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Abstract
We report on a reaction-diffusion model posed on multiple spatial scales that accounts
for diffusion, aggregation, fragmentation, and deposition of populations of colloidal
particles. The model is able to account for the heterogeneity of the internal porous
structure of the layer. For simplicity, we represent the microstructures as discs with
prescribed initial random distribution of radii. As microstructures grow due to the
deposition of populations of colloidal particles, local clogging becomes possible, that
is neighbouring disks may touch each other.We investigate how distributions of evolv-
ing microstructures influence the transport and storage properties of porous layers. As
working tool, we propose a FD-FEM discretization of the multiscale model. We illus-
trate numerically local clogging effects on the dispersion tensor and quantify herewith
the layer’s performance with respect to both the efficiency of the transport and the
storage capacity. The presented model and numerical approach can be extended in a
rather straightforward way to handle slightly more complex geometrical settings like
thin porous structures with multi-layers in 2D, or single layers in 3D.
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1 Introduction

We are interested in developing mathematical models and simulation tools that can
mimic numerically the following Gedankenexperiment: we imagine a porous media
having a rather regular internal structure. In 2D, we think of a locally periodic distri-
bution of solid discs immersed into an easy-to-penetrate, compressible background;
see e.g. Fig. 1. In 3D, the type of geometries that fit to our story are either collections
of balls or of unidirectional parallel fibers [see e.g. Fig. 2 in Printsypar et al. (2019)],
both embedded in a compressible environment.

We are now exposing this porous medium geometry to a large population of col-
loidal particles (small monomers) that like to ingress through the internal structure at
hand (e.g. trough the white region in Fig. 1). Besides their spatial dynamics (driven
by flow or diffusion), the colloidal particles tend to aggregate to reach bigger sizes
(dimers, trimers, etc.) which then finally (i.e. when they are sufficiently big) deposit
on the boundary of the microstructures they meet during their walking. This process
of colloidal particle aggregation is called flocculation. As a result of this deposition
process, the microstructures (black discs in Fig. 1) grow inside the porous medium.
Conversely, these microstructures can, in principle, release selected population sizes
thereby eventually also shrinking. Such a scenario extends naturally when allowing
for chemically-reactive microstructures or when involving first-order phase transi-
tions. The situation becomes numerically much more challenging and mathematically
more interesting if the colloids are hot, or if the geometry of the regular medium has
stochastic elements. Such extensions are outside of the focus of this work, but it is
worth investigating them at some point.

As this thought experiment is rather generic, many porous media applications can
be connected to it, at least remotely.Hence, there is a lot of literature available, however
results seem to be bound to quite specific scenarios, and, as a consequence, aiming for
generality is daunting. We refer here to some of our own previous work (Eden 2019;
Krehel et al. 2015; Nikolopoulos 2018; van Noorden andMuntean 2011), as well as to
that of others to see how colloidal populations are expected to affect the macroscopic
transport in various classes of porous media like biological tissues [for drug delivery
tasks (Ray et al. 2013)], natural oil reservoirs [to be unclogged via high pressure water
containing inertial particles (Kokubun et al. 2019)], soils [encapsulating organic nutri-
ents (Johnson and Elimelech 1995; Ray et al. 2012, 2018) or contaminants (Boccardo
et al. 2018)], active membranes [expected to perform filtration (Iliev et al. 2014; Davis
2021; Printsypar et al. 2019; Iliev et al. 2020; Kiradjiev et al. 2021)], old textiles
[exposed to the ingress of tiny particles inside museums or outdoors (Bonetti et al.
2019)]. The excellent review (Ryan and Elimelech 1996) contains further relevant
literature hints for a similar context. It turns out that the involved models are mostly
phenomenological, where constitutive laws are assumed to hold and then efforts are
paid in estimating to which extent suchmodels can come close to reality. Other model-
ing ideas attempt to use some level of details known about the media’s microstructure
(shape, orientation, chemical composition, etc.) and scale up this information to an
observable, macroscopic level. The upscaling procedures are typically done at the
level of balance laws and deliver, usually under strong technical assumptions on both
the averaging techniques and choice of shapes and arrangements of microstructures,
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Fig. 1 Poisson-disc sampling
within a rectangle. Example of
regular 2D porous medium that
can be approximated via a
locally periodic representation

the structure of the expected effective balance equations as well as explicit formu-
las to compute the effective transport coefficients. This second investigation route is
in line with our approach in Muntean and Nikolopoulos (2020), where we allowed
for the possibility of local clogging, which, particularly in 2D or for thin 3D layers,
has dramatic effects.1 One of the resulting upscaled models derived in Muntean and
Nikolopoulos (2020), was recently studied from themathematical analysis perspective
in Eden et al. (2021).

As main contribution in the context of this paper, we explore further the model
from Eden et al. (2021) by means of numerical simulations; the details on the model
equations and assumed geometry and parameters are described in Sect. 2. The main
feature of our model is multifold: the coupling in the model equations goes over
two spatial scales (macro and micro); the characteristic macro scale is fixed, while
the characteristic micro scale length changes in time and depends implicitly on the
solution itself. Mathematically, the object we are handling is an parabolic-elliptic-
ODE system posed on multiple space scales, out of which one involves an a priori
unknown moving boundary. This structure fits to what Showalter refers to as partial
differential equationswith distributed evolving-in-timemicrostructures; see Showalter
(1992) for more context on this type of models. Relying on multiscale simulations, we
illustrate in a couple of numerical experiments to which extent local clogging is able
to affect macroscopic transport and storage for a particular class of porous media. We
are able to trace changes in the effective (tensorial) transport coefficients induced by
the evolution of the growing or shrinkingmicrostructures, either receiving or releasing
populations of colloidal particles.

The paper is organized as follows: In Sect. 2, we describe the geometry of the het-
erogeneous medium we have in view as well as the set of model equations. Section 3
gives a glimpse on what is now regarding the mathematical structure of the evolu-
tion equations involved (from where they come for, well-posedness, approximation
aspects), while in Sect. 4 we suggest suitable macroscocpic and microscopic space
discretizations. We present in Sect. 5 a couple of numerical illustrations that show the
ability of our approach to cope with variations in the of the porous medium’s micro-

1 Under such geometrical constraints, particles meet difficulties in finding their way through the solid
matrix of the underlying medium.
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scopic heterogeneities. Finally, we list in Sect. 6 our conclusions and a few ideas for
further related studies.

2 Setting of themodel equations

Here, we give a short summary of and motivation for our full model. This model was
originally derived in Muntean and Nikolopoulos (2020) and further analyzed in Eden
et al. (2021), we refer to those works for additional details regarding the problem and
its properties. Please note that the focus of this presentwork, the clogging scenario,was
not considered in Eden et al. (2021) and only tangentially touched upon in Muntean
and Nikolopoulos (2020).

For a given T > 0, we consider S = (0, T ) to be the time interval during which we
observe the overall physical process. The macroscopic region Ω ⊂ R

2 is a bounded
domain whose Lipschitz boundary admits the outer unit normal vector n = n(x) for
almost all x ∈ ∂Ω . It represents the homogeneous description of the target porous
material. In addition, let N be a given natural number indicating the maximal allowed
size of an aggregate of colloid particles. The word size refers here to the number of
primary particles making up the aggregate. For each i = {1, ..., N }, let ui : S × Ω →
[0,∞) (we set u = (u1, ..., uN )) denote the molar concentration of aggregates of size
i that can be found at point x ∈ Ω and time t ∈ S.

We take the function v : S × Ω → [0,∞) to represent the mass density of the
adsorbed material i.e. the material deposited in the solid matrix (mass that is present
in the system but currently does not take part in the diffusion and agglomeration
processes); this mass can dissolve again allowing colloidal populations to re-enter the
pore space. The processes of adsorption and desorption2 is modeled in this context
via an Robin-type exchange term in the form of Henry’s law [see e.g. Helmig (1997);
Krehel et al. (2015)] with positive exchange coefficients ai and bi :

2πr

1 − πr2
(aiui − biv). (1)

Here the radius function r : S×Ω → (0, rmax ) (for some rmax > 0) acts as a measure
of the clogginess of the porous media [see (2)].

The exchange coefficient 2πr
1−πr2

is given as the ratio of the perimeter of the ball
(2πr ) and the pore volume; this relationship is justified via the upscaling in Muntean
and Nikolopoulos (2020). Note that equilibrium between ui and v is accomplished
when ui = ai

bi
v.

To describe the aggregation processes taking place inside the pore space of the
medium, we use a truncated variant of the Smoluchowski formulation [we point to
Aldous (1999) for a review] given here by

2 Note that desorption processes are not taken into account in the setting described in Printsypar et al.
(2019).
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Ri (u) := 1

2

∑

j+l=i

γ jlu j ul − ui

N−i∑

j=1

γi j u j (2)

with positive coefficients γ jl . This is in fact a truncated version of the discrete Smolu-
chowski coagulation term [see, e.g., Aldous (1999)]

Ri (u) := 1

2

∑

j+l=i

γ jlu j ul − ui

∞∑

j=1

γi j u j , (3)

where we only consider colloids up to a maximal size of N > 0 (i.e., γ jl = 0 for
j + l > N ). The index i refers to the i th population (i ∈ {1, . . . , N }). The first sum
in (2) accounts for the formation via coagulation under the assumption that colloids
of size i can be formed when two smaller colloids of sizes j and l with the property
j+ l = i meet. In particular, the first sum is zero in R1 (particles of size 1 can not form
via coagulation) and 1

2γ11u
2
1 in R2 (particles of size 2 can only form via coagulation

of two size-1 colloids). The second sum accounts for the loss of i-sized colloids by
coagulating with a different colloid of size j to form a new one of size i + j ≤ N . The
second sum is therefore empty in RN . Note that this is conceptually very similar to
viewing the overall production process as a chain of second order chemical reactions.
The truncation to a fixed population size holds particularly in the case of colloids in
soils. If no truncation is taken into account, then fragmentation terms are needed to
prevent the size of the population to grow indefinitely. In that case, the functional
setting changes as for instance in Canizo et al. (2010) and references cited therein.
Additionally, note that there are otherways tomodel the coagulation and fragmentation
processes. We stick here to (2), an alternative way would be to consider instead, for
instance, a discrete Becker–Döring dynamics.

It is important to observe that in the context of porous media the colloidal popula-
tions involve a finite size chain of the cluster, i.e. there will be a population of N -mers
where N takes the maximum cluster size. For that reason, we deal with a truncated
finite sum here. Interestingly, for many applications a good choice of such N is rather
low; see e.g. Krehel et al. (2015).

The diffusion-reaction system for the different N populations of aggregates is then
given via

∂t ui − divx (Di (r)∇ui ) = Ri (u) − 2πr

1 − πr2
(aiui − biv) in S × Ω, (4)

−Di (r)∇ui · n = 0 on S × ∂Ω, (5)

ui (0) = ui0 in Ω. (6)

We refer to this model component as (Pi ). Note that the effective porosity is wrapped
into the diffusion tensor Di (r) as this is apparent from Eq. (10) as well as in the second
term in the right-hand side of Eq. (4), the latter being derived by the homogenization
process [see the statements in Eden et al. (2021)].
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The effective diffusion matrix Di (r) ∈ R
2×2 can be calculated using any solution

wk ( k = 1, 2) of the cell problem named (Pii )

− Δywk = 0 in S × (Y \ B(r)), (7)

−∇ywk · ν(y) = ek · ν on S × ∂B(r), (8)

y �→ wk(y) is Y − periodic . (9)

Here Y = (0, 1)2 denotes the unit cell, B(r) is the closed ball with radius r and center
point y = ( 12 ,

1
2 ), and ek the k-th unit normal vector. Finally, ν = ν(y) denotes the

outer unit normal vector of Y\B(r). Note that wk is only unique up to a constant: this
is fine as we are only interested in ∇wk later.

We then have

(Di ) jk := diφ(r)
∫

Y\B(r)
(∇ywk + ek) · e j dy, (10)

where φ(r) := 1−πr2
|Y | denotes the porosity of the medium and di > 0 are known

constants. In our case, since |Y | = 1, we get φ(r) = 1−πr2. The structure of both the
cell problem and of the effective diffusivity are derived in Muntean and Nikolopoulos
(2020) using asymptotic homogenization techniques adapted to the case of locally-
periodic media.

Finally, the evolution of v is governed by an ODE parametrized in x ∈ Ω , say
(Piii ), and is given via

∂tv =
N∑

i=1

(aiui − biv) in S × Ω, (11)

v(0) = v0 in Ω̄ (12)

and the radius function is governed by the following ODE parametrized in x ∈ Ω

referred as (Piv)

∂t r = 2πα

N∑

i=1

(aiui − biv) in S × Ω, (13)

r(0) = r0 in Ω̄, (14)

where α > 0 is an additional proportionality coefficient. We have labeled these sub-
problems (Pi ) − (Piv) for easier referencing.

It is important to keep in mind that changes in time of v and r are closely connected
via 2πα∂tv = ∂t r or, more explicitly, via

r(t) = r0 − 2πα(v(t) − v0). (15)

For that reason, Problem (Piv), that is (13)–(14), can be substituted with (15).
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Fig. 2 Example of
r(x1, x2, t = 0) with
corresponding r(x1, x2, t = T )

of the same simulation. Regions
with larger circles correspond to
low porosity and permeability
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Schematic representation of r(x1,x2,0)
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Schematic representation of r(x1,x2,T)

A possible initial choice for the initial distribution of radii r0 is depicted in Fig. 2.
We point out there also what will happen at the final time T ; more details on the
parameter setup are given in the simulation sections. What concerns the modeling of
the deposition of the colloidal populations, our choice is similar to one reported in
Johnson and Elimelech (1995).

Such choice accounts for the simple observation that the adsorbed material leads to
the clogging of the pore under the fundamental assumption of the growth of the radius
is proportional to the amount of material that is adsorbed. For a more concrete argu-
mentation for this particular structure, we again point to Muntean and Nikolopoulos
(2020).

We can now exploit the structure of the effective diffusion tensor D = [(Di ) jk]
given cf. (10) to point out the corresponding structure of the tortuosity tensor, denoted
here by T = [(Ti ) jk]. Classical descriptions of the structure of porous media [cf. e.g.
Bear (1988)] allow for the relationship

D = d
T, (16)

where 
 is in fact here φ(r) the volumetric porosity, while T is the tortuosity tensor.
Together with (16), (10) ensure the following structure to the tortuosity tensor:
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(Ti ) jk :=
∫

Y\B(r)
(∇ywk + ek) · e j dy. (17)

The relationship (16) is supposed to hold for general 3D porous domains, just that
in general T is hard to estimate. For thin porous domains, alternatives have been
found cf. e.g. Patasius et al. (2005), Grisan et al. (2003) and Idris et al. (2022) where
simple expressions can deliver an approximate tortuosity scalar. As we treat in this
framework a 2D case, such arguments can in principle deliver here as well a corre-
sponding tortuosity scalar.3 However, the main advantage of our setting is that arrays
of regularly-shaped microstructures are computationally tractable, hence we have a
direct access to the entries of T simply by computing numerically (weak) solutions
to families of cell problems (Pii ), i.e. (7)–(9). This is simply a direct benefit of the
fact that we could apply homogenization-type methods for the case of locally periodic
porous media to derive the precise structure of the cell problems and corresponding
effective diffusion tensor.

3 Brief review of known results

The precise structure of the problem studied here has been derived via homogenization
methods for locally periodic media inMuntean and Nikolopoulos (2020), allowing for
the possibility of microstructures to produce local clogging. Our original motivation
to look into this class of problems is described in detail in the PhD thesis (Krehel
2014), where mathematical models have been devised to describe how hot colloids
are supposed to be transported through heterogeneous, possibly chemically reactive,
porous media; see, for instance, the related works (Ray 2013; Ray et al. 2012).

The overall problem we are considering in this work is then given by Problems
(Pi )−(Piv) [or Eqs. (4)–(14)]. Given 0 < s < T , consider the time interval (0, s) ⊂ S.
A weak solution to our problem is a set of functions (u, v, w, r) with the regularity

ui ∈ L2((0, s); H1(Ω)) ∩ L∞((0, s) × Ω) such that ∂t ui ∈ L2((0, s) × Ω),

w ∈ L2((0, s) × Ω; H1
# (Y )), v ∈ W 1,1((0, s); L2(Ω)), r ∈ W 1,1((0, s); L2(Ω))

that satisfies (4)–(14) in the standard weak Sobolev setting.
The model is a two-scale (macro-micro), quasilinear reaction-diffusion system

posed in a 2D porous medium which undergoes microstrucural problems. The mathe-
matical structure of this model is rather well-understood; see Eden et al. (2021) where
the authors of this paper studied the weak solvability question. The analysis relies on
a suitable application of Schauder’s fixed point theorem which also provides a con-
vergent algorithm for an iteration method to compute finite element/finite difference
approximations of smooth solutions to our multiscale model (as suggested in Sect. 4).
The existence of solutions is guaranteed by Theorem 13 in Eden et al. (2021), while
their uniqueness is expected to hold (cf. Remark 14 in loc. cit.). Interestingly, one can

3 Such tortuosity scalar is not supposed to comply with (17). It is rather seen as a ratio of two (gas)
permeabilities (or of equivalent formulations); see e.g. Idris et al. (2022).
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prove directly a continuous dependence result (in suitable norms) of the changes in
radius with respect to small variations in the colloidal populations [cf. Lemma 7 in
Eden et al. (2021)]. The case of potential clogging, the primary focus in this work,
was not considered in Eden et al. (2021).

4 Multiscale spatial discretization

We present a discretization of the problem consisting of Eqs. (4–14) for a two dimen-
sional macroscopic domain Ω = (0, 1) × (0, 1), which is allowing us to solve
numerically the problem. The aim is to focus on the behaviour of the weak solu-
tion when we have an initial random distribution of the porous radii as well as in the
case when we have variations of the relative sizes of the parameters a′

i s and b′
i s as

they arise in Eq. (11). The former set of experiments will give us an idea of how the
porous radius evolves from an initial distribution towards clogging, while the latter
can enlighten the significance of themass interchange between colloidal and deposited
species in the process. Naturally, Eq. (4) needs to be complemented with correspond-
ing initial and boundary conditions. As we assume a two-dimensional macroscopic
domain, we takewithout loss of generality x = (x1, x2) ∈ [0, 1]×[0, 1]. Furthermore,
we set Robin boundary conditions at the one side of the square for the u′

i s, that is

[
Di

∂ui
∂n

]
(x1, 0, t) + brui (x1, 0, t) = ubi (x1) > 0, t > 0, x1 ∈ [0, 1], (18)

for the particular scenario when we have inflow of colloids in the domain from only
one side of the domain. We impose Neumann boundary conditions (hence, a perfect
reflection) for the rest of the boundary

∂ui
∂n

(x1, x2, t) = 0, (19)

for (x1, x2) such that 0 ≤ x2 ≤ 1 with x1 = 0, 1 or 0 ≤ x1 ≤ 1 with x2 = 0. As initial
conditions, we set

ui (x, 0) = uai (x) ≥ 0. (20)

We also consider an arbitrarily prescribed initial distribution v0 for the deposited
species and r0 for the radius given by Eqs. (12) and (14), respectively.

Solution strategy We follow the same solution strategy as proposed in our recent
work (Eden et al. 2021). Initially, we need to obtain a numerical approximation for
the (weak) solution to the cell problems, i.e. we approximate the solutions to the
Eqs. (7)–(9), and then determine the shape of the corresponding cell functions w1, w2
posed in Y \ B(r). Given that r ∈ [r0, 1/2], we take a partition of width δr , ra =
r0, r1 = r0 + δr , . . . , rM1 = 1/2. Next, we obtain a sequence of solutions for the
cell problem (7) for each Y \ B(ri ) corresponding to the radius ri of the partition.
These sequence of problems are solved with a finite element scheme [see Muntean
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and Nikolopoulos (2020) for the technical details]. Having available the numerical
evaluation of the cell functions wk (k = 1, 2) as approximate solutions to the cell
problems (7)–(9), the entries of the diffusion tensor (Di ) jk in Eq. (10), that is the
the integral of the derivatives of the cell functions, together with the porosity φ times
the constant diffusion coefficient di , can now be calculated directly for each ri of
the aforementioned partition. Consequently, for each r(x, t), and thus, for each Y \
B(r(x, t)), the corresponding value of (Di ) jk can be approximated directly via a
standard linear interpolation.

As a next step, we proceed with the solving of the system of Eqs. (5)–(7). To this
end, we apply a finite difference scheme4 to approximate the field Eq. (5) together
with its boundary and initial conditions.

We consider a uniform partition of the domain Ω , with x = (x1, x2) ∈ Ω , 0 ≤
x1 ≤ 1, 0 ≤ x2 ≤ 1, of (M + 1) × (M + 1) points with spacial step δx1 = δx2 = δx
and with x1�1 = �1δx , �1 = 0, 1, . . . M , x2�2 = �2δx , �2 = 0, 1, . . . M .

Additionally, we take a partition of NT points of the time interval S = (0, T ), where
T is the maximum time of the simulation, with step δt and tn = nδt , i = 0, . . . NT −1.

LetUi
n
�1,�2

be the numerical approximation of the i th species of the solution of Eq.

(4) at the point (x1�1, x2�2 , tn), that is ui (x1�1, x2�2 , tn) � Ui
n
�1,�2

in ΩT = S̄ × Ω .
Moreover,we denote byDi

n
�1,�2

the corresponding approximation of the diffusion coef-
ficients (Di ) jk(x1�1, x2�2 , tn) � Di

n
�1,�2

and similarly by Vi n�1,�2 the approximation
for the species v, v(x1�1, x2�2 , tn) � V n

�1,�2
.

The discretization of the terms in (5) has the following form:

∂

∂x1

(
Di (x, t)

∂ui
∂x1

)
� (

ui (Diui x1)
)
x1

:= 1

δx

[
Di

n
�1+ 1

2 ,�2

(Ui
n
�1+1,�2

−Ui
n
�1,�2

δx

)
− Di

n
�1− 1

2 ,�2

(Ui
n
�1,�2

−Ui
n
�1−1,�2

δx

)]
,

∂

∂x2

(
Di (x, t)

∂

∂x2

)
� (

ui (Diui x2)
)
x2

:= 1

δx

[
Di

n
�1,�2+ 1

2

(Ui
n
�1,�2+1 −Ui

n
�1,�2

δx

)
− Di

n
�1,�2− 1

2

(Ui
n
�1,�2

−Ui
n
�1,�2−1

δx

)]
,

Di �1+ 1
2 ,�2

= Di �1+1,�2 + Di �1,�2

2
,Di �1− 1

2 ,�2
= Di �1,�2 + Di �1−1,�2

2
,

Di �1,�2+ 1
2

= Di �1,�2+1 + Di �1,�2

2
,Di �1,�2− 1

2
= Di �1,�2 + Di �1,�2−1

2
.

Moreover, by applying a standard forward in time discretization scheme for the time
derivative, we obtain the following finite difference scheme for tracking the evolution

4 The reader may wonder why we have chosen for a combined FEM-FD scheme to handle our problem.
This is simply done for the convenience of the implementation. Other options are though available. For
instance, to facilitate a rigorous numerical analysis of the discretization schemes, one would need to opt
for a fully two-scale FEM approach, of for a fully two-scale FD approach. This will be done in a follow-up
approach.
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of both species ui and v, namely

Ui
n+1
�1,�2

= Ui
n
�1,�2

+ δt
(
Ui (Dui x1)

)
x1

+ δt
(
Ui (Dui x1)

)
x1

+ δt Ri
n
�1,�2

− δt Fn
�1,�2

,

V n+1
�1,�2

= V n
�1,�2

+ δt
N∑

i=1

aiUi
n
�1,�2

− βV n
�1,�2

,

where β := ∑N
i=1 bi and

Ri
n
�1,�2

= 1

2

∑

p+q=s

γp,qUp
n
�1,�2

Up
n
�1,�2

−Us
n
�1,�2

N−s∑

p=1

γs,pUp
n
�1,�2

,

and

Fn
�1,�2

= 2πrn�1,�2
1 − π(rn�1,�2)

2

(
aiUi

n
�1,�2

− bi V
n
�1,�2

)
,

Finally, the approximate value rn�1,�2 of the radius r is given by

rn+1
�1,�2

= rn�1,�2 + δt
1

rn�1,�2
α

(
N∑

i=1

aiUi
n
�1,�2

− βV n
�1,�2

)
Ln

�1,�2
.

5 Simulation case studies

Our main interest is to capture numerically the effect of the deposition process of the
colloidal species around the solid cores of the cells. The effect is expected to be visible
as soon variations in time of the radius r occur.

To illustrate numerically our model, we consider N = 3 mobile species ui and one
immobile species v. Note though that N can be in practice much higher, e.g. for soils it
is not unusual to reach N = 40.We take zero distributions as initial conditions (t = 0)
for the colloidal populations, while we consider various specific initial distributions
for the radius r .

Our model needs a quite large number of parameters. These dimensionless param-
eters were chosen in a range indicated by the model evaluation in Johnson and
Elimelech (1995), Krehel et al. (2015) and Muntean and Nikolopoulos (2020).
We take them as follows: (d1, d2, d3) = (.3, .5, .99), (a1, a2, a3) = (.9, .5, .3),
(b1, b2, b3) = (1, 1, 1), γi, j = 10, i, j = 1, . . . 3, uia(x) = 0.

We also take the function ubi to be defined as

(ub1, u
b
2, u

b
3) = (ub10x1(1 − x1), 0, 0)

with ub10 = 25 for t > 0. In this way we simulate an inflow of u1 stronger in the center
of the line segment x2 = 0. Moreover, we let br = 0.5, v(x1, x2, 0) = 0.
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Fig. 3 Left: random initial distribution of radii. Here r0 takes randomvalues following a uniformdistribution
in the interval [0.01, 0.25] at the first (left) graph. Right: corresponding porosity

In addition, we take as final simulation time T = 3 and set the remaining parameters
to be M = 41, R := δt/δx2 = 0.3.

Approximated concentration profiles with random initial radius distribution In this
set of simulations a random initial distribution is assumed. We take r0 to have random
values of uniform distribution in the interval [0.01, 0.25]. The form of the initial
random distribution and corresponding porosity is presented in Fig. 3.

Next, in the first row of the panels shown in Fig. 4, concentration profiles of the
colloidal population u1 are plotted against space. A similar behavior of the concentra-
tion profiles is exhibited by the colloidal populations u2 and u3 as we can see in the
second and third row of the same figure. For presentation purposes, we focus on the
subdomain ofΩ where variations are significant, that is on [0, 1]×[0, 0.5]. We notice
that there is no significant effect on the shape of the concentration profiles due to the
randomness of the radius initial distribution. Small random perturbations smooth out
with time. The inflow at the one segment of the square, x2 = 0, causes an increase of
the deposition, and consequently, also of the radius. This leads to a slowing down of
the diffusion near the boundary. The latter also results in not having significant (and
visible in Fig. 4) variations of the ui ’s with respect to time, especially at the later stages
of the simulation. This effect is also apparent in the next set of contour plots of the
radius distribution as we can see in Fig. 5 (the perturbations due to randomness are
visible).

In addition, we refer the reader to the next set of panels in Fig. 6. Here we show a
sequence of line plots of the porosity and of the tortuosity given byEq. (10) against time
at specific points in the domain Ω . These specific points are: (x1, x2) = (0, 5, 0),
(0, 5, 0.25), (0, 5, 0.75), (1, 0.5). It us worth noting that in all these points, the
porosity decreases with time and tends to stabilize at the end of the simulation, while
the tortuosity (accounting for the specific internal geometry of our model) fluctuates
around the value T ∼ 1. Moreover, it is instructive to see in Fig. 7 the distribution of
the colloidal species ui , i = 1, 2, 3 against time for these specific spatial points.

Finally, in Fig. 8, we calculate the flow of one of the colloidal species, u1
through a line segment of our domain vertical to the direction of the inflow from
the boundary segment x2 = 0. Specifically, we calculate the quantity 
(x2, t) =
− ∫ 1

0

[
Di

∂u1
∂x2

]
(x1, x2, t)dx1, at the points x2 = 0, 0.25, 0.5, 0.75. We observe an
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Fig. 4 Concentration profiles at different time steps for the species ui , i = 1, 2, 3 in the case that we have
random initial distribution of the radii. Note the accumulation localized around 0.5, more visible for the
populations u2 and u3
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Fig. 5 Contour plot steps for the radius distribution r = r(x1, x2, t)

initial bump at the first stage till t ∼ 1 and a stationary behaviour at larger times,
decreasing as we move deeper in the domain. The later is due to clogging occurring
near the boundary for larger times.

Approximated concentration profiles with uniform initial radius distribution and
variation on the relative size of ai and bi In the next series of simulations, we inves-
tigate the effect of the relative sizes of the parameters ai and bi on the flow of the
colloidal species through a fixed frame with respect to time. Having as a baseline the
values of the parameters chosen in the previous experiment we test the behaviour of

123



    1 Page 14 of 19 GEM - International Journal on Geomathematics             (2023) 14:1 

Fig. 6 Line plots of the porosity (blue) and tortuosity (red) against time at the points (x1, x2) =
(0, 5, 0), (0, 5, 0.25), (0, 5, 0.75), (1, 0, 5). Due to the isotropic nature of the diffusivity in our case (direct
result of our particular choice of microstructures), the tortuosity tensor is here a scaled unit matrix (colour
figure online)

the model for the cases that the a’s or b’s have different order of magnitude testing in
this way the transfer mechanism of Henry’s law.

More specifically, as we can see in Fig. 9, for a fixed point x02 = 0.5we calculate the

total amount of u1, U1(x2, t) = ∫ 1
0 u(x1, x02 , t) dx1. Then U1 is plotted with respect

to time for the case when (a) ai � bi , (a1, a2, a3) = (.9, .5, .3), (b1, b2, b3) =
(27, 15, 19), i.e ai = (1/30) bi , (orange line), (b) ai = bi , (a1, a2, a3) = (.9, .5, .3),
(red line), (c) ai � bi , (a1, a2, a3) = (.9, .5, .3), ai = 30 bi , (blue line). The rest of
the parameters are set to be the same as in the previous numerical experiment. These
choises for the parameters ai , bi correspond to Damköhler numbers Da much larger
as order of magnitude in cases (a) and (c) compared to case (b).

Additionally, in the next set of four panels presented in Fig. 10, we focus the
attention on the flow of one of the colloidal species (u1) through a line segment as in
Fig. 8. We plot the flow 
(x2, t) at the points x2 = 0, 0.25, 0.5, 0.75 for the three
cases (a) ai � bi , (blue line), (b) ai = bi , (red line), (c) ai � bi , (orange line).
In all these cases, it seems that the flow becomes stationary for larger times. Near
the boundary (x2 = 0, 0.25) when ai � bi (case (c)) the flow is larger compared
with cases (a) and (b) while it takes smaller values deeper in the square domain

123



GEM - International Journal on Geomathematics             (2023) 14:1 Page 15 of 19     1 

Fig. 7 Line plots of the colloidal species ui against time at the points (x1, x2) = (0, 5, 0), (0, 5, 0.25),
(0, 5, 0.75), (1, 0, 5)

x2 = 0.5, 0.75. In conclusion, the flow is choked for case (c) where a >> b, while
in cases (a) and (b) we can observe some flow.

6 Concluding remarks and outlook

After reviewing our model equations, we did illustrate numerically clogging effects.
The obtained results confirm our expectations from the modeling and analysis point
of view, but are not yet verified experimentally. It would be very beneficial to get
additional trust by getting the chance to compare our numerical results with pointwise
measurements around detected clogging points.

Furthermore, additional work needs to be done regarding the numerical approxi-
mation of the target problem. A unified (two-scale) finite element approach can allow
for a more efficient tackling of the problem for a large variety of choices of shapes of
microstructures, possibly also allowing for a high performance computing approach
like in Richardson et al. (2021).

It would be very interesting as well to consider random spacing of the porous radii.
Playing numerically with variations in the positioning of the balls centering inside
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Fig. 8 Plots of the total flow of u1, 
(x2, t) through the line segments x2 = 0, 0.25, 0.5, 0.75

Fig. 9 Plot of U1 for a ai � bi ,
(orange line), b ai = bi , (red
line), c ai � bi , (blue line)
(colour figure online)
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the unit cell adds extra difficulty in solving the cell problems, and consequently, in
calculating efficiently the entries of the diffusion tensor. A successful handling of
such aspect would enlarge considerably the types of porous structures where our
methodology is in principle applicable. What concerns the current two-dimensional
microscopic setting, it is worth noting that allowing for r to be greater than one [see
Muntean and Nikolopoulos (2020)] would be an interesting addition both analytically
and numerically to our current approach.
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Fig. 10 Plot of 
(x2, t) for a ai � bi , (orange lines), b ai = bi , (red lines), c ai � bi , (blue lines), for
x2 = 0, 0.25, 0.5, 0.75 (colour figure online)

Last but not least, from the viewpoint of practical applications, being able to
handle a three-dimensional setting for the macroscopic problem coupled with a three-
dimensional setting for the microscopic problem is needed to obtain more realistic
results near the fully clogged or partially clogged regions.
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