

Lab protocols to study Solute Carrier Transporters

Generation of Knockout-Overexpression cell lines

ID: SP0002-U

Authors	¹ Christoph Klimek, ¹ Svenja Onstein, ¹ Barbara Barbosa, ¹ Alvaro Ingles-Prieto, ¹ Anna Skucha, ¹ Gernot Wolf
Affiliations	¹ CeMM Research Center for Molecular Medicine. Vienna, AT

The RESOLUTE project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 777372. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and EFPIA.

Protocol description

Protocol for the generation of knockout (KO) overexpression (OE) cell line pools via lentiviral transduction.

Materials

Biological materials:	 Envelope plasmid pMD2.G (Addgene, 12259) 	
	 Packaging plasmid psPax2 (Addgene, 12260) 	
	 Lentiviral plasmid expressing HA-Strep-tagged codon-optimized cDNA (modified from pCW57.1, Addgene #41393) 	
	HEK293T cells	
	 Knockout cell line to be transduced 	
Reagents:	 Lipofectamine 3000 (ThermoFisher, L3000001) 	
	 Blasticidin (Invivogen, ant-bl-5b) 	
	 Opti-MEM (ThermoFisher, 31985070) 	
	 Polybrene (Sigma-Aldrich, H9268) 	
Equipment:	 Sterile tissue culture hood, general lab equipment 	

Reagents setup

5 mg/ml stock solution of Polybrene

Dissolve 50 mg of Polybrene in 10 ml of ddH20 and sterilize through a 0.22- μ m filter. Make 500 μ l aliquots of the solution and store at -20°C.

Procedure

- Transfection Day 1
 - 1. Seed HEK293T cells in 100 μI DMEM supplemented with FBS at a density of 15000 cells/well on a 96 well plate

Transfection - Day 2

- 2. Check HEK293T cells (should be 50-70% confluent)
- 3. Prepare transfection reagents:
- 4. Lipofectamine MM (scale up according to planned transfections, add 10% extra)

	µl per reaction
Optimem	7.15
Lipofectamine 3000	0.35

Total volume	7.5	
--------------	-----	--

- 5. Let the Lipofectamine MM incubate for 10 min at RT
- 6. DNA MasterMix (MM) (scale up according to planned transfections, add 10% extra)

	µl per reaction
Optimem	4.8
pMD2.G (100 ng/ul)	0.3
psPax2 (100 ng/ul)	0.5
P3000 Reagent	0.3
Total volume	6.0

- 7. Pipette 6 μ l of DNA MM per reaction into clean PCR strips or plates
- 8. Add 1.5 μ l of overexpression plasmid (concentration: 50-100 ng/ μ l) to 6 μ l of DNA MM
- 9. Mix 6 μI of Lipofectamine MM per reaction with each DNA MM
- 10. Incubate at RT for 5-15 minutes
- 11. Add 10 μ l of mix to HEK293T cells (keep pipette tips in medium while dispensing but do not touch the bottom of the wells)

Transfection - Day 3

12. Add 120 μ l fresh medium to transfected HEK293T cells (pipette very slowly to avoid detachment of HEK293T cells)

• Transfection - Day 4

13. Transfer 200 μI of the virus-containing medium to a safe-lock tube and immediately freeze at -80°C

Transduction - Day 1

 Seed the cell line to be transduced at 1.5x10⁴ cells/well in a 96 well plate (Note: add one more well than needed as a negative control)

Transduction - Day 2

2. Thaw the safe-lock tube with the virus-containing medium at RT

- 3. Change the medium of the cell line to 100 μ l of medium with 10 μ g/ml polybrene
- 4. Add 100 μ l of thawed lentivirus to the cells
- Transduction Day 3
 - 5. If transduced cells are confluent: split transduced cells and transfer 200 μl to a 24 well plate
 - 6. If not confluent: change medium on the cells
- Transduction Day 4
 - 7. Change medium to selection medium (10 μ g/ml Blasticidin)
 - 8. If cells are still on a 96 well plate, transfer to a 24 well plate and start Blasticidin selection the next day
- Transduction Day 5-12
 - 9. Monitor cells and split when reaching 80-100%. Keep under Blasticidin selection. Change medium every 3-4 days depending on confluency

Transduction - Day 13-15

- 1. Observe negative control (untransduced cells), remove Blasticidin from transduced cells if all cells in neg. control are dead
- 2. Monitor cells and expand when reaching 80-100% confluency (after at least 10 days of selection)
- 3. Expand cells to 10 or 15 cm dishes (depending on how many freeze stocks are needed).

Additional notes

Data/reagent availability

https://re-solute.eu/resources/reagents

References

Please write to <u>contact@re-solute.eu</u> in case of questions or errors.