this. Hence, in K1Reduction there is an option for
which edge(s) we want to add. The default value for PickEdges is All. Instead one can
put an integer or a list of integers which refer to the index of the chosen edge. Note that
there is no check whether the index makes sense.
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Input

K1Reduction[g,d,v]
g graph (integer or Graph)
d dimension (integer)
v vertex of g with degree d+1 (integer)

Example

In[45]:= graph = Graph[{{1, 4}, {1, 5}, {1, 6}, {2, 3}, {2, 5}, {2, 6},
{3, 4}, {3, 6}, {4, 5}}];

In[46]:= GEdges /@ K1Reduction[graph, 2, 6]
Out[46]= {{{1,4},{1,5},{2,3},{2,5},{3,4},{4,5},{1,2}},

{{1,4},{1,5},{2,3},{2,5},{3,4},{4,5},{1,3}}}
In[47]:= GEdges /@ K1Reduction[graph, 2, 6, PickEdges -> 1]
Out[47]= {{{1, 4}, {1, 5}, {2, 3}, {2, 5}, {3, 4}, {4, 5}, {1, 2}}}

To do all possible single step 1-reductions we use K1Reductions. Here we get a list
of (possibly isomorphic) graphs obtained from the input by a 1-reduction. Again the
options UseNormalForm and Unfiy work.

Input

K1Reductions[g,d]
g graph (integer or Graph)
d dimension (integer)

Options

UseNormalForm specify whether output is normalized False

Unify specify whether isomorphic output is ignored False

Example

In[48]:= K1Reductions[7916, 2]
Out[48]= {750, 749, 7228, 7213, 7620, 7366, 11976, 3800, 22120, 5992,

749, 493}
In[49]:= K1Reductions[7916, 2, UseNormalForm -> True, Unify -> True]
Out[49]= {254}
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4 Rigidity Check

RigiComp is capable of checking different rigidity properties of graphs and partially
frameworks. Some checks work probabilistically but many checks can be done symboli-
cally as well, though they might be computationally expensive. The method to be used
for checking can be specified by an option.
In this section we give a few definitions and theorems in order to clarify how we check the
properties. For more details of the definitions we refer the user to literature on rigidity
theory like for instance [17, 4, 10].

4.1 Rigidity Matrix

Let G = (V,E) be a graph and ρ a realization of the graph in dimension d. Then the d-
dimensional rigidity matrix Rd(G, ρ) = (ri,j) i∈{1,...,m}

j∈{1,...,dn}
, where n is the number of vertices

and m the number of edges, is defined by

rk,` =


ρ(vi)κ − ρ(vj)κ if ek = {vi, vj} and

⌊
`−1
d

⌋
= i− 1 and κ = `− d(i− 1)

ρ(vj)κ − ρ(vi)κ if ek = {vi, vj} and
⌊
`−1
d

⌋
= j − 1 and κ = `− d(j − 1)

0 otherwise

In RigiComp the rigidity matrix can be generated with a framework as an input, i. e. a
graph with a realization. Alternatively a random placement can be chosen, or symbolic
edge lengths can be used.

Input

RigidityMatrix[g,p]
g graph (integer or Graph)
p coordinates for the vertices of g (list of lists)

For frameworks RigidityMatrix yields the following for the three cycle with given
realization ρ(1) = (1, 1), ρ(2) = (3, 2) and ρ(3) = (2, 3):

Example

In[50]:= RigidityMatrix[7, {{1, 1}, {3, 2}, {2, 3}}]
Out[50]= {{-2, -1, 2, 1, 0, 0},

{-1, -2, 0, 0, 1, 2},
{0, 0, 1, -1, -1, 1}}

For a random choice of realizations RandomRigidityMatrix provides some options to
control parameters. RandomRange defines the maximum for the random number. By
default it is Automatic which means it takes 106 · |V | · d, where d is the dimension.
RandomSet allows to have integer or real realizations (default is "Reals").

15



Input

RandomRigidityMatrix[g,d]
g graph (integer or Graph)
d dimension (integer)

Options

RandomRange maximum value for random numbers Automatic

RandomSet set of which random numbers are taken from (integers, reals) "Reals"

Example

In[51]:= RandomRigidityMatrix[7, 2, RandomRange -> 10,
RandomSet -> "Integers"]

Out[51]= {{-8, -4, 8, 4, 0, 0},
{11, 0, 0, 0, -11, 0},
{0, 0, 19, 4, -19, -4}}

For a symbolic rigidity matrix SymbolicRigidityMatrix a variable has to be given in
addition to the graph and the dimension.

Input

SymbolicRigidityMatrix[g,d,x]
g graph (integer or Graph)
d dimension (integer)
x variable for coordinates (symbol)

Example

In[52]:= SymbolicRigidityMatrix[7, 2, x]
Out[52]= {{x[1,1]-x[2,1],x[1,2]-x[2,2],-x[1,1]+x[2,1],-x[1,2]+x[2,2],0,0},

{x[1,1]-x[3,1],x[1,2]-x[3,2],0,0,-x[1,1]+x[3,1],-x[1,2]+x[3,2]},
{0,0,x[2,1]-x[3,1],x[2,2]-x[3,2],-x[2,1]+x[3,1],-x[2,2]+x[3,2]}}

4.2 Rigidity

For frameworks, i. e. graphs with realizations we can check infinitesimal rigidity.

Theorem 4.1.
A framework (G = (V,E), ρ) is infinitesimally rigid if and only if the rank of the rigidity
matrix fulfills rank(R(G, ρ)) = 2|V | − 3.

InfinitesimallyRigidFrameworkQ does check exactly this. The triangle graph with
the realization from above is indeed infinitesimally rigid as a framework, whereas if we
place all vertices on a line we get an infinitesimally flexible framework.
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Input

InfinitesimallyRigidFrameworkQ[g,p]
g graph (integer or Graph)
p coordinates for the vertices of g (list of lists)

Example

In[53]:= InfinitesimallyRigidFrameworkQ[7, {{1, 1}, {3, 2}, {2, 3}}]
Out[53]= True
In[54]:= InfinitesimallyRigidFrameworkQ[7, {{1, 1}, {3, 1}, {2, 1}}]
Out[54]= False

For graphs we can either pick a random realization hoping it is generic or a symbolic
one.

Definition 4.2.
A graph is rigid if and only if there is a generic realization for which the framework is
generically rigid.

Hence, picking a random realization we can check rigidity probabilistically. This will
never return false positive answers but it might give false negative ones. These situations
can be reduced by having a large enough range for the random numbers (compare [8]).
For this reason RigidGRaphQ has the option RandomRigidityMatrixRange to change
that range. The default is Automatic which turns into 106 · |V | · d, where d is the
dimension. By [8] the probability of a false negative answer is therefore less than 10−6.
The option can be set manually to any integer. It is easy to see that a rigid graph needs
at least d|V | −

(
d+1

2

)
edges. This is checked before doing any other check, but it can be

turned off by setting UseCount to False. If the dimension is omitted than it is assumed
to be two.

Input

RigidGRaphQ[g,d]
RigidGRaphQ[g]

g graph (integer or Graph)
d dimension (integer), if omitted d=2

Options

UseCount checks number of edges first True

Method fixes whether a random or symbolic matrix is used "RandomRigidityMatrix"

RandomRigidityMatrixRange maximal value for random numbers Automatic

RandomSet set of which random numbers are taken from (in-
tegers, reals)

"Reals"
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Example

In[55]:= RigidGraphQ[7,2]
Out[55]= True
In[56]:= RigidGRaphQ[5,2]
Out[56]= False

By default random numbers are taken to be real but can be set by the option RandomSet
to "Integers". Using this and setting the range very low, the following command
does regularly give a wrong answer. Note, however, that this needs a lot of manual
setup.

Example

In[57]:= RigidGraphQ[7, 2, RandomRigidityMatrixRange -> 1,
UseCount -> False, RandomSet -> "Integers"]

Instead of checking the rank of a random rigidity matrix we can also use a symbolic
one by setting Method to "SymbolicRigidityMatrix". We then have a deterministic
output. Note, however, that this needs much more computation time.

4.3 Minimal Rigidity

Checking minimal rigidity can be essentially done the same way as checking rigidity just
that the edge count needs to be exactly d|V | −

(
d+1

2

)
. This count is checked automati-

cally at the beginning unless the option UseCount is set to False. If the dimension in
MinRigidGraphQ is omitted than it is assumed to be two.

Input

MinRigidGraphQ[g,d]
MinRigidGraphQ[g]

g graph (integer or Graph)
d dimension (integer), if omitted d=2

Options

UseCount checks number of edges first True

Method see Table 1 "RandomRigidityMatrix"

RandomRigidityMatrixRange maximal value for random numbers Automatic

RandomSet set of which random numbers are taken from (in-
tegers, reals)

"Reals"

VertexLimit limit for size of input graph, used for some methods
(true or integer)

True
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Example

In[58]:= MinRigidGraphQ[7,2]
Out[58]= True
In[59]:= MinRigidGRaphQ[5,2]
Out[59]= False

The Method option is by default set to "RandomRigidityMatrix". It can as well take
"SymbolicRigidityMatrix". These two methods work for arbitrary dimension, though
the symbolic one might need quite some computational resources. For dimension two
there are several other possibilities than the rigidity matrix to check minimal rigidity
(see Table 1 for an overview and the following subsections for details). Some of them
are clearly computationally too expensive, but are implemented for comparison.

method dim reference quality
"RandomRigidityMatrix" all Section 4.2 probabilistic
"SymbolicRigidityMatrix" all Section 4.2 deterministic
"Sequence" 2 Section 4.3.1 deterministic
"Subgraph" 2 Section 4.3.2 deterministic
"PebbleGame" 2 Section 4.3.2 deterministic
"TwoSpanningTrees" 2 Section 4.3.3 deterministic
"ThreeTrees" 2 Section 4.3.3 deterministic
"RealizationCount" all Section 4.3.4 probabilistic

Table 1: Methods available for MinRigidGraphQ.

4.3.1 Extension Sequence

Theorem 4.3. ([13, 16])
A graph is minimally rigid in dimension two if and only if there is a sequence of 0- and
1-extensions that construct the given graph starting from a single edge.

This check can be used setting the Method option to "Sequence".
Example

In[60]:= MinRigidGraphQ[7916, 2, Method -> "Sequence"]
Out[60]= True

4.3.2 Subgraphs and Pebble Game
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Theorem 4.4. ([13, 16])
A graph G = (V,E) is minimally rigid in dimension two if and only if |E| = 2|V | − 3
and for every induced subgraph G′ = (V ′, E ′) with at least two vertices we have |E ′| ≤
2|V ′| − 3.

This edge count can be checked directly by the option value "Subgraph" but it is com-
putationally expensive. Much more efficient for this check is the pebble game algorithm
for checking (2, 3)-tightness, which is exactly the above property. See Section 4.4 for
more details on the general pebble game algorithm. Setting the option value of Method
to "PebbleGame" applies this algorithm.

Example

In[61]:= MinRigidGraphQ[7916, 2, Method -> "Subgraph"]
Out[61]= True
In[62]:= MinRigidGraphQ[7916, 2, Method -> "PebbleGame"]
Out[62]= True

4.3.3 Subtrees

Minimally rigid graphs can be classified also by subtree properties. For these cases we
have just a more or less brute force implementation, which exists mainly for visualization
purposes. Therefore, they are by far the slowest two options.

Theorem 4.5. ([15])
A connected graph G = (V,E) is minimally rigid in dimension two if and only if for every
edge e = {u, v} ∈ E the multigraph obtained by adding a copy of e is the edge-disjoint
union of two spanning trees.

We can search for such a spanning tree with TwoSpanningTrees, which takes as in-
put a graph in Graph data type and an edge (as a list) an return all partitions into
spanning trees with the chosen edge doubled. The output can be chosen by the option
OutputStyle which by default is "Data" but can be set to "Graph". Equivalent trees
are ignored unless the option RemoveEquivalent is set to False.

Input

TwoSpanningTrees[g]
g graph (integer or Graph)

Options

OutputStyle defines format of output (data or graph) "Data"

RemoveEquivalent by construction the output might include equivalent items, this is turned
off by default

True

20



Example

In[63]:= TwoSpanningTrees[7]
Out[63]= {{{{1,2},{1,3}},{{1,2},{2,3}}},

{{{1,3},{1,2}},{{1,3},{2,3}}},
{{{2,3},{1,2}},{{2,3},{1,3}}}}

The output is a set of pairs where each part of a pair is a set of edges forming a spanning
tree. In the check for minimal rigidity the option Method is set to "TwoSpanningTrees".

Example

In[64]:= MinRigidGraphQ[7916, 2, Method -> "TwoSpanningTrees"]
Out[64]= True

There is a further classification using three subtrees.

Theorem 4.6. ([5])
A connected graph G with more than one vertex is minimally rigid if and only if it is
the disjoint union of three non-empty trees such that each vertex is part of exactly two of
the trees and there are no vertex-induced subtrees on at least two vertices with the same
vertex set.

We can search for such trees using ThreeTrees. The options are the same as for
TwoSpanningTrees.

Input

ThreeTrees[g]
g graph (integer or Graph)

Options

OutputStyle defines format of output (data or graph) "Data"

RemoveEquivalent by construction the output might include equivalent items, this is turned
off by default

True

Example

In[65]:= ThreeTrees[7]
Out[65]= {{{},{{1,2}},{{1,3},{2,3}}},{{},{{1,3}},

{{1,2},{2,3}}},{{},{{2,3}},{{1,2},{1,3}}},
{{{1,2}},{{1,3}},{{2,3}}}}

The output is a list of triples where each part of a triple is a set of edges forming a tree.
Note that there is an empty set on some of the output but this means that there is no
edge in that subtree; it consists of a single vertex. In the check for minimal rigidity the
option Method is set to "ThreeTrees".
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Example

In[66]:= MinRigidGraphQ[7916, 2, Method -> "ThreeTrees"]
Out[66]= True

4.3.4 Realization Count

Minimally rigid graphs are those that for generic edge lengths have positive but finitely
many realizations in the plane. We can therefore theoretically use realization count-
ing for testing minimal rigidity. Due to the computation time this is not recom-
mended but exists for comparison purposes. Here the option value of Method is set
to "RealizationCount".

Example

In[67]:= MinRigidGraphQ[7916, 2, Method -> "RealizationCount"]
Out[67]= True

Note that by default this would only start computing with less than 10 vertices. If you
want to test larger graphs increase the limit by setting VertexLimit to the required
integer.

4.4 Tightness and Sparsity

Tightness and sparsity play a role in rigidity but are a more general concept.

Definition 4.7.
A graph G = (V,E) is (k, `)-sparse for every subgraph G′ = (V ′, E ′) with more than k
vertices fulfills |E ′| ≤ k|V ′|−`. The graph is (k, `)-tight if it is sparse and |E| = k|V |−`.

This can be checked by SparseGraphQ and TightGraphQ respectively. For integers k, `
with ` ≤ 2k this can be done via the pebble game algorithm (compare [14]). By default
the option Method is set to "PebbleGame". If ` > k an error message is returned. Setting
the option to "Subgraph" the property is checked directly.

Input

SparseGraphQ[g,k,l]
SparseGraphQ[g,k]
TightGraphQ[g,k,l]
TightGraphQ[g,k]

g graph (integer or Graph)
k parameter (integer)
l parameter (integer), optional
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Example

In[68]:= SparseGraphQ[5, 2, 3]
Out[68]= True
In[69]:= TightGraphQ[5, 2, 3]
Out[69]= False

As a short hand notation SparseGraphQ and TightGraphQ also work with just k as
input. In that case ` is set automatically to

(
k+1

2

)
.

Example

In[70]:= SparseGraphQ[5, 2]
Out[70]= True
In[71]:= TightGraphQ[5, 2]
Out[71]= False

We can also see the well known fact that there are (3, 6)-tight graphs that are not
minimally rigid in dimension three, for instance the double banana graph represented
by the integer 134210055.

Example

In[72]:= TightGraphQ[134210055, 3, Method -> "Subgraph"]
Out[72]= True
In[73]:= MinRigidGraphQ[134210055, 3]
Out[73]= False

4.5 k-Redundancy

Graphs that are not minimally rigid but still rigid might have redundant edges.

Definition 4.8.
A graph is k-redundantly rigid in dimension d if after removing any k edges it is still
rigid in dimension d.
A graph is minimally k-redundantly rigid in dimension d if it is k-redundantly rigid in
dimension d and no proper spanning subgraph is k-redundantly rigid in dimension d.

Sometimes we omit k, if it is equal to one. We can check redundancy using the function
KRedundantlyRigidGraphQ.

Input

KRedundantlyRigidGraphQ[g,k,d]
RedundantlyRigidGraphQ[g,d]
RedundantlyRigidGraphQ[g]
MinimallyKRedundantlyRigidGraphQ[g,k,d]
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g graph (integer or Graph)
k parameter for redundancy (integer)
d dimension (integer)

Options

CheckInputRigidity checks whether input graph is rigid, if the graph
is known to be rigid this can be omitted

True

UseCount passed on to rigidity check True

Method passed on to rigidity check "RandomRigidityMatrix"

RandomRigidityMatrixRange passed on to rigidity check Automatic

RandomSet passed on to rigidity check "Reals"

By default rigidity is tested with random rigidity matrices. Again a symbolic version is
available via setting the method to "SymbolicRigidityMatrix".

Example

In[74]:= KRedundantlyRigidGraphQ[7675, 1, 2]
Out[74]= True
In[75]:= KRedundantlyRigidGraphQ[7675, 2, 2]
Out[75]= False

4.6 k-Vertex-Redundancy

Similarly to edge redundancy we might also check for redundant vertices.

Definition 4.9.
A graph is k-vertex-redundantly rigid in dimension d if after removing any k vertices it
is still rigid in dimension d.
A graph is minimally k-vertex-redundantly rigid in dimension d if it is k-vertex-redundantly
rigid in dimension d and no proper spanning subgraph is k-vertex-redundantly rigid in
dimension d.

When k = 1 we might omit the k. We can check vertex-redundancy using the function
KVertexRedundantlyRigidGraphQ.

Input

KVertexRedundantlyRigidGraphQ[g,k,d]
VertexRedundantlyRigidGraphQ[g,d]
VertexRedundantlyRigidGraphQ[g]
MinimallyKVertexRedundantlyRigidGraphQ[g,k,d]

g graph (integer or Graph)
k parameter for redundancy (integer)
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d dimension (integer)

Options

CheckInputRigidity checks whether input graph is rigid, if the graph
is known to be rigid this can be omitted

True

UseCount passed on to rigidity check True

Method passed on to rigidity check "RandomRigidityMatrix"

RandomRigidityMatrixRange passed on to rigidity check Automatic

RandomSet passed on to rigidity check "Reals"

By default rigidity is tested with random rigidity matrices. Again a symbolic version is
available via setting the method to "SymbolicRigidityMatrix".

Example

In[76]:= KVertexRedundantlyRigidGraphQ[7679, 1, 2]
Out[76]= True
In[77]:= KVertexRedundantlyRigidGraphQ[7679, 2, 2]
Out[77]= False

4.7 Global Rigidity

Definition 4.10.
A rigid graph is globally rigid if all generic frameworks are are globally rigid. A frame-
work is globally rigid if every equivalent framework is congruent.
A graph is minimally globally rigid if it is globally rigid and after removal of any edge
it is not globally rigid any more.

While this definition is rather complicated to check directly, we use instead the algorithm
described in [8] for checking global rigidity with GloballyRigidGraphQ.

Input

GloballyRigidGraphQ[g,d]
GloballyRigidGraphQ[g]

g graph (integer or Graph)
d dimension (integer)

For dimension two a global rigidity can also be checked via redundancy and vertex
connectivity.

Theorem 4.11. ([12])
A graph is globally rigid in dimension two if and only if it is a complete graph on at
most three vertices or it is redundantly rigid in dimension two and 3-connected.
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This check can be done setting the option Method to "ConnectivityAndRedundancy".

Options

UseCount passed on to rigidity check True

Method method to be used (random or symbolic stress) "RandomStress"

RMethod method to be used for checking redundancy "RandomRigidityMatrix"

RandomRigidityMatrixRange passed on to rigidity matrix Automatic

Example

In[78]:= GloballyRigidGraphQ[16351, 3]
Out[78]= True
In[79]:= GloballyRigidGraphQ[16351, 4]
Out[79]= False

Similarly to rigid graphs we can also here ask for minimality (in terms of edges) and
redundancy (in terms of edges or vertices). We therefore have the following com-
mands.

Input

MinimallyGloballyRigidGraphQ[g,d]
KRedundantlyGloballyRigidGraphQ[g,k,d]
MinimallyKRedundantlyGloballyRigidGraphQ[g,k,d]
RedundantlyGloballyRigidGraphQ[g,d]
RedundantlyGloballyRigidGraphQ[g]
KVertexRedundantlyGloballyRigidGraphQ[g,k,d]
MinimallyKVertexRedundantlyGloballyRigidGraphQ[g,k,d]
VertexRedundantlyGloballyRigidGraphQ[g,d]
VertexRedundantlyGloballyRigidGraphQ[g]

g graph (integer or Graph)
k parameter for redundancy (integer)
d dimension (integer)

The options are the same as for GloballyRigidGraphQ.

4.8 Dependence and Circuits

The rank of the rigidity matrix is not only relevant for rigidity but also for the following
property.

Definition 4.12.
A Graph G = (V,E) is d-independent if the rank of the rigidity matrix Rd(G, ρ) for
generic ρ is equal to |E|. Otherwise it is called d-dependent. The graph is a d-circuit if
it is not d-independent but after removing any edge it is.
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These properties can be checked via IndependentGraphQ, and CircuitQ, respectively.

Input

IndependentGraphQ[g,d]
DependentGraphQ[g,d]
CircuitQ[g,d]

g graph (integer or Graph)
d dimension (integer)

The options refer to whether a symbolic or a random matrix is chosen
Options

Method choses a random or a symbol matrix for the
check

"RandomRigidityMatrix"

RandomRigidityMatrixRange defines the maximum value in a random matrix Automatic

The three prism graph is minimally rigid and hence, it is 2-independent but not a 2-
circuit.

Example

In[80]:= IndependentGraphQ[7916, 2]
Out[80]= True
In[81]:= CircuitQ[7916, 2]
Out[81]= False

4.9 Rigid Subgraph Free

Sometimes it is interesting to see whether a minimally rigid graph has a non-trivial
minimally rigid subgraph, i. e. a subgraph with at least d vertices except for Kd. It is
clear that such a graph cannot have a vertex of degree d. This property can be checked
with the function RigidSubgraphFreeMinRigidGraphQ.

Input

RigidSubgraphFreeMinRigidGraphQ[g,d]
g graph (integer or Graph)
d dimension (integer)

It passes on all options that are used for checking minimal rigidity and it has some
options on its own.

Options
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IgnoreSmallSubgraphs by default we ignore subgraphs with less than d + 1 vertices, i. e. we
ignore small subgraphs; instead we can ask for being stricter and search
for graphs that do not have any minimally rigid subgraphs with at least
three vertices

True

CheckMinRigidity checks whether the input is minimally rigid True

The complete bipartite graphK3,3 is for instance free of rigid subgraphs.
Example

In[82]:= RigidSubgraphFreeMinRigidGraphQ[7672, 2]
Out[82]= True

In dimension three there are graphs that do not contain a minimally rigid subgraph, not
even a triangle subgraph.

Example

In[83]:= RigidSubgraphFreeMinRigidGraphQ[1034850648000, 3,
IgnoreSmallSubgraphs -> False]

Out[83]= True

5 Realization Counting

Counting complex realizations in the plane and on the sphere, can be done by combina-
torial algorithms. Furthermore, a Gröbner basis approach can be used with random edge
lengths which therefore gives a probabilistic answer. This approach can be theoretically
used for higher dimensions but is rather restricted by computation power.
Realizations are counted up to isometries, but there is one reflection that remains. This
means the triangle has two realizations, where one is the reflection of the other.

5.1 Space

The main command for counting realizations in a complex space, in particular the com-
plex plane, is ComplexRealizationCount. The implementation is based on [1] but
generalized and unified.

Input

ComplexRealizationCount[g,d]
ComplexRealizationCount[g]

g graph (integer or Graph)
d dimension (integer)
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The main option decides whether a combinatorial [2] or a Gröbner (compare [1]) basis
algorithm is used. In both cases the graph can be simplified (default). Note that there
is also a C++ implementation of the combinatorial algorithm [1].

Options

Method the method of counting can be combinatorial (only dimension two) or by a
Gröbner basis (general), automatically the combinatorial is chosen, if available,
but the other can be enforced

Automatic

RemoveDegD removes vertices of degree d recursively because they account for a factor of
two in the number of realizations, only afterwards applies the chosen method

True

Then the triangle graph yields the two realizations we have mentioned earlier. In fact
we only count them.

Example

In[84]:= ComplexRealizationCount[7, 2]
Out[84]= 2

The three-prism graph is the smallest graph where the number of complex realizations
in the plane is not a power of two.

Example

In[85]:= ComplexRealizationCount[7916, 2]
Out[85]= 24
In[86]:= ComplexRealizationCount[7916, 2, Method -> "Groebner"]
Out[86]= 24

For higher dimensions the Gröbner basis approach is used automatically, so it gets
computationally expensive rather soon.

Example

In[87]:= ComplexRealizationCount[16350, 3]
Out[87]= 16

5.2 Sphere

The main command for counting realizations on a complex sphere, in particular the
2-sphere, is ComplexRealizationCountSphere.

Input

ComplexRealizationCountSphere[g,d]
ComplexRealizationCountSphere[g]

g graph (integer or Graph)
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d dimension (integer)

The main option decides whether a combinatorial [6] or a Gröbner basis algorithm is
used. In both cases the graph can be simplified (default). Note that there is also a Python
and Cython implementation of the combinatorial algorithm [7].

Options

Method the method of counting can be combinatorial (only dimension two) or by a
Gröbner basis (general), automatically the combinatorial is chosen, if available,
but the other can be enforced

Automatic

RemoveDegD removes vertices of degree d recursively because they account for a factor of
two in the number of realizations, only afterwards applies the chosen method

True

Then the triangle graph yields the two realizations we have mentioned earlier. In fact
we only count them.

Example

In[88]:= ComplexRealizationCountSphere[7, 2]
Out[88]= 2

The graph with integer representation 481867 is the smallest graph where the num-
ber of complex realizations on the sphere is not a power of two. There are other
such graphs with the same number of vertices but they would have a degree two ver-
tex.

Example

In[89]:= ComplexRealizationCountSphere[7916, 2]
Out[89]= 32
In[90]:= ComplexRealizationCountSphere[481867, 2]
Out[90]= 48

For higher dimensions the Gröbner basis approach is used automatically, so it gets
computationally expensive rather soon. In the example we get the same result as on the
plane but this is in general not the case.

Example

In[91]:= ComplexRealizationCountSphere[16350, 3]
Out[91]= 16
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