
Science, Engineering and Technology Volume 2, Issue 1, Pages 30-37
www.setjournal.com https://doi.org/10.54327/set2022/v2.i1.19

30

1

Microservice development using RabbitMQ message broker

Amar Ćatović1, Nevzudin Buzađija2, Samir Lemeš2
1 Isatis Software Solutions, Kralja Tvrtka 12, Sarajevo 71000, Bosnia and Herzegovina

2University of Zenica, Fakultetska 1, Zenica 72000, Bosnia and Herzegovina

Abstract

Nowadays, when applications are being developed faster with the introduction of agile methodologies and new
technologies, microservices are emerging. The microservices make applications easier to create and maintain when
broken down into smaller parts, which form a whole application. RabbitMQ acts as an intermediary between the
various services. It reduces the load and delivery time on server web applications by delegating tasks that would
typically take a lot of time and resources. Message queuing allows web servers to respond quickly to requests rather
than being forced to perform complex procedures that can take more time and resources. AMQP (Advanced Message
Queuing Protocol) is a message protocol that deals with publishers and consumers like any other messaging system.
Publishers produce messages while consumers download and process them. The job of message brokers, such as
RabbitMQ, is to ensure that messages from publishers go to the right consumers. To do this, the broker uses two key
components: exchange and order. We demonstrated that the style of microservice architecture is an approach to the
development of an application as a set of small services, each in charge of its own process and communication with
other services.

Keywords: Microservices, Software Development, RabbitMQ, Message Queuing

1 Introduction

Modern application architecture is increasingly
migrating towards microservice technology due to the
rapid development of applications and shortening the
lifetime of applications. By using microservices, different
development frameworks can be used for individual
microservice, on the other hand, failure of one
microservice does not affect the functionality of other
microservices. Microservice architectures allow
developers to achieve greater agility and can significantly
improve development time. The advantages of
microservice architectures are the following [1]:
independence of developers - small teams work in parallel
and can go through more iterations of the development
cycle than large teams; isolation - if one microservice
stops working, the rest of the application will not crash,
but only one part of it becomes inaccessible; life cycle
automation - individual components are easier to fit into
Continuous delivery pipelines.

RabbitMQ is a free open-source solution that serves as
a message broker via the AMQP (Advanced Message
Queuing Protocol) protocol. It is highly accessible, fault-
tolerant and scalable. In today's microservice applications,
RabbitMQ is used as an intermediary between individual

Published: 30 April 2022
Corresponding author: Samir Lemeš (samir.lemes@unze.ba)
© 2022 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License.

microservices, allowing them to communicate with each
other without worrying about message loss [2]. Like bees,
each development team makes a separate component
using one of the technologies. Each of the individual
components forms a strong structure of the so-called
microservice hive and performs a separate role in the
system.

Several authors investigated the use of RabbitMQ in
microservice development. Kwon et al. in [3] found that
RabbitMQ is vulnerable and presented how it can be
exploited by protocol fuzzing, which is a common way to
find unknown vulnerabilities inherent in software.
Nugroho and Kusumawardani in [4] demonstrated that
RabbitMQ as a load-balancer can divide the workload
equally, thus reducing the latency time of the Naïve Bayes
Classifier classification process. Dixit and Madhu in [5]
used AMQP and different types RabbitMQ exchanges to
send messages to single subscriber or multiple
subscribers, demonstrating the advantages of RabbitMQ
as the message-oriented middleware.

Hong et al. in [6] have shown that when many users
send requests to the web application at the same time, it is
more stable to use RabbitMQ as the message-oriented
middleware than the REST (Representational State

Science, Engineering and Technology Volume 2, Issue 1, Pages 30-37

31

Transfer) API (Application Programming Interface)
communication method. Dragoni et al. in [7] presented a
comprehensive literature review about the microservices,
explaining in detail the importance of microservices.
Indrasiri and Siriwardena in [8] described the
architectural principles and how to use microservices in
real-world scenarios. Akbulut and Perros in [9] obtained
performance results related to query response time,
efficient hardware usage, hosting costs, and packet-loss
rate, for three microservice design patterns practiced in
the software industry. Richter et al. in [10] evaluated the
general properties of a microservice architecture and its
dependability with reference to the legacy system,
achieving high availability with the help of replication.
Bakshi in [11] discussed the benefits and the challenges
of using microservices architecture.

The objective of this paper is to demonstrate how
microservices can be used to create an application for task
management. The process presented can be improved by
introducing nanoservices which would be called through
HTTP (Hypertext Transfer Protocol) request from each
microservice. Another improvement could be obtained by
using Cache memory to optimize the access to multiple
databases simultaneously

2 RabbitMQ message broker

RabbitMQ is a lightweight and scalable message
broker based on AMQP [12]. RabbitMQ acts as an
intermediary between the various services. It is used to
reduce the load and delivery time on server web
applications by delegating tasks that would normally take
a lot of time and resources. The job of message
comparators, such as RabbitMQ, is to ensure that
messages from publishers go to the right consumers. To
do this, the broker uses two key components, namely
Exchange and Queue [13].

Figure 1 shows the working principle of the RabbitMQ
intermediary. The process is quite simple. The publisher
sends messages to the exchange, and the consumer
receives messages from the queue. Before sending
messages, one needs to establish all kinds of links
between exchanges and queues and has to configure
publisher and consumer applications.

Figure 1. Working principle of RabbitMQ intermediary

Usually, a publisher or consumer creates an exchange
with a specific name. If these are applications that are not
developed by the same team of developers, the name of
the exchange is usually put in the documentation or sent
to another team with the appropriate documentation.

The content of an AMQP message consists of headers,
properties, and data. The header and message properties
are object data types. Header is defined by the AMQP
specification, while the properties contain arbitrary
application-specific information. Data is a sequence of
bits, and each message, whether object-type, character or
otherwise, requires UTF-8 conversion. Header and
property conversion is not that common, but it can be
done. One of the header attributes is the "routing-key" that
the broker uses to pass the message to the queues. Each
row contains a "binding-key" attribute, and if the values
of these attributes are the same, the row receives a
message.

2.1 Exchange types in RabbitMQ

The AMQP protocol supports multiple types of
exchanges. Instead of forwarding messages directly to
queues, publishers’ forward messages to exchanges. The
exchange oversees redirecting messages to different
queues via bindings and routing keys. Binding is the link
between order and exchange. The AMQP protocol defines
the following types of exchanges:

- Direct – a direct exchange forwarding the message to
a queue whose routing key matches the binding key.

- Topic – topic-based exchange. It is similar to direct
exchange but includes a template. Queues that meet
the condition from the template receive a message.

- Fanout – messages are forwarded to all queues.
- Headers – header exchange. Messages are passed in

queues by header, and the routing key is ignored.

3 A practical example of an application

To demonstrate the creation of microservices, using
the C# programming language and RabbitMQ message
broker, the application "TaskApp" was created. The
application is used to create and manage tasks. On the
home page of the application, the user has an insight into
all the tasks that need to be done. Tasks contain
information about their creator, the task date, a detailed
description of the task, the person in charge of its
completion and the date by which the task should be
performed. The user can create a new task if he is logged
in to the application. When a new task is created, an email
is sent to the accountable user. Users can also view their
assigned tasks on the profile page and change some of
their personal information.

Science, Engineering and Technology Volume 2, Issue 1, Pages 30-37

32

3.1 RabbitMQ Infrastructure

For the development of the application, it was
necessary to develop a configurational NuGet package
that will retain the definitions of classes and methods to
facilitate the configuration of RabbitMQ intermediaries.
The package was developed to make code easier to
organize, and to comply with the DRY (Don't Repeat
Yourself) code writing rule. In this case, the entire
RabbitMQ broker configuration code is in one place and
will only be installed as a separate package in each
project, thus avoiding rewriting the program code. There
are three basic types in the package: message, command,
and event. Code example 1 shows the message class.

Code example 1. Class Message

public class Message {

 public readonly Guid MessageId;

 public readonly string MessageType;

 public Message() : this(Guid.NewGuid())

 { }

 public Message(Guid messageId) {

 MessageId = messageId;

 MessageType = this.GetType().Name; }

 public Message(string messageType) :
 this(Guid.NewGuid()) {

 MessageType = messageType; }

 public Message(Guid messageId,
 string messageType) {
 MessageId = messageId;

 MessageType = messageType; }

 }

When configuring each of the microservices, it is
necessary to enter information about the RabbitMQ
broker in the appsettings.json file. Depending on whether
the service is used as a publisher or a consumer, two
different configuration classes are used in the Startup
class of each of the microservices. In the Configuration
NuGet package class for the RabbitMQ broker, there are
two methods that create a publisher or consumer.

Code examples 2 and 3 are methods for creating
RabbitMQ consumers and publishers. Both methods use
the GetRabbitMQSettings method, which provides
information about the RabbitMQ broker from the
appsettings.json file and use them to create new classes
for consumers and publishers. In the consumer and
publisher classes in the RabbitMQ broker, the connection
to the RabbitMQ server is established first, and a model is
created. An exchange is then created from the connection
variable, whose name is inside the appsettings.json file.

Code example 2. Handler config method

public static void UseRabbitMQMessageHandler(this
 IServiceCollection services,
 IConfiguration config)

 {

 GetRabbitMQSettings(config,
 "RabbitMQHandler");

 services.AddTransient<IMessageHandler>
 (_ => new RabbitMQMessageHandler(_host,
 _userName, _password, _exchange, _queue,
 _routingKey, _port));

 }

Code example 3. Publisher config method

public static void UseRabbitMQMessagePublisher(this
 IServiceCollection services,
 IConfiguration config)

 {

 GetRabbitMQSettings(config,
 "RabbitMQPublisher");

 services.AddTransient<IMessagePublisher>
 (_ => new RabbitMQMessagePublisher
 (_host, _userName, _password, _exchange,
 _port));

 }

The exchange type is set as a fanout for easier
demonstration of the application. Then rows are created,
and connections are created. In the consumer class, an
event is created that calls the "Consumer_Received"
method of the same class, which converts the UTF-8
message into an object and calls the function that the
programmer creates to perform a specific action. Also, the
same method returns a confirmation to the RabbitMQ
server that a message has been received (Code examples
4 and 5). In the publisher class, the message is converted
to the UTF-8 equivalent, headers are added, and the
message is sent via the "BasicPublish" method (Code
example 6).

Code example 4. Part of the code to establish a
connection and create an event to receive a message

var factory = new ConnectionFactory()

 {
 UserName = _username,
 Password = _password,
 DispatchConsumersAsync = true,
 Port = _port };

 _connection =
 factory.CreateConnection(_hosts);

 _model = _connection.CreateModel();

Science, Engineering and Technology Volume 2, Issue 1, Pages 30-37

33

 _model.ExchangeDeclare(_exchange,
 "fanout", durable: true,
 autoDelete: false);

 _model.QueueDeclare(_queuename,
 durable: true, autoDelete: false,
 exclusive: false);

 _model.QueueBind(_queuename, _exchange,
 _routingKey);

 _consumer = new
 AsyncEventingBasicConsumer(_model);

 _consumer.Received +=
 Consumer_Received;

 _consumerTag =
 _model.BasicConsume(_queuename, false,
 _consumer);

 }

Code example 5. Methods for receiving and
processing messages

private async Task Consumer_Received(object
 sender, BasicDeliverEventArgs ea)
 {

 if (await HandleEvent(ea))
 { model.BasicAck(ea.DeliveryTag, false);}

 }

 private Task<bool>
 HandleEvent(BasicDeliverEventArgs ea)
 {
 // determine messagetype
 string messageType =
 Encoding.UTF8.GetString(
 (byte[])ea.BasicProperties.Headers
 ["MessageType"]);

 // get body
 string body = Encoding.UTF8.GetString
 (ea.Body.ToArray());

 // callback to handle the message
 return _callback.HandleMessageAsync
 (messageType, body);

 }

Code example 6. The method for sending a message
to the publisher

public Task PublishMessageAsync(
 string messageType, object message,
 string routingKey) {

 return Task.Run(() => {

 string data =
 MessageSerializer.Serialize
 (message);

 var body =
 Encoding.UTF8.GetBytes(data);

 IBasicProperties properties =
 _model.CreateBasicProperties();

 properties.Headers =
 new Dictionary<string, object> {
 {"MessageType",
 messageType } };

 _model.BasicPublish(_exchange,
 routingKey, properties, body);

 });

 }

3.2 Application arhitecture

The "TaskApp" application was created using a
microservice architecture. It was written using the .NET 5
framework. The RabbitMQ message broker was used for
the communication between the services. Figure 2 shows
the architecture diagram of the "TaskApp" application.
The application is divided into two parts, frontend and
backend. The backend part of the application is divided
into 6 microservices that can communicate with each
other. Frontend applications communicate with four
services, which include business logic for user
management, task management, photo management, and
authentication and authorization process management.

Figure 2. TaskApp arhitecture

3.2.1 Users Microservice

The "Users" microservice is one of the basic
microservices of the "TaskApp" application. Contains an
SQL (Structured Query Language) database in which user
data is stored.

Microservice for users, to facilitate the demonstration
of a practical solution, has one class that describes each
user. The class consists of four private variables that
describe: unique user identification number, user email
address, and username. The "Users" service is directly
dependent on the users class, and it implements four
public asynchronous methods that are used to: create

Science, Engineering and Technology Volume 2, Issue 1, Pages 30-37

34

users, retrieve users from the database by unique
identification number and email address, and retrieve all
users from the database.

Figure 3 shows a sequential diagram for adding a new
user. When the user fills out the registration form on the
application's user interface, the frontend framework sends
an HTTP POST request to the users microservice, and the
"createUserAsync" method is called. The "User" object is
passed to it. After the called method adds a new user to
the database, the object is mapped to the "UserCreated"
object, which is sent to the RabbitMQ broker. The users
microservice communicates through the RabbitMQ
intermediary with the "Authentication" microservice.

Figure 3. Sequential diagram of adding a new user

When creating a new user, in the "Users" service, the
user object is forwarded to the user repository where it is
placed in the SQL database. An event object is then
created and passed to the PublishMessageAsync method,
which converts the message to the UTF-8 equivalent and
sends it to the exchange whose name is defined within the
appsettings.json file (code example 7).

Code example 7. Add user method

public async Task<UserReadDto>
 AddUserAsync(CreateUser user) {

 var newUser = _mapper.Map<User>(user);

 newUser = await
 _userRepository.AddUserAsync(newUser);

 if (newUser == null) { return null; }

 var userCreatedEvent =
 _mapper.Map<UserCreated>(user);

 userCreatedEvent.Id = newUser.Id;

 await
 _messagePublisher.PublishMessageAsync
 (userCreatedEvent.MessageType,
 userCreatedEvent, string.Empty);

 return _mapper.Map<UserReadDto>
 (userCreatedEvent);

 }

The "Users" microservice communicates with "Photo"
microservice. The photo of each user is processed by the

"Photos" microservice and stored in database, and they are
delivered when the user microservice sends a request to
provide information about users.

Code example 8 shows a method that gets a user by an
id. It first calls the user repository that retrieves the user
from the SQL database. Then the user's object is mapped
to an object suitable for displaying data, and a method is
called that creates the user's initials based on the name and
surname and places them in the attribute for the same. The
"Photos" microservice is then called, which provides the
URL (Uniform Resource Locator) of the user's photo, and
the result is returned to the controller, which returns the
data in JSON (JavaScript Object Notation) format to the
frontend.

Code example 8. Method for supplying users by id

public async Task<UserReadDto>
 GetUserByIdAsync(int id) {

 var userFromDb = await
 _userRepository.GetUserByIdAsync(id);

 var result =
 _mapper.Map<UserReadDto>(userFromDb);

 CreateUserInitials(ref result);

 var photo = await
 _photosRestClient.GetPhotoByUserId(result.Id);

 if (photo != null) {
 result.PhotoUrl = photo.PhotoUrl; }

 return result;

 }

The frontend application, after completing the login
form, sends an HTTP request to the authentication
controller. Then, the "Authentication" service checks
whether the user's email exists in the database, and
whether the password corresponds to the encrypted
password in the SQL database. If the check is successful,
the "Authentication" microservice provides user data
from the "Users" microservice and creates a JWT (JSON
Web Token) that is used to secure individual application
access points. As a result of the login method, user data
and a token are returned (code example 9). The JWT token
is returned to the user in the form of an HTTP Only cookie
(code example 10). This has proven to be a good practice
since cookies marked as HTTP Only cannot be accessed
from a web browser, but only servers can decrypt and
verify them. Previously, JWT tokens were returned in text
form and placed in a session, plain cookies, or local
repository, which allowed malicious users to access them
more easily, and they used them to send requests to the
application for their own benefit.

Science, Engineering and Technology Volume 2, Issue 1, Pages 30-37

35

Code example 9. Method for user login and JWT
generation

public async Task<AuthResultObject>
 AuthenticateUserAsync(string email,
 string password) {

 var userFromDb = await
 _userManager.FindByEmailAsync(email);

 if (userFromDb == null || !await _userManager.
 CheckPasswordAsync(userFromDb, password)) {

 return null;

 }

 var user = await
 _userRestClient.GetUserByEmailAsync
 (email);

 var role = await
 _userManager.GetRolesAsync(userFromDb);

 var _options = new IdentityOptions();

 var tokenDescriptor = new
 SecurityTokenDescriptor {

 Subject = new ClaimsIdentity (new Claim[]

 {

 new Claim("userId", user.Id.ToString()),

 new Claim(_options.ClaimsIdentity.
 RoleClaimType, role.FirstOrDefault())

 }

),

 Expires = DateTime.Now.AddYears(100),
 // Never Expires
 SigningCredentials = new
 SigningCredentials(new
 SymmetricSecurityKey(Encoding.UTF8.
 GetBytes(_configuration.GetSection
 ("AppSettings:Token").Value.
 ToString())),SecurityAlgorithms.
 HmacSha512Signature)

 };

 var tokenHandler =
 new JwtSecurityTokenHandler();

 var securityToken =
 tokenHandler.CreateToken(tokenDescriptor);

 var token = tokenHandler.WriteToken
 (securityToken);

 return new AuthResultObject() {

 Token = token, User = user };

 }

Code example 10. Method for generating HTTP Only
cookies

private void setTokenCookie(string token) {

 var cookieOptions = new CookieOptions {

 HttpOnly = true, Secure = true,
 Expires = DateTime.UtcNow.AddYears(100)
 // Never Expires

 };

 Response.Cookies.Append("jwtToken",
 token, cookieOptions);

 }

3.2.2 Tasks Microservice

The "Task" microservice is the main microservice of
the "TaskApp" application. It contains a SQL database
where tasks are stored. It also contains business logic for
task management.The project contains a folder for
Controllers, which are also an access point to the
application, a folder for data that contains models,
commands, events, objects for switching objects, then
services, repositories, and configuration files for the
database. The project includes folder "Utilities" which
contains classes for configuration, constants, scripts for
migrating data to SQL database, profiles for data
mapping, and REST client for communication with other
services.

Code example 11 provides a method for creating a
task. The task is initially mapped from the creation object
to the object suitable for placement in the database. The
task is then forwarded to the task repository, which stores
it in the database. An event is created to add a task, which
receives information from the microservice for users
about the user who created the task and the user to whom
it was assigned. The message is sent through the
RabbitMQ intermediary, and it goes to the notification
system where an email is sent to the user assigned the task.

Code example 11. Task creation method

public async Task<bool>
 CreateTaskAsync(CreateTask createTask) {

 var task = _mapper.Map<Data.Models.Task>
 (createTask);

 if (await _taskRepository.CreateTaskAsync
 (task)) {

 var taskCreatedEvent =
 new TaskCreated() {

 Title = createTask.Title,
 Description = createTask.
 Description,
 User = await
 _usersRestClient.GetUserById
 (task.UserId),
 Assignee = await
 _usersRestClient.GetUserById
 (task.AssigneeId),
 StartDate = createTask.StartDate,
 FinishDate = createTask.FinishDate

 };

Science, Engineering and Technology Volume 2, Issue 1, Pages 30-37

36

 await _messagePublisher.
 PublishMessageAsync(
 taskCreatedEvent.MessageType,
 taskCreatedEvent, string.Empty);

 return true;

 }

 return false;

 }

Code example 12 provides a method for processing
received messages for notifications microservice. There
are two types of messages that a microservice expects, and
these are the task creation message and the message that
one business day is over. In the case of the first type of
message, a "Notification" service is called that sends an
email to the user assigned the task. Initially, it is necessary
to enter the information about the email address and the
password of the email address in the secrets.json file. The
reason for entering such information in the secrets.json
file instead of the appsettings.json file is additional
security. The secrets.json file will not be published to
public repositories, so it remains on the local developer
machine. An email message is formed by the method for
sending an email, and an HTML (HyperText Markup
Language) template from the "Utilities" folder is called.
An email is then sent via the SMTP (Simple Mail Transfer
Protocol) client to the user assigned the task. In the case
of a message indicating that one business day has elapsed,
"Notification" service method is called that sends an email
to all users whose deadline for completing the assigned
task expires in less than 24 hours.

Code example 12. A method for processing received
messages

public async Task<bool> HandleMessageAsync
 (string messageType, string message) {

 try {

 JObject messageObject =
 MessageSerializer.Deserialize(message);

 switch (messageType) {

 case "TaskCreated":
 await HandleAsync(messageObject.
 ToObject<TaskCreated>());

 break;

 case "DayHasPassed":
 await HandleAsync(messageObject.
 ToObject<DayHasPassed>());

 break;

 }

 }

 catch (Exception ex) {

 Log.Error(ex, $"Error while handling
 {messageType} event.");

 }

 return true;

 }

4 Discussion

While a monolithic application is a single entity,
microservice application breaks down the application
components into a set of smaller, independent entities.
Each unit acts as a separate service that performs its role
in the system, therefore, each unit has its own business
logic and database, and they perform only certain
functions. In short, the style of microservice architecture
is an approach to the development of an application as a
set of small services, each in charge of its own process and
communication with other services, often via HTTP
protocol.

In general, RabbitMQ is the choice of developers
looking for a simple and traditional message broker.
RabbitMQ is a better choice if you need communication
between individual applications via channels, that is,
queues. Apache Kafka is a better choice if data retention
and data streaming is required.

The main situations when programmers prefer
RabbitMQ include two cases: long-term tasks, when
reliable background work is required, and communication
with integration between applications as an intermediary
between microservices. Developers choose Apache Kafka
over RabbitMQ when there is a need for a framework for
storing, reading (re-reading) and analysing streaming
data, data analysis systems, and real-time data processing
systems.

This example demonstrated that the style of
microservice architecture is an approach to the
development of an application as a set of small services,
each in charge of its own process and communication with
other services.

5 Conclusion

RabbitMQ is an open-source solution that serves as a
message broker via the AMQP. It is highly accessible,
fault-tolerant, and scalable.

RabbitMQ is a lightweight and scalable message
broker based on AMQP. RabbitMQ acts as an
intermediary between the various services. It is used to
reduce the load and delivery time on server web
applications by delegating tasks that would normally take
a lot of time and resources.

Science, Engineering and Technology Volume 2, Issue 1, Pages 30-37

37

References

[1] Opensource.com, "What are microservices?," [Online].
Available: https://opensource.com/resources/what-are-
microservices. [Accessed 29 1 2022].

[2] G. Olah, "An introduction to RabbitMQ – What is
RabbitMQ?," Erlan Solutions, 3 4 2020. [Online].
Available: https://www.erlang-solutions.com/blog/an-
introduction-to-rabbitmq-what-is-rabbitmq/. [Accessed 29
1 2022].

[3] S. Kwon, S.J. Son, Y. Choi, and J.H. Lee, "Protocol
fuzzing to find security vulnerabilities of RabbitMQ," in
Concurrency and Computation: Practice and Experience,
vol. 33, no. 23, 2021, pp. 1-14.

[4] A. Nugroho, and S.S. Kusumawardani, "Distributed
Classifier for SDGs Topics in Online News using
RabbitMQ Message Broker," Journal of Physics:
Conference Series, vol. 1577, no. 1, pp. 1-8, 2020.

[5] S. Dixit, and M. Madhu, "Distributing messages using
Rabbitmq with advanced message exchanges," Int. J. Res.
Stud. Comput. Sci. Eng., vol. 6, no. 2, pp. 24-28, 2019.

[6] X.J. Hong, H.S. Yang, and Y.H.Kim, "Performance
analysis of RESTful API and RabbitMQ for microservice
web application," In 2018 International Conference on
Information and Communication Technology
Convergence (ICTC), IEEE, 2018, pp. 257-259.

[7] N. Dragoni et al. "Microservices: Yesterday, Today, and
Tomorrow," In: Mazzara, M., Meyer, B. (eds) Present and
Ulterior Software Engineering, pp. 195-216, 2047.

[8] K. Indrasiri and P. Siriwardena, Microservices for the
Enterprise: Designing, Developing, and Deploying, USA:
Apress, 2022.

[9] A. Akbulut, and H.G. Perros, "Performance Analysis of
Microservice Design Patterns," IEEE Internet Computing,
vol. 23, no. 6, pp. 19-27, Nov. 2019.

[10] D. Richter, M. Konrad, K. Utecht, and A. Polze, "Highly-
Available Applications on Unreliable Infrastructure:
Microservice Architectures in Practice". in 2017 IEEE
International Conference on Software Quality, Reliability
and Security Companion (QRS-C), 2017, pp. 130-137.

[11] K. Bakshi "Microservices-based software architecture and
approaches", 2017 IEEE Aerospace Conference, 2017, pp.
1-8, doi: 10.1109/AERO.2017.7943959.

[12] L. Johansson, "When to use RabbitMQ or Apache Kafka",
CloudAMQP, 2019. [Online]. Available:
https://www.cloudamqp.com/blog/when-to-use-rabbitmq-
or-apache-kafka.html. [Accessed 20 1 2022].

[13] S. Newman, Building Microservices: Designing Fine-
Grained Systems, O'Reilly Media, Inc, USA, 2015.

