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 To meet customer expectations and remain competitive, industrials try 

constantly to improve their quality control systems. There is hence 

increasing demand for adopting automatic defect detection solutions. 

However, the biggest issue in addressing such systems is the imbalanced 

aspect of industrial datasets. Often, defect-free samples far exceed the 

defected ones, due to continuous improvement approaches adopted by 

manufacturing companies. In this sense, we propose an automatic defect 

detection system based on one-class classification (OCC) since it involves 

only normal samples during training. It consists of three sub-models, first, a 

convolutional autoencoder serves as latent features extractor, the extracted 

features vectors are subsequently fed into the dimensionality reduction 

process by performing principal component analysis (PCA), then the 

reduced-dimensional data are used to train the one-class classifier support 

vector data description (SVDD). During the test phase, both normal and 

defected images are used. The first two stages of the trained model generate 

a low-dimensional features vector, whereas the SVDD classifies the new 

input, whether it is defect-free or defected. This approach is evaluated on the 

carpet images from the industrial inspection dataset MVTec anomaly 

detection (MVTec AD). During training, only normal images were used. The 

results showed that the proposed method outperforms the state-of-the-art 

methods. 
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1. INTRODUCTION 

Efficient quality inspection is one of the cornerstones of successful manufacturing companies. Since 

human visual inspection is error-prone and subjective, there has been a movement towards automatic defect 

detection systems [1], more than that, recently we witness the transition to the era of quality 4.0, which we 

can define as a mature quality system that sought to leverage industry 4.0 technologies. In fact artificial 

intelligence and machine learning [2] had proven their abilities to perform quality inspection [3]. A plethora 

of defect detection methods have shown to be promising and efficient [4]. However most of them are based 

on supervised learning [5], requiring considerable amount of normal and abnormal (i.e. defected) samples to 

train the model efficiently, which is not always available in real applications. Actually, manufacturing 

companies adopt increasingly improvement approaches [6] as lean management and six sigma [7], with the 

attention of managing the fabrication process and reducing defective products by targeting zero defect 
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manufacturing. Defects hence rarely occur in production, and meanwhile there is enormous need to build 

automatic defect detection system. 

One-class classification (OCC) algorithms [8] offer the potential to create automatic inspection 

system in early stage without having to wait for more defected samples to be collected. Consequently 

industrials could exploit the important amount of data in their possession, despite highly skewed class 

distribution. The main idea of OCC methods is to distinguish between normal and abnormal class, drew on 

the knowledge gained of normal samples during training. 

The term OCC was first introduced by [9] to denote a category of classification algorithms that 

address cases where few to none defect samples are available for training; the normal class is well-defined 

while abnormal one is under-sampled [10] which is quite common in industrial areas [11] ,and with that, 

defects are seen as a deviation from defect-free class. The OCC concept encompasses several approaches, 

such as methods based on density [12], distance [13], neural networks [14], [15], and boundary approaches 

[16] that aims to encircle normal samples by a decision boundary. The work [17] developed adversarially 

trained deep neural networks, the first component works as image reconstructor, while the second represents 

the classifier. Autoencoders also were used to address OCC problems [18], [19]. In general, these researchers 

assumed that autoencoders generates higher reconstruction error for defected samples. Going through 

research works that address OCC, it is clearly apparent that support vector data description (SVDD) [20] is 

one of the extensively used algorithms in OCC applications for its satisfactory results [21]. Luo et al. [22] 

introduced a cost-sensitive SVDD, which is a method that provides different costs to classification errors. 

The paper [23] developed a new SVDD approach to deal with uncertain data. They trained the SVDD by 

using the similarity scores between examples and normal class. It is reported to outperforms regular SVDD in 

terms of sensitivity to noise. Shi et al. [24] introduced improved SVDD by combining relative density weight 

with SVDD. However, those SVDD based methods have difficulty dealing with large and high-dimensional 

datasets [25] mainly because of optimization complexity. 

 

 

2. METHOD 

The intent of this work is to create an automatic defect detection system. We propose a model that 

could manage imbalanced data and, at the same time yield to interesting results in high-dimensional spaces 

using SVDD algorithm. In this section, we describe the proposed defect detection system in detail, and we 

highlight the three components of our model: convolutional autoencoder, principal component analysis 

algorithm (PCA) and SVDD algorithm. 

 

2.1.  Overview 

Product surface images are used as input for our algorithm and only images of normal class are 

present during training. The proposed system consists of three main phases. Firstly, we use a convolutional 

autoencoder that allows extracting image’s abstract features. Once this submodel is trained, the decoder part 

is discarded. Then the bottleneck features vector is later fed into PCA in order to perform dimensionality 

reduction by inducing efficient and discriminating features representation. So that it serves as training input 

of the SVDD classifier. The test images are forwarding through the trained model to determine whether the 

image is normal or defected. The proposed system takes advantage of the convolutional autoencoder ability 

to extract robust features automatically; meanwhile it alleviates the problem of SVDD of handling high-

dimensional datasets. Figure 1 shows the overview of the proposed approach, and Figure 2 illustrates the 

flowchart of the entire system. 

 

 

 
 

Figure 1. Shows the overview of the suggested approach 
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Figure 2. The flowchart of the proposed system 

 

 

2.2.  Features extraction 

As a first stage a convolutional autoencoder (CAE) is used to extract image features. CAE can 

automatically provide powerful feature learning [26]. Moreover, in [27] it has been proven that the more the 

architecture of convolutional autoencoder becomes deeper, the more powerful features are extracted through 

layers , in a way that first layer provides generic features while subsequent layers extract complex features. 

Basically, autoencoder is a neural network that consists of two connected sub-models: an encoder and a 

decoder. The symmetric structure of the autoencoder allows the reconstruction of input data through the 

features vector provided by the bottleneck layer (i.e., encoder output) as illustrated in Figure 1. Considering 

X the domain of the input data samples and Z the domain of the encodings. 

Given a sample x ∈ 𝕏, z ∈ ℤ the encoded representation of x, and xr the reconstructed input. The 

encoder-decoder process can be summarized,  

 

𝑧 = 𝑔𝑒(𝑥; 𝜃𝑒) (1) 
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𝑥𝑟 = 𝑔𝑑(z; 𝜃𝑑) (2) 

 

Where ℊℯ: 𝕏 → ℤ is the encoding function and ℊ𝒹: ℤ → 𝕏 the decoding function, while 𝜃𝑒, 𝜃𝑑 represent the 

encoder and decoder parameters respectively. A loss function is used to measure reconstruction error; we 

have chosen ℓ2 loss for its simplicity and computational speed. The loss function is formulated as,  

 

𝐿(x, 𝑥𝑟) =  ‖x − 𝑥𝑟‖2 (3) 

 

In this work, we trained the convolutional autoencoder on defect-free samples. Once the model is 

trained, we use the bottleneck layer as automatic features extractor. The encoder consists of five convolution 

layers where each layer is followed by a batch normalization layer. The max-pooling layer is used from the 

second convolution layer where each layers use the rectifier linear unit (ReLu) acti-vation function,  

i. The first two convolutional layers consist of 32 fil-ters of size 3×3, the second one followed by a 

downsampling (max-pooling) layer. 

ii. The third convolutional layer consists of 64 filters of size 3×3, followed by another downsampling 

layer. 

iii. The fourth convolutional layer consists of 128 fil-ters of size 3×3. 

iv. The fifth convolutional layer consists of 256 filters of size 3×3. 

 

2.3.  Dimensionality reduction 

Since SVDD has difficulty handling high-dimensional datasets, PCA [28] was applied to reduce the 

dimensionality of features vectors provided by the CAE. PCA is a statistical procedure that aims to project 

high-dimensional input data into a lower dimension space while retaining most of the information. Let Z be 

an n×m data matrix, where the rows represent the n extracted vectors while the features are represented by 

columns. PCA process is formulates,  

a) Standardize the m-dimensional data 

 

𝓏𝒾𝒿 ⇒
𝓏𝒾 𝒿 − 𝓊 

𝓈𝒿
 (4) 

 

Here: 𝓏𝒾𝒿  is the (𝒾 𝒿)th entry of Z, 𝒾 = 1, … , n and 𝒿 = 1, … , m. 𝓊 and s𝒿 are respectively the mean 

and the variance of 𝒿eme dimension.  

b) Calculate the covariance matrix  Z𝓬 
 

 Z𝓬 =
1

𝑛
 𝑍𝑇𝑍 (5) 

 

c) Construct the n eigenvalues and n eigenvectors via covariance matrix 𝑍𝒸 

 

 Z𝓬ν𝒾 = λ𝒾ν𝒾 (6) 

 

Where 𝝀𝓲 denotes the eigenvalues, ν𝒾 represents the eigenvectors and 𝒾 = 1, … , n. 

a. Choose k eigenvectors corresponding to the k highest eigenvalues k<m. 

b. Project the input data into new k–dimensional space. 

Let,  

 

V = [ν1, ν2, … , νk] (7) 

 

Then,  

 

𝑧𝒾′ = 𝑉𝑇𝑧 (8) 

 

Where z𝒾′ is the low-dimensional features vector. 

 

2.4.  Defect detection 

The defect detection task is done using SVDD. This algorithm attempts to determine a hypersphere 

with the minimum volume that encircles almost all training data. The spherical boundary is characterized by 

a center a and a radius R, hence during test, points that fall outside the boundary are considered as abnormal 

as illustrated in Figure 3. The parameters R and a are defined by (9), 
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 𝑚𝑖𝑛 R2 + C ∑ ξ𝒾
𝓃
𝒾=1  (9) 

 

Subject to, 

 

 ‖z𝒾
′ − a‖ 2 ≤  R2 + ξ𝒾 ∀ 𝓲 (10) 

 

 ξ𝒾  ≥ 0 ∀ 𝓲 (11) 

 

here 𝝃𝓲 : are slack variables that allow some points in training data to be outside the sphere and C represents a 

penalty constant that controls the trade-off between the volume of the hypersphere and rejected points.  

 

 

 
 

Figure 3. Illustration of SVDD 

 

 

The optimization problem (9) is solved via its dual formulation,  

 

 max ∑ α𝔦〈z𝒾
′ , z𝒾

′ 〉 − ∑ α𝒾α𝒿〈z𝒾
′ , z𝒿

′ 〉𝒾,𝒿
𝓃
𝒾=1  (12) 

 

s.t.  

 

0 ≤ α𝒾 ≤ C 𝒾=1, 2,…, 𝓃 (13) 

 
∑ α𝒾 = 1𝓷

 𝓲=𝟏  (14) 

 

Where α𝔦 are lagrange multipliers, and 〈z𝒾
′ , z𝒿

′ 〉 denotes the inner product of z𝒾
′  and z 𝒿

′ .The hypersphere 

boundary is determined by support vectors for which 0 ≤ α𝒾 ≤ C. The center ‘a’ is calculated as,  

 

a = ∑ z𝒾
′𝓃

𝒾=1 α𝒾 (15) 

 

The radius R is then computed by selecting an arbitrary support vector 𝓏𝓀
′ ,  

 

 𝑅2 = ‖𝑧𝓀
′ − 𝒶‖2  = 〈𝑧𝓀

′  , 𝑧𝓀
′ 〉 − 2 ∑ 𝛼𝔦〈𝑧𝓀

′  , 𝑧𝒾
′〉 + ∑ 𝛼𝒾𝛼𝒿〈𝑧𝒾

′ , 𝑧𝒿
′〉𝒾,𝒿

𝓃
𝒾=1  (16) 

 

For each new input 𝑦, the distance between this tested point and the center 𝒶 is computed as,  

 

 dist2(y) = 〈y , y〉 − 2 ∑ α𝔦〈y , z𝒾
′ 〉 + ∑ α𝒾α𝒿〈z𝒾

′ , z𝒿
′ 〉𝒾,𝒿

𝓃
𝒾=1  (17) 

 

Thus, points with dist2(y) ≥ R2 are considered as defected.  
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According to [20], replacing the inner product 〈z𝒾
′ , z𝒿

′ 〉 in (12) with appropriate kernel function 

𝐾(𝓏𝒾
′ , 𝓏𝒿

′)provides more flexibility to define the boundary. We have chosen to use the Gaussian kernel 

function, given that it is the kernel reported to be yielding satisfactory results in OCC applications [29]. The 

Gaussian kernel is defined as,  

 

𝐾(z𝒾
′ , z𝒾

′ ) = 𝑒𝑥𝑝
−‖z𝒾

′−z𝒿
′ ‖

2

2𝜎2  (18) 

 

Where 𝜎 is the kernel width.  

 

 

3. RESULTS AND DISCUSSION 

The experimental environment is a computer with an i7-7700HQ CPU, 16GB of RAM, Nvidia RTX 

2080 Ti GPU, running Windows 10, and we used the Tensorflow library to implement the proposed 

approach. To demonstrate the effectiveness of our suggested system for defect detection, we conducted a set 

of experiments on the carpet images from MVTec anomaly detection (MVTec AD) dataset [30],which is a 

benchmark of natural images dedicated to unsupervised anomaly detection that mimics real industrial 

inspection applications. The carpet dataset consists of 390 high-resolution images of 1024×1024 pixels, 

divided into 72% of normal data and 28% of abnormal data .The training set is composed of defect-free 

images, while the test set consists of normal images as well as images containing 5 different types of fine-

grained anomalies on the carpet’s surface like threads, cuts, metal contamination, color and holes. The 

dataset overview is shown in Figure 4. Data augmentation was needed to diversify the training data set and 

make the model more generalizable. To do so, random flips and rotations strategies were applied generating 

1449 image. Finally, both categories were rescaled to 512×512 pixels. 

 

 

 
 

Figure 4. Images of carpet dataset 

 

 

We adopted the accuracy, area under the receiver operating characteristic curve (AUROC) and F1 

score to measure the performance of the proposed method. Accuracy and F1 score are computed as,  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (19) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (20) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (21) 

 

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (22) 

 

Where true positive (TP): is the number of images correctly classified as defective. 

True negative (TN): is the number of images correctly classified as normal. 
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False positive (FP): is the number of images incorrectly classified as defective.  

False negative (FN): is the number of images incorrectly classified as normal. 

For this implementation, we assumed that there are no outliers in training data. We defined C=1, 

which implied that ξ_(i=)=0 [31]. The kernel width σ is optimized through cross validation. We investigated 

the performance of our model on the carpet images and compare it with state-of-the-art methods. 

Furthermore, we conducted comparison with the two-stage model “Convolutional autoencoder-SVDD” 

(CAE-SVDD), to prove the importance of PCA algorithm in the proposed system. 

As shown in Table 1, the proposed approach method outperforms the compared methods on all 

metrics at detecting the defects in carpet dataset. The AUROC result of CAE-PCA-SVDD model was better, 

with mean value 0.20% higher than the other algorithms. As can be observed in the comparison with  

CAE-SVDD algorithm, applying PCA to reduce features vector dimensionality, leads to better performance 

than the CAE-SVDD structure. Hence the proposed defect detection system could operate well in high 

dimensional spaces. However, the proposed approach has some limitations. As shown in Figure 5, the system 

failed to recognize a defect when the contrast of defected part is similar to the texture of the image. 

 

 

Table 1. Experimental results of different approaches on the carpet dataset 
Approach AUROC Accuracy F1 score 

Liu et al. [18] 0.78 - - 

Wang et al. [19] 0.94 0.71 0.88 
Bergmann et al. [32] 0.87 0.67 0.87 

Bergmann et al. [32] 0.59 0.50 0.54 

CAE-SVDD 0.71 0.60 0.67 
CAE-PCA-SVDD 0.98 0.94 0.97 

 

 

 
 

Figure 5. A false negative case 

 

 

4. CONCLUSION 

The current paper proposes automatic defect detection system that attempts to mitigate the lack of 

representative samples of defected images. Hence it can be applied in cases where significant amount of 

normal data is available, while the defected class is characterized by few samples. The suggested approach 

comprises three components: convolutional autoencoder for image features extraction, then PCA is applied to 

reduce dimensionality of features vector, and finally SVDD is implemented to classify images. The 

motivation behind this structure is to build automatic defect detection system that is able to handle effectively 

imbalanced data. The proposed method has proved to be efficient in experiment developed on carpet dataset 

from MVTec AD. It is important to note that SVDD parameters (C and the width 𝜎 ) vary from one dataset to 

another. In this work C was defined as C=1, while 𝜎 was chosen through cross-validation to find best 

accuracy. As a future work, we plan to evaluate the proposed approach on different datasets, and also utilize 

an automatic method to determine the parameters: (C, 𝜎), which will facilitate the application of our 

approach. Furthermore we will investigate further techniques to improve the ability of the proposed system to 

handle texture features. 
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