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Abstract

Language-based emotion analysis finds itself in a paradoxical situation. In the past decades,
a plethora of datasets have been created, covering diverse aspects of natural language and
affective states. However, the considerable volume of resulting gold data is scattered across
many design decisions in dataset creation, acting as sources of heterogeneity. Some of these
sources of heterogeneity are common throughout NLP (e.g., different natural languages and
language registers, as well as linguistic units of different sizes such as words, sentences, and
texts). Others are specific to emotion analysis, like the myriad of different label formats
(the choice for a particular set of emotion target variables and their respective value ranges),
and the selection of a particular viewpoint (e.g., reader vs. writer emotion). Due to this
heterogeneity, too often it is impossible to compare or merge existing data from different
sources. Conversely, if researchers or practitioners require data that meet a specific set
of design decisions, it is unlikely that a suitable dataset already exists. This stands in
contradiction to the—in principle—large total volume of emotion gold data.

Still, this heterogeneity is empirically adequate and valuable from an application perspec-
tive. Thus, the solution to the heterogeneity problem cannot be to simply reduce the number
of possible design choices through community-wide consensus. Rather, what is needed
is a delicate balance between fostering the diversity of emotion data and developing new
methods to tackle the resulting comparability issues. This interplay between diversity and
comparability of emotion data is the focus area of this thesis and the seven studies compiled
within it. Some of these studies contribute to data diversity by introducing new datasets and
methodologies for the annotation and modeling of complex emotion label formats. Others
present methods against incomparability, in particular by transferring knowledge between
languages and label formats.

The larger vision behind this dissertation is to arrive at a research landscape where
diversity and comparability no longer act as antagonists and instead every new sample of
annotated data, regardless of the specifics of its annotation design, benefits the endeavor of
emotion analysis as a whole. While NLP is still far from achieving this goal, the presented
research results, culminating in the establishment of an “emotion interlingua” in the final
study, constitute a significant step in this direction.
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1 Introduction

To experience emotions is fundamental to human nature. They shape our view of the world
and our behavior in it, ranging from day-to-day encounters on the street to large-scale
economic decision making (Sanfey et al., 2003; Nezlek et al., 2008). A phenomenon of
such impact and ubiquity, it is no wonder that emotion has caught the interest of various
academic disciplines over the years, with the involvement of modern sciences dating back
at least to Darwin (1872/1998). Most foundational perhaps are research activities conducted
in the discipline of psychology, e.g., on elicitation mechanisms, structure, and behavioral
consequences of emotion (Scherer, 2000). Other disciplines focus on the impact of emotion
on economic decision making (Sanfey et al., 2003; Andrade and Ariely, 2009), physical
and mental health (DeSteno et al., 2013; Hu et al., 2014; Evers et al., 2018; Guo et al.,
2019; Clobert et al., 2020), or the interplay between an individual’s feelings and societal
structures (Hochschild, 1983; Stets and Turner, 2006; Bericat, 2016). Still others examine
which linguistic means (e.g., prosody, lexical choice, or syntax) can be used to express or
elicit emotion in the languages of the world (Majid, 2012).

In contrast to these research endeavors that focus primarily on explanation and description,
computer science approaches emotion more frequently from an engineering perspective,
aiming to develop software systems that can fulfill certain affect-related tasks. Here, the
study of emotion is mainly situated within the field of artificial intelligence (AI) and is
tightly connected to the research program of affective computing (Picard, 1997). Still,
different sub-fields of AI, such as computer vision, robotics, and of course natural language
processing (NLP; or computational linguistics), pursue their own lines of emotion research
in relative independence of each other.

In NLP, interest in affective states has been growing rapidly, beginning around the turn of
the millennium. Early research in this field had a strong focus on distinguishing between
positive and negative words or statements, a linguistic property referred to as semantic
orientation or polarity (Hatzivassiloglou and McKeown, 1997; Pang et al., 2002; Turney,
2002; Turney and Littman, 2003; Pang and Lee, 2005). Those research activities1 marked
the beginning of a new area of work, known today as sentiment analysis (Liu, 2015). This

1Similarly, the distinction between objective and subjective language, i.e., differentiating between factual
statements and expressions of personal opinions or feelings, received much interest in these early years
(Wiebe et al., 2004).
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early focus on polarity soon broadened to allow for more nuanced distinctions between
affective states, in particular varying sets of emotion classes such as joy, anger, or sadness
(Liu et al., 2003; Alm et al., 2005; Mishne, 2005; Wiebe et al., 2005; Mihalcea and Liu,
2006; Aman and Szpakowicz, 2007; Strapparava and Mihalcea, 2007) and later also affective
dimensions like valence and arousal (Calvo and Mac Kim, 2013; Paltoglou et al., 2013; Yu
et al., 2015). In the past decade, those competing frameworks for emotion description have
grown significantly in number and complexity (Bostan and Klinger, 2018; De Bruyne et al.,
2020), leading to the following, paradoxical situation.

On the one hand, more expressive annotation schemes help develop models that can
capture more facets of emotional meaning. This leads to an empirically more adequate
description of emotion in language and thus benefits real-world applications (Bollen et al.,
2011; Desmet and Hoste, 2013; Schulz et al., 2013). On the other hand, this proliferation
of label formats has led to a severe loss in comparability between individual contributions.
Although the total volume of available gold data has grown considerably over the years,
it is spread over a vast number of annotation schemes. Consequently, comparing or even
merging data from different rating studies is often impossible. Moreover, a large number of
prediction models are presented in the NLP literature every year but each of them covers
only a small part of the full spectrum of human emotion. This problem appears even
more pressing when considering other sources of data heterogeneity, in particular the vast
number of existing natural languages, their registers, as well as distinct levels of linguistic
analysis, but also different viewpoints of emotion understanding such as writer vs. reader
emotion. To resolve this conflict, NLP needs new methods that acknowledge the complexity
of human emotion without resulting in a landscape of completely incomparable systems
and insurmountable annotation cost.

The present thesis, focusing on written, non-dialogue language, compiles seven studies
tackling this dilemma from a variety of angles. This includes (a) data collection for previ-
ously underrepresented emotional meaning facets such as valence, arousal, dominance, or
empathy, (b) methods for “translating” between different annotation schemes, (c) exploiting
additional information present in fine-grained label formats through multi-task learning, (d)
crosslingual generation of emotion word ratings, and finally, (e) a method for learning a
generalized latent representation of emotion that may serve as a starting point to further
unify the field of emotion analysis.

This thesis is structured in three parts, each subdivided into several chapters. The first
part, which includes this introduction, gives a high-level summary of the dissertation project.
Part II provides copies of the articles submitted for examination. Part III gives background
information on the author, fulfilling requirements of the local doctorate regulations. Follow-
ing the current chapter, the remainder of Part I starts by introducing fundamental concepts
and problems of emotion analysis in Chapter 2. This provides the basis for presenting my
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research results in Chapter 3, where each section briefly outlines one of the seven submitted
articles in terms of its motivation, methods, results, and impact. The discussion in Chapter
4 reflects on unresolved issues and opportunities for future work. Chapter 5 concludes this
summary.
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2 Background

This chapter provides a high-level introduction to emotion analysis, focusing on the usage
of fine-grained label formats, setting the stage for the presentation of research results in the
following chapter. First, I will lay out the psychological foundations of emotion analysis,
i.e., what emotions are (§2.1) and how they can be formally represented (§2.2). Then, I
will move on to describe how emotions manifest themselves in language (§2.3; §2.4). The
following sections address common methodologies for annotating (§2.5) and modeling
(§2.6) emotion. The final sections of this chapter report on the state of the art in dealing
with the heterogeneity of emotion data, in particular in the form of multilinguality (§2.7)
and the diversity of existing label formats (§2.8).

2.1 Emotion and other Affective States

What are emotions and how do they differ from feelings, moods, and other affective states?
Unfortunately, we lack a universally agreed upon definition. In psychology, the question
“What makes up an emotion?” is strongly debated, partly because different theoretical
currents diverge in how much attention they pay to various aspects or components such
as facial expressions, subjective feelings, or action tendencies (Scherer, 2000). This lack
of agreed upon definitions has also found its way into computer science because different
research groups have adopted background knowledge and terminology from different parts
of the psychological literature (Munezero et al., 2014).

This thesis adopts the definition by Scherer (2000, p. 138f.) according to which “emotions
are episodes of coordinated changes in several components (including at least neurophys-
iological activation, motor expression, and subjective feeling, but possibly also action
tendencies and cognitive processes) in response to external or internal events of major
significance to the organism.” In other words, emotions are short-term response patterns to
important events (in our surroundings or our own bodies and minds) that may affect us on
multiple levels including bodily reactions, feelings, thoughts, and behavior. Importantly for
NLP, this definition implies that emotion per se is not a language-centered phenomenon.
Yet, it opens up several ways in which language and emotion may interact, such as emotion
elicitation (where language utterances act as an important external event), verbal descrip-
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tions of subjective feelings, or emotionally-colored verbal response behavior (e.g., cursing,
wailing, or rejoicing).

Scherer (2000) also proposed a typology of affective states, distinguishing emotions from
moods, interpersonal stances, attitudes, and personality traits (see Figure 2.1) that is gaining
popularity within NLP (Jurafsky and Martin, 2021).

Emotion Relatively brief episodes of synchronized responses by all or most organismic sub-
systems to the evaluation of an external or internal event as being of major significance
(e.g., anger, sadness, joy, fear, shame, pride, elation, desperation).

Mood Diffuse affect state, most pronounced as change in subjective feeling, of low intensity
but relatively long duration, often without apparent cause (e.g., cheerful, gloomy, irritable,
listless, depressed, buoyant).

Interpersonal stances Affective stance taken toward another person in a specific interaction,
coloring the interpersonal exchange in that situation (e.g., distant, cold, warm, supportive,
contemptuous).

Attitiudes Relatively enduring, affectively colored beliefs, preferences, and predispositions
toward objects or persons (e.g., liking, loving, hating, valuing, desiring).

Personality traits Emotionally laden, stable, personality dispositions and behavior tenden-
cies, typical for a person (e.g., nervous, anxious, reckless, morose, hostile, envious,
jealous).

Figure 2.1: Typology of affective states by Scherer (2000, p. 140f.).

Looking at the NLP literature through the lens of this typology, it becomes obvious that
contributions in the field of sentiment analysis are actually quite diverse regarding the type
of affective state they are concerned with: While there is a large body of work addressing
short-lived affective reactions, i.e., emotions in the sense of the above definition (e.g., Yu
et al., 2015; Sedoc et al., 2017; Kim and Klinger, 2018; Mohammad et al., 2018; Troiano
et al., 2019), a major share of the studies addressing sentiment in product reviews or political
statements arguably aims at capturing “relatively enduring preferences and predispositions”,
i.e., attitudes (e.g., Pang et al., 2002; Hu and Liu, 2004; Socher et al., 2013; Kiritchenko
et al., 2014; Mohammad et al., 2016). Interestingly, the term mood is often used in the
context of time-series analyses of aggregated, group-level expressions of feelings in large
corpora, especially Twitter (Mihalcea and Liu, 2006; Bollen et al., 2011; Harsley et al.,
2016). This matches the definition of mood in Scherer’s typology as “diffuse” and having a
“relatively long duration”.

Finally, Scherer’s typology may also help NLP researchers outside of sentiment analysis
to better conceptualize their modeling objectives in relation to other areas. For example, we
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may understand work that is concerned with detecting online harassment or cyberbullying
as searching for particular interpersonal stances (Huang et al., 2018; Cheng et al., 2021;
Ge et al., 2021). Similarly, there is also a quickly growing body of research on detecting
personality traits from language use (Gjurkovic and Snajder, 2018; Yamada et al., 2019;
Lynn et al., 2020).

2.2 Representing Emotion

After having clarified what distinguishes emotions from other affective states, this section
introduces common schemes how emotions can be formally represented in the context of
annotation or modeling studies.

The term emotion label format, or simply label format, will be used to refer to such
schemes. A label format consists of a set of emotion variables such as Anger, Joy, or
Disgust, along with their specific value ranges.1 While the set of variables determines which
emotional meaning facets a particular label format can capture, their value ranges indicate
the type of learning problem posed by the label format. To subsume both classification
and regression data under this term, the present thesis assumes that labels are encoded in
the following way: In classification problems, each of the variables takes either “0” or “1”.
Depending on the number of variables and the number of allowed “1s” per label, the problem
setting is further specified as binary classification, multi-class-single-label classification,
or multi-class-multi-label classification. Conversely, in regression settings, each variable
takes a numerical score from some real-valued interval, e.g., [1, 9]. See exemplary entries in
Table 2.1. Annotation methodologies will be introduced in more detail in §2.5.

Sample Pol Val Aro Dom Joy Ang Sad Fea Dis
sunshine 1 8.1 5.3 5.4 4.2 1.2 1.3 1.3 1.2
terrorism 0 1.6 7.4 2.7 1.2 2.9 3.3 3.9 2.5
nuclear 0 4.3 7.3 4.1 1.4 2.2 1.9 3.2 1.6
ownership 1 5.9 4.4 7.5 2.1 1.4 1.2 1.4 1.3

Table 2.1: Exemplary ratings for English words according to nine emotional variables: Polarity vs.
Valence, Arousal, Dominance (VAD) vs. Joy, Anger, Sadness, Fear, Disgust (BE5). Polarity follows
a binary encoding (“1” encodes positivity, “0” negativity), VAD uses 1-to-9 scales (“5” encodes
the neutral value) and BE5 1-to-5 scales (“1” encodes the neutral value). Each of the three variable
groups, together with their respective value ranges, constitute a label format. Table adapted from
Buechel et al. (2020a).

1Names of emotion variables are capitalized from here on to differentiate them from the corresponding
everyday concepts, e.g., “Anger” vs. “anger”.
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In their choice of a particular set of emotion variables, NLP researchers often follow one
of the many approaches designed in the long and controversial history of psychology of
emotion (Scherer, 2000; Hofmann et al., 2020). One of the major dividing lines, particularly
in computational studies, is the distinction between discrete (or categorical) and dimensional
approaches to emotion representation (Calvo and Mac Kim, 2013; Canales and Martínez-
Barco, 2014; Bostan and Klinger, 2018; De Bruyne et al., 2020). The discrete approach
mainly revolves around the notion of cross-culturally universal, evolutionarily derived basic
emotions such as the six categories identified by Ekman (1992): Joy, Anger, Sadness, Fear,
Disgust, and Surprise. Other theorists, however, have proposed diverging sets of basic
emotions (Izard, 1971).

In contrast, the dimensional approach is centered around the notion of affective dimen-
sions, independent components that, through their respective combination, compose our
emotions (Osgood et al., 1957; Russell and Mehrabian, 1977; Bradley and Lang, 1994;
Broekens, 2012; Bakker et al., 2014). The most important dimensions are Valence (neg-
ative vs. positive) and Arousal (calm vs. excited). These two are sometimes extended by
Dominance (feeling powerless vs. empowered). Since Valence roughly corresponds to the
concept of Polarity (Turney and Littman, 2003), this thesis henceforth also subsumes studies
from classical sentiment analysis under the term “emotion analysis”.2

Table 2.1 exemplifies the dimensional vs. the discrete approach to emotion representation.
This relationship is further illustrated in Figure 2.2. Table 2.2, finally, lists sets of emotion
variables and their abbreviations that are frequently referred to throughout this thesis.
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Figure 2.2: Affective space spanned by the affective dimensions of Valence, Arousal, and Domi-
nance, together with the position of six Basic Emotions. Figure adapted from Buechel and Hahn
(2016) and originally based on data from Russell and Mehrabian (1977).

2In line with the above typology of affective states (§2.1), this only applies to studies that address “emotions”
rather than “attitudes”.
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Set Name Included Emotion Variables

Polarity Polarity (⇡ Valence)
VA Valence, Arousal
VAD VA + Dominance
BE5 Joy, Anger, Sadness, Fear, Disgust
BE6 BE5 + Surprise
Plutchik BE6 + Anticipation, Awe
Empathy Empathic Concern, Personal Distress

Table 2.2: Selected sets of emotion variables referenced throughout this dissertation.

Other theories influential in NLP include Plutchik’s (2001) Wheel of Emotion (Mohammad
and Turney, 2013; Abdul-Mageed and Ungar, 2017; Tafreshi and Diab, 2018; Bostan et al.,
2020) and appraisal dimensions (Balahur et al., 2012; Troiano et al., 2019; Hofmann et al.,
2020). Yet, frequently studies do not follow any of these established approaches but rather
design a customized set of variables in an ad-hoc fashion, often driven by the availability
of user-labeled data in social media, or the specifics of an application or domain which
requires attention to particular emotional nuances (Bollen et al., 2011; Desmet and Hoste,
2013; Schulz et al., 2013; Qadir and Riloff, 2014; Staiano and Guerini, 2014; Li et al., 2016;
Liew et al., 2016; Demszky et al., 2020; Haider et al., 2020). In other cases, researchers
focus their work on a specific, often more specialized, emotional meaning facet at a time
(Lee et al., 2009; Rouhizadeh et al., 2018).

One of these more specialized emotional nuances, that also plays a larger role in this
dissertation, is empathy. In particular, I will focus on the two sub-types of empathy
proposed by Batson et al. (1987), Empathic Concern and Personal Distress.3 While Empathic
Concern is a warm, compassionate, other-focused feeling for someone in need (“feeling
for someone”), Personal Distress is a more negative, self-focused affective state in reaction
to witnessing someone else’s suffering (Buechel et al., 2018). The problem of modeling
empathy in language has received much attention, particularly in the speech and spoken
dialogue domains (McQuiggan and Lester, 2007; Fung et al., 2016; Alam et al., 2018;
Pérez-Rosas et al., 2017). However, research activities on empathy in written languages
have only recently begun to intensify (Buechel et al., 2018; Rashkin et al., 2019; Sedoc
et al., 2020; Zhou and Jurgens, 2020; Guda et al., 2021; Shi et al., 2021; Tafreshi et al.,
2021).

3See Cuff et al. (2016) for a review of varying definitions and operationalizations of “empathy”.
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2.3 Viewpoints of Emotion

As outlined in §2.1, language and emotion can interact with each other in multiple ways.
For example, language utterances can evoke emotion in listeners or readers. Similarly, a
speaker can also use language to express their own thoughts and feelings. Consequently,
units of language may be associated with different emotions depending on the viewpoint
(or perspective) taken during annotation.4 While NLP researchers have already shown
awareness of this in early work (Katz et al., 2007), relatively few studies have been dedicated
to this phenomenon specifically. Likewise, there is, to the best of my knowledge, no
generally agreed-upon typology of viewpoints. Thus, this thesis proposes to distinguish at
least the following ones; see Figure 2.3.

experienced
emotion

expressed
emotion

evoked emotion 1 evoked emotion 2 evoked emotion 3

PERCEIVED
emotion 1

PERCEIVED
emotion 2

PERCEIVED
emotion 3

Experienced emotion The emotion actually felt by the writer in the moment of
producing an utterance.

Expressed emotion The writer emotion as conveyed by the utterance.

Evoked emotion The reader emotion caused by the utterance.

Perceived emotion The reader’s understanding of the writer emotion as induced by
the utterance.

Figure 2.3: Proposed typology of the viewpoints of emotion.

Importantly, these four viewpoints do not necessarily agree with each other. For example,
writers may choose not to reveal their actual feelings or may fail to properly express
themselves, thus causing the Experienced and Expressed emotion to diverge.5 Also, readers

4The remainder of this section uses terminology specific to written language, i.e., “writer” and “reader”.
The speech bubbles in Figure 2.3 refer to utterances in general, not spoken ones specifically. However,
while the work presented throughout this thesis addresses emotion in written language, the concept of
viewpoints can of course also be applied to spoken language.

5To highlight that they are used in a technical sense, the adjectives “Experienced”, “Expressed”, “Evoked”,
and “Perceived” are capitalized when they refer to the respective viewpoint.
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may misinterpret the (para-)linguistic clues embedded in an utterance, thus failing to
properly understand the writer’s feelings. By contrast, if the writer and the reader have a
close enough relationship, the latter may still succeed in “guessing” the former’s affective
state even if not made explicit, e.g., by inferring it from the content of the utterance even
if presented as an objective statement. As another example, consider the speech act of
threatening someone: Threats are likely to express anger or can even be presented in a
friendly voice. Yet, if successful, they evoke fear in the listener. Thus, Expressed and
Evoked emotion can diverge as well.

Furthermore, note that the viewpoints differ significantly with respect to what kind
of information they capture: An Expressed emotion is a property of a unit of language.
Gathering ratings for this property thus calls for linguistic annotation methods. In contrast,
Experienced and Evoked emotions refer to momentary affective states of individuals, thus
methods from experimental psychology seem particularly well-suited for collecting such
ratings. Lastly, Perceived emotions characterize how individuals see each other, thus neither
psychological nor linguistic data collection methods take clear preference (see §2.5 for
further details on annotation methodology).

When moving from a one-to-one to a one-to-many communication situation (e.g., tradi-
tional mass media or modern social media), additional complications arise from the fact
that each utterance now potentially has many readers, again each with their own diverging
Evoked and Perceived emotion. Katz et al. (2007, p. 311) give as a simple but strong
example the headline “Italy defeats France in World Cup Final”. Assuming the author of
this statement was a professional journalist from a country other than France or Italy, they
probably Experienced neutral emotion. Similarly, since no explicit linguistic cues are given
(the utterance is presented as an objective statement), the Expressed emotion is neutral, too.
However, the Evoked emotion is likely to vary drastically between readers, depending on
their attachment to either the French or the Italian sports team.

Viewpoints of emotion are important for NLP in terms of both annotation and modeling.
Yang et al. (2009) show that while the emotion of the writer and the reader of a blog post
tend to correlate, both also differ in systematic ways mediated by the topic of the post. In
a follow-up study, Tang and Chen (2012) examine which linguistic features are predictive
for certain combinations of writer and associated reader sentiment. These two studies
illustrate that systematic differences between the viewpoints are important from a modeling
perspective since they challenge generalization: If two datasets are annotated with the
same label format but different viewpoints, models trained on one dataset are unlikely to
generalize well to the other dataset because the relationship between language properties
and emotion labels changes according to the viewpoint. Conversely, differences in reader
and writer emotion may also be exploited to increase modeling performance by addressing
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both viewpoints with a joint model (Liu et al., 2013; Li et al., 2016).6 Moreover, the chosen
viewpoint of emotion is important for dataset creators as it stipulates how to set up the
annotation process, e.g., who to recruit as annotators and how to phrase the respective
guidelines. It also influences the resulting annotation quality (Mohammad and Turney,
2013; Buechel and Hahn, 2017a,c; Kajiwara et al., 2021).

While most previous work is relatively easy to subcategorize within the proposed typology
(Figure 2.3), some studies use viewpoints that do not fit so neatly into this scheme. Focusing
on emotion in poetry, Haider et al. (2020) differentiate between the expressed and the
elicited (Evoked) emotion but also introduce the emotion intended by the author. Kim and
Klinger (2018) and Bostan et al. (2020) are concerned with emotion events described by a
text, potentially between fictional characters, e.g., “Frodo was angry with Sam” (contrived
example). Lastly, Scherer and Wallbott (1994) and Troiano et al. (2019) asked participants
to describe a situation from memory in which they felt a particular emotion. Although the
resulting data captures the emotion of the writer, it is not necessarily the emotion that the
writer felt in the moment of writing. That is, the participants may go through feelings that
are similar, yet probably less intense than the original ones when recalling an event.

2.4 Emotion in Language Units of Different Sizes

The last section has described emotion as a property of language emerging on the level
of individual utterances in concrete communication situations. However, as this section
will lay out, differently-sized units of language have their own way of being “emotional”.
This thesis will distinguish primarily between the following linguistic levels. Note that I
deviate slightly from common linguistic terminology, in an attempt to allow for a more
fluent discussion of NLP methodologies.

On the small end of the spectrum, this thesis addresses individual words, mostly in the
sense of graphematic words or word types. In contrast, the largest units covered here are
long, complete text documents such as novels, business reports or lengthy newspaper articles.
I will refer to these as texts. Interestingly, what remains of the hierarchy of linguistic units,
i.e., phrases, clauses, sentences, as well as short texts, arguably makes up for the majority of
NLP research activities. For lack of a better word (and for consistency with the previous
section), I will jointly refer to these units of language as utterances. See Table 2.3 for an
overview of how the terminology of this thesis relates to common linguistic terminology.

6In addition to the above studies, there is also a branch of research developing representation formalisms that
aim to capture emotional implicatures of certain verbs or event types in relation to different viewpoints
(Reschke and Anand, 2011; Deng and Wiebe, 2015; Klenner, 2016; Rashkin et al., 2016). However, this
line of work focuses primarily on the polarity of value judgments, thus addressing attitudes rather than
emotions (§2.1).
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Having already dealt with utterances above, the remainder of this section describes how
emotion emerges from words and texts.

Terminology of this Thesis Usual Linguistic Terminology

words words

utterances

phrases
clauses
sentences

textstexts

Table 2.3: Linguistic levels distinguished in this thesis vs. usual linguistic terminology.

The emotion of individual words out of context has received much attention over the years
both in psychology and psycholinguistics as well as in NLP (Hatzivassiloglou and McKeown,
1997; Bradley and Lang, 1999; Turney and Littman, 2003; Leveau et al., 2012; Mohammad
and Turney, 2013; Warriner et al., 2013; Yu et al., 2015; Li et al., 2017; Buechel and Hahn,
2018c; Mohammad, 2018). Without the framing of a concrete communication situation,
the above typology of viewpoints (Figure 2.3) is not fully applicable. For instance, since
one examines word types in isolation, there is no particular writer to host the Experienced
emotion. Yet, words such as “sunshine”, “terrorism”, or “hatred” are still clearly emotional,
in at least three ways. First, perhaps most obviously, one can conceptualize the emotion of
words like “joy” or “hatred” as the emotion they denote in terms of their lexical semantics
(Majid, 2012). This understanding of word emotion is fundamental for affective extensions
to general-purpose lexical resources such as WordNet-Affect (Strapparava and Valitutti,
2004). Second, a word can be understood in terms of the emotional reaction it produces
when presented out of context. This corresponds to the Evoked emotion from §2.3. Such an
understanding of word emotion forms the basis of many datasets developed by psychologists,
which are referred to as affective norm ratings (Bradley and Lang, 1999; Redondo et al.,
2007; Kanske and Kotz, 2010; Warriner et al., 2013; Montefinese et al., 2014; Imbir, 2016;
Stadthagen-González et al., 2017; see also §2.5). A third sense in which words can have
emotional meaning is by (statistical) association. That is, words that appear predominantly in
contexts of a certain emotional tone tend to also convey this tone as part of their connotative
meaning. Hence, speakers of a language might generally agree that a certain word is
associated with a particular emotion, without actually evoking this feeling when presented
in isolation (Mohammad and Turney, 2013). (For example, the word “chocolate” may be
generally associated with joy. Yet, reading this word alone may not suffice to lift the spirits.)
This understanding of word emotion forms the basis of many computational studies building
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or extending lexical emotion resources from language usage data (Hatzivassiloglou and
McKeown, 1997; Turney and Littman, 2003; Staiano and Guerini, 2014; Sedoc et al., 2020).

Compared to the emotions of words, emotions of texts are quite challenging in several
ways, including conceptually, annotation-wise, and in terms of modeling techniques. Start-
ing with the conceptual issues, the short-lived nature of emotion (§2.1) is at odds with the
significant reading time that, say, a novel requires. However, humans still seem able to
describe entire books as “happy” or “sad”, although what such an attribution truly captures
is unclear (this issue is further discussed in §4.1 and §4.4). Putting together this kind of
global emotion assessment for long texts is also challenging from an annotation perspective.
In addition to said conceptual problems, the required reading time makes each individual
rating very expensive. Thus, to the best of my knowledge, there is not a single corpus
that offers global emotion gold labels for long documents. Close contenders include the
dataset by Alm et al. (2005) who annotated complete fairy tales, but sentence by sentence,
not globally, and the literary corpus by Liu et al. (2019) which explicitly aims at pushing
emotion analysis past the sentence level. Yet, with an average length of only 86 words its
samples are still relatively short.

In contrast to this lack of gold data, applications of emotion analysis to long documents
are actually quite numerous, in particular in the domain of literary texts as well as business
and economic reports. This includes many studies that derive global emotion scores despite
the above problems (Mohammad, 2011; Mohammad and Yang, 2011; Hajek et al., 2014;
Buechel et al., 2016a,b; Goel and Uzuner, 2016; Buechel et al., 2019). An equally important
branch of research focuses on the emotion flow or emotion dynamics, i.e., not computing a
global emotion score for the entire document but rather assessing smaller segments with the
intention of analyzing how emotions develop over the course of the text (Mohammad, 2011;
Kim et al., 2017; Maharjan et al., 2018; Somasundaran et al., 2020). Other studies take
an even closer look at long-form texts, e.g., by distinguishing between different channels
used to communicate emotion (Are emotions of fictional characters described verbally or
conveyed indirectly through the description of facial expressions and bodily reactions?) or
looking at relationships between individual character pairs (Nalisnick and Baird, 2013; Kim
and Klinger, 2019a,b). Oftentimes, these studies use the derived emotion scores as features
in downstream modeling problems such as genre classification or, in the case of literary
texts, book success classification (Kim et al., 2017; Maharjan et al., 2018) or financial
performance prediction and fraud detection in the case of business reports (Hajek et al.,
2014; Goel and Uzuner, 2016).
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2.5 Annotating Emotion

After having clarified what emotions are, how they can be computationally represented, and
how they manifest in language, the next two sections introduce basic methodologies for
annotation and modeling.

Arguably, the most important factor for determining the required annotation methodology
is the desired label format (§2.2) stipulating both the variables (or classes) for which
human judgments must be collected, as well as the granularity of the respective ratings (i.e.,
class-based decisions vs. numeric scores). Together, the set of emotion variables and the
granularity of their ratings determine the kind of learning problem the resulting data can
be used for, i.e., binary classification, multi-class-single-label classification, multi-class-
multi-label classification, or (multivariate) regression (§2.2). The set of variables and their
granularity also influences the resulting annotation cost: the more variables and the finer the
granularity, the more expensive data collection becomes.7

Class-based annotations are most often collected from human judges by simply choosing
one or multiple emotion categories from a given list. Conversely, numerical annotations
are typically collected via rating scales. The number of rating points per scale used in
the literature varies. While many psychological studies use scales with five, seven, or
nine points (Briesemeister et al., 2011; Riegel et al., 2015; Stadthagen-González et al.,
2017), the Stanford Sentiment Treebank (Socher et al., 2013) originally collected their
polarity ratings on a 25-point scale before aggregating and binning these annotations into
two or five classes. Strapparava and Mihalcea (2007) even used a [0, 100]-scale to collect
ratings for their AffectiveText dataset. For both categorical and numerical emotion ratings,
crowdsourcing has established itself as a viable way to reduce time and cost as well as the
reliance on expert annotators (Snow et al., 2008; Mohammad and Turney, 2013; Buechel
and Hahn, 2017a; Mohammad, 2018).

Collecting ratings for Valence, Arousal, and Dominance often involves the self-assessment
manikin (SAM; Bradley and Lang, 1994). SAM is a set of anthropomorphic cartoon figures
that display different levels of emotional intensity per affective dimension (see Figure 2.4).
Rating one’s feeling with SAM thus comes down to choosing the single most appropriate
depiction per row, hence allowing for a language-independent, visual grounding of the
meaning of the individual scale points.

Best-Worst Scaling (BWS; Louviere et al., 2015) is a possible alternative to rating scales
when gathering numerical emotion annotations, which has recently been introduced to NLP
by Kiritchenko and Mohammad (2016). With BWS, raters are given a set of items, typically

7In a regression scenario, the number of emotion variables directly corresponds to the number of rating
decisions an annotator has to take for each language item. The same is true for a multi-class-multi-label
setup. In a multi-class-single-label scenario an annotator may only have to decide for one of the available
classes, but this decision becomes more difficult the more contenders there are to choose from.
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Corpus Domain Raw Filtered
SE07 news headlines 1,250 1,192

MASC

blogs 1,378 1,336
essays 1,196 1,135
fiction 2,893 2,753
letters 1,479 1,413
newspapers 1,381 1,314
travel guides 971 919

Sum 10,548 10,062

Table 1: Genre distribution of the raw and filtered
EMOBANK corpus.

Second, we conducted a pilot study on two sam-
ples (one consisting of movie reviews, the other
pulled from a genre-balanced corpus) to compare
the IAA resulting from different annotation per-
spectives (e.g., the writer’s and the reader’s per-
spective) in different domains (see Buechel and
Hahn (2017) for details). Since we found differ-
ences in IAA but the results remained inconclu-
sive, we decided to annotate the whole corpus bi-
perspectivally, i.e., each sentence was rated ac-
cording to both the (perceived) writer and reader
emotion (henceforth, WRITER and READER).

Third, since many problems of comparing emo-
tion analysis studies result from the diversity of
emotion representation schemes (see Section 2),
the ability to accurately map between such alterna-
tives would greatly improve comparability across
systems and boost the reusability of resources.
Therefore, at least parts of our corpus should be
annotated bi-representationally as well, comple-
menting dimensional VAD ratings with annota-
tions according to a categorical emotion model.

Following these criteria, we composed our cor-
pus out of several categories of the Manually
Annotated Sub-Corpus of the American National
Corpus (MASC; Ide et al. (2008), Ide et al. (2010))
and the corpus of SemEval-2007 Task 14 Affective
Text (SE07; Strapparava and Mihalcea (2007)).
MASC is already annotated on various linguistic
levels. Hence, our work will allow for research
at the intersection of emotion and other language
phenomena. SE07, on the other hand, bears anno-
tations according to Ekman’s six Basic Emotion
(see Section 2) on a [0, 100] scale, respectively.
This collection of raw data comprises 10,548 sen-
tences (see Table 1).

Given this large volume of data, we opted for
a crowdsourcing approach to annotation. We
chose CROWDFLOWER (CF) over AMAZON ME-
CHANICAL TURK (AMT) for its quality control
mechanisms and accessibility (customers of AMT,
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Manikin (SAM) scales for Valence, Arousal and
Dominance (row-wise). Copyright of the original
SAM by Peter J. Lang 1994.

but not CF, must be US-based). CF’s main qual-
ity control mechanism rests on gold questions,
items for which the acceptable ratings have been
previously determined by the customer. These
questions are inserted into a task to restrict the
workers to those performing trustworthily. We
chose these gold items by automatically extracting
highly emotional sentences from our raw data ac-
cording to JEMAS4, a lexicon-based tool for VAD
prediction (Buechel and Hahn, 2016). The ac-
ceptable ratings were determined based on manual
annotations by three students trained in linguis-
tics. The process was individually performed for
WRITER and READER with different annotators.

For each of the two perspectives, we launched
an independent task on CF. The instructions were
based on those by Bradley and Lang (1999) to
whom most of the VAD resources developed in
psychology refer (see Section 2). We changed the
9-point SAM scales to 5-point scales (see Figure
2) in order to reduce the cognitive load during de-
cision making for crowdworkers. For the writer’s
perspective, we presented a number of linguis-
tic clues supporting the annotators in their rating
decisions, while, for the reader’s perspective, we
asked what emotion would be evoked in an aver-
age reader (rather than asking for the rater’s per-
sonal feelings). Both adjustments were made to
establish more objective criteria for the exclusion
of untrustworthy workers. We provide the instruc-
tions along with our dataset.

For each sentence, five annotators generated
VAD ratings. Thus, a total of 30 ratings were gath-
ered per sentence (five ratings for each of the three
VAD dimensions and two annotation perspectives,
WRITER and READER). Ten sentences were pre-
sented at a time. The task was available for work-

4https://github.com/JULIELab/JEmAS

Figure 2.4: The self-assessment manikin (SAM) as presented in Buechel and Hahn (2017a). Rows
refer to the affective dimensions of Valence (top), Arousal (middle), and Dominance (bottom).
Columns refer to level of intensity from low (left) over neutral (middle) to high (right). Copyright of
the original SAM by Peter J. Lang 1994 (Lang, 1980; Bradley and Lang, 1994).

four, and are asked to choose the highest (best) and lowest (worst) item on a particular scale,
e.g., Valence. These ordinal judgments are then transformed into metrical ratings using
one of multiple available scoring algorithms (Hollis, 2018). While it has been shown that
BWS achieves very high reliability (see below) for emotion ratings compared to the use of
rating scales, i.e., repeated measurements yield similar results (Kiritchenko and Mohammad,
2017), assessing the relative validity of BWS ratings is still an area of ongoing research.8

A popular alternative to manual annotation, which is particularly well-suited for collecting
class-based ratings in the social media domain, is the use of distant supervision. In this
machine learning setting, training data is generated by heuristically labeling user-generated
text, e.g., based on hashtags or emoji (Mohammad and Kiritchenko, 2015; Abdul-Mageed
and Ungar, 2017; Felbo et al., 2017).

Class-based annotations are typically evaluated in terms of different variants of the 

statistic (Carletta, 1996), as is the case for many other areas of NLP (Aman and Szpakowicz,
2007; Mohammad and Turney, 2013; Demszky et al., 2020). This family of metrics, however,
is not well suited for numerical ratings. Instead, annotation quality of regression datasets is
often given in terms of different reliability statistics. Reliability is one of the fundamental

8Hollis and Westbury (2018) found that BWS ratings for age of acquisition are more predictive for behavioral
measures, such as lexical decision time, compared to ratings gathered with traditional rating scale methods.
The authors take this as an argument for the validity of BWS. However, for Valence, this was not the
case. Moreover, they found that BWS and traditional ratings display systematic difference, suggesting that
both measure slightly different concepts. This finding is also supported by data from Mohammad (2018),
who gathered a large VAD lexicon with BWS. While his ratings, again, show very high reliability, the
correlation between Valence and Dominance is unusually low. However, even if both rating scales and
BWS do measure different things, it is still unclear which of the two measures “the right” thing. Ultimately,
the question seems to be whether BWS scores are considered only an economical and reliable way of
approximating rating scale annotations or whether they count as ground truth in their own right.
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quality criteria of empirical research that, at its core, demands that repeated measurements
must yield consistent results (Carmines and Zeller, 1979; Hellrich, 2018). Perhaps closest to
this idea is the notion of inter-study reliability where the repeated measurements stem from
completely independent studies. In the context of emotion analysis, this typically means
that aggregated gold labels from two distinct datasets are compared, most often in terms of
Pearson correlation between instances both datasets have in common (Warriner et al., 2013;
Stadthagen-González et al., 2017; Mohammad, 2018; Buechel et al., 2020a). The problem
with this approach is that it requires that units of language be annotated with the same
label format in different datasets. This is rarely the case, especially for non-English data.
Instead, split-half reliability can be understood as a way of approximating such agreement
through simulation: Using this method, the individual ratings per language unit get randomly
assigned into two equally-sized groups. For each of the groups, the individual labels are
aggregated as if they originated from independent studies. Finally, the agreement between
the group aggregates is computed and recorded. This process is repeated, typically 100
times, then averaging the results of the individual runs (Warriner et al., 2013; Buechel and
Hahn, 2018a; Mohammad, 2018). Note that, different than inter-study reliability, which can
be computed on aggregated ratings alone, split-half reliability requires knowledge of the
individual ratings of each annotator. In a modified version of this method, referred to as
leave-one-out reliability, the groups are not equally-sized. Instead, in each of the runs, one
of the raters is in one group and the remaining raters are in the other group (Strapparava and
Mihalcea, 2007; Buechel and Hahn, 2017c).

2.6 Modeling Emotion

How does one predict the emotion of a unit of language? Modeling techniques vary
drastically depending on the size of the unit they address. This section briefly introduces
main lines of model development for the three linguistic levels distinguished in §2.4: words,
utterances, and texts.

The prediction of word-level ratings, also referred to as emotion lexicon induction, has
attracted the interest of NLP researchers since the onset of sentiment analysis (Hatzivas-
siloglou and McKeown, 1997; Turney and Littman, 2003). These early studies relied
primarily on co-occurrence statistics of word usage extracted from large corpora following
an unsupervised approach. Yet, with the wide adaptation of word embeddings (Mikolov
et al., 2013; Pennington et al., 2014; Levy et al., 2015; Bojanowski et al., 2017), the
dominant methodology used for this problem field shifted. Since then, state-of-the-art con-
tributions typically use pre-trained word representations as input to a supervised machine
learning model (Amir et al., 2015; Rothe et al., 2016; Li et al., 2017; Sedoc et al., 2017). In
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our own work, we could show that this approach can be pushed to a point where it rivals
human annotation reliability, when combining high quality pre-trained embeddings with
Feed-Forward Networks (FFN; Buechel and Hahn, 2018c).9

Modeling the emotion of individual utterances (sentences, tweets, short paragraphs of
text) traditionally largely relied on lexical resources, i.e., emotion lexicons. Predictions
were mostly based on counting the words in a sample that belonged to a certain emotion
class or averaging their scores in case of real-valued labels. Such count-based procedures
were often combined with hand-written linguistic rules for handling negation, intensifiers,
ordering effects, and similar phenomena (Turney, 2002; Neviarouskaya et al., 2011; Taboada
et al., 2011; Hutto and Gilbert, 2014). The next generation of systems still largely relied
on lexicons, but these were complemented by other more general-purpose features like
n-gram frequencies. Both general-purpose and emotion-specific features were combined
and fed into a supervised model to generate a final prediction (Alm et al., 2005; Aman and
Szpakowicz, 2007; Mohammad et al., 2013). Thus, such approaches use emotion lexicons
mainly as a resource for feature extraction. The arrival of deep learning, thereafter, had
a major impact on how emotion in utterances was modeled. In the following years, the
dominant approach used word embeddings as input to various deep learning architectures,
especially of the convolutional neural network (CNN; Kalchbrenner et al., 2014) and
the recurrent neural network (RNN) family, including long short-term memory networks
(LSTM; Hochreiter and Schmidhuber, 1997) and gated recurrent unit (GRU; Cho et al.,
2014) networks (Wang et al., 2016; Abdul-Mageed and Ungar, 2017; Barnes et al., 2017;
Tafreshi and Diab, 2018). Complementary input features, especially derived from lexicons,
still yielded some performance gains (Mohammad and Bravo-Marquez, 2017) but overall
their importance declined. The most recent development replaces static word embeddings
with contextualized ones from pre-trained languages models (Akbik et al., 2018; Peters
et al., 2018) and, most importantly, transfer learning with transformers (Vaswani et al., 2017;
Devlin et al., 2019; Radford et al., 2019; Zhong et al., 2019; Delbrouck et al., 2020).10

Regarding text-level emotion prediction, methodological developments are hampered

9Complementary to these studies, there is also an extensive body of research trying to enhance the emotional
load of word embeddings by incorporating knowledge from lexical resources or emotion-annotated corpora
(Tang et al., 2014; Faruqui et al., 2015; Yu et al., 2017; Khosla et al., 2018; Xu et al., 2018). The goal
is that computationally derived similarity judgments between words shall not only capture affinity in
denotative word meaning (e.g., “cat” and “dog” have greater similarity to each other than to “bridge”
because both are animals) but also in connotative meaning (e.g., “sunshine” should become more similar
to “chocolate” because both are high-valence words).

10This thesis focuses on the emotion of complete utterances in the sense of the viewpoints from §2.3. Other
utterance-level problems that derive predictions for sub-sequences, e.g., emotion role labeling, emotion-
cause extraction, or emotion span detection (Kim and Klinger, 2018; Xia and Ding, 2019; Oberländer and
Klinger, 2020), are considered out of scope. Similarly, modeling the emotion of utterances not in isolation
but embedded within dialogue calls for additional methodologies (Poria et al., 2019; Rashkin et al., 2019)
and is hence not addressed in this thesis (see Ch.1).
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by the lack of suitable gold standard data, i.e., a corpus of long text documents with
manually annotated global emotion scores (§2.4). Constructing such a corpus is conceptually
challenging (What is the emotion of a long text document?) and expensive due to the large
amount of reading time required. Therefore, existing application studies that derive global
emotion scores typically rely on some sort of aggregation step, such as counting or averaging,
which propagates affective information from lower linguistic levels (words or sentences
for which emotion gold ratings and supervised prediction models are available) up to
the text level (Mohammad, 2011; Mohammad and Yang, 2011; Hajek et al., 2014; Goel
and Uzuner, 2016). For instance, Mohammad (2011) computed the relative frequency of
different classes of emotion words for a collection of novels and fairy tales. This “emotion
density” can be seen as a global emotion score which allows to distinguish texts based
on their affective characteristics. In other cases, a neural network may be used to predict
ratings for the individual sentences of a novel which are then averaged into a text-level score.
More abstractly, these simple aggregation steps can be seen as rudimentary approaches to
text-level compositionality, i.e., how the overall emotion of a text relates to the emotion
of the language units it contains. However, to the best of my knowledge, methods more
advanced than these basic arithmetic ones (essentially placing equal weight on all sub-units)
have not been developed yet (see discussion in §4.1 and §4.4).

2.7 Emotion and Multilinguality

There are thousands of languages spoken around the world today,11 each with its own
distinct ways of expressing and evoking emotion. This linguistic diversity poses a problem
for emotion analysis since in its most successful, supervised form, training data needs to
be available for every language of interest, not to mention the multitude of their respective
registers and domains. This section outlines two branches of work that can mitigate the
resulting, otherwise extreme data requirements by allowing to transfer knowledge across
languages.

Firstly, crosslingual representation learning is an area of work that is not specific to
emotion but can be used to tackle multilinguality in many different NLP areas. Perhaps
best known are approaches for learning crosslingual word embeddings, that provide vector
representations for word types from multiple languages in a shared space (Ruder et al., 2019).
Word sense embeddings using a multilingual sense inventory such as BabelNet (Navigli and
Ponzetto, 2012) can be used in a similar way, yet at an even higher semantic granularity
(Camacho-Collados and Pilehvar, 2018). Regarding contextualized word representations,
the recently proposed multilingual BERT model (MBERT; Devlin et al., 2019) has attracted

11https://www.ethnologue.com/about; last retrieved on November 29, 2022.

https://www.ethnologue.com/about


22 2 Background

a lot of attention.12 This transformer model has been pre-trained on many languages
simultaneously using a shared, multilingual word piece vocabulary. Consequently, the
model embeds utterances from different languages in the same representational space
(Pires et al., 2019). These three approaches have in common that they allow training an
emotion prediction model in one language where gold data is available thereby also enabling
inference in other languages where gold data is unavailable (Lamprinidis et al., 2021).
Crosslingual representation learning thus battles the need to collect training data for every
language of interest.

Secondly, there are studies concerned with the translatability of emotion. At the center
of this line of work stands the question whether a word or an utterance in one language and
their equivalents in another language will on average receive similar emotion ratings when
annotated with the same methodology. For individual words, psychological affective norm
databases provide very strong evidence for this hypothesis (Leveau et al., 2012; Warriner
et al., 2013).13 For utterances, the body of evidence in favor of their (partial) translatability
is smaller but expanding (Troiano et al., 2019, 2020).14 Translatability of emotion ratings
is helpful because it suggests that acquiring actual gold data for a target language may
be partially surrogated by machine-translating gold data from a source language.15 This
idea has already been implemented in studies, e.g., trying to generate lexical emotion
resources for less-resourced languages (see §3.6; Chen and Skiena, 2014; Buechel et al.,
2020a; Ramachandran and de Melo, 2020). It also forms the basis for many approaches to
crosslingual emotion analysis at the utterance-level (Abdalla and Hirst, 2017; Barnes et al.,
2018).

2.8 Sparsity and Incomparability of Emotion Data

Looking back at the large variety of proposed emotion label formats (§2.2), the rise in
annotation cost that comes from using such information rich schemes (§2.5), and the
distinct viewpoints of emotion (§2.3), combined with the challenges of multilinguality
(§2.7), different linguistic levels (§2.4), and other sources of data heterogeneity, it becomes
apparent that there is a fundamental problem with emotion analysis.

12https://github.com/google-research/bert; last retrieved on November 29, 2022.
13Mohammad and Turney (2013) make indirect use of this finding by offering machine-translated ver-

sions of their well-known NRC Emotion Lexicon: https://saifmohammad.com/WebPages/
NRC-Emotion-Lexicon.htm; last retrieved on November 29, 2022.

14I am not aware of experimental studies on the translatability of emotion in long texts.
15Interestingly, work that models word emotion in historical language stages often relies on the same

mechanism. As pointed out in Buechel et al. (2020a), those studies typically come up with a set of
seed words that are assumed to have temporally stable affective meaning (rather than stability against
translation) and then use distributional methods to derive emotion ratings in the target language stage
(Cook and Stevenson, 2010; Hamilton et al., 2016; Hellrich et al., 2018; Li et al., 2019).

https://github.com/google-research/bert
https://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.htm
https://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.htm
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One way of describing this problem is in terms of comparability: Because authors choose
different label formats and viewpoints for their work, it is hard to compare annotations
from different studies. Existing datasets, even when covering the same language domain,
often cannot be merged because of differences in annotation methodology.16 Also, because
annotation cost is quite high, this results in many small datasets scattered over various label
formats, rather than few large ones, which would be more beneficial for achieving high-
quality results in prediction and evaluation. As a consequence, existing emotion datasets are
often limited in their re-usability. The same is true for emotion analysis software tools: the
smaller their coverage of the existing label formats, the fewer researcher will be interested
in re-using such software for their own work. Similarly, empirical results, either in the form
of model performance or (linguistic, psychological, or cultural) insight, are hard to compare
between studies when different label formats are used and distinct viewpoints of emotion
need to be taken into account.

Another way of describing this problem is in terms of data sparsity. As a thought
experiment, imagine compiling all manually annotated emotion data in a single, very
large table. The rows of this table would refer to the samples which in turn come from
various domains (different linguistic levels, natural languages, and registers thereof) thus
representing the heterogeneity of emotion data on the sample side. The columns of this
table would refer to all the emotion variables that are included in any of the existing datasets,
representing the heterogeneity on the label side. The individual table cells would then
contain the respective ratings (see Table 2.4 for a small-scale illustration). Clearly, this
table would be very sparsely populated with only very few language items being annotated
multiple times in different formats (e.g., the top two rows of Table 2.4). Most of them are
annotated according to only one format, not to mention the virtually infinite number of
non-annotated samples that are not included in the table. Now imagine instead that this
table was densely populated, i.e., every language item that appears in any emotion dataset
would be annotated for all emotion variables. Then, researchers could, per default, develop
models and tools, report experimental results and empirical insights according to multiple
label formats, in effect mitigating the problems outlined above. However, filling up this
table using regular annotation techniques is unfeasible.17 On top of that, note that the above
description of data sparsity did not even cover all sources of heterogeneity but rather left out
differences in the value ranges of the ratings (see markers in Table 2.4) and the viewpoints
of emotion.

16The term language domain, or domain for short, is used in a broad sense. In this thesis, it refers to
combinations of natural languages, genres or registers, and linguistic levels. For example, English words
represent one domain while Chinese product reviews constitute another one. In essence, the common
usage of the term domain, meaning genre or register, is extended to also be applicable across languages
and linguistic levels.

17Annotating l items for m languages in n label formats results in cubic annotation cost.
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Sample Val Aro Dom Joy Ang Sad Fea Dis

rollercoaster 8.0� 8.1� 5.1� 3.4⇤ 1.4⇤ 1.1⇤ 2.8⇤ 1.1⇤

urine 3.3� 4.2� 5.2� 1.9⇤ 1.4 ⇤ 1.2⇤ 1.4⇤ 2.6⇤

szczęśliwy (pl: “happy”) 2.8• 4.0�

College tution continues climbing 0⌅ 54⌅ 40⌅ 3⌅ 31⌅

A gentle, compassionate drama about grief and healing 14

áÌ⇡�„Ñ/Ó¡✏Ü⇥ 2.8� 6.1�
(zh: “This product generation still has terrible speakers.” )

Value Ranges: �[1, 9] •[�3, 3] 4{0, 1} ⇤[1, 5] ⌅[0, 100]

Table 2.4: Instances from various datasets described via VAD and BE5 emotion variables. Samples
differ in domain (word vs. text, language, register) and label format (covered variables and their
value ranges). Translations for non-English samples in lighter shade. Adapted from Buechel et al.
(2021).

Importantly, the problem lies not in the diversity of the label formats itself (§2.2). Studies
find that those different formats capture affective information complementary to one another
(Stevenson et al., 2007; Pinheiro et al., 2017). In line with that, other research shows that,
when deriving emotion ratings as an intermediate step for some downstream prediction
tasks, different emotion variables turn out particularly useful depending on the application,
e.g., stock market prediction, suicide prevention, or crisis management (Bollen et al., 2011;
Desmet and Hoste, 2013; Schulz et al., 2013). Consequently, the solution to the outlined
sparsity and incomparability problem cannot be for the scientific community to “settle” on
a single format (i.e., deliberately reducing the number of columns of the table). Rather, the
challenge is to make emotion annotations comparable across formats (i.e., virtually filling
up the table) without either giving up representational diversity or having to spend vast
amounts of money on data collection.

This challenge, or variations of it, has been recognized by many authors, who in their
research approach it from different angles (Hoffmann et al., 2012; Calvo and Mac Kim,
2013; Felbo et al., 2017; Bostan and Klinger, 2018; De Bruyne et al., 2020; De Bruyne et al.,
2022). Perhaps the most obvious example are studies that present explicit mappings between
different label formats, that act as a kind of annotation projection. This general approach can
be implemented in either of two ways. Firstly, it can be studied as a modeling problem in its
own right where the goal is to find the best possible mapping function (Buechel and Hahn,
2017a, 2018a; Landowska, 2018). Or, secondly, it can be employed in a two-step-process:
Initially, emotion ratings are predicted according to some intermediate label format; then,
these ratings are post-processed via label mapping to yield the final predictions according to
the desired target format (Calvo and Mac Kim, 2013; Buechel and Hahn, 2016; Hofmann
et al., 2020; Zhou et al., 2020; Park et al., 2021). This latter approach can be useful when
the only available training data does not follow the required output label format but mapping
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from the format of the available data to the desired format is easily achieved. Similarly,
studies that aim to learn latent representations of emotion that generalize across different
annotation schemes show how knowledge can be shared across otherwise incompatible
datasets (Felbo et al., 2017; Buechel et al., 2021; De Bruyne et al., 2022).

On a higher level, other areas of work within emotion analysis can also be framed in
terms of data sparsity reduction: The development of supervised, monolingual prediction
models for the emotion of words or utterances can be seen as a way to transfer affective
information within a given language from labeled to unlabeled instances (§2.6). Conversely,
crosslingual approaches offer a way of transferring knowledge between languages (§2.7).
Lastly, work on the relationship between various emotion viewpoints may come up with
ways to generalize affective ratings given for one viewpoint in order to make them applicable
to other viewpoints (§2.3).

The studies compiled for this dissertation sit at the junction of these various problem
fields, alleviating sparsity and incomparability of emotion data while simultaneously trying
to foster their diversity. The following chapter provides brief descriptions of their individual
research contributions, detailing how they fit into this overarching theme.
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3 Results

This chapter gives short summaries of the submitted articles; see Table 3.1 for an overview.
The individual summaries are structured as follows: They start by describing the broader
problem which the respective contribution aims to solve, how this problem is embedded in
the overall state of NLP emotion research at the time of conducting this work, and how this
particular work is linked to other articles submitted with this thesis. The sections then move
on to briefly describe the methods and main results of the respective paper. They conclude
by highlighting how this research connects to the various methodological areas outlined in
the previous chapter and, in particular, to the overarching theme of this dissertation, data
sparsity, comparability, and diversity in emotion analysis.

Reference Summary Full Venue Rank Type Reviews Accept Cites

Buechel and Hahn (2016) §3.1 Ch.7 ECAI A long 4 27% 63
Buechel and Hahn (2017a) §3.2 Ch.8 EACL A short 3 24% 176
Buechel et al. (2018) §3.3 Ch.9 EMNLP A short 3 23% 48
Buechel and Hahn (2018c) §3.4 Ch.10 NAACL A long 3 31% 30
Buechel and Hahn (2018a) §3.5 Ch.11 COLING A long 3 38% 24
Buechel et al. (2020a) §3.6 Ch.12 ACL A* long 3 25% 16
Buechel et al. (2021) §3.7 Ch.13 EMNLP A long 3 26% 5

Table 3.1: Articles submitted for examination; with their bibliographical reference, the sec-
tion in which they are summarized and the chapter that provides their full text, their pub-
lication venue and its rank according to the CORE 2021 conference ranking†, their paper
type (long vs. short papers), the number of reviews they received, the acceptance rate
of their paper type at the respective venue, as well as their number of citations accord-
ing to Google Scholar‡. (†http://portal.core.edu.au/conf-ranks/; ‡https://
scholar.google.com/citations?user=Nwru9iwAAAAJ; both last retrieved on Novem-
ber 29, 2022.)

3.1 Emotion Regression in Affective Dimensions

At the time of preparing our first contribution (Buechel and Hahn, 2016), the research
landscape in emotion analysis looked markedly different to today’s. While class-based
approaches to utterance-level emotion analysis had been popularized some time before

http://portal.core.edu.au/conf-ranks/
https://scholar.google.com/citations?user=Nwru9iwAAAAJ
https://scholar.google.com/citations?user=Nwru9iwAAAAJ
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(Alm et al., 2005; Aman and Szpakowicz, 2007), numerical approaches to emotion repre-
sentation and modeling were still very much in their infancy. These early regression-based
studies (i.a., Katz et al., 2007; Neviarouskaya et al., 2011; Staiano and Guerini, 2014) were
working almost exclusively on a single corpus with basic emotion annotations: the Affec-
tiveText dataset (Strapparava and Mihalcea, 2007). In contrast, work focusing on affective
dimensions, e.g., Valence and Arousal, was almost entirely unrepresented. Lexicon-based
methodologies still yielded the state-of-the-art results for emotion regression (Staiano and
Guerini, 2014).

Our contribution featured a full review of previous work addressing emotion analysis
as a regression problem and discussed conceptual differences between basic emotions and
affective dimensions when used in a regression setup. Furthermore, we introduced JEmAS,
the first open-source software tool for VAD regression1 and one of the first emotion analysis
systems for VAD in general. JEmAS uses a lexicon-based approach that takes advantage of
an affective norm database (§2.4), which originates from psychological research (Warriner
et al., 2013), had so far not been used in NLP applications, and is an order of magnitude
larger than its well-known predecessor ANEW (Bradley and Lang, 1999). To evaluate our
system (which produces predictions in affective dimensions) against previous work (which
almost exclusively focused on basic emotions), we trained a second model, acting as a
post-processor to our predictions, translating them into the label format of the AffectiveText
dataset. Training data for the post-processor was generated by combining pairs of affective
norm datasets that have a shared set of entries but use different label formats. In particular,
the VAD ratings by Bradley and Lang (1999) and the BE5 ratings by Stevenson et al. (2007)
can be combined using one of the two rating sets as labels and the other as input features.
To the best of our knowledge, this was the first time that mapping between different label
formats has been addressed as a supervised learning problem (§2.8). This approach turned
out to work very robustly, so that even after this error-prone post-processing step, our system
still achieved state-of-the-art performance for Joy, Anger, and Disgust on the AffectiveText
dataset.

This study connects to the topic of this dissertation in three ways: Firstly, it advanced the
state of the art in fine-grained emotion analysis on the AffectiveText dataset. Secondly, it
is one of the earliest contributions that study emotion analysis with affective dimensions.
Through both of these factors, this work contributes to a more nuanced assessment of
affective states in language. Thirdly, it is also the first study to propose mapping between
emotion label formats as a supervised learning problem, thereby tackling the comparability
issue outlined in §2.8.

1https://github.com/JULIELab/JEmAS; last retrieved on November 29, 2022.

https://github.com/JULIELab/JEmAS
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3.2 A Multi-Format Multi-Viewpoint Emotion Corpus

The positive results of the previous study motivated us to further examine the potential of
affective dimensions in emotion analysis. The major limitation, however, was the lack of
VAD gold data. For example, for the above study, we had only 120 instances with VAD
annotations at our disposal (Bradley and Lang, 2007). Such a small sample of data is of
course very limiting when developing advanced machine learning models.2 While two
corpora with VA(D) annotations have been published contemporarily to our work, both are
still relatively small (less than 3000 instances) and are restricted to online language domains
(Preoţiuc-Pietro et al., 2016; Yu et al., 2016).

Consequently, we created our own dataset of genre-balanced, VAD-annotated sentences
called EmoBank3 (Buechel and Hahn, 2017a). The majority of its raw data stems from the
written registers of the Manually Annotated Sub-Corpus (Ide et al., 2008, 2010) which in
turn is part of the American National Corpus (Ide and Suderman, 2004). Thus, EmoBank
not only covers blog posts and newspaper material, but also essays, fiction, and travel
guides. We also included the BE6 annotated headlines from AffectiveText (Strapparava and
Mihalcea, 2007), so that part of our corpus is annotated twice with different label formats.
Moreover, before annotating the full corpus, we conducted a pilot study on the influence
of different emotion viewpoints (§2.3) on annotation quality (Buechel and Hahn, 2017c).
Since the results were not fully conclusive, we decided to double-annotate the entire corpus
from two different viewpoints, the Perceived (writer) emotion and a variation of the Evoked
(reader) emotion.4 Ratings were collected via crowdsourcing using the 5-point version
of SAM (§2.5). After quality control, the final version comprises over 10K sentences
making EmoBank one of the largest emotion corpora at its publication time. In a subsequent
analysis, we found that the Evoked reader viewpoint resulted in an overall better annotation
quality than the Perceived writer viewpoint. Moreover, similar to the previous study, we
conducted a modeling experiment on translating between the included VAD and BE6 labels,
achieving performance figures higher than the reported inter-rater reliability of the latter
ratings (Strapparava and Mihalcea, 2007). While this result is not easy to interpret (see
discussion in §4.3), it clearly indicates that the mapping models presented in Buechel and
Hahn (2016) can also be trained efficiently not only on word-level but also on utterance-level
data.

2However, in a later study, not included in this dissertation, we found that architectures such as CNNs or
GRUs can be fitted on as little as 100 data points if well pre-trained word embeddings are used and the
number of parameters is kept small (Buechel et al., 2020b).

3https://github.com/JULIELab/EmoBank; last retrieved on November 29, 2022.
4In the interest of quality control, annotators were asked to rate not their own reaction to a piece of text but

rather how they thought an average person would answer. This general procedure of asking participants
how the general public would respond was later positively assessed by Fujisaki et al. (2017).

https://github.com/JULIELab/EmoBank
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In conclusion, EmoBank contributes to the topic of this dissertation in multiple ways. As
it is still the largest VAD corpus to this date, it is an asset for advancing fine-grained emotion
analysis in affective dimensions, as shown by how frequently the study has been cited (see
Table 3.1). So far as I am aware, EmoBank is the first manually annotated multi-viewpoint
corpus, thus making possible an array of follow-up studies on the relationship between
Perceived and Evoked emotion. Furthermore, its multi-format subsection helps to advance
methods of mapping between different label formats. Thus, both its multi-viewpoint as well
as its multi-format characteristics contribute to the endeavor of making emotion data more
comparable.

3.3 Empathy in Reaction to News Stories

Similar to the above work, the next contribution provides a dataset for previously under-
represented emotional meaning facets, here surrounding the notion of empathy. Besides
basic emotions and affective dimensions, empathy captures an important part of the emo-
tional spectrum which is particularly useful for understanding human interaction, including
human-computer interaction (§2.2). Previous work in language-based empathy detection
was centered around speech data and particularly spoken dialogue while the recognition of
empathy in written language until recently had been addressed very scarcely. Arguably, one
of the main reasons for this is the lack of a publicly available gold standard.

In our study (Buechel et al., 2018), we constructed EmpathicReactions5, a dataset con-
taining written responses to news articles along with two kinds of empathy annotations.
In contrast to the majority of previous work, we used a well-established psychological
instrument (Batson et al., 1987) to gather ratings for both Empathic Concern (“feeling
for someone”), and Personal Distress (“suffering with someone”; see §2.2). Ratings were
collected using a novel annotation methodology that allowed us to collect reliable judgments
from the viewpoint of the Experienced emotion, rather than having to rely on third-party
assessments (Expressed or Perceived emotion; §2.3): Participants first read a potentially
empathy-evoking news article, then reported their level of Empathic Concern and Personal
Distress, before being asked to write a short statement about their thoughts and feelings on
the article. The final dataset uses not the newspaper articles themselves but these written
responses as samples (1860 after quality control) and the questionnaire ratings as labels.
In a subsequent modeling study, we showed that modern deep learning architectures can
successfully predict self-reported empathy ratings from the response statements. In terms
of performance figures, however, modeling empathy in written language turned out to be a
challenging problem, indicating the need for further research.

5https://github.com/wwbp/empathic_reactions; last retrieved on November 29, 2022.

https://github.com/wwbp/empathic_reactions
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This work contributes to the advancement of more expressive and fine-grained emotion
analysis by providing the first publicly available gold standard for empathy prediction,
an important facet of affective meaning that has so far been underrepresented in written
language processing. As expected, our dataset has since its publication been used in
numerous follow-up studies (e.g., Zhou and Jurgens, 2020; Guda et al., 2021; Shi et al.,
2021), including our own work on generating word-level empathy ratings (Sedoc et al., 2020)
as well as the WASSA 2021 shared task (Tafreshi et al., 2021). The proposed annotation
methodology, which can also be applied to other affective meaning facets than empathy,
constitutes one of the first reliable ways to gather ratings for the Experienced writer emotion,
thus further advancing viewpoint-aware emotion analysis (§2.3).

3.4 Word-Level Emotion Prediction in Affective

Dimensions as Multi-Task Learning

Predicting the emotion of individual words is one of the longest-standing challenges in
emotion analysis. Besides being a modeling problem in its own right, allowing to gather
valuable linguistic insight, automatically generated word ratings can also be beneficial
for detecting affect in larger linguistic units (§2.6).6 While the importance of lexicons
for utterance-level emotion prediction has declined in recent years, they still yield helpful
information even for advanced neural network architectures (see §4.1 for discussion).
Another advantage of working with word-level ratings is that the respective datasets are
available in very high quality for a wide range of languages using consistent acquisition
methodologies (§2.4). This makes word datasets highly suited for testing new methodologies,
possibly also applicable to larger linguistic units, on many languages in parallel.

In Buechel and Hahn (2018c), we propose a new model for predicting VAD ratings of
individual words. Our model7 is a two-hidden-layer FFN that takes the embedding vector
of a word as input, which in turn is given by a pre-trained embedding model. Its main
novelty is that its hidden layers are shared between the affective dimensions, only the
output layer’s parameters (prediction heads) being specific to either Valence, Arousal, or
Dominance. Training this model thus constitutes a mild form of multi-task learning (Caruana,
1997). In our experiments, we found that this approach requires more training steps
before convergence compared to regular single-task learning but ultimately improves model
performance by preventing overfitting. Re-implementing a number of earlier systems, we
found that our proposed model achieved state-of-the-art results throughout all experimental

6To give an example from our own work, for our lexicon-based system JEmAS, we found that using an
automatically extended version of a seed lexicon increases performance compared to using the seed lexicon
as is.

7https://github.com/JULIELab/wordEmotions; last retrieved on November 29, 2022.

https://github.com/JULIELab/wordEmotions
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conditions spanning nine typologically diverse languages. Finally, we found that our model
predictions are even competitive to human annotation in terms of split-half and inter-study
reliability (§2.5), an observation similar to the one made in Buechel and Hahn (2017a).
Again, these findings are further discussed in §4.3.

On the surface, this study advances fine-grained emotion analysis by presenting a new
state-of-the-art model for the long-standing problem of predicting individual word emotion.
Adapted versions of this model also worked very well in a number of follow-up studies
(Buechel and Hahn, 2018a; Buechel et al., 2020a; Sedoc et al., 2020; Buechel et al., 2021).
Moreover, since word emotion prediction can be used to induce ratings for previously
unrated words, this study also helps to increase the coverage of fine-grained label formats
(§2.8). Perhaps equally important though, our work offers a new perspective on the relation-
ship between the expressiveness of a label format and the resulting model performance: Up
until this point, the present thesis has primarily described both in an antagonistic way, i.e.,
higher label informativeness increases annotation cost, which typically results in smaller
datasets and thus reduced model performance compared to using simpler label formats
(§2.5). But not so in this study—here, we demonstrated that while more informative la-
bel formats are obviously more expensive to annotate, they may also boost performance
by enabling a model to learn more robust representations of emotion, e.g., by multi-task
learning. I will come back to these findings in §4.2, where I discuss reasons to choose one
label format over another when constructing a new dataset.

3.5 Mapping between Emotion Label Formats

The next study is similar to the previous one in that it uses FFNs to predict emotional word
ratings. However, the present contribution focuses not on predicting such ratings from word
embeddings but rather revisits the problem of mapping between different label formats
(§2.8). This approach already played a subordinate role in Buechel and Hahn (2016) and
Buechel and Hahn (2017a), showing promising results. The starting point of this study was
the observation that when there are emotion lexicons for more than one format in a language,
they are often sized very differently. For instance, when there is a VAD and BE5 lexicon,
the former is typically much larger than the latter. In these situations, label mapping can be
seen as an alternative to the approach of the previous study. That is, instead of enlarging the
smaller lexicon (typically the one with BE5 ratings) with word emotion prediction, one may
also translate the ratings of the larger lexicon to the format of the smaller one. In effect,
both approaches yield new ratings for the less-resourced format.

In Buechel and Hahn (2018a), we proposed a two-hidden-layer FFN for label mapping,
similar to the one of the above study (Buechel and Hahn, 2018c). Instead of word embedding
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vectors, our network8 takes the emotion ratings of a word in one label format (e.g., three
real-valued scores for VAD) and outputs the predicted rating in a different format (e.g.,
five real-valued scores for BE5). In our experiments, we found that this, as an approach to
automatic emotion lexicon extension, indeed outperforms embedding-based techniques by a
large margin. Our model also outperforms previous approaches to label mapping (Stevenson
et al., 2007; Buechel and Hahn, 2016, 2017a,b, 2018b). Moreover, we also proposed a new
evaluation methodology for comparing our results to human annotation capacities. Our
method addresses the fact that measures of rating reliability (here split-half reliability) are
often sensitive to the number of raters, making them difficult to interpret (see discussion in
§4.3). Using this method, we found that the reliability of our predicted labels is on par with
the reliability of a reasonably-sized group of human annotators. This even held true in a
crosslingual setting, where the model was fitted on data from one language but then tested
on data from another language. This suggests that the mapping between the VAD and the
BE5 format is language-independent.9 Finally, we used label mapping as a tool to study
the relative importance of emotion variables, finding that Dominance is the least important
variable for predicting BE5 and Disgust is the least important one for predicting VAD (see
discussion on what constitutes a “good” label format in §4.2).

In its attempt to “translate” between different label formats, this study directly targets
the issue of incomparability of emotion data (§2.8). Conversely, when applied to automatic
lexicon creation, our approach decreases data sparsity by providing an already annotated
language item with ratings for an additional label format. While in this study we focused on
lexical data again, I emphasize that the presented mapping model is in no way restricted to
word ratings but can be applied to utterance-level ratings without any modification.10 The
final two studies of this thesis revisit and extend the notion of “translating” between label
formats.

3.6 Creating Massively Multilingual Emotion

Lexicons

The next study brings together the results of the two previous ones and extends them
through a crosslingual perspective: Firstly, in Buechel and Hahn (2018c), we showed that
predicting word-level emotion achieves very high performance and may thus be seen as a
way of expanding the coverage of a monolingual emotion lexicon in terms of the number

8https://github.com/JULIELab/EmoMap; last retrieved on November 29, 2022.
9We gathered further evidence for this in a previous study, not included in this dissertation (Buechel and

Hahn, 2018b).
10Besides Buechel and Hahn (2016) as well as Buechel and Hahn (2017a), results from yet another study not

included here also support this claim (Buechel and Hahn, 2017b).

https://github.com/JULIELab/EmoMap
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of word entries in the same format. Secondly, in Buechel and Hahn (2018a) we found that
emotion label mapping produces even more reliable ratings and can thus be understood
as a way to extend the coverage of an emotion lexicon in terms of the number of emotion
variables. Thirdly, previous work had shown that translational equivalents of (especially)
words typically receive very similar emotion ratings across different languages (§2.7). That
is, emotion ratings are, to some degree at least, invariant against translation.

In Buechel et al. (2020a), we combined these observations by presenting a methodology
for generating large, representationally diverse emotion lexicons for any target language
imposing only relatively mild data requirements. Starting with a source language emotion
lexicon, our method uses label mapping to extend its coverage to more emotion variables,
as was done in Buechel and Hahn 2018a. Next, we machine-translate the enriched source
lexicon into the target language. We then train a word-level prediction model for the
target language using these machine-translated word entries together with their source
language ratings as (silver standard) training data, following the approach from Buechel
and Hahn (2018c). Finally, we predict new ratings for the target language using our newly
trained model, replacing and extending our silver standard ratings. This prediction step
also mitigates errors introduced during translation. Besides this generation procedure, an
equally large technical challenge lied in designing a robust evaluation scheme. This was
due to phenomena linked to lexical ambiguity which may cause knowledge to leak between
train and test data.11 Using our method, we generated emotion lexicons for 91 languages,
each of them covering at least 100,000 words.12 Our evaluation indicates that their quality
is about equal to monolingual generation and, again, competitive to human reliability.13

As detailed in §2.8, one of the main drawbacks of more complex emotion label formats lies
in their increased annotation cost which often limits the coverage of the respective resources,
especially when considering that they need to be (re-)created for every language of interest.
The summarized study mitigates this issue by expanding the volume of annotated data
along multiple axes to include new words, emotional variables, and other languages. It thus
efficiently battles the sparsity problem of fine-grained emotion label formats. Nevertheless,
this study is still restricted to the word level. Future work may investigate whether similar
expansion mechanisms can be applied to larger linguistic units as well—a conjecture for
which some pieces of supporting evidence already exist (Troiano et al., 2019, 2020).

11For instance, lexical ambiguity on the target-side may result in duplicate entries in the silver standard,
because multiple source-side entries translate to the same target-side word. For example, both English
spring and feather translate into the German word Feder.

12https://zenodo.org/record/3756607; last retrieved on November 29, 2022.
13In this case, the method for comparison against human reliability presented in Buechel and Hahn (2018a)

could not be applied due to data limitations, so that we used inter-study reliability instead. However, the
fundamental difficulties of comparing model prediction quality against human reliability still apply (see
discussion in §4.3).

https://zenodo.org/record/3756607
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3.7 Label-Agnostic Emotion Embeddings

Besides only focusing on the word level, the above work is limited by the fact that, while
the proposed method creates new ratings, it is less suited for comparing existing ones.
For instance, if two independent annotation studies gathered ratings for a shared group of
language items using different label formats, how could one determine whether these studies
agree or perhaps systematically differ in their findings? Thus, in terms of the problem
description from §2.8, the above study tackles the sparsity of emotion data but only to a
lesser extent their incomparability. One possible solution may be to apply label mapping
to one set of ratings, thus translating them to the format of the other rating set. However,
this approach may still be insufficient for the purpose of comparison, since different label
formats capture diverging parts of the full emotional spectrum (§2.2, §2.8, Buechel and
Hahn, 2018a). Furthermore, in the form presented in Buechel and Hahn (2018a), label
mapping only operates on pairs of label formats, i.e., a mapping model has a specific
input and output format. Thus, a quadratic number of mapping models would be necessary
to cover all possible translation directions, not to mention the training data needed to fit
those models. While the studies compiled in this dissertation mainly address the BE5 and
VA(D) format, the number of label formats in use is actually much larger than that (§2.2).
Consequently, instead of relying on label mapping as presented above, I argue that a more
desirable solution would be to take into account the fact that, at their core, all label formats
try to capture (different facets of) the same underlying quality, human emotion, which is not
specific to any particular language domain.

In Buechel et al. (2021), we implemented the above considerations by learning a distri-
butional representation of emotion, so-called emotion embeddings, that generalizes over
different label formats, language domains, and model architectures.14 On the technical level,
our method first learns a multi-way mapping model which extends over the mapping model
presented in Buechel and Hahn (2018a) in that it translates between multiple label formats,
rather than only two. It does so via a shared intermediate layer which can be thought of
as an “interlingua for emotion”. In a second step, the format-specific output layer of the
multi-way mapping model (i.e., its prediction heads) is re-purposed to be deployed on top
of existing model architectures for word or utterance level emotion prediction (e.g., the FFN
from Buechel and Hahn (2018c) or a BERT model). Applying our proposed training scheme,
these existing models learn to embed their respective samples in the common emotion space,
and in the process also learn to predict ratings according to additional label formats. As our
evaluation shows, these benefits come without any negative impact on prediction quality.

In summary, our method embeds the emotion of language items from various domains
in a shared representational space, thus offering a solution to the incomparability problem

14https://zenodo.org/record/5651129; last retrieved on November 29, 2022.

https://zenodo.org/record/5651129
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outlined in §2.8. We consider our emotion embedding technique particularly valuable for
future research studying emotional language use across linguistic and cultural barriers.
Future work may expand the coverage of the prediction heads to additional label formats
and explore their suitability for modalities other than written language. Linking together
different research branches presented in this thesis—predicting emotions of individual words
and utterances, translating between label formats, and battling sparsity and incomparability
of emotion data—, this study constitutes the focal point of my dissertation project.
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4 Discussion

This chapter aims at revisiting some of the issues which were raised in the previous sections
but not fully addressed by any of the presented studies.

4.1 Do Word Ratings Still Matter?

A large portion of the work presented in the preceding chapter addressed the prediction of
word-level emotion ratings, in particular Buechel and Hahn (2018c), Buechel and Hahn
(2018a), and Buechel et al. (2020a). While emotional word ratings have inherent value
from a linguistic perspective and facilitate the designing of psychological experiments
(Monnier and Syssau, 2008; Hofmann et al., 2009), it is also apparent that for most industry
applications predictive models for the utterance or even text level (§2.4) are in higher
demand.1 Consequently, one might wonder what practical benefits emotion lexicons have
from an application perspective.

An obvious advantage of such lexicons is that they can and have been used to improve
the performance of utterance-level prediction systems (§2.6). Historically, sets of word
ratings have been one of the central components, obviously, in the lexicon-based approach.
However, their importance dwindled as the dominant methodologies changed, first to
feature-engineering-based machine learning, then to end-to-end deep learning. Yet, evidence
suggests that even today’s transformer architectures benefit from additional information
provided by lexicons (De Bruyne et al., 2022).2 Additionally, methods that aim to increase
the emotional load of word embeddings, thereby improving downstream performance as
well, also often rely on such lexical resources (Faruqui et al., 2015; Yu et al., 2017; Khosla
et al., 2018).

Another argument in favor of word ratings is that a lexicon-based approach to emotion
analysis is much cheaper, both in terms of required computing and annotation effort,
compared to a sophisticated but expensive neural approach (§2.5). Thus, lexicons are

1One notable exception are writing assistance applications, which often involve some sort of lexical sub-
stitution method, e.g., suggesting to replace part of the words in a document with ones that better fit the
intended style (Troiano et al., 2021b).

2In a broader sense, integrating emotion lexicons with end-to-end neural network models can be seen as part
of a larger research endeavor to link deep learning approaches with symbolic knowledge bases (Sukhbaatar
et al., 2015; Logan et al., 2019).



38 4 Discussion

well suited for languages where no training data is available. While recently proposed
multilingual language models (such as MBERT; §2.7) are a strong contender for this usage
scenario, they still require sufficient amounts of raw data for the target language, giving
lexicons a solid use case for under-resourced languages (Tafreshi, 2021). This seems
especially true in the light of the presented results on the translatability of word emotions
(Buechel et al., 2020a).3

Lastly, in the case of text-level emotion analysis, word-based affect scores may also
capture information complementary to that of utterance-level models. Recall that models
cannot be trained to predict the emotion of long text documents (novels, business reports,
etc.) in the regular, supervised fashion due to the lack of gold data and, more importantly,
the conceptual difficulties in creating them (§2.4). However, from an application perspective,
it may still be necessary to derive a global emotion score from such a long document (§2.6).
An obvious way to apply an utterance-level model to a long text document would be to
divide the document into multiple slices (e.g., sentences or paragraphs), derive a prediction
for every slice, and then average these individual predictions. Note that in doing so, one
essentially assigns equal weight to every slice, thus ignoring compositional effects on the
text level.4

Interestingly, since no gold data is available, the question whether utterance-level neural
networks outperform a lexicon-based approach on the text level, as they certainly do on the
utterance level, cannot reasonably be answered right now. Instead, one may compare word
and utterance approaches based on their predictiveness for downstream modeling problems,
e.g., using their respective outputs as features for, say, book sales or bankruptcy predictions
(§2.4). As far as I am aware no such study has been conducted yet. However, it seems
reasonable to assume that, similarly to how different emotion variables can be particularly
useful depending on the given downstream problem (§2.2), word-level emotion may be more
predictive than utterance-level emotion for some applications but not for others. In other
words, emotion lexicons may provide useful, complementary information for downstream
modeling problems.

4.2 How to Compare Emotion Label Formats?

One of the fundamental arguments in favor of more complex representation schemes
of human emotion is that they render the output of NLP systems more informative for

3The final lexicon version produced by our method (Buechel et al., 2020a) relies on a large-scale target
language embedding model and is therefore not easy to generate for severely under-resourced languages.
However, our data also show that the machine-translated intermediate versions of the lexicons are of
satisfactory quality already. Creating this lexicon version only requires word-to-word translation which
should almost always be available when using English as the source language.

4This is similar to how a purely lexicon-based system ignores compositional effects on the utterance level.
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downstream applications (§2.2): Since application scenarios differ in how much they benefit
from a particular emotional nuance, collecting data for a diverse set of label formats is
important. However, does this mean that all label formats are “created equal”? Or are
some formats objectively better than others? In other words, is there a way to quantitatively
compare different label formats? I argue that among the most important properties of a
“good” label format are what I will refer to as (high) informativeness and (low) annotation
cost.

Perhaps the most obvious way to operationalize the notion of informativeness is by
looking at downstream predictiveness, i.e., using the output of an NLP system as the input
to a secondary modeling problem. Yet again, such an approach is unlikely to produce
cut-and-dry results since the outcome will depend on the particular downstream application
(§2.2). Another approach to the notion of informativeness is to look at results from label
mapping experiments. In Buechel and Hahn (2018a), we conducted an ablation study
examining which of the emotion variables of the VAD and BE5 formats are most useful for
predicting the other set of variables, respectively. We found that Dominance is the least
important variable for predicting BE5 ratings, and Disgust is the least important one for
predicting VAD ratings. One may thus conclude that the gain in informativeness of the
VAD format compared to VA is relatively small, so that using the latter format would be
the better choice in most situations. However, the problem with this approach is that it
only yields an assessment of informativeness relative to another format, in this case BE5.
Yet, Dominance may turn out much more important when mapping between VAD and, say,
the eight categories by Plutchik (§2.2). Moreover, these results do not necessarily agree
with findings from the aforementioned downstream predictiveness. For instance, we have
found in several application studies (not included in this thesis) that Dominance is actually
more important than Valence and Arousal for discriminating between certain text genres
or tracing policy change through time (Buechel et al., 2016a,b, 2019). Obviously, these
results are not yet fully conclusive, calling for more research in the future. A good place
to start may be a systematic review on the importance of different emotion variables for
various downstream applications as well as turning to more formal means to study the
informativeness of different label formats.

Annotation cost here refers to the necessary monetary compensation to collect a single,
individual rating for a unit of language (not an aggregated gold label). As described in §2.5,
main influence factors of annotation cost include the number of covered emotion variables
as well as the granularity of the annotation (class-based vs. numeric ratings and in the latter
case the number of rating points). Moreover, it seems plausible that some emotion variables
are inherently harder for humans to annotate than others, causing more cognitive load (e.g.,
Valence vs. Surprise). Other factors that may influence per-rating cost are the domain and
the length of the language samples (e.g., long sentences from legal documents are likely to
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take longer to annotate than short sentences from TV show transcripts). However, these two
factors seem mostly independent of the chosen label format.

Obviously, informativeness and annotation cost of a label format result in a trade-off:
the more emotion variables and the finer the granularity, the higher the cost tends to be per
rating.5 To capture how well a label format manages to balance these two contradictory
requirements, I propose to use a notion of annotation efficiency (similar to how Precision and
Recall are combined into the F-Score). To illustrate why this notion is important, imagine
you have to create the first gold dataset for a new language domain (no other gold data
exists) using a fixed budget. Your subsequent goal is to develop an NLP system with the
intention to use its output as an input for a downstream modeling application. Again, this
leads to the following trade-off: One could either go for a highly informative label format,
resulting in high per-item cost and a small dataset, or one could choose a less informative
label format leading to a larger dataset (potentially enabling the training of a more robust
model) but with less expressive labels. Which choice of label format will ultimately result
in the highest downstream modeling performance? For example, consider the problem of
modeling the development of an economic indicator such as the gross domestic product
(GDP) of Germany based on emotion indicators derived from German newspaper articles
with a fixed budget of 2,000 USD to annotate training data (assuming there would be no
German emotion dataset). In terms of the final GPD forecasting performance, would it be
better to annotate, say, 10,000 instances with Valence only or 5,000 instances with Valence
and Arousal? To the best of my knowledge, the research necessary to answer this question is
still very much in its early stages. Importantly, however, the studies compiled in this thesis
point out interaction effects between informativeness and prediction quality that may be
exploited to improve the annotation efficiency of a label format. In particular, Buechel and
Hahn (2018c) show that by making use of multi-task learning, a larger number of emotion
variables can lead to better, more robust models, hence counterbalancing the negative effects
of having less training data due to higher annotation cost.

In summary, the diversity of existing label formats is advantageous for downstream
applications, since different emotional nuances may be more or less important depending
on the specific use case. However, this does not mean that all label formats are equally well
suited for data collection. Rather, formats should be quantitatively compared regarding
their annotation cost and their informativeness for a specific downstream modeling problem.
This turns the assessment of different label formats into an empirical question calling for
future work.

5Another important factor that has been omitted for simplicity is the reliability of the ratings. That is, some
label formats may be more prone to disagreement between annotators than others and may thus require the
collection of more individual ratings per sample to be used as training data. For example, there is strong
evidence that Valence and Joy cause much less disagreement between raters than Arousal and Disgust
(Buechel and Hahn, 2018a).
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4.3 How to Compare Human and Machine

Performance?

The studies compiled in this dissertation, on multiple occasions, make comparisons between
model performance and human performance, in terms of rating reliability6, often finding
that the former achieved a performance figure about as high as (and sometimes even higher
than) the latter (Buechel and Hahn, 2017a, 2018c,a; Buechel et al., 2020a). Surely, these
are noteworthy observations, underscoring the high quality of the respective model. Yet,
coming up with an accurate interpretation for these findings is not without difficulty.

The most obvious problem is that throughout these studies, different methods for com-
puting human reliability have been used. In particular, we used leave-one-out reliability
in Buechel and Hahn (2017a), split-half reliability in Buechel and Hahn (2018a), and
inter-study reliability in Buechel et al. (2020a). In Buechel and Hahn (2018c), we relied on
both split-half and inter-study reliability (see §2.5 for a description of these measures). The
reason for this—perhaps confusing—heterogeneity is that these methods pose very different
data requirements. While split-half and leave-one-out reliability require knowledge of the
individual ratings of an annotation study, inter-study reliability relies on comparing the
final, aggregated labels from two independent studies. However, most dataset creators do
not share the individual ratings underlying their gold labels (e.g., out of annotator privacy
considerations) and most language items are not annotated in multiple datasets, let alone
using the same label format. Consequently, computing reliability measures for third-party
datasets is rarely possible. Thus, when comparing model against human performance,
most of the time one is limited to whatever reliability figure the respective dataset creators
provide.

A more fundamental problem for performance comparison is that the task specifications
for humans and machines are not strictly identical. To illustrate what I mean by this, consider
the Evoked emotion viewpoint (§2.3): Human raters are given the subjective task to indicate
their own feelings. The system, on the other hand, is evaluated based on how well it predicts
the aggregated response of many human raters. However, if the human task and the machine
task differ in such an obvious way, how is it possible to compare their performance at
all? This question touches on the relationship between annotation agreement, annotation
reliability, and model performance which, as I will argue, turns out to be slightly different
when annotating emotion compared to more traditional linguistic annotation tasks, e.g., for
part-of-speech tags.

6I will further elaborate on my understanding of “human performance” and how it relates to “rating reliability”
in the course of this section. However, the starting point is the question whether, if the model predictions
agree more with human ratings than human ratings tend to agree with each other, does this mean that the
predictions can replace actual gold data?
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In computational linguistics, the notion of inter-annotator agreement is strongly tied to
(different variants of) the  statistic (§2.5). This family of agreement measures is based
on how much more than chance a pair of annotators agrees with each other.7 However,
emotion ratings, at least for the Evoked and Perceived viewpoint, are inherently subjective.
Hence, a lack of agreement between a particular pair of raters cannot necessarily be taken as
an indicator of low annotation quality (Davani et al., 2021; Troiano et al., 2021a). Arguably,
this is the reason why reliability measures such as inter-study reliability and split-half
reliability—which capture how strongly the aggregated responses of two groups of raters
agree with each other—are popular as an indicator of annotation quality for emotion data.
In other words, given the subjectivity of the emotion annotation task, group-level reliability
is used as a replacement for pairwise agreement. This, in turn, has important implications
for the notion of ground truth in emotion annotation.

In a more traditional linguistic annotation setup, the result of a carefully carried out
annotation process—in which disagreement between individual annotators can be discussed
and resolved—is considered ground truth. In contrast, in emotion annotation, because of its
inherent subjectivity, disagreements cannot be resolved. In light of these considerations,
I argue that a better way to conceptualize the ground truth behind emotion data would be
to consider the aggregated rating when questioning the entire population of all possible
raters, i.e., the expectation of the rating, a theoretical value that can be estimated but not
measured directly.8 Framing the ground truth in emotion analysis in such a way clarifies
why the annotation quality is directly dependent on the number of raters (Buechel and Hahn,
2018a). The reason is that larger studies give more accurate estimates of the population
mean. Note that these considerations would make no sense in the context of traditional
linguistic annotation, such as in part-of-speech tagging. Although data from one annotation
study may be of better quality than that of another one, both studies yield their own ground
truth because linguistic ground truth is only established through annotation and does not
exist independently of it. However, emotion—at least from the Experienced, Perceived, and
Evoked viewpoint—is not primarily a linguistic phenomenon (§2.1; §2.3).

Importantly, stipulating that the result of an emotion annotation study is only an estimate
of the ground truth creates the conceptual opportunity for an NLP system to “outperform”
human annotation by providing an even better estimate. In particular, if a system is shown
to provide better ground truth estimates for a particular language domain compared to a
typically-sized rating study, then this system may replace the majority of manual annotation
activities for this domain. Human labor would then be limited to situations where even

7This foundation on pairwise comparisons also applies to  variants that can be used for more than two
annotators.

8While it may seem strange from the perspective of a linguistic annotation study to consider the underlying
population of possible annotators, I emphasize that this is a key principle in the natural and social sciences
that also sits at the heart of inferential statistics (Burton, 2000; Sprott, 2000).
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better estimates (derived with a larger than usual number of raters) are required, e.g., for test
data creation. Evidently, this situation could be described as having achieved “super-human
performance” relative to a given number of raters.

In conclusion, it seems fruitful to conceptualize human performance in emotion analysis
in terms of how well a rating study of a particular size can estimate the population-wide
aggregate. Following this argument, human performance is not an absolute quantity but can
only be understood relative to a given number of raters. Future work will have to transform
this notion into a rigorous definition of human and super-human performance. Such a
definition would allow researchers to go beyond purely descriptive comparisons of model
performance vs. rating reliability (Buechel and Hahn, 2017a, 2018c,a; Buechel et al., 2020a)
potentially coming to the conclusion that a certain model does indeed achieve super-human
performance and that its prediction could in fact replace manual labor. Importantly, however,
this would not mean that a certain task has been “solved” since NLP-based estimates of a
population mean can always be further improved.

4.4 Towards Human Performance in Emotion

Analysis

Finally, I would like to outline two aspects of the human capacity to understand emotion
that, to my knowledge, are still missing from today’s state-of-the-art systems. Importantly,
not only do current methodologies fail to match human performance in these aspects,
existing datasets and evaluation methodologies are not even designed to assess them. This
underscores the need to advance emotion analysis models along with the infrastructure for
validating them in future work.

Firstly, most research activities in emotion analysis to date have their focus on phrases,
sentences, or short paragraphs of texts (here jointly referred to as “utterances”), while very
little work has been devoted to modeling the overarching emotion of long text documents
such as full-length newspaper articles, novels, or business reports (§2.6). The main reason
for this can be found in the absence of suitable text-level datasets (§2.4). The creation
of such datasets is hampered, not only by the financial burden of having to annotate very
long language units, but more importantly by the conceptual problem of what the “overall
emotion” of a text is and how it can be operationalized given the short-lived nature of this
type of affective state (§2.1). While these considerations may seem like strong reasons to
further avoid working in this direction, it must also be noted that humans seem to have no
problem at all attributing global emotions to long texts, for example speaking of “a sad
novel” or a “cheerful play”. The question how people come up with this sort of judgment
requires researchers to address the problem of text-level compositionality, i.e., how the
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overall emotion of a text relates to the emotion of the sentences it contains. While quite
a lot of effort has been dedicated to understanding how emotional meaning is composed
on the sentence level (e.g., Neviarouskaya et al., 2011; Taboada et al., 2011; Socher et al.,
2013), very little work has been directed towards understanding compositional effects in
larger units of language. Making progress in this direction would not only allow for new
applications of NLP systems but also generate valuable linguistic insight.

Second, so far, computational modeling of emotion has predominantly addressed the
prediction of aggregated judgments of many human raters (§2.5; §4.3). In contrast, for
us in our everyday life, the behavior of individuals arguably plays a much larger role.
Take the example of electronic text messaging. It is relatively easy for us humans to tell
whether someone very close to us, say a romantic partner, is upset, whereas with someone
who we do not share such a close connection with, such as a new colleague, it is much
more difficult. Apparently, making such person-level predictions is an essential skill to us.
However, studies expanding on these considerations have been very rare so far (Socher
et al., 2011; Gambino and Calvo, 2018; Davani et al., 2021; Troiano et al., 2021a). Perhaps
the most obvious way to capture inter-personal differences in emotion understanding is to
train multiple models, each one exclusively on data of a single rater. However, this approach
of building personalized prediction models seems likely to raise ethical problems. An
alternative way of capturing interpersonal variation, without resorting to personalized data
and models, would be to broaden the perspective of modeling studies to think of emotion
gold labels, not as a single aggregated rating, but rather as a rating distribution in the context
of label distribution learning (Geng, 2016). That is, while previous work has mostly only
addressed the mean of a rating distribution (in the case of numerical labels), treating it as
the one and only gold label, one may get a more complete picture of emotional responses by
taking into account other properties of the rating distribution as well. In the case of emotion
regression problems, these may include other statistical measures, such as the median,
standard deviation, interquartile range, or even the percentage of responses each point of
the rating scale receives. Either of the two approaches, rater-specific prediction models
or emotion distribution learning, would allow to adequately address situations in which
the assumption of a single, homogeneous population-level ground truth is fundamentally
flawed, such as in the example of “Italy defeats France in World Cup Final” given in §2.3.
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5 Conclusion

This thesis compiles seven studies on NLP-based emotion analysis using fine-grained label
formats. At the center of their shared research interest is the observation that the recent trend
towards more information-rich annotation schemes is, in a sense, a double-edged sword.
On the one hand, more expressive label formats lead to NLP systems that are empirically
adequate, capture a wider range of emotional meaning facets, and are thus more useful in a
larger variety of downstream applications. On the other hand, the proliferation of competing
label formats in the past years has led to a situation where existing gold data is spread
thin, not only across different domains, i.e., natural languages, their registers, and linguistic
levels, but also different, incompatible annotation schemes. Thus, data re-usability and
comparability between NLP systems are compromised. While the total amount of emotion
gold data is considerable, for any chosen domain and label format often very little data is
available. This problem is only aggravated by the high annotation costs associated with
such complex label formats and the distinction between different viewpoints, e.g., Evoked
vs. Perceived emotion.

The submitted studies approach this problem area from a variety of angles. In Buechel
and Hahn (2016), we presented one of the first systems for predicting VAD scores from
text and introduced an approach to translate its output into basic emotion scores in an effort
to make the results comparable to previous work. Buechel and Hahn (2017a) presented
EmoBank, an utterance-level dataset with VAD annotations, which is unique in having two
kinds of double-annotations. Part of it is also annotated according to basic emotions and
the entire corpus is labeled for both the Evoked and Perceived viewpoint. EmoBank thus
allows studying the interplay and systematic differences between these choices in corpus
design. Buechel et al. (2018) presented the first publicly available dataset of empathy in
written language, a specific emotional nuance that had been rarely studied in NLP so far
despite its importance for human-machine interaction. Our dataset is also unique in that it
features a new annotation methodology that allows it to capture robust ratings from the writer
(Experienced) emotion viewpoint. In Buechel and Hahn (2018c), we studied multi-task
learning as a way to exploit the information richness of the VAD format, thus training better,
more robust models. We found that combining feed-forward networks with high-quality
pre-trained embedding models yields word-level predictions comparable to human rating
reliability. In Buechel and Hahn (2018a), we proposed a similar model for the task of label-
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to-label mapping, showing that VAD ratings can be automatically translated to the BE5
format (and vice versa) with level of reliability which, again, is comparable to humans. The
underlying mapping models were also found to generalize well across languages. Building
on the previous two studies, Buechel et al. (2020a) presented a methodology for generating
large, multi-format emotion lexicons in a crosslingual fashion, imposing only relatively mild
data requirements. Using this method, we created and released lexicons for 91 languages,
each one of them containing hundreds of thousands of entries. Finally, in Buechel et al.
(2021), we presented a method that unifies a large part of the previous studies by learning a
latent representation of emotion that is agnostic towards label formats, languages, linguistic
levels, and model architectures. This method thus allows us to embed the emotion of
language items from very heterogeneous contexts into a common, distributional space that
serves as an “interlingua for emotion”, thus offering a solution to the comparability problem
of emotion analysis.

The presented studies have diverse applications in both industry and academia. The
datasets presented in Buechel and Hahn (2017a) and Buechel et al. (2018) help developing
emotion detection systems that are useful in areas such as economic forecasting, customer
service agents, or crisis management (§2.2, §2.4, and §2.6). Lexicons built in Buechel and
Hahn (2018c), Buechel and Hahn (2018a) and Buechel et al. (2020a) can be used, e.g., as
supplemental input to utterance- or text-level models, for stimulus selection in psychological
experiments, and for writing assistance applications (§4.1). The label mapping approach
studied in Buechel and Hahn (2016), Buechel and Hahn (2017a), and Buechel and Hahn
(2018a) helps to augment the emotional richness of existing datasets, which in turn makes
the resulting predictive models more informative and by extension more beneficial for
downstream applications (§2.2; §2.8). Finally, the label- and domain-agnostic emotion
embeddings introduced in Buechel et al. (2021) may not only serve as a new backbone
technology for the field of emotion analysis but also enable a wide range of psychological,
linguistic, and cultural follow-up studies by allowing to directly compare emotion ratings
from various settings (§2.8).

Still, ample opportunity for future work remains. Perhaps most obviously, the above line
of work on generalized emotion embeddings should be extended to cover other modalities
besides written language, such as audio and images, possibly even bio-signals. Furthermore,
as discussed in §4.3, a more rigorous theoretical foundation of “human performance” and
“super-human performance” is dearly needed to better assess the progress made so far.
Finally, §4.4 has outlined two directions in which the capabilities in emotion understanding
of NLP systems could be extended to better match those of humans: addressing text-level
compositionality and attending more closely to interpersonal variance in emotion expression
and elicitation.
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Emotion Analysis as a Regression Problem —
Dimensional Models and Their Implications on Emotion

Representation and Metrical Evaluation
Sven Buechel and Udo Hahn1

Abstract. Emotion analysis (EA) and sentiment analysis are closely
related tasks differing in the psychological phenomenon they aim to
catch. We address fine-grained models for EA which treat the compu-
tation of the emotional status of narrative documents as a regression
rather than a classification problem, as performed by coarse-grained
approaches. We introduce Ekman’s Basic Emotions (BE) and Russell
and Mehrabian’s Valence-Arousal-Dominance (VAD) model—two
major schemes of emotion representation following opposing lines of
psychological research, i.e., categorical and dimensional models—
and discuss problems when BEs are used in a regression approach.
We present the first natural language system thoroughly evaluated
for fine-grained emotion analysis using the VAD scheme. Although
we only employ simple BOW features, we reach correlation values
up until r = .65 with human annotations. Furthermore, we show
that the prevailing evaluation methodology relying solely on Pear-
son’s correlation coefficient r is deficient which leads us to the in-
troduction of a complementary error-based metric. Due to the lack
of comparable (VAD-based) systems, we, finally, introduce a novel
method of mapping between VAD and BE emotion representations
to create a reasonable basis for comparison. This enables us to eval-
uate VAD output against human BE judgments and, thus, allows for
a more direct comparison with existing BE-based emotion analysis
systems. Even with this, admittedly, error-prone transformation step
our VAD-based system achieves state-of-the-art performance in three
out of six emotion categories, out-performing all existing BE-based
systems but one.

1 Introduction
Affective states expressed via written or spoken utterances, as well
as non-verbal gestures and mimics in discourse are at the core of
any cognitively plausible theory of human communication. From a
computational perspective, AI researchers have already started in-
vestigating into this field [26], since progress in this area will pave
the way to even smarter and more natural computational agents for
human-computer interaction, such as avatars or robots .

However, this research area at the intersection of (cognitive) psy-
chology, (computational) linguistics, and artificial intelligence suf-
fers from some confusing uses of terminology [22] which have to
be sorted out before we get started. Following Pang and Lee [25]
we subsume all work done in this area under the umbrella term sub-
jectivity analysis. Its most widespread subtask is sentiment analy-

1 Jena University Language & Information Engineering (JULIE)
Lab, Friedrich-Schiller-Universität Jena, Jena, Germany, URL:
http://www.julielab.de

sis or opinion mining (both terms are used interchangeably). In this
work, we address another subtask which has recently become more
and more popular, namely emotion analysis (EA). From a representa-
tional perspective, sentiment typically refers to the semantic polarity
(the positiveness or negativeness relative to some target entity) of a
sentence or a document. While sentiment analysis has usually only
loose (or no) ties to models taken from psychology, emotion (describ-
ing phenomena such as anger, fear, or joy) is often represented in a
more complex way making direct use of larger pieces of psycholog-
ical theory.

There are two main dividing lines in the field of EA. The first
one (as discussed, e.g., by Calvo and Kim [10]) relates to the choice
of a psychological model. Following categorical models, emotional
states can be subcategorized into a small set of emotion categories.
Ekman’s Basic Emotion (BE) model [14] is perhaps the most influen-
tial among those categorical approaches. On the other hand, follow-
ing dimensional models an emotional state is described relative to
a small number of emotional dimensions. Russell and Mehrabian’s
Valence-Arousal-Dominance (VAD) model [28] is among the most
commonly used dimensional approaches.

The second and maybe even more fundamental dividing line (as
discussed, e.g., by Strapparava and Mihalcea [34]) relates to the main
type of predictive problem one faces here. Most of the previous work
on EA is coarse-grained in the sense that the task of predicting emo-
tion is phrased as a classification problem—the output of a corre-
sponding system represents an emotional value as one or multiple
class labels. In contrast, fine-grained EA treats the task of recogniz-
ing emotions as a regression problem so that (most often) a vector
of real-valued numbers will be produced as the result of an emo-
tion assessment. Note that the choices regarding these dividing lines
are made independently from one another, e.g., also allowing for a
coarse-grained analysis using dimensional models [16].

The coarse-grained approach seems to be particularly appropri-
ate for highly opinionated social media texts (such as blogs, chats
or tweets) but is less likely to account for more subtle expressions of
emotions as, e.g., in literary documents (mainly studied in the emerg-
ing field of digital humanities [1, 38]), public and personal health
narratives (mainly studied in the field of biomedical and clinical NLP
[13, 30]) or socio-economic texts (newspaper, newswire, formal busi-
ness reporting notes, etc. which are increasingly dealt with in com-
putational social science and economics [3, 15, 9]).

In this paper, we focus exclusively on fine-grained emotion anal-
ysis. We, first, provide a critical comparison of the BE and the VAD
emotion model, as well as a complete survey of prior systems for
fine-grained EA. We then present the first VAD-based system for
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fine-grained EA. Evaluating its performance revealed systematic de-
ficiencies in the evaluation methodology for such systems which lead
us to propose a complementary metric. In an attempt to compare our
dimensional system more directly with already existing categorical
ones, we developed a novel method for mapping between VAD and
BE representation schemes and, given these (imperfect) mappings,
we find evidence that our system is still among the best-performing
systems for predicting the emotional status of narratives.

2 Related Work
2.1 Dimensional versus Categorical Models
Researchers in NLP and psychology have devised a multitude of
different models of emotion which can be roughly subdivided into
categorical and dimensional models [29, 10, 33]. In computational
studies, categorical models most often employ Ekman’s [14] six ba-
sic emotions (BE: anger, disgust, fear, joy, sadness and surprise) or
a derivative therefrom. According to this psychological theory, all
human beings share a common set of cross-culturally universal (ba-
sic) emotions so that each emotional state of an individual can be
unambiguously classified as one of these. Dimensional approaches,
on the other hand, often refer to Russell and Mehrabian’s Valence-
Arousal-Dominance (VAD) model [28].2 According to this model,
emotional states can be described relative to three fundamental emo-
tional dimensions: Valence (the degree of pleasure or displeasure of
an emotion), Arousal (level of mental activity, ranging from low en-
gagement to ecstasy) and Dominance (extent of control felt in a given
situation). Accordingly, emotions are characterized on three dimen-
sions, each of which spans an interval of real-valued numbers indi-
cating the strength and orientation on each dimension. Providing a
fine-grained representation using the VAD model (a vector of real-
valued numbers) is therefore straightforward. For BE models, this
is typically accomplished by assigning an agreement score to each
of the basic emotions (e.g., in the interval [0,100] as realized in the
SemEval-2007 test corpus for the Affective Text task [34]).

To further illustrate the relationship between the VAD and the
BE model, Figure 1 depicts the position of Ekman’s basic emotions
within the emotional space spanned by the Valence, Arousal and
Dominance axis of the VAD model. The assessments were empiri-
cally determined by requesting several subjects to describe the six
basic emotions in terms of these three dimensions [28]. For fine-
grained approaches, we consider VAD to be superior to BE due to
the following considerations:

• As Figure 1 reveals, the basic emotions are unevenly distributed
in the VAD space. While half of them (anger, disgust and fear) are
marked by high arousal and low valence (and therefore reside in
one quarter of the space), none of them exhibits high valence and
low arousal specifying an emotion like calmness or content. Thus,
trying to detect such emotions using a BE-based system may en-
counter serious problems. Exactly these kinds of emotions have
been shown to be most beneficial for the prediction of stock mar-
ket prices in previous work [3].

• Although Ekman’s six-category system is most commonly used,
there is no consensus on a fixed set of basic emotions, neither
in psychology [29], nor in AI (cf., e.g., [23] and [32]). Not only
does this hamper comparison across systems but also does it force
researchers to choose different sets of emotional categories ac-
cording to the emotions which they think to be most relevant for

2 Alternative names for these dimensions include Pleasure instead of Valence
(PAD) as well as Control instead Dominance (PAC).
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Figure 1. Positions of Ekman’s basic emotions within the emotional space
spanned by the Valence, Arousal and Dominance axis of the VAD model.

Ratings are taken from Russell and Mehrabian [28].

a given application (instead of using a generic and universal rep-
resentation scheme). This may lead to study designs (e.g., [13])
using a total of 15 different categories considered to indicate sui-
cidal tendencies, e.g., hopelessness or sorrow.

• It is intuitively clear that BEs are not equidistant, e.g., fear is obvi-
ously more similar to disgust than it is to joy—an observation also
supported by Figure 1. Therefore (unlike vectorial VAD represen-
tations), distances between given emotions in fine-grained BE rep-
resentation cannot be meaningfully calculated assuming a vector
space with orthogonal axis. This property seriously limits the pos-
sibility for further analysis of emotion distributions (such as clus-
tering) and may pose problems for the use of emotion values as
features in machine learning.

2.2 Computational Resources for Emotion Analysis
In psychology, both models, Ekman’s BE as well as Russell and
Mehrabian’s VAD model, are widely used as standard models [33].
While the VAD model and other dimensional models are commonly
preferred in some areas of affective computing [8], NLP researchers,
especially those dealing with written documents, almost exclusively
subscribe to categorical approaches, most often Ekman’s model [10].
As a consequence, these preferences for one model or the other are
reflected by the types of resources made available.

Concerning emotion lexicons following the VAD model, the Affec-
tive Norms for English Words (ANEW) [5] has been most influential
in psychological research and was also adapted for many languages
other than English [39]. The developers of ANEW asked subjects to
rate their feelings on the three VAD dimensions when reading cer-
tain words as stimuli. Their responses were encoded using the Self-
Assessment Manikin (SAM), an icon-style graphical format which
consists of three sequences of human-like pictograms, each repre-
senting a 9-point scale for Valence, Arousal and Dominance, respec-
tively [4]. The average rating per word was calculated, thus form-
ing its emotional value. The original version of ANEW comprised
1,034 lexical entries. By now, an extended version has been devel-
oped amounting to 2,476 words [7].

Bestgen and Vincze [2] extended the original ANEW version by
using a bootstrapping method based on Latent Semantic Analysis
(LSA) [12]. Their major achievement employing these methods is
that they attribute VAD values to formerly unrated words by locating
them together with their least distant neighbors whose emotion val-
ues are known from the original ANEW resource in a latent semantic
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space and averaging these values. Re-assessing words already known
from ANEW, they compute correlations (r = 0.71, 0.56 and 0.60 for
Valence, Arousal and Dominance, respectively) between the original
and the bootstrapped values. Their lexical resource (BV) incorpo-
rates 17,350 entries.

Warriner et al. [39] replicated and extended the original ANEW
lexicon in a crowdscourcing campaign using the Amazon Mechanical
Turk (AMT). Their resource (WKB) contains more than ten times the
entries of ANEW (13,915 in total) and excels with particularly high
correlations with the original ratings (r = 0.95, 0.76 and 0.80 for
VAD, respectively). This result is consistent with earlier findings that
non-expert ratings for natural language tasks acquired via AMT are,
in fact, of good quality (especially when rating emotions) compared
to expert ratings [31].

Concerning BE lexicons with fine-grained ratings, Staiano et al.
[32] built DEPECHEMOOD (DM), a lexical resource which con-
tains more than 37k entries. They exploit the functionality of the
social news network rappler.com in which users may report
their “mood” when reading a piece of news. DEPECHEMOOD is
constructed by multiplying the document-emotion matrix and the
document-term matrix of all available mood-rated articles. The latter
was computed using either absolute frequency, normalized frequency
and TF-IDF scores, thus leading to three versions of the emotion-
term matrix.

Another major resource for tackling emotions is WORDNET-
AFFECT (WN-A). It contains both, sentiment assessments (positive,
negative, neutral and ambiguous) and a hierarchy of various emo-
tion categories [36, 37]. Though not providing continuous ratings for
these categories, previous work on fine-grained analysis has largely
relied on this resource (cf. Section 2.4).

Corpora carrying VAD annotations are more than rare. To the best
of our knowledge, the Affective Norms for English Text (ANET) col-
lection [6] is the only available resource and, up until now, has not
been used for NLP tasks. With 120 sentences or short texts, e.g., “You
are lying in bed on a Sunday morning”, it is truly a tiny little corpus.
Its VAD annotations were empirically elicited from subjects using
SAM (see above). Most recently, another larger resource (FB) carry-
ing at least Valence and Arousal annotations has been generated [27]
which comprises 2,895 FACEBOOK posts rated by two annotators.

Corpora annotated with fine-grained emotion categories are rare,
as well. To our knowledge, the corpus provided for the Affective Text
task of SEMEVAL-2007 [34] is the only one, whereas for coarse-
grained annotations, there are much more alternatives; cf. [10, 23].
The SEMEVAL corpus (SE7) contains headlines from major news-
papers and consists of two subsets, a development set handed out to
the competitors (250 headlines) and a final test set (1,000 headlines).
The corpus was independently labeled by six annotators according
to the BE model so that an agreement score ranging between [0, 100]
could be determined for each headline and emotion. Our survey of
computational resources is summarized in Table 1.

Two studies [34, 31] report inter-annotator agreement (IAA) mea-
surements for fine-grained BE labeling (see Table 2). Here, IAA is
typically measured, first, by calculating Pearson’s correlation be-
tween each individual annotator and the average annotation of the
other annotators (resulting in one correlation value per rater) and then
averaging these values [35]. Additionally, Katz et al. [18] provide
the agreement of the overlap of their own annotated corpus and SE7.
Both are averages of multiple human annotations and are therefore
not comparable to IAA values.
3 Rather than directly using crowdsourced word-emotion ratings, DM was

calculated using emotionally crowd-annotated newswire material.

Table 1. Resources for emotion detection (lexicons (Lex) and corpora
(Corp)) listing the model of emotion they use, the granularity of ratings

(Grain), the acquisition methodology (manual (without further
specification), asking subjects in a controlled experimental environment
(exp), bootstrapping or crowdsourcing (boot or crowd, respectively) and

their size in terms of lexical entries (for lexicons) or sentences/documents
(for corpora).

Acronym Study Model Grain Method Size
Lex

WN-A [36, 37] BE coarse manual 1,637
ANEW [5] VAD fine exp 1,034
BV [2] VAD fine boot 17,350
WKB [39] VAD fine crowd 13,915
DM [32] BE fine crowd3 37,771

Corp
ANET [6] VAD fine exp 120
SE7 [34] BE fine exp 1,250
FB [27] VA fine exp 2,895

Table 2. IAA for fine-grained emotion detection measured in r. From the
many IAA values reported by Snow et al. [31], we here include their expert

vs. expert IAA measurements. For comparison, the average is computed only
taking anger, fear, joy and sadness into account.

Study Anger Disg. Fear Joy Sadness Surpr. Avg.
[34] .496 .445 .638 .599 .682 .361 .604
[31] .459 .583 .711 .596 .645 .464 .603

The IAA presented in the first two studies—ranging between ap-
proximately r = 0.35 and 0.70—illustrates the hardness of the task.

In contrast to BE-based corpora, no IAAs are provided for the
VAD-based ANET corpus. However, the average standard deviation
between ratings for the same instance amounts to SD = 1.45, 1.85
and 1.87 for Valence, Arousal and Dominance, respectively. The fact
that the ratings for the latter two are less consistent than for the for-
mer one has been observed in a multitude of studies comparing word
ratings, as well as whole lexicons [39, 2]. Preoţiuc-Pietro et al. [27]
report an IAA on their FB corpus of r = .768 and .827 for Valence
and Arousal, respectively.

2.3 Mappings between Emotion Models
Only few studies deal with the translation between different emotion
schemes. Moreover, most of these activities are only concerned with
discrete representations of the BE model (i.e., disregarding continu-
ous agreement scores per category). Having a robust, high-accuracy
mapping schema for both representations may help further unify both
lines of research (in AI, not limited to NLP, as well as in psychology)
[33] and would allow for the interchangeable use of resources devel-
oped with respect to one model or the other.

In an early study, Russell et al. [28] presented 300 subjects a list of
emotion (or feeling) designating words, including terms referring to
the basic emotions, and asked them to assess the designated emotions
relative to Valence, Arousal and Dominance. The results can thus be
used as a simple yardstick for mapping between basic emotions (in
discrete representation) and the VAD model (in dimensional repre-
sentation) as demonstrated in Figure 1. In a similar, much more re-
cent study, Hoffmann et al. [17] asked 70 subjects to position 22 emo-
tion categories (according to the OCC model [24]) in the VAD space
via a user-friendly visual tool. They find high inter-subjective con-
sistency between the assessments although variance was markedly
higher for Arousal and Dominance.
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Calvo and Kim [10] map VAD values onto a variation of the six
basic emotions by computing the position of the emotional categories
in the VAD space as the centroid of several keywords (representative
for this category) according to the ANEW lexicon. Then, they cal-
culate cosine similarity between an arbitrary VAD emotion and an
emotional category and, finally, map these onto another, if the simi-
larity is above a certain threshold, or map it onto neutral, otherwise.

Stevenson et al. [33] collect ratings for five of six emotional cate-
gories taken from the BE model for the entries of the original ANEW
lexicon (so far having only VAD ratings) by questioning 299 sub-
jects. Thus, a multi-model lexicon is created. They perform linear
regression and find evidence which suggest non-linear dependencies
to hold between these two representation schemes, thus hinting at
the insufficiency of their predictive models. Note that this is the only
study presented here using a continuous representation for input and
target variables.

2.4 Fine-Grained Emotion Analysis Systems
As already mentioned, in comparison to coarse-grained approaches,
fine-grained emotion detection is a rather neglected task. Together
with the small amount of annotated text corpora for fine-grained
emotion models, we currently face a situation where system devel-
opment is hampered by the lack of appropriate resources and eval-
uations deliver only spurious results. Next, we present each system
for fine-grained emotion detection we are aware of. For BE systems,
the SE7 corpus has been used for evaluation exclusively (although,
additionally, other corpora may be used as well when evaluating their
performance in coarse-grained settings). The available evaluation re-
sults are presented in Table 3. For comparison, the presented average
performance takes into account only Anger, Fear, Joy and Sadness,
since DM-f does not measure Disgust, whereas our system (see Sec-
tion 3) fails to compute Surprise (due to limitations of the mapping
functions rather than an inherent shortcoming of our system itself).

WNAP [35] is designed as a baseline by computing emotion val-
ues directly related to the frequency of WORDNET-AFFECT terms
present in a given document. Surprisingly, this very simple keyword-
based approach already outperforms three other systems: LSA-ES,
LSA-SW and LSA-AEW [35]. Each of these systems uses a pseudo-
document method by which both, the emotion categories, as well
as the individual documents are represented in a semantic space
derived from the BNC corpus4 using LSA. They differ from each
other by the words constituting the pseudo-documents which repre-
sent an emotion. LSA-SW uses only the word denoting the emotion,
LSA-ES adds the whole WORDNET synset, while LSA-AEW uses
each synonym of each synset labeled with this emotion according to
WORDNET-AFFECT. Obviously, this methods does not seem to be
appropriate for the task of fine-grained emotion analysis.

NB-BLOG [35], the only machine learning approach among the
BE systems, uses a Naive Bayes classifier. Its performance merely
surpasses the baseline. However, it was trained on blog posts rather
than news headlines, a shortcoming which may very well account for
a great deal of its poor results.

Similarly, the information theory-based UA system [19] shows
only slightly better performance than the keyword baseline. It com-
putes the association between a document and an emotion using
statistics from Web search engines and measures the proximity be-
tween them using pointwise mutual information (PMI). Note that
without its apparent difficulty in detecting Joy, the performance
would be markedly better.
4 http://www.natcorp.ox.ac.uk/

Table 3. Performance of BE-based systems for fine-grained emotion
analysis measured in r. For comparison, the average (Avg) is computed only

over Anger, Fear, Joy and Sadness (Sad) (in addition, we report values for
Disgust (Dis) and Surprise (Sur)).

System Anger Dis Fear Joy Sad Sur Avg
DM-f .360 — .560 .390 .480 .250 .448
AAM .329 .130 .449 .213 .436 .064 .356
UPAR7 .323 .129 .449 .225 .410 .167 .352
SWAT .245 .186 .325 .261 .390 .118 .305
UA .232 .162 .232 .024 .123 .078 .152
NB-BLOG .198 .048 .074 .138 .160 .031 .143
WNAP .121 -.016 .249 .103 .086 .031 .140
LSA-ES .178 .074 .181 .063 .133 .121 .139
LSA-SW .083 .135 .296 .049 .081 .097 .127
LSA-AEW .058 .083 .103 .070 .107 .124 .084

The upper half of Table 3 is exclusively populated by lexicon-
based approaches with or without incorporation of additional lin-
guistic rules for fine-tuning. UPAR7 [11] and AAM [23] both revise
lexicon-based word ratings using syntax-oriented rules. The former
system boosts the importance of certain words with respect to their
position inside a dependency tree, while the latter infers the emotion
value of phrases and sentences in a bottom-up fashion and also takes
into account symbolic hints such as interjections and emoticons. As
to performance, they are on a par with each other although UPAR7
would be superior, if its recognition capabilities for Surprise would
influence the performance average.

Similar to the baseline system, DM-f [32] and SWAT [18] rely
exclusively on averaging word emotions as taken from their incor-
porated lexicons. For the SWAT system, a lexicon was trained us-
ing human-annotated news headlines. It yields reasonable perfor-
mance although it is outperformed by the lingustics-based systems.
The DM-f system, however, uses the (raw frequency version of the)
DM lexicon as described above. Interestingly, combing this exten-
sive lexicon with the simple average-word-emotion approach yields
far better results than any other system presented so far. Thus, for this
task, lexicon coverage seems to beat structural language properties to
some extent.

Concerning systems using the VAD model, Calvo and Kim [10]
use this dimensional model as an intermediate representation later
on mapping the VAD values onto (coarse-grained) BEs (cf. Section
2.3). Therefore, they do not offer a metrical evaluation for those di-
mensional assessments. Leveau et al. [20], in an approach similar to
ours, average Valence and Arousal values of words for French texts.
Being primarily a psychological study, this work also does not offer
a meaningful evaluation from an NLP point of view. In a preced-
ing study [9], we used a less sophisticated version of our system to
measure emotions in a large corpus of business reports but did not
provide a metrical evaluation due to (at that time) the lack of test
data. In another recent study, Preoţiuc-Pietro et al. [27] predict Va-
lence and Arousal values in FACEBOOK posts using linear regression
models with bag-of-words features. They report performance figures
of r = .65 and .85 for Valence and Arousal, respectively.

Note that prior studies using lexicon-based methods differ in
weighting procedures: some of them emphasize the emotion of a
word occurring in a document using absolute term frequencies (TF)
(e.g., [18]), whereas others rely on TF-IDF scores (e.g., [35]). How-
ever, no data on the impact of either one of these weighting schemes
has been made available (although Staiano and Guerini [32] com-
pared lexicons constructed with different weighting functions).
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3 Experiments Using Dimensional Models

We start in Section 3.1 by defining a metrical criterion which guides
the emotion analysis for JEMAS (Jena Emotion Analysis System),5

our bag-of-words (BOW) engine (similar to [32] and [18]) employing
the VAD model. In Section 3.2, we then evaluate JEMAS using dif-
ferent configurations and discuss implications of these experiments
concerning metrical evaluation in Section 3.3.

3.1 Simple Metrics for Emotion Analysis

We distinguish two basic data containers. First, the set of documents
(1) where � denotes some weighting function for terms and ti,j de-
notes some morphologically normalized non-stop word term in the
document-term vector for document di, j = 1, ..., n; n being the
total size of the normalized vocabulary in DOC, so that �ti,j de-
notes the numerical weight of the j-th term from document di. Sec-
ond, the VAD lexicon (2) where each emotion-sensitive lemma lexl

contained in VAD is associated with its corresponding VAD triple
hvl, al, dli 2 R3; each of the three components ranges in the nor-
malized interval [�4, 4], with l = 1, .., t; t enumerating the total size
of the lexicon.

DOC := {di = (�ti,1 , ...,�ti,n)} (1)

VAD := {vadl = (lexl, hvl, al, dli)} (2)

We may then define the Emotion Value of each document di (using
the projection ⇡1(VAD) := {lex | (lex, hv, a, di) 2 VAD} and
the string equality function SEQ):

EVdi :=Pn
k=1 ^ 9lexq2⇡1(VAD): SEQ(lexq ,ti,k)

�ti,k ⇥ hvq, aq, dqi
Pn

k=1 ^ 9lexq2⇡1(VAD): SEQ(lexq ,ti,k)
�ti,k

(3)

The general purpose of the term weighting functions � is to cap-
ture the importance a given term, ti,j , has for a document di. For the
following experiments, we specify two such weighting functions (al-
though any other term weighting function for document-term vectors
can be employed in this framework). The first weighting function we
use, �1, is the absolute frequency of a term in a document, TFi,j , that
is simply the count how often term ti,j occurs in document di:

�1 := TFi,j (4)

Secondly, we use the TF-IDF metric which is the most common
weighting scheme in information retrieval [21]. Let |DOC| be the
total number of documents in the document collection and let DFj

be the number of documents in which tj occurs. Hence, our second
weighting scheme, �2, is defined by the TF-IDF weight of term tj

within the entire document collection:

�2 := TFi,j ⇥ log
|DOC|

DFj
(5)

5 JEMAS will be publicly available on our GITHUB site https://
github.com/JULIELab.

3.2 Evaluation of the JEMAS Emotion Analyzer
This formal sketch is flexible enough to process documents of arbi-
trary length, i.e. ranging from a single word to hundreds of pages of
full text [9]. However, in the following experiment, we use ANET [6]
as a test corpus for the JEMAS system. We transform the VAD rat-
ings associated with the 120 short texts into the interval [�4, 4], with
‘0’ as the neutral rating point for each of the three VAD dimensions.
Concerning the chosen lexicons, we decided to compare all of the
three lexicons introduced in Section 2 incorporating the VAD model
of emotion since they vary largely in terms of size and the underlying
acquisition methodology, i.e.,

• the extended (2010-) version of ANEW [7] which—although be-
ing rather small—was compiled using a controlled experimental
environment,

• the BV lexicon [2] assembled via bootstrapping from the original
1999-version of ANEW [5], and

• the WKB lexicon [39] which reproduces and extends the original
ANEW by crowdsourcing.

We transform the emotion value of each lexicon entry so that they
are balanced in the interval [–4,4] to simplify interpretation (in the
original lexicons, they range in the interval [1,9]).

Since no data on the impact of different term-weighting schemes
is available (cf. Section 2.4), we generate results for both, TF and
TF-IDF schemes, for a total of six configurations of our system (one
for each combination of lexicon and weighting function). Table 4
presents the evaluation results (given in Pearson’s correlation) for
this experiment.

Table 4. Results of the JEMAS system (Pearson’s r) relative to the three
VAD dimensions. Evaluation was performed against the ANET corpus with

all possible combinations of lexicons and weighting functions.

Valence Arousal Dominance Avg.

tf tfidf tf tfidf tf tfidf tf tfidf
ANEW 0.53 0.56 0.58 0.58 0.43 0.46 0.51 0.53
BV 0.67 0.68 0.49 0.48 0.66 0.65 0.61 0.61
WKB 0.70 0.71 0.63 0.64 0.59 0.59 0.64 0.65

In general, we find the correlation to the human ratings to be be-
tween r = 0.43 and 0.71 depending on the lexicon, the weight-
ing function and especially the respective emotional dimension. The
crowdsourced and high-volume WKB lexicon provides the best aver-
age correlation over Valence, Arousal and Dominance. The BV lexi-
con gets slightly worse performance figures but still mostly exceeds
those that can be achieved using ANEW (except for Arousal). Hence,
in terms of performance with respect to the lexicons, coverage seems
to beat quality to some extent.

These findings can be further connected to the recognition rate of
our system, i.e., the percentage of content words in a document which
can be attributed an emotion value by our system, using one of the
three lexicons: we obtain 42%, 95%, and 87% recognition using the
ANEW, the BV, and the WKB lexicon, respectively.

The data suggest that the performance boost of BV and WKB over
ANEW can be well explained by superior coverage, whereas the cov-
erage gain BV shows in comparison with WKB seems to be more
than compensated by WKB’s superior quality due to human ratings
as opposed to the semi-supervised approach underlying BV. Note that
the BV lexicon used the 1999 version of ANEW as seed set for boot-
strapping but still yields better results than the 2010 edition (which
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has more than twice the amount of entries), thus demonstrating the
validity of Bestgen and Vincze’s [2] bootstrapping method.

Concerning the comparison of TF versus TF-IDF weighting func-
tions, our data (see Table 4) hint at a slight advantage when using
TF-IDF scores leading to an increased correlation in seven instances
while decreasing it in only two (for Arousal and Dominance using
BV). Also, average performance increased by one, respectively two
percent points for WKB and ANEW while it remains unchanged for
BV. A possible explanation for this improvement could be that com-
mon words are emotionally rather neutral and rating consistency is
rather poor for emotionally neutral words [39]. Therefore, words
whose emotion values are less reliable may be attributed less rele-
vance using TF-IDF resulting in an overall gain in performance.

Of course, our results are not directly comparable to the ones from
prior evaluation rounds as shown in Table 3 due to different test cor-
pora and models of emotion. However, it should be noted that the cor-
relation our system obtains with human ratings for the ANET corpus
(concerning the VAD emotions) widely exceeds the correlation any
of the systems revealed when they are evaluated against the SEM-
EVAL corpus (in relation to Ekman’s six basic emotions) and even
exceeds human IAA for two different studies (Table 2). This result
is even more exciting since our methodology resembles that of those
prior systems, especially DM-f [32], which also employs a broad-
coverage emotion lexicon and, in essence, averages word emotion
values. We carefully interpret this observation as possibly hinting
at the superiority of the VAD model (in terms of its suitability for
inter-subjective and reliable assessments for humans, as well as for
algorithms) compared with the BE model, a stipulation we further
elaborate after the discussion of further experiments below.

Comparing our findings to those of Preoţiuc-Pietro et al. [27], it
becomes apparent that performance in emotion analysis strongly de-
pends on the specific domain, i.e., they report a performance of only
r = .113 and .188 for Valence and Arousal, respectively, using the
WKB lexicon on their FACEBOOK posts corpus (in contrast to our
system performing at r = .70 and .65 using a very similar set-up on
the ANET corpus) while linear regression models using BOW fea-
tures perform at r = .65 and .85.

Extending the usual evaluation methodology for fine-grained emo-
tion detection, we decided not only to measure the performance of
our system with respect to Pearson’s correlation but to also take into
account root-mean-square error (RMSE) which is commonly used
to assess the quality of a regression model. It is computed as the
quadratic mean of the errors, i.e., the differences between the val-
ues predicted by the model and the values actually observed. Table 5
displays the same data as in Table 4 for RMSE instead of r.

Table 5. Results of the JEMAS system (RMSE) relative to the three VAD
dimensions. Evaluation was performed against the ANET corpus with all

combinations of lexicons and weighting functions.

Valence Arousal Dominance Avg.

tf tfidf tf tfidf tf tfidf tf tfidf
ANEW 2.38 2.33 1.80 1.82 1.78 1.75 1.98 1.97
BV 2.42 2.41 2.03 2.04 1.79 1.79 2.08 2.08
WKB 2.26 2.23 2.57 2.56 1.80 1.78 2.21 2.19

The surprising result of applying RMSE for these configurations
is that the relative performance of the three lexicons when compared
to one another changes completely. While with r WKB outperfomed
BV which itself yielded better results than ANEW, using RMSE, the
order of the lexicons according to the measured performance figures
is actually reversed (note that since RMSE denotes a measure of er-

ror, the lower the value the better the performance).
To further investigate this astonishing result, we plotted the data

(only TF-based results) in nine scatterplots (see Figure 2) where each
row (with three plots each) displays the results for one lexicon and
each column depicts the results for one emotional dimension. Ac-
cordingly, a data point in a particular plot denotes the predicted value
for an instance of ANET (x-axis) in one emotional dimension using
one of the three lexicons and its actual value according to the human
ratings (y-axis). The red lines designate the regression line (using a
linear model) while the green lines (for comparison) denote a perfect
agreement (predicted values equal actual values).

Building on these data visualizations, we venture to cautiously ex-
plain the opposing result in terms of r and RMSE. As can be seen,
the data points scatter loosely around the regression line when using
the ANEW lexicon, whereas for BV and WKB they stick consider-
ably closer to it. Since the (vertical) distance of a data point to the
regression line is related to the linear relationship between the two
data series, this observation visually “explains” that r values are get-
ting higher from the top line to the bottom line of the scatterplots.

Also, it can be seen that the slope of the regression is much steeper
when using the BV and WKB lexicon. The slope of the regression
line is related to the interval the predicted values are ranging in.
As can be observed, x-values ranging in a small interval result in
a steeper slope. This means that data points can be positioned closely
to the regression line while at the same time (because of its slope) be-
ing far away from the green line (denoting a considerable difference
between predicted and actual value).

For instance, in the middle column, the actual value of an instance
may be, say, 3 so perfect agreement would demand for a predicted
value of 3 as well (as marked by the green line). However, for such
instances, our system usually predicts (approximately) a value of 0
(as can be seen) resulting in a large squared error. At the same time,
the data point being close to the regression line contributes to a high
Pearson’s correlation (r). Also note that the data points for predicting
Arousal with the WKB lexicon (bottom center plot) are off-center (a
property most probably derived from the lexicon itself [39]) resulting
in an even higher squared error.
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Figure 2. Scatterplotts for a graphical interpretation of the evaluation
against the ANET corpus using TF weights. Each data point in each plot

designates a pair of a predicted value (x-axis) and the actual value according
to ANET (y-axis). The plots are grouped by lexicons used for the evaluation

(row-wise) and by emotional dimensions (column-wise).
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The steepness of the slopes seems to correlate with the number
of entries in the lexicon used to produce the particular data, as well
as with the recognition rate (see above). This seems to indicate that
the bigger the lexicon, the larger the error caused by this effect could
be. A possible explanation for these findings is that most of the words
contained in a large emotion lexicon, in contrast to a small one, are on
average less emotional (because strongly emotion-bearing lexemes
will most likely already be included in a small lexicon, right from
the beginning). We conclude that for high performance in terms of
Pearson’s correlation, the relative differences between the predicted
values should be reliable but still the numeric values may differ a lot
from the actual values making any system unreliable.

The consequences of the above interpretation may, to some extent,
be dramatic. Arguably, the prevailing performance measure (Pear-
son’s r) used up until now captures only half of our human intuition
of textual emotion, i.e. how the emotion associated with one linguis-
tic unit relates to that of another one—this aspect of a model’s pre-
dictive power is captured by correlation. It does, however, not cap-
ture our ability to perceive the strength and orientation of an emotion
with respect to an absolute scale (e.g., neutral arousal vs. highest
arousal)—that aspect of a model’s predictive power is captured by
an error-based metric. While the former may be sufficient for some
tasks, it may be irrelevant for others. Therefore, our findings point
out that the common evaluation methodology for fine-grained emo-
tion detection is seriously flawed which casts doubt on the validity
of prior results (Table 3). Furthermore, since the phenomenon de-
scribed above was observed using a lexicon-based method (it be-
came more pronounced the larger the coverage of such a resource
is), it seems quite likely that, e.g., DM-f, the best-performing sys-
tem, displays a similar behavior due to the commonalities of the two
approaches (ours and theirs). For future work, we therefore suggest
to use RMSE as a performance measure complementary to r because
taking account of error might be more relevant than the consideration
of correlation for many applications and must therefore be addressed
during evaluation.

3.3 A Linear Regression-Based Repair Mechanism
In a first attempt to cope with the newly discovered weaknesses of
our system, we developed a simple, yet effective repair mechanism
to better fit our predictions to the actual data. For each combination
of lexicon, weighting function and emotional dimension according
to the VAD model, we trained a linear regression model (18, in total)
using the originally predicted value of the particular emotion as the
only (input) feature. Training was conducted using the ANET corpus.
We did not perform cross-validation because these models cannot
overfit due to their simplicity. We then post-processed our data from
the previous experiment using these models. Table 6 depicts the re-
sults of this experiment using RMSE as evaluation yardstick. Note
that Pearson’s correlation remains unchanged by this procedure.

Table 6. Evaluation result against the ANET corpus after linear
regression-based repair (measurements in RMSE).

Valence Arousal Dominance Avg.

tf tfidf tf tfidf tf tfidf tf tfidf
ANEW 2.23 2.18 1.40 1.41 1.72 1.69 1.78 1.76
BV 1.95 1.93 1.50 1.51 1.42 1.44 1.62 1.62
WKB 1.87 1.85 1.33 1.32 1.54 1.53 1.58 1.57

As can be seen, Table 6 resembles Table 5 in many key features,

e.g., TF-IDF yields slightly better results than TF (demonstrating the
robustness of this method). However, each single RMSE value expe-
rienced a pronounced drop of error so that the higher the error was,
the more the RMSE decreased, thus rearranging the relative perfor-
mance figure between the lexicons. After repair, according to RMSE
measurements, WKB yields better results than BV which itself is
better than ANEW. Thus, the order has been reversed in comparison
to the data without repair. Furthermore, orderings are now consistent
with the ones when using r as performance measure.

The visual interpretation of this method is that instead of predict-
ing the output value of our system, we predict the point on the regres-
sion line (displayed in red in Figure 2) associated with it, that is the
point above its value on the x-axis. As a result, the new regression
line is identical to the line of perfect agreement (displayed in green
in Figure 2). We conclude that our method yields satisfactory results
despite its simplicity. Yet, the corpus we use for this experiment is
quite small (120 instances) so that our method could be less effective
when applied to other data sets.

4 Comparison with Categorical Systems
In previous work, we have demonstrated the practical value the VAD
data our system produces may have for other areas of research, e.g.,
emotional portrays of enterprises based on their business and sus-
tainability reports [9]. In contrast, the following section addresses
the mapping from VAD to BE representation as a methodological
exercise only for the sake of comparison since the number of directly
comparable systems is otherwise extremely limited.

4.1 Mapping Emotion Models
As already discussed, being able to reliably convert between differ-
ent models of emotions, such as the VAD and the BE model, yields
many benefits, including better reusability of resources, as well as
better means of comparing emotion detection systems using differ-
ent representation schemes for emotions. Building on the work of
Stevenson et al. [33], we here use their complementary BE-based
emotional ratings for the ANEW lexicon to generate a variety of re-
gression models. We start by transforming ANEW’s VAD and BE
ratings so that the former are balanced in the interval [�4, 4], as we
already did with our lexicon, and the latter span the interval [0, 100]
so that their interval equals that of the SEMEVAL-2007 test corpus.
We used the R CARET package6 to train linear models, SVMs with a
polynomial kernel and kNN models for regression. For either way of
the emotion model mapping (VAD ! BE, as well as BE ! VAD),
we trained an independent model for each category or dimension of
the emotion representation we map onto, while each category or di-
mension of the input representation was used as a feature.

For example, when transforming basic emotion to their VAD rep-
resentation, we trained three independent models each one relying on
all of the basic emotions as features. As our models are solely based
on the input emotion values (not taking into account other features),
they are independent from the type of stimulus eliciting the emotion,
e.g. be it a word, a sentence, a text or an image. The performance
of these models (obtained using 10-fold cross-validation) is summa-
rized in Tables 7 and 8 using R

2. These values are consistent with
the RMSE-based results. Note that, since each table cell represents
an independent model, tuning parameter selection may differ across
a particular line.

6 http://topepo.github.io/caret/index.html
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Table 7. Performance of statistical models—linear regression (lm), support
vector machine with polynomial kernel (svmPoly) and k-Nearest Neighbor
regression model (kNN)—for mapping VAD to BE emotion representation,

measured in R2.

Anger Disgust Fear Joy Sadness Avg.
lm 0.734 0.584 0.736 0.867 0.678 0.720
svmPoly 0.760 0.625 0.757 0.918 0.764 0.765
kNN 0.759 0.635 0.754 0.922 0.747 0.763

Table 8. Performance of statistical models—linear regression (lm), support
vector machine with polynomial kernel (svmPoly) and k-Nearest Neighbor
regression model (kNN)—for mapping BE to VAD emotion representation,

measured in R2.

Valence Arousal Dominance Avg.
lm 0.934 0.528 0.704 0.722
svmPoly 0.944 0.562 0.722 0.743
kNN 0.935 0.523 0.702 0.720

Overall, the machine learning approach gave good results with av-
eraged R

2 ranging roughly between 72 and 77% both ways. Joy and
Valence are predicted best, with values above 90%, whereas Disgust
and Arousal are predicted far less accurately. Both ways, SVMs per-
formed best. For mapping onto the BE model, kNN regression was
almost equally good, whereas for mapping onto VAD emotions, sur-
prisingly, a simple linear model outperformed kNN.

4.2 Evaluation Using Representation Mappings
In our last experiment, we use the regression models we trained for
emotion representation mapping to compare the performance of the
JEMAS system with prior ones in a more direct way. We use our
system to predict VAD ratings for the SEMEVAL test corpus (sup-
plied only with BE annotations) employing the WKB lexicon and
the TF-IDF weighting scheme, since this configuration obtained the
best performance. The newly developed repair mechanism was not
included, since the performance figures of the other systems are re-
ported only using r values on which this method has no effect. The
resulting VAD predictions were mapped onto basic emotions using
the SVMs we trained on the ANEW lexicon. Finally, we computed
Pearson’s correlation between the resulting BE values and the hu-
man ratings provided for the SEMEVAL corpus. The results of this
set-up are depicted in Table 9.

Table 9. Results of evaluating the JEMAS system against the
SEMEVAL-2007 corpus after mapping its VAD output onto basic emotions.

Improvements over the formerly best systems (per emotion category, cf.
Table 3) in bold face.

Anger Disgust Fear Joy Sadness Surprise Avg.
.399 .252 .440 .469 .366 — .419

With a mean performance of r = .419 (considering Anger, Fear,
Joy and Sadness—these are the categories each system covers) the
JEMAS system yields state-of-the art performance for three out
of six emotion categories (namely Anger, Disgust and Joy) overall
clearly out-performing any existing system but one (DM-f) even af-
ter applying the imperfect transformation into BE representations. Its
relatively high performance seems in some categories (e.g., Disgust)
highly counter-intuitive taking into account that our system has no di-
rect or apparent way of measuring these categories while all the other
systems have mechanisms (e.g., keywords) specifically supplied for
addressing them. Obviously the favorable evaluation results our sys-
tem achieves in terms of VAD (Table 4) were not mainly an effect due
to corpus bias but arguably, since it is still among the top-performers

after emotion representation mapping, it must be considered on a par
with, if not superior, to the best-performing present system. Note that
the results would be even more favorable for JEMAS, if performance
were reported in an error-based metric due to our repair mechanism
for the large-lexicon bias (cf. Section 3.3).

5 Conclusions
In this work, we addressed multiple central issues of fine-grained
emotion analysis—the task of predicting the associated emotion
given a linguistic unit such as a sentence or a text. A fine-grained
analysis differs from its coarse-grained counterpart by translating
into a regression, rather than a classification problem. We offered a
critical comparison of the two prevailing models of emotion in com-
putational approaches—Russell and Mehrabian’s Valence-Arousal-
Dominance model and Ekman’s Basic Emotion model—pointing out
problematic aspects of the latter, especially in a regression set-up.

Building on these theoretical considerations, we here presented
JEMAS, the first evaluated system measuring VAD-based emotions.
As this system uses a lexicon-based approach, evaluation was car-
ried out incorporating three different lexicons and two different term
weighting function for a total of six configurations. Despite the sim-
plicity of our approach, it yields satisfying performance figures of
up until r = .65 (average over Valence, Arousal, and Dominance).
Instead of solely using Pearson’s correlation as performance metric,
the common basis for evaluation, we, additionally, introduced RMSE
to evaluate emotion regression. The surprising result of comparing
both metrics was that under both criteria performance orderings of
the configurations were basically reversed depending on the lexicon
being used.

A graphical analysis hinted at a reasonable explanation that, while
association (measured in r) of predicted and actual values typically
increases with lexicon coverage (assuming constant lexicon quality),
the quadratic mean of the errors (RMSE) increases as well. As a con-
sequence, our data indicate that using a high coverage lexicon may
result in emotion predictions being fairly reliable relative to one an-
other, but unreliable relative to the orientation and absolute value of
the actual data. Since prior systems are most probably also affected
by this bias, our findings indicate a severe problem for the commonly
shared evaluation methodology. In a first attempt to compensate for
this effect, we trained simple linear regression models to better fit our
predictions to actual data resulting in a strong decrease of errors.

Since there are no directly comparable systems to JEMAS, the
second half of our experiments addressed means of relating our find-
ings more closely to prior BE-based systems. We did that by intro-
ducing a novel method of mapping between both emotion representa-
tions. That allowed us to compute VAD-values for the prevailing BE
test corpus and to, then, translate our VAD output to BE represen-
tation and compare it to human judgment. Even after this imperfect
(and therefore performance-reducing) mapping, our system still out-
performed any prior system in three out of six emotion categories,
over-all scoring on second rank (measured in r). However, existing
systems do not compensate for the large-lexicon bias suggesting that
our system, and its underlying methodological design decisions, may
probably be superior, in terms of RMSE, at least.

ACKNOWLEDGEMENTS
We would like to thank The Center for the Study of Emotion and At-
tention, University of Florida for granting us access to their resources
ANEW and ANET on which a large proportion of this work relies.

S. Buechel and U. Hahn / Emotion Analysis as a Regression Problem – Dimensional Models and Their Implications 1121

78 7 Emotion Analysis as a Regression Problem



REFERENCES

[1] Alberto Acerbi, Vasileios Lampos, Philip Garnett, and R. Alexander
Bentley, ‘The expression of emotions in 20th century books’, PLoS
ONE, 8(3), e59030, (2013).

[2] Yves Bestgen and Nadja Vincze, ‘Checking and bootstrapping lexical
norms by means of word similarity indexes’, Behavior Research Meth-
ods, 44(4), 998–1006, (2012).

[3] Johan Bollen, Huina Mao, and Xiaojun Zeng, ‘TWITTER mood predicts
the stock market’, Journal of Computational Science, 2(1), 1–8, (2011).

[4] Margaret M. Bradley and Peter J. Lang, ‘Measuring emotion: The self-
assessment manikin and the semantic differential’, Journal of Behavior
Therapy and Experimental Psychiatry, 25(1), 49–59, (1994).

[5] Margaret M. Bradley and Peter J. Lang, ‘Affective norms for En-
glish words (ANEW): Stimuli, instruction manual and affective ratings’,
Technical Report C-1, The Center for Research in Psychophysiology,
University of Florida, Gainesville, FL, (1999).

[6] Margaret M. Bradley and Peter J. Lang, ‘Affective norms for English
text (ANET): Affective ratings of text and instruction manual’, Techni-
cal Report D-1, University of Florida, Gainesville, FL, (2007).

[7] Margaret M. Bradley and Peter J. Lang, ‘Affective Norms for English
Words (ANEW): Stimuli, Instruction Manual and Affective Ratings’,
Technical Report C-2, University of Florida, Gainesville, FL, (2010).

[8] Joost Broekens, ‘In defense of dominance: PAD usage in computational
representations of affect’, International Journal of Synthetic Emotions,
3(1), 33–42, (2012).

[9] Sven Buechel, Udo Hahn, Jan Goldenstein, Sebastian G. M.
Händschke, and Peter Walgenbach, ‘Do enterprises have emotions?’,
in WASSA 2016 — Proceedings of the 7th Workshop on Computational
Approaches to Subjectivity, Sentiment and Social Media Analysis @
NAACL-HLT 2016. San Diego, California, USA, June 16, 2016, pp.
147–153, (2016).

[10] Rafael A. Calvo and Sunghwan Mac Kim, ‘Emotions in text: Di-
mensional and categorical models’, Computational Intelligence, 29(3),
527–543, (2013).

[11] François-Régis Chaumartin, ‘UPAR7: A knowledge-based system for
headline sentiment tagging’, in SEMEVAL-2007 — Proceedings of the
4th International Workshop on Semantic Evaluations. Prague, Czech
Republic, June 23-24, 2007, pp. 422–425, (2007).

[12] Scott C. Deerwester, Susan T. Dumais, George W. Furnas, Thomas K.
Landauer, and Richard A. Harshman, ‘Indexing by latent semantic anal-
ysis’, Journal of the American Society for Information Science, 41(6),
391–407, (1990).
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Abstract

We describe EMOBANK, a corpus of 10k
English sentences balancing multiple gen-
res, which we annotated with dimensional
emotion metadata in the Valence-Arousal-
Dominance (VAD) representation format.
EMOBANK excels with a bi-perspectival
and bi-representational design. On the one
hand, we distinguish between writer’s and
reader’s emotions, on the other hand, a
subset of the corpus complements dimen-
sional VAD annotations with categorical
ones based on Basic Emotions. We find ev-
idence for the supremacy of the reader’s
perspective in terms of IAA and rating in-
tensity, and achieve close-to-human per-
formance when mapping between dimen-
sional and categorical formats.

1 Introduction

In the past years, the analysis of affective lan-
guage has become one of the most productive and
vivid areas in computational linguistics. In the
early days, the prediction of the semantic polar-
ity (positiveness or negativeness) was in the center
of interest, but in the meantime, research activities
shifted towards a more fine-grained modeling of
sentiment. This includes the extension from only
two to multiple polarity classes or even real-valued
scores (Strapparava and Mihalcea, 2007), the ag-
gregation of multiple aspects of an opinion item
into a composite opinion statement for the whole
item (Schouten and Frasincar, 2016), and senti-
ment compositionality (Socher et al., 2013).

Yet, two important features of fine-grained
modeling still lack appropriate resources, namely
shifting towards psychologically more adequate
models of emotion (Strapparava, 2016) and dis-
tinguishing between writer’s vs. reader’s perspec-

tive on emotion ascription (Calvo and Mac Kim,
2013). We close both gaps with EMOBANK,
the first large-scale text corpus which builds on
the Valence-Arousal-Dominance model of emo-
tion, an approach that has only recently gained
increasing popularity within sentiment analysis.
EMOBANK not only excels with a genre-balanced
selection of sentences, but is based on a bi-
perspectival annotation strategy (distinguishing
the emotions of writers and readers), and includes
a bi-representationally annotated subset (which
has previously been annotated with Ekman’s Ba-
sic Emotions) so that mappings between both rep-
resentation formats can be performed. EMOBANK
is freely available for academic purposes.1

2 Related Work

Models of emotion are commonly subdivided into
categorical and dimensional ones, both in psy-
chology and natural language processing (NLP).
Dimensional models consider affective states to
be best described relative to a small number of
independent emotional dimensions (often two or
three): Valence (corresponding to the concept of
polarity), Arousal (degree of calmness or excite-
ment), and Dominance2 (perceived degree of con-
trol over a situation); the VAD model. Formally,
the VAD dimensions span a three-dimensional
real-valued vector space as illustrated in Figure 1.
Alternatively, categorical models, such as the six
Basic Emotions by Ekman (1992) or the Wheel of
Emotion by Plutchik (1980), conceptualize emo-
tions as discrete states.3

In contrast to categorical models which were
used early on in NLP (Ovesdotter Alm et al., 2005;
Strapparava and Mihalcea, 2007), dimensional

1https://github.com/JULIELab/EmoBank
2This dimension is sometimes omitted (the VA model).
3Both dimensional and categorical formats allow for nu-

merical scores regarding their dimensions/categories.
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Figure 1: The affective space spanned by the three
VAD dimensions. As an example, we here include
the positions of Ekman’s six Basic Emotions as
determined by Russell and Mehrabian (1977).

models have only recently received increased at-
tention in tasks such as word and document emo-
tion prediction (see, e.g., Yu et al. (2015), Köper
and Schulte im Walde (2016), Wang et al. (2016),
Buechel and Hahn (2016)).

In spite of this shift in modeling focus, VA(D)-
annotated corpora are surprisingly rare in number
and small in size, and also tend to be restricted
in reliability. ANET, for instance, comprises only
120 sentences designed for psychological research
(Bradley and Lang, 2007), while Preoţiuc-Pietro et
al. (2016) created a corpus of 2,895 English Face-
book posts relying on only two annotators. Yu
et al. (2016) recently presented a corpus of 2,009
Chinese sentences from various online texts.

As far as categorical models for emotion anal-
ysis are concerned, many studies use incompati-
ble subsets of category systems, which limits their
comparability (Buechel and Hahn, 2016; Calvo
and Mac Kim, 2013). This also reflects the sit-
uation in psychology where there is still no con-
sensus on a set of fundamental emotions (Sander
and Scherer, 2009). Here, the VAD model has
a major advantage: Since the dimensions are de-
signed as being independent, results remain com-
parable dimension-wise even in the absence of
others (e.g., Dominance). Furthermore, dimen-
sional models are the predominant format for lexi-
cal affective resources in behavioral psychology as
evident from the huge number of datasets available
for a wide range of languages (see, e.g., Warriner
et al. (2013), Stadthagen-Gonzalez et al. (2016),
Moors et al. (2013) and Schmidtke et al. (2014)).

For the acquisition of VAD values from par-
ticipant’s self-perception, the Self-Assessment
Manikin (SAM; Lang (1980), Bradley and Lang
(1994)) has turned out as the most important and

(to our knowledge) only standardized instrument
(Sander and Scherer, 2009). SAM iconically dis-
plays differences in Valence, Arousal and Domi-
nance by a set of anthropomorphic cartoons on a
multi-point scale (see Figure 2).

While it is common for more basic sentiment
analysis systems in NLP to map the many differ-
ent possible interpretations of a sentence’s affec-
tive meaning into a single assessment (“its senti-
ment”), there is an increasing interest in a more
fine-grained approach where emotion expressed
by writers is modeled separately from emotion
evoked in readers. An utterance like “Italy de-
feats France in the World Cup Final” may be com-
pletely neutral from the writer’s viewpoint (pre-
sumably a professional journalist), but is likely
to evoke rather adverse emotions in Italian and
French readers (Katz et al., 2007).

In this line of work, Tang and Chen (2012) ex-
amine the relation between the sentiment of mi-
croblog posts and the sentiment of their com-
ments (as a proxy for reader emotion). Liu et al.
(2013) model the emotion of a news reader jointly
with the emotion of a comment writer using a co-
training approach. This contribution was followed
up by Li et al. (2016) who propose a two-view la-
bel propagation approach instead. However, to our
knowledge, only Mohammad and Turney (2013)
investigated the effects of these perspectives on
annotation quality, finding differences in inter-
annotator agreement (IAA) relative to the exact
phrasing of the annotation task.

In a similar vein to the writer-reader distinc-
tion, identifying the holder or source of an opin-
ion or sentiment also aims at describing the affec-
tive information entailed in a sentence in more de-
tail (Wiebe et al., 2005; Seki et al., 2009). Thus,
opinion statements that can directly be attributed
to the writer can be distinguished from references
to other’s opinions. A related task, the detec-
tion of stance, focuses on inferring the writer’s
(dis)approval towards a given issue from a piece
of text (Sobhani et al., 2016).

3 Corpus Design and Creation

The following criteria guided the data selection
process of the EMOBANK corpus: First, com-
plementing existing resources which focus on so-
cial media and/or review-style language (Yu et al.,
2016; Quan and Ren, 2009), we decided to address
several genres and domains of general English.
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Corpus Domain Raw Filtered
SE07 news headlines 1,250 1,192

MASC

blogs 1,378 1,336
essays 1,196 1,135
fiction 2,893 2,753
letters 1,479 1,413
newspapers 1,381 1,314
travel guides 971 919

Sum 10,548 10,062

Table 1: Genre distribution of the raw and filtered
EMOBANK corpus.

Second, we conducted a pilot study on two sam-
ples (one consisting of movie reviews, the other
pulled from a genre-balanced corpus) to compare
the IAA resulting from different annotation per-
spectives (e.g., the writer’s and the reader’s per-
spective) in different domains (see Buechel and
Hahn (2017) for details). Since we found differ-
ences in IAA but the results remained inconclu-
sive, we decided to annotate the whole corpus bi-
perspectivally, i.e., each sentence was rated ac-
cording to both the (perceived) writer and reader
emotion (henceforth, WRITER and READER).

Third, since many problems of comparing emo-
tion analysis studies result from the diversity of
emotion representation schemes (see Section 2),
the ability to accurately map between such alterna-
tives would greatly improve comparability across
systems and boost the reusability of resources.
Therefore, at least parts of our corpus should be
annotated bi-representationally as well, comple-
menting dimensional VAD ratings with annota-
tions according to a categorical emotion model.

Following these criteria, we composed our cor-
pus out of several categories of the Manually
Annotated Sub-Corpus of the American National
Corpus (MASC; Ide et al. (2008), Ide et al. (2010))
and the corpus of SemEval-2007 Task 14 Affective
Text (SE07; Strapparava and Mihalcea (2007)).
MASC is already annotated on various linguistic
levels. Hence, our work will allow for research
at the intersection of emotion and other language
phenomena. SE07, on the other hand, bears anno-
tations according to Ekman’s six Basic Emotion
(see Section 2) on a [0, 100] scale, respectively.
This collection of raw data comprises 10,548 sen-
tences (see Table 1).

Given this large volume of data, we opted for
a crowdsourcing approach to annotation. We
chose CROWDFLOWER (CF) over AMAZON ME-
CHANICAL TURK (AMT) for its quality control
mechanisms and accessibility (customers of AMT,
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SAM by Peter J. Lang 1994.

but not CF, must be US-based). CF’s main qual-
ity control mechanism rests on gold questions,
items for which the acceptable ratings have been
previously determined by the customer. These
questions are inserted into a task to restrict the
workers to those performing trustworthily. We
chose these gold items by automatically extracting
highly emotional sentences from our raw data ac-
cording to JEMAS4, a lexicon-based tool for VAD
prediction (Buechel and Hahn, 2016). The ac-
ceptable ratings were determined based on manual
annotations by three students trained in linguis-
tics. The process was individually performed for
WRITER and READER with different annotators.

For each of the two perspectives, we launched
an independent task on CF. The instructions were
based on those by Bradley and Lang (1999) to
whom most of the VAD resources developed in
psychology refer (see Section 2). We changed the
9-point SAM scales to 5-point scales (see Figure
2) in order to reduce the cognitive load during de-
cision making for crowdworkers. For the writer’s
perspective, we presented a number of linguis-
tic clues supporting the annotators in their rating
decisions, while, for the reader’s perspective, we
asked what emotion would be evoked in an aver-
age reader (rather than asking for the rater’s per-
sonal feelings). Both adjustments were made to
establish more objective criteria for the exclusion
of untrustworthy workers. We provide the instruc-
tions along with our dataset.

For each sentence, five annotators generated
VAD ratings. Thus, a total of 30 ratings were gath-
ered per sentence (five ratings for each of the three
VAD dimensions and two annotation perspectives,
WRITER and READER). Ten sentences were pre-
sented at a time. The task was available for work-

4https://github.com/JULIELab/JEmAS
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ers located in the UK, the US, Ireland, Canada,
Australia or New Zealand. The total annotation
costs amounted to $1,578.

Upon inspection of the individual judgments,
we found that the VAD rating (1, 1, 1) was heav-
ily overrepresented. We interpret this skewed cod-
ing distribution as a bias mainly due fraudulent re-
sponses since, from a psychological view, this rat-
ing is highly improbable (Warriner et al., 2013).
Accordingly, we decided to remove all of these
ratings (about 10% for each of the tasks; the ‘Fil-
tered’ condition in Table 1) because these annota-
tions would have inserted a systematic bias into
our data which we consider more harmful than
erroneously removing a few honest outliers. For
each sentence with two or more remaining judg-
ments, its final emotion annotation is determined
by averaging these valid ratings leading to a total
of 10,062 sentences bearing VAD values for both
perspectives (see Table 1).

This makes EMOBANK to the best of our
knowledge by far the largest corpus for dimen-
sional emotion models and, with the exception of
the dataset by Quan and Ren (2009) (which is
problematic in having only one annotator per sen-
tence), the largest gold standard for any emotion
format (both dimensional and categorical). Even
compared with polarity corpora it is still reason-
ably large (e.g., similar in size to the Stanford Sen-
timent Treebank (Socher et al., 2013)).

4 Analysis and Results

For continuous, real-valued numbers, well-known
metrics for IAA, such as Cohen’s  or F-score,
are inappropriate as these are designed for nom-
inally scaled variables. Instead, Pearson’s correla-
tion coefficient (r) or Mean Absolute Error (MAE)
are often applied for this setting (Strapparava and
Mihalcea, 2007; Yu et al., 2016). Accordingly, for
each annotator, we compute r and MAE between
their own and the aggregated EMOBANK annota-
tion and average these values for each VAD di-
mension. This results in one IAA value per metric
(r or MAE), perspective and dimension (Table 2).

As average over the VAD dimensions, we
achieve a satisfying IAA of r > .6 for both per-
spectives. The READER results in significantly
higher correlation,5 but also higher error than

5Note that using this set-up, obtaining statistical signifi-
cance is very rare, since the number of cases is based on the
number of raters.

Valence Arousal Dominance Av.
rwriter 0.698 0.578 0.540 0.605
rreader 0.738 0.595 0.570 0.634

MAEwriter 0.300 0.388 0.316 0.335
MAEreader 0.349 0.441 0.367 0.386

Table 2: IAA for the three VAD dimensions.

WRITER (p < .05 for Valence in r and for all di-
mensions in MAE using a two-tailed t-test).

Prior work found that a large portion of lan-
guage may actually be neutral in terms of emo-
tion (Ovesdotter Alm et al., 2005). However, a too
narrow rating distribution (i.e., most of the ratings
being rather neutral relative to the three VAD di-
mensions) may be a disadvantageous property for
training data. Therefore, we regard the emotional-
ity of ratings as another quality criterion for emo-
tion annotation complementary to IAA.

We capture this notion as the absolute difference
of a sentence’s aggregated rating from the neutral
rating (3, in our case), averaged over all VAD di-
mensions. Comparing the average emotionality of
all sentences between WRITER and READER, we
find that the latter perspective also excels with sig-
nificantly higher emotionality than the WRITER
(p < .001; two-tailed t-test).

These beneficial characteristics of the READER
perspective (better correlation-based IAA and
emotionality) contrast with its worse error-based
IAA. Thus, we decided to examine the relationship
between error and emotionality between the two
perspectives more closely: Let V,A, D be three
m⇥n-matrices where m corresponds to the num-
ber of sentences and n to the number of annotators
so that the three matrices yield all the individual
ratings for Valence, Arousal and Dominance, re-
spectively. Then we define the sentence-wise error
for sentence i (SWEi) as

SWEi :=
1
3

X

X2{V,A,D}

1
n

nX

j=1

|Xi �Xij | (1)

where Xi := 1
n

Pn
j=1 Xij . We compute SWE val-

ues for reader and writer perspective individually.
We can now examine the dependency between er-
ror and emotionality by subtracting, for each sen-
tence, SWE and emotionality for both perspectives
from another (resulting in one difference in error
and one difference in emotionality value).

Our data reveal a strong correlation (r = .718)
between these data series, so that the more the rat-
ings for a sentence differ in emotionality (compar-
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Figure 3: Differences in emotionality and differ-
ences in error between WRITER and READER,
each sentence corresponding to one data point; re-
gression line depicted in red.

ing between the perspectives), the more they dif-
fer in error as well. Running linear regression on
these two data rows, we find that the regression
line runs straight through the origin (intercept is
not significantly different from 0; p = .992; see
Figure 3). This means that without difference in
emotionality, WRITER and READER rating for a
sentence do, on average, not differ in error. Hence,
our data strongly suggest that READER is the su-
perior perspective yielding better inter-annotator
correlation and emotionality without overpropor-
tionally increasing inter-annotator error.

5 Mapping between Emotion Formats

Making use of the bi-representational subset of
our corpus (SE07), we now examine the feasibil-
ity of automatically mapping between dimensional
and categorical models. For each Basic Emotion
category, we train one k Nearest Neighbor model
given all VAD values of either WRITER, READER
or both combined as features. Training and hyper-
parameter selection was performed using 10-fold
cross-validation.

Comparing the correlation between our models’
predictions and the actual annotations (in categor-
ical format) with the IAA as reported by Strap-
parava and Mihalcea (2007), we find that this ap-
proach already comes close to human performance
(see Table 3). Once again, READER turns out to be
superior in terms of the achieved mapping perfor-
mance compared to WRITER. However, both per-
spectives combined yield even better results. In
this case, our models’ correlation with the actual
SE07 rating is as good as or even better than the
average human agreement. Note that the SE07 rat-
ings are in turn based on averaged human judg-
ments. Also, the human IAA differs a lot between

Joy Ang Sad Fea Dsg Srp Av.
IAA .60 .50 .68 .64 .45 .36 .54
W .68 .40 .67 .47 .27 .15 .44
R .73 .47 .68 .54 .36 .15 .49
WR .78 .50 .74 .56 .36 .17 .52
DW +.08 –.10 –.01 –.17 –.17 –.21 –.09
DR +.13 –.03 +.00 –.10 –.09 –.22 –.05
DWR +.18 +.00 +.05 –.08 –.09 –.19 –.02

Table 3: IAA by Strapparava and Mihalcea (2007)
compared to mapping performance of KNN mod-
els using writer’s, reader’s or both’s VAD scores
as features (W, R and WR, respectively), both in
Pearson’s r. Bottom section: difference of respec-
tive model performance (W, R and WR) and IAA.

the Basic Emotions and is even r < .5 for Dis-
gust and Surprise. For the four categories with
a reasonable IAA, Joy, Anger, Sadness and Fear,
our best models, on average, actually outperform
human agreement. Thus, our data shows that au-
tomatically mapping between representation for-
mats is feasible at a performance level on par with
or even surpassing human annotation capability.
This finding suggests that, for a dataset with high-
quality annotations for one emotion format, auto-
matic mappings to another format may be just as
good as creating these new annotations by manual
rating.

6 Conclusion

We described the creation of EMOBANK, the
first large-scale corpus employing the dimensional
VAD model of emotion and one of the largest gold
standards for any emotion format. This genre-
balanced corpus is also unique for having two
kinds of double annotations. First, we annotated
for both writer and reader emotion; second, for a
subset of the EMOBANK, ratings for categorical
Basic Emotions as well as VAD dimensions are
now available. The statistical analysis of our cor-
pus revealed that the reader perspective yields both
better IAA values and more emotional ratings. For
the bi-representationally annotated subcorpus, we
showed that an automatic mapping between cat-
egorical and dimensional formats is feasible with
near-human performance using standard machine
leraning techniques.
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Abstract
Computational detection and understanding of
empathy is an important factor in advancing
human-computer interaction. Yet to date, text-
based empathy prediction has the following
major limitations: It underestimates the psy-
chological complexity of the phenomenon, ad-
heres to a weak notion of ground truth where
empathic states are ascribed by third parties,
and lacks a shared corpus. In contrast, this
contribution presents the first publicly avail-
able gold standard for empathy prediction. It is
constructed using a novel annotation method-
ology which reliably captures empathy assess-
ments by the writer of a statement using multi-
item scales. This is also the first computa-
tional work distinguishing between multiple
forms of empathy, empathic concern, and per-
sonal distress, as recognized throughout psy-
chology. Finally, we present experimental re-
sults for three different predictive models, of
which a CNN performs the best.

1 Introduction
Over two decades after the seminal work by Picard
(1997) the quest of Affective Computing, to ease
the interaction with computers by giving them a
sense of how emotions shape our perception and
behavior, is still far from being fulfilled. Undoubt-
edly, major progress has been made in NLP, with
sentiment analysis being one of the most vivid and
productive areas in recent years (Liu, 2015).

However, the vast majority of contributions has
focused on polarity prediction, typically only dis-
tinguishing between positive and negative feeling

* These authors contributed equally to this work. An-
neke Buffone designed and supervised the crowdsourcing
task and the survey described in Section 2, and provided psy-
chological background knowledge. Sven Buechel was re-
sponsible for corpus creation, data analysis, and modeling.
The technical set-up of the crowdsourcing task and the sur-
vey was done jointly by both first authors.

†Work conducted while being at the University of Penn-
sylvania.

or evaluation, usually in social media postings or
product reviews (Rosenthal et al., 2017; Socher
et al., 2013). Only very recently, researchers
started exploring more sophisticated models of hu-
man emotion on a larger scale (Wang et al., 2016;
Abdul-Mageed and Ungar, 2017; Mohammad and
Bravo-Marquez, 2017a; Buechel and Hahn, 2017,
2018a,b). Yet such approaches, often rooted in
psychological theory, also turned out to be more
challenging in respect to annotation and modeling
(Strapparava and Mihalcea, 2007).

Surprisingly, one of the most valuable affec-
tive phenomena for improving human-machine
interaction has received surprisingly little atten-
tion: Empathy. Prior work focused mostly on
spoken dialogue, commonly addressing conversa-
tional agents, psychological interventions, or call
center applications (McQuiggan and Lester, 2007;
Fung et al., 2016; Pérez-Rosas et al., 2017; Alam
et al., 2017).

In contrast, to the best of our knowledge, only
three contributions (Xiao et al., 2012; Gibson
et al., 2015; Khanpour et al., 2017) previously ad-
dressed text-based empathy prediction1 (see Sec-
tion 4 for details). Yet, all of them are limited in
three ways: (a) neither of their corpora are avail-
able leaving the NLP community without shared
data, (b) empathy ratings were provided by others
than the one actually experiencing it which quali-
fies only as a weak form of ground truth, and (c)
their notion of empathy is quite basic, falling short
of current and past theory.

1 Psychological studies commonly distinguish between
state and trait empathy. While the former construct describes
the amount of empathy a person experiences as a direct result
of encountering a given stimulus, the latter refers to how em-
pathetic one is on average and across situations. This studies
exclusively addresses state empathy. For a contribution ad-
dressing trait empathy from an NLP perspective, see Abdul-
Mageed et al. (2017).
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In this contribution we present the first pub-
licly available gold standard for text-based empa-
thy prediction. It is constructed using a novel an-
notation methodology which reliably captures em-
pathy assessments via multi-item scales. The cor-
pus as well as our work as a whole is also unique
in being—to the best of our knowledge—the first
computational approach differentiating multiple
types of empathy, empathic concern and personal
distress, a distinction well recognized throughout
psychology and other disciplines.2

2 Corpus Design and Methodology

Background. Most psychological theories of
empathic states are focused on reactions to neg-
ative rather than positive events. Empathy for pos-
itive events remains less well understood and is
thought to be regulated differently (Morelli et al.,
2015). Thus we focus on empathetic reactions
to need or suffering. Despite the fact that every-
one has an immediate, implicit understanding of
empathy, research has been vastly inconsistent in
its definition and operationalization (Cuff et al.,
2016). There is agreement, however, that there are
multiple forms of empathy (see below). The by far
most widely cited state empathy scale is Batson’s
Empathic Concern – Personal Distress Scale (Bat-
son et al., 1987), henceforth empathy and distress.

Distress is a self-focused, negative affective
state that occurs when one feels upset due to
witnessing an entity’s suffering or need, poten-
tially via “catching” the suffering target’s nega-
tive emotions. Empathy is a warm, tender, and
compassionate feeling for a suffering target. It is
other-focused, retains self-other separation, and is
marked by relatively more positive affect (Batson
and Shaw, 1991; Goetz et al., 2010; Mikulincer
and Shaver, 2010; Sober and Wilson, 1997).

Selection of News Stories. Two research in-
terns (psychology undergraduates) collected a to-
tal of 418 articles from popular online news plat-
forms, selected to likely evoke empathic reactions,
after being briefed on the goal and background of
this study. These articles were then used to elicit
empathic responses in participants.

Acquiring Text and Ratings. The corpus
acquisition was set up as a crowdsourcing task
on MTurk.com pointing to a Qualtrics.com
questionnaire. The participants completed back-

2Data and code are available at: https://github.
com/wwbp/empathic_reactions

ground measures on demographics and personal-
ity, and then proceeded to the main part of the sur-
vey where they read a random selection of five of
the news articles. After reading each of the ar-
ticles, participants were asked to rate their level
of empathy and distress before describing their
thoughts and feelings about it in writing.

In contrast to previous work, this set-up allowed
us to acquire empathy scores of the actual writer
of a text, instead of having to rely on an external
evaluation by third parties (often student assistants
with background in computer science). Arguably,
our proposed annotation methodology yields more
appropriate gold data, yet also leads to more vari-
ance in the relationship between linguistic features
and empathic state ratings. That is because each
rating reflects a single individual’s feelings rather
than a more stable average assessment by multi-
ple raters. To account for this, we use multi-item
scales as is common practice in psychology. I.e.,
participants give ratings for multiple items mea-
suring the same construct (e.g., empathy) which
are then averaged to obtain more reliable results.
As far as we know, this is the first time that multi-
item scales are used in sentiment analysis.3

In our case, participants used Batson’s Em-
pathic Concern – Personal Distress Scale (see
above), i.e, rating 6 items for empathy (e.g., warm,
tender, moved) and 8 items for distress (e.g., trou-
bled, disturbed, alarmed) using a 7-point scale for
each of those (see Appendix for details). After rat-
ing their empathy, participants were asked to share
their feelings about the article as they would with
a friend in a private message or with a group of
friends as a social media post in 300 to 800 char-
acters. Our final gold standard consists of these
messages combined with the numeric ratings for
empathy and distress.

In sum, 403 participants completed the survey.
Median completion time was 32 minutes and each
participant received 4 USD as compensation.

Post-Processing. Each message was manually
reviewed by the authors. Responses which devi-
ated from the task description (e.g., mere copying
from the articles at display) were removed (31 re-
sponses, 155 messages), leading to a total 1860
messages in our final corpus. Gold ratings for em-
pathy and distress were derived by averaging the
respective items of the two multi-item scales.

3 Here, we use sentiment as an umbrella term subsuming
semantic orientation, emotion, as well as highly related con-
cepts such as empathy.
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E D Message

(1) 4.8 3.1 I’m sorry to hear that about Dakota’s parents. Even when you are adult it must be hard to see your parents
splitting up. No one wants that to happen and it’s unfortunate that her parents couldn’t work it out. I hope
they are able to still remain civil around the kids and family. Just because it didn’t work romantically doesn’t
mean it won’t work at all.

(2) 4.0 5.5 Here’s an article about crazed person who murdered two unfortunate women overseas. Life is crazy. I can’t
imagine what the families are going through. Having to go to or being forced into sex work is bad enough,
but for it to end like this is just sad. It feels like there’s no place safe in this world to be a woman sometimes.

(3) 1.0 1.3 I just read an article about some chowder-head who used a hammer and a pick ax to destroy Donald Trump’s
star on the Hollywood walk of fame. Wow, what a great protest. You sure showed him. Good job. Lol, can
you believe this garbage? Who has such a hollow and pathetic life that they don’t have anything better to
do with their time than commit petty vandalism because they dislike some politician? What a dingus.

Table 1: Illustrative examples from our newly created gold standard with ratings for empathy (E) and distress (D).

Figure 1: Scatter plot of the bivariate distribution of
empathy and distress ratings.

3 Corpus Analysis

For a first impression of the language of our new
gold standard, we provide illustrative examples in
Table 1. The participant in Example (1) displays
higher empathy than distress, (2) displays higher
distress than empathy, and (3) shows neither em-
pathic state, but employs sarcasm, colloquialisms
and social-media-style acronyms to express lack
of emotional response to the article. As can be
seen, the language of our corpus is diverse and au-
thentic, featuring many phenomena of natural lan-
guage which render its computational understand-
ing difficult, thus constituting a sound but chal-
lenging gold standard for empathy prediction.

Token Counts. We tokenized the 1860 mes-
sages using NLTK tools (Bird, 2006). In total,
our corpus amounts to 173, 686 tokens. Individual
message length varies between 52 and 198 tokens,
the median being 84. See Appendix for details.

Rating Distribution. Figure 1 displays the
bivariate distribution of empathy and distress rat-

ings. As can be seen both target variables have a
clear linear dependence, yet show only a moderate
Pearson correlation of r=.451, similar to what was
found in prior research (Batson et al., 1987, 1997).
This finding supports that the two scales capture
distinct affective phenomena and underscores the
importance of our decision to describe empathic
states in terms of multiple target variables, con-
stituting a clear advancement over previous work.
Both kinds of ratings show good coverage over the
full range of the scales.

Reliability of Ratings. Since each message
is annotated by only one rater, its author, typical
measures of inter-rater agreement are not appli-
cable. Instead, we compute split-half reliability
(SHR), a standard approach in psychology (Cron-
bach, 1947) which also becomes increasingly pop-
ular in sentiment analysis (Mohammad and Bravo-
Marquez, 2017a; Buechel and Hahn, 2018a). SHR
is computed by splitting the ratings for the indi-
vidual scale items (e.g., warm, tender, etc. for
empathy) of all participants randomly into two
groups, averaging the individual item ratings for
each group and participant, and then measuring
the correlation between both groups. This process
is repeated 100 times with random splits, before
again averaging the results. Doing so for empa-
thy and distress, we find very high4 SHR values of
r=.875 and .924, respectively.

4 Modeling Empathy and Distress

In this section, we provide experimental results for
modeling empathy and distress ratings based on
the participants’ messages (see Section 2). We ex-
amine three different types of models, varying in

4 For a comparison against previously reported SHR val-
ues for different emotional categories, see Mohammad and
Bravo-Marquez (2017b).
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design complexity. Distinct models were trained
for empathy and distress prediction.

First, ten percent of our newly created gold
standard were randomly sampled to be used in
development experiments. Then, the main ex-
periment was conducted using 10-fold cross-
validation (CV), providing each model with iden-
tical train-test splits to increase reliability. The dev
set was excluded for the CV experiment.

Model performance is measured in terms of
Pearson correlation r between predicted values
and the human gold ratings. Thus, we phrase the
prediction of empathy and distress as regression
problems.

The input to our models is based on word
embeddings, namely the publicly available Fast-
Text embeddings which were trained on Common
Crawl (⇡600B tokens) (Bojanowski et al., 2017;
Mikolov et al., 2018).

Ridge. Our first approach is Ridge regression,
an `2-regularized version of linear regression. The
centroid of the word embeddings of the words in a
message is used as features (embedding centroid).
The regularization coefficient ↵ is automatically
chosen from {1, .5, .1, ..., .0001} during training.

FFN. Our second approach is a Feed-Forward
Net with two hidden layers (256 and 128 units, re-
spectively) with ReLU activation. Again, the em-
bedding centroid is used as features.

CNN. The last approach is a Convolutional
Neural Net.5 We use a single convolutional layer
with filter sizes 1 to 3, each with 100 output chan-
nels, followed by an average pooling layer and a
dense layer of 128 units. ReLUs were used for the
convolutional and again for the dense layer.

Both deep learning models were trained using
the Adam optimizer (Kingma and Ba, 2015) with
a fixed learning rate of 10�3 and a batch size of
32. We trained for a maximum of 200 epochs yet
applied early stopping if the performance on the
validation set did not improve for 20 consecutive
epochs. We applied dropout with probabilities of
.2, .5 and .5 on input, dense and pooling layers,
respectively. Moreover `2 regularization of .001
was applied to the weights of conv and dense lay-
ers. Word embeddings were not updated.

The results are provided in Table 2. As can be
seen, all of our models achieve satisfying perfor-
mance figures ranging between r=.379 and .444,

5 Recurrent models did not perform well during develop-
ment due to high sequence length.

Empathy Distress Mean

Ridge .385 .410 .398
FFN .379 .401 .390
CNN .404* .444* .424*

Table 2: Model performance for predicting empathy
and distress in Pearson’s r; with row-wise mean; best
result per column in bold, significant (p < .05) im-
provement over other models marked with ‘*’.

given the assumed difficulty of the task (see Sec-
tion 3). On average over the two target vari-
ables, the CNN performs best, followed by Ridge
and the FFN. While the CNN significantly outper-
forms the other models in every case, the differ-
ences between Ridge and the FFN are not statis-
tically significant for either empathy or distress.6

The improvements of the CNN over the other two
approaches are much more pronounced for dis-
tress than for empathy. Since only the CNN is
able to capture semantic effects from composi-
tion and word order, our data suggest that these
phenomena are more important for predicting dis-
tress, whereas lexical features alone already per-
form quite well for empathy.

Discussion. In comparison to closely related
tasks such as emotion prediction (Mohammad and
Bravo-Marquez, 2017a) our performance figures
for empathy and distress prediction are generally
lower. However, given the small amount of previ-
ous work for the problem at hand, we argue that
our results are actually quite strong. This becomes
obvious, again, in comparison with emotion anal-
ysis where early work achieved correlation values
around r=.3 at most (Strapparava and Mihalcea,
2007). Yet state-of-the-art performance literally
doubled over the last decade (Beck, 2017), in part
due to much larger training sets.

Comparison to the limited body of previous
work in text-based empathy prediction is diffi-
cult for a number of reasons, e.g., differences in
domain, evaluation metric, as well as methodol-
ogy and linguistic level of annotation. Khanpour
et al. (2017) annotate and model empathy in online
health communities on the sentence-level, whereas
the instances in our corpus are much longer and
comprise multiple sentences. In contrast to our
work, they treat empathy prediction as a classifi-
cation problem. Their best performing model, a
CNN-LSTM, achieves an F-score of .78. Gibson

6We use a two-tailed t-test for paired samples based on
the results of the individual CV runs; p < .05.
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et al. (2015) predict therapists’ empathy in motiva-
tional interviews. Each therapy session transcript
received one numeric score. Thus, each predic-
tion is based on much more language data than our
individual messages comprise. Their best model
achieves a Spearman rank correlation of .61 using
n-gram and psycholinguistic features.

Our contribution goes beyond both of these
studies by, first, enriching empathy prediction with
personal distress and, second, by annotating and
modeling the empathic state actually felt by the
writer, instead of relying on external assessments.

5 Conclusion

This contribution was the first to attempt empa-
thy prediction in terms of multiple target variables,
empathic concern and personal distress. We pro-
posed a novel annotation methodology capturing
empathic states actually felt by the author of a
statement, instead of relying on third-party assess-
ments. To ensure high reliability in this single-
rating setting, we employ multi-item scales in line
with best practices in psychology. Hereby we cre-
ate the first publicly available gold standard for
empathy prediction in written language, our sur-
vey being set-up and supervised by an expert psy-
chologist. Our analysis shows that the data set
excels with high rating reliability and an authen-
tic and diverse language, rich of challenging phe-
nomena such as sarcasm. We provide experimen-
tal results for three different predictive models, our
CNN turning out superior.
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A Supplemental Material

Details on Stimulus and Instructions
Before being used in our survey, the selected news
articles were categorized by the research interns
who gathered them in terms of their intensity of
suffering (major or minor), cause of suffering (po-
litical, human, nature or other), patient of suffer-
ing (humans, animals, environment, or other) and
scale of suffering (individual or mass). Research
interns also provided a short list of key words for
each article. This additional information was gath-
ered to examine the influence of these factors on
empathy elicitation and modeling performance in
later studies.

At the beginning of the survey participants com-
pleted background items covering general demo-
graphics (including age, gender, and ethnicity), the
most commonly used trait empathy scale, the In-
terpersonal Reactivity Index (Davis, 1980), a brief
assessment of the Big 5 personality traits (Gosling
et al., 2003), life satisfaction (Diener et al., 1985),
as well as a brief measure of generalized trust.

After reading each of the articles, participants
rated their level of empathic concern and per-
sonal distress using multi-item scales. Figure 2

shows a cropped screenshot of the survey hosted
on Qualtrics.com. The first six items (warm,
tender, sympathetic, softhearted, moved, and com-
passionate) refer to empathy. The last eight items
(worried, upset, troubled, perturbed, grieved, dis-
turbed, alarmed, and distressed) refer to distress.

Figure 2: Multi-item scales for empathic concern and
personal distress.

After completing the rating items, participants
were instructed to describe their reactions in writ-
ing as follows: Now that you have read this article,
please write a message to a friend or friends about
your feelings and thoughts regarding the article
you just read. This could be a private message to a
friend or something you would post on social me-
dia. Please do not identify your intended friend(s)
— just write your thoughts about the article as if
you were communicating with them. Please use
between 300 and 800 characters.

Further Corpus Analyses

The word clouds in Figure 3 and Figure 4 show 1-
grams of our corpus which correlate significantly
(Benjamini-Hochberg corrected p < .05) with
high empathy and high distress ratings, respec-
tively. In the word clouds, larger size indicates
higher correlation and the color scale, gray-blue-
red, indicates word frequency, dark red being most
prevalent. The Differential Language Analysis
Toolkit (Schwartz et al., 2017) was utilized for this
analysis. As can be seen, the word clouds display
high face-validity, giving further evidence for the
soundness of our acquisition methodology.
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Figure 3: Word cloud of high empathy 1-grams.

Figure 4: Word cloud of high distress 1-grams.

Figure 5 displays the distribution of the mes-
sage length of our corpus in tokens. As can be seen
the majority of messages contain between 60 and
100 tokens. Yet outliers go up to almost 200. The
introduction of a character cap for the writing task
proved successful in comparison to a pilot study
where this measure has not been in place. In the
latter case, the maximum number of tokens was
nearly twice as high due to even stronger outliers.

Figure 5: Histogram of message length in our corpus.
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Abstract

Predicting the emotional value of lexical items
is a well-known problem in sentiment analy-
sis. While research has focused on polarity for
quite a long time, meanwhile this early focus
has been shifted to more expressive emotion
representation models (such as Basic Emo-
tions or Valence-Arousal-Dominance). This
change resulted in a proliferation of hetero-
geneous formats and, in parallel, often small-
sized, non-interoperable resources (lexicons
and corpus annotations). In particular, the lim-
itations in size hampered the application of
deep learning methods in this area because
they typically require large amounts of input
data. We here present a solution to get around
this language data bottleneck by rephrasing
word emotion induction as a multi-task learn-
ing problem. In this approach, the predic-
tion of each independent emotion dimension
is considered as an individual task and hidden
layers are shared between these dimensions.
We investigate whether multi-task learning
is more advantageous than single-task learn-
ing for emotion prediction by comparing our
model against a wide range of alternative emo-
tion and polarity induction methods featuring
9 typologically diverse languages and a total
of 15 conditions. Our model turns out to out-
perform each one of them. Against all odds,
the proposed deep learning approach yields the
largest gain on the smallest data sets, merely
composed of one thousand samples.

1 Introduction

Deep Learning (DL) has radically changed the
rules of the game in NLP by dramatically boost-
ing performance figures in almost all applications
areas. Yet, one of the major premises of high-
performance DL engines is their dependence on
huge amounts of training data. As such, DL seems
ill-suited for areas where training data are scarce,
such as in the field of word emotion induction.

We will use the terms polarity and emotion here
to distinguish between research focusing on “se-
mantic orientation” (Hatzivassiloglou and McKe-
own, 1997) (the positiveness or negativeness) of
affective states, on the one hand, and approaches
which provide predictions based on some of the
many more elaborated representational systems
for affective states, on the other hand.

Originally, research activities focused on polar-
ity alone. In the meantime, a shift towards more
expressive representation models for emotion can
be observed that heavily draws inspirations from
psychological theory, e.g., Basic Emotions (Ek-
man, 1992) or the Valence-Arousal-Dominance
model (Bradley and Lang, 1994).

Though this change turned out to be really ben-
eficial for sentiment analysis in NLP, a large vari-
ety of mutually incompatible encodings schemes
for emotion and, consequently, annotation formats
for emotion metadata in corpora have emerged that
hinder the interoperability of these resources and
their subsequent reuse, e.g., on the basis of align-
ments or mergers (Buechel and Hahn, 2017).

As an alternative way of dealing with thus
unwarranted heterogeneity, we here examine the
potential of multi-task learning (MTL; Caruana
(1997)) for word-level emotion prediction. In
MTL for neural networks, a single model is fit-
ted to solve multiple, independent tasks (in our
case, to predict different emotional dimensions)
which typically results in learning more robust and
meaningful intermediate representations. MTL
has been shown to greatly decrease the risk of
overfitting (Baxter, 1997), work well for various
NLP tasks (Setiawan et al., 2015; Liu et al., 2015;
Søgaard and Goldberg, 2016; Cummins et al.,
2016; Liu et al., 2017; Peng et al., 2017), and
practically increases sample size, thus making it
a natural choice for small-sized data sets typically
found in the area of word emotion induction.
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After a discussion of related work in Section 2,
we will introduce several reference methods and
describe our proposed deep MTL model in Sec-
tion 3. In our experiments (Section 4), we will
first validate our claim that MTL is superior to
single-task learning for word emotion induction.
After that, we will provide a large-scale evalua-
tion of our model featuring 9 typologically diverse
languages and multiple publicly available embed-
ding models for a total of 15 conditions. Our
MTL model surpasses the current state-of-the-art
for each of them, and even performs competitive
relative to human reliability. Most notably how-
ever, our approach yields the largest benefit on the
smallest data sets, comprising merely one thou-
sand samples. This finding, counterintuitive as it
may be, strongly suggests that MTL is particularly
beneficial for solving the word emotion induction
problem. Our code base as well as the resulting
experimental data is freely available.1

2 Related Work

This section introduces the emotion representation
format underlying our study and describes exter-
nal resources we will use for evaluation before we
discuss previous methodological work.

Emotion Representation and Data Sets. Psy-
chological models of emotion can typically be
subdivided into discrete (or categorical) and di-
mensional ones (Stevenson et al., 2007; Calvo and
Mac Kim, 2013). Discrete models are centered
around particular sets of emotional categories con-
sidered to be fundamental. Ekman (1992), for in-
stance, identifies six Basic Emotions (Joy, Anger,
Sadness, Fear, Disgust and Surprise).

In contrast, dimensional models consider emo-
tions to be composed of several influencing fac-
tors (mainly two or three). These are often referred
to as Valence (a positive–negative scale), Arousal
(a calm–excited scale), and Dominance (perceived
degree of control over a (social) situation)—the
VAD model (Bradley and Lang (1994); see Figure
1 for an illustration). Many contributions though
omit Dominance (the VA model) (Russell, 1980).
For convenience, we will still use the term “VAD”
to jointly refer to both variants (with and without
Dominance).

VAD is the most common framework to acquire
empirical emotion values for words in psychology.

1
https://github.com/JULIELab/wordEmotions

−1.0 −0.5  0.0  0.5  1.0−1
.0

−0
.5

 0
.0

 0
.5

 1
.0

−1.0

−0.5

 0.0

 0.5

 1.0

●

●

●
●

●

●

Anger

SurpriseDisgust

Fear

Sadness

Joy

Valence

D
om

in
an
ce

Figure 1: Affective space spanned by the Valence-
Arousal-Dominance (VAD) model, together with the
position of six Basic Emotions; as determined by Rus-
sell and Mehrabian (1977).

Over the years, a considerable number of such
resources (also called “emotion lexicons”) have
emerged from psychological research labs (as well
as some NLP labs) for diverse languages. The
emotion lexicons we use in our experiments are
listed in Table 1. An even more extensive list of
such data sets is presented by Buechel and Hahn
(2018). For illustration, we also provide three
sample entries from one of those lexicons in Ta-
ble 2. As can be seen, the three affective dimen-
sions behave complementary to each other, e.g.,
“terrorism” and “orgasm” display similar Arousal
but opposing Valence.

The task we address in this paper is to predict
the values for Valence, Arousal and Dominance,
given a lexical item. As is obvious from these ex-
amples, we consider emotion prediction as a re-
gression, not as a classification problem (see argu-
ments discussed in Buechel and Hahn (2016)).

In this paper, we focus on the VAD format for
the following reasons: First, note that the Valence
dimension exactly corresponds to polarity (Turney
and Littman, 2003). Hence, with the VAD model,
emotion prediction can be seen as a generalization
over classical polarity prediction. Second, to the
best of our knowledge, the amount and diversity of
available emotion lexicons with VAD encodings is
larger than for any other format (see Table 1).

Word Embeddings. Word embeddings are
dense, low-dimensional vector representations of
words trained on large volumes of raw text in an
unsupervised manner. The following are among
today’s most popular embedding algorithms:
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Source ID Language Format # Entries
Bradley and Lang (1999) EN English VAD 1,034
Warriner et al. (2013) EN+ English VAD 13,915
Redondo et al. (2007) ES Spanish VAD 1,034
Stadthagen-Gonzalez et al. (2017) ES+ Spanish VA 14,031
Schmidtke et al. (2014) DE German VAD 1,003
Yu et al. (2016a) ZH Chinese VA 2,802
Imbir (2016) PL Polish VAD 4,905
Montefinese et al. (2014) IT Italian VAD 1,121
Soares et al. (2012) PT Portuguese VAD 1,034
Moors et al. (2013) NL Dutch VAD 4,299
Sianipar et al. (2016) ID Indonesian VAD 1,490

Table 1: Emotion lexicons used in our experiments (with their bibliographic source, identifier, language they refer
to, emotion representation format, and number of lexical entries they contain).

Word Valence Arousal Dominance
sunshine 8.1 5.3 5.4
terrorism 1.6 7.4 2.7
orgasm 8.0 7.2 5.8

Table 2: Three sample entries from Warriner et al.
(2013). They use 9-point scales ranging from 1
(most negative/calm/submissive) to 9 (most posi-
tive/excited/dominant).

WORD2VEC (with its variants SGNS and CBOW)
features an extremely trimmed down neural
network (Mikolov et al., 2013). FASTTEXT is
a derivative of WORD2VEC, also incorporating
sub-word character n-grams (Bojanowski et al.,
2017). Unlike the former two algorithms which
fit word embeddings in a streaming fashion,
GLOVE trains word vectors directly on a word
co-occurrence matrix under the assumption to
make more efficient use of word statistics (Pen-
nington et al., 2014). Somewhat similar, SVDPPMI
performs singular value decomposition on top of
a point-wise mutual information co-occurrence
matrix (Levy et al., 2015).

In order to increase the reproducibility of our
experiments, we rely on the following widely
used, publicly available embedding models trained
on very large corpora (summarized in Table 3):
the SGNS model trained on the Google News cor-
pus2 (GOOGLE), the FASTTEXT model trained
on Common Crawl3 (COMMON), as well as the
FASTTEXT models for a wide range of languages
trained on the respective Wikipedias4 (WIKI).

2
https://code.google.com/archive/p/

word2vec/

3
https://fasttext.cc/docs/en/

english-vectors.html

4
https://github.com/facebookresearch/

fastText/blob/master/pretrained-vectors.

md

Note that WIKI denotes multiple embedding mod-
els with different training and vocabulary sizes
(see Grave et al. (2018) for further details). Ad-
ditionally, we were given the opportunity to reuse
the English embedding model from Sedoc et al.
(2017) (GIGA), a strongly related contribution (see
below). Their embeddings were trained on the En-
glish Gigaword corpus (Parker et al., 2011).

Word-Level Prediction. One of the early ap-
proaches to word polarity induction which is
still popular today (Köper and Schulte im Walde,
2016) was introduced by Turney and Littman
(2003). They compute the polarity of an unseen
word based on its point-wise mutual information
(PMI) to a set of positive and negative seed words,
respectively.

SemEval-2015 Task 10E featured polarity in-
duction on Twitter (Rosenthal et al., 2015). The
best system relied on support vector regression
(SVR) using a radial base function kernel (Amir
et al., 2015). They employ the embedding vec-
tor of the target word as features. The results of
their SVR-based system were beaten by the DEN-
SIFIER algorithm (Rothe et al., 2016). DENSIFIER
learns an orthogonal transformation of an embed-
ding space into a subspace of strongly reduced di-
mensionality.

Hamilton et al. (2016) developed SENTPROP, a
graph-based, semi-supervised learning algorithm
which builds up a word graph, where vertices cor-
respond to words (of known as well as unknown
polarity) and edge weights correspond to the sim-
ilarity between them. The polarity information is
then propagated through the graph, thus comput-
ing scores for unlabeled nodes. According to their
evaluation, DENSIFIER seems to be superior over-
all, yet SENTPROP produces competitive results
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ID Language Method Corpus # Tokens # Types # Dimensions

GOOGLE English SGNS Google News 1⇥ 1011 3⇥ 106 300
COMMON English FASTTEXT Common Crawl 6⇥ 1011 2⇥ 106 300
GIGA English CBOW Gigawords 4⇥ 10 9 2⇥ 106 300
WIKI all FASTTEXT Wikipeda — — 300

Table 3: Embedding models used for our experiments with identifier, language, embedding algorithm, training
corpus, its size in the number of tokens, size of the vocabulary (types) of the resulting embedding model and its
dimensionality.

only when the seed lexicon or the corpus the word
embeddings are trained on is very small.5

For word emotion induction, a very similar ap-
proach to SENTPROP has been proposed by Wang
et al. (2016a). They also propagate affective infor-
mation (Valence and Arousal, in this case) through
a word graph with similarity weighted edges.

Sedoc et al. (2017) recently proposed an ap-
proach based on signed spectral clustering where a
word graph is constructed not only based on word
similarity but also on the considered affective in-
formation (again, Valence and Arousal). The emo-
tion value of a target word is then computed based
on the seed words in its cluster. They report to
outperform the results from Wang et al. (2016a).

Contrary to the trend to graph-based methods,
the best system of the IALP 2016 Shared Task
on Chinese word emotion induction (Yu et al.,
2016b) employed a simple feed-forward neural
network (FFNN) with one hidden layer in com-
bination with boosting (Du and Zhang, 2016).

Another very recent contribution which advo-
cates a supervised set-up was published by Li et al.
(2017). They propose ridge regression, again us-
ing word embeddings as features. Even with this
simple approach, they report to outperform many
of the above methods in the VAD prediction task.6

Sentence-Level and Text-Level Prediction.

Different from the word-level prediction task
(the one we focus on in this contribution), the
determination of emotion values for higher-level
linguistic units (especially sentences and texts)
is also heavily investigated. For this problem,
DL approaches are meanwhile fully established
as the method of choice (Wang et al., 2016b;
Abdul-Mageed and Ungar, 2017; Felbo et al.,
2017; Mohammad and Bravo-Marquez, 2017).

5Personal correspondence with William L. Hamil-
ton; See also README at https://github.com/

williamleif/socialsent

6However, they also report extremely weak performance
figures for some of their reference methods.

It is important to note, however, that the meth-
ods discussed for these higher-level units cannot
easily be transferred to solve the word emotion in-
duction problem. Sentence-level and text-level ar-
chitectures are either adapted to sequential input
data (typical for RNN, LSTM, GRNN and related
architectures) or spatially arranged input data (as
with CNN architectures). However, for word em-
beddings (the default input for word emotion in-
duction) there does not seem to be any meaningful
order of their components. Therefore, these more
sophisticated DL methods are, for the time being,
not applicable for the study at hand.

3 Methods

In this section, we will first introduce various ref-
erence methods (two originally polarity-based for
which we offer adaptations for VAD prediction)
before defining our own neural MTL model and
discussing its difference from previous work.

Let V := {w1, w2, ..., wm} be our word vocab-
ulary and let E := {e1, e2, ..., em} be a set of em-
bedding vectors such that ei 2 Rn denotes the n-
dimensional vector representation of word wi. Let
D := {d1, d2, ..., dl} be a set of emotional dimen-
sions. Our task is to predict the empirically deter-
mined emotion vector emo(w) 2 Rl given a word
w and the embedding space E.

3.1 Reference Methods

Linear Regression Baseline (LinReg). We pro-
pose (multi-variate) linear regression as an obvi-
ous baseline for the problem:

emoLR(wk) := Wek + b (1)

where W is a matrix, Wi⇤ contains the regression
coefficients for the i-th affective dimension and b
is the vector of bias terms. The model parame-
ters are fitted using ordinary least squares. Tech-
nically, we use the scikit-learn.org imple-
mentation with default parameters.
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Ridge Regression (RidgReg). Li et al. (2017)
propose ridge regression for word emotion induc-
tion. Ridge regression works identically to lin-
ear regression during prediction, but introduces
L2 regularization during training. Following the
authors, for our implementation, we again use
the scikit-learn implementation with default
parameters.

Turney-Littman Algorithm (TL). As one of
the earliest contributions in the field, Turney and
Littman (2003) defined a simple PMI-based ap-
proach to determine the semantic polarity SPTL

of a word w:

SPTL(w) :=
X

s2seeds+
pmi(w, s) �

X

s2seeds�
pmi(w, s)

(2)
where seeds+ and seeds� are sets of positive and
negative seed words, respectively. Since this algo-
rithm is still popular today (Köper and Schulte im
Walde, 2016), we here provide a novel modifica-
tion for adapting this originally polarity-based ap-
proach to word emotion induction with vectorial
seed and output values.

First, we replace PMI-based association of seed
and target word w and s by their similarity sim
based on their word embeddings ew and es:

sim(w, s) := max(0,
ew · es

||ew||⇥ ||es||
) (3)

emo(w) :=
X

s2seeds+
sim(w, s) �

X

s2seeds�
sim(w, s)

(4)
Although this step is technically not required for
the adaptation, it renders the TL algorithm more
comparable to the other approaches evaluated in
Section 4 besides from most likely increasing per-
formance. Equation (4) can be rewritten as

emo(w) :=
X

s2seeds
sim(w, s)⇥ emo(s) (5)

where seeds := seeds+ [ seeds� and emo(s)
maps to 1, if s 2 seeds+, and �1, if s 2 seeds�.

Equation (5) can be trivially adapted to an n-
dimensional emotion format by redefining emo(s)
such that it maps to a vector from Rn instead of
{�1, 1}. Our last step is to introduce a normal-
ization term such that emo(w)TL lies within the

range of the seed lexicon.

emoTL(w) :=

P
s2seeds sim(w, s)⇥ emo(s)P

s2seeds sim(w, s)
(6)

As can be seen from Equation (6), for the more
general case of n-dimensional emotion prediction,
the Turney-Littman algorithm naturally translates
into a weighted average where the seed emotion
values are weighted according to the similarity to
the target item.

Densifier. Rothe et al. (2016) train an orthogo-
nal matrix Q 2 Rn⇥n (n being the dimensionality
of the word embeddings) such that applying Q to
an embedding vector ei concentrates all the polar-
ity information in its first dimension such that the
polarity of a word wi can be computed as

SPDENSIFIER(wi) := pQei (7)

where p = (1, 0, 0, ..., 0)T 2 R1⇥n .
For fitting Q, the seeds are arranged into pairs of

equal polarity (the set pairs=) and those of oppos-
ing polarity (pairs 6=). A good fit for Q will mini-
mize the distance within the former and maximize
the distance within the latter which can be ex-
pressed by the following two training objectives:

argmin
Q

X

(wi,wj)2pairs=
|pQ(ei � ej)| (8)

argmax
Q

X

(wi,wj)2pairs6=
|pQ(ei � ej)| (9)

The objectives described in the expressions (8) and
(9) are combined into a single loss function (using
a weighting factor ↵ 2 [0, 1]) which is then mini-
mized using stochastic gradient descent (SGD).

To adapt this algorithm to dimensional emotion
formats, we construct a positive seed set, seeds+v ,
and a negative seed set, seeds�v , for each emotion
dimension v 2 D. Let Mv be the mean value of all
the entries of the training lexicon for the affective
dimension v. Let SDv be the respective standard
deviation and � 2 R, � � 0. Then all entries
greater than Mv + �SDv are assigned to seeds+v
and those less than Mv � �SDv are assigned to
seeds�v . Q is fitted individually for each emotion
dimension v.

Training was performed according to the orig-
inal paper with the exception that (following
Hamilton et al. (2016)) we did not apply the
proposed re-orthogonalization after each training

1911

107



step, since we did not find any evidence that
this procedure actually results in improved perfor-
mance. The hyperparameters ↵ and � were set to
.7 and .5 (respectively) for all experiments based
on a pilot study. Since the original implementa-
tion is not accessible, we devised our own using
tensorflow.org.

Boosted Neural Networks (ensembleNN). Du
and Zhang (2016) propose simple FFNNs in com-
bination with a boosting algorithm. An FFNN
consists of an input or embedding layer with acti-
vation a(0) 2 Rn which is equal to the embedding
vector ek when predicting the emotion of a word
wk. The input layer is followed by multiple hidden
layers with activation

a(l+1) := �(W (l+1)a(l) + b(l+1)) (10)

where W (l+1) and b(l+1) are the weights and bi-
ases for layer l + 1 and � is a nonlinear activation
function. Since we treat emotion prediction as a
regression problem, the activation on the output
layer aout (where out is the number of non-input
layers in the network) is computed as the affine
transformation

a(out) := W (out)a(out�1) + b(out) (11)

Boosting is a general machine learning tech-
nique where several weak estimators are combined
to form a strong estimator. The authors used
FFNNs with a single hidden layer of 100 units
and rectified linear unit (ReLU) activation. The
boosting algorithm AdaBoost.R2 (Drucker, 1997)
was used to train the ensemble (one per affective
dimension). Our re-implementation copies their
technical set-up7 exactly using scikit-learn.

3.2 Multi-Task Learning Neural Network

The approaches introduced in Section 3.1 and Sec-
tion 2 vary largely in their methodological founda-
tions, i.e., they comprise semi-supervised and su-
pervised machine learning techniques—both sta-
tistical and neural ones. Yet, they all have in com-
mon that they treat the prediction of the different
emotional dimensions as separate tasks. That is,
they fit one individual model per VAD dimension
without sharing parameters between them.

In contradistinction, the key feature of our ap-
proach is that we fit a single FFNN model to

7Original settings available at https://github.

com/StevenLOL/ialp2016_Shared_Task
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Figure 2: MTL architecture for VAD prediction.

predict all VAD dimensions jointly, thus apply-
ing multi-task learning to word emotion induction.
Hence, we treat the prediction of Valence, Arousal
and Dominance as three independent tasks. Our
multi-task learning neural network (MTLNN) (de-
picted in Figure 2) has an output layer of three
units such that each output unit represents one of
the VAD dimensions. However, the activation in
our two hidden layers (of 256 and 128 units, re-
spectively) is shared across all VAD dimensions,
and so are the associated weights and biases.

Thus, while we train our MTLNN model it is
forced to learn intermediate representations of the
input which are generally informative for all VAD
dimensions. This serves as a form of regulariza-
tion, since it becomes less likely for our model to
fit the noise in the training set as noise patterns
may vary across emotional dimensions. Simulta-
neously, this has an effect similar to an increase
of the training size, since each sample now leads
to additional error signals during backpropagation.
Intuitively, both properties seem extremely use-
ful for relatively small-sized emotion lexicons (see
Section 4 for empirical evidence).

The remaining specifications of our model
are as follows. We use leaky ReLU activation
(LReLU) as nonlinearity (Maas et al., 2013).

LReLU(zi) := max(�zi, zi) (12)

with � := .01 for our experiments. For regular-
ization, dropout (Srivastava et al., 2014) is applied
during training with a probability of .2 on the em-
bedding layer and .5 on the hidden layers. We train
for 15, 000 iterations (well beyond convergence on
each data set we use) with the ADAM optimizer
(Kingma and Ba, 2015) of .001 base learning rate,
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batch size of 128 and Mean-Squared-Error loss.
The weights are randomly initialized (drawn from
a normal distribution with a standard deviation
.001) and biases are uniformly initialized as .01.
Tensorflow is used for implementation.

4 Results

In this section, we first validate our assumption
that MTL is superior to single-task learning for
word emotion induction. Next, we compare our
proposed MTLNN model in a large-scale evalua-
tion experiment.

Performance figures will be measured as Pear-
son correlation (r) between our automatically pre-
dicted values and human gold ratings. The Pear-
son correlation between two data series X =
x1, x2, ..., xn and Y = y1, y2, ..., yn takes values
between +1 (perfect positive correlation) and �1
(perfect negative correlation) and is computed as

rxy :=

Pn
i=1(xi � x̄)(yi � ȳ)pPn

i=1(xi � x̄)2
pPn

i=1(yi � ȳ)2

(13)
where x̄ and ȳ denote the mean values for X and
Y , respectively.

4.1 Single-Task vs. Multi-Task Learning

The main hypothesis of this contribution is that an
MTL set-up is superior to single-task learning for
word emotion induction. Before proceeding to the
large-scale evaluation of our proposed model, we
will first examine this aspect of our work.

For this, we use the following experimental set-
up: We will compare the MTLNN model against
its single-task learning counterpart (SepNN).
SepNN simultaneously trains three separate neu-
ral networks where only the input layer, yet no
parameters of the intermediate layers are shared
across the models. Each of the separate networks
is identical to MTLNN (same layers, dropout, ini-
tialization, etc.), yet has only one output neuron,
thus modeling only one of the three affective VAD
dimensions. SepNN is equivalent to fitting our
proposed model (but with only one output unit)
to the different VAD dimensions individually, one
after the other. Yet, training these separate net-
works simultaneously (not jointly!) makes both
approaches, MTLNN and SepNN, easier to com-
pare.

We will run MTLNN against SepNN on the
EN and the EN+ data set (the former is very

Figure 3: Performance of our proposed MTLNN
model vs. its single-task learning counterpart SepNN
against training steps.

small, the latter relatively large; see Table 1) us-
ing the following set-up: for each gold lexicon
and model, we randomly split the data 9/1 and
train for 15, 000 iterations on the larger split (the
same number of steps is used for the main exper-
iment). After each one-thousand iterations step,
model performance is tested on the held-out data.
This process will be repeated 20 times and the per-
formance figures at each one-thousand iterations
step will be averaged. In a final step, we will av-
erage the results for each of the three emotional
dimensions and only plot this average value. The
results of this experiment are depicted in Figure 3.

First of all, each combination of model and data
set displays a satisfactory performance of at least
r ⇡ .75 after 15,000 steps compared to previous
work (see below). Overall, performance is higher
for the smaller EN lexicon. Although counterintu-
itive (since smaller lexicons lead to fewer training
samples), this finding is consistent with prior work
(Sedoc et al., 2017; Li et al., 2017) and is prob-
ably related to the fact that smaller lexicons usu-
ally comprise a larger portion of strongly emotion-
bearing words. In contrast, larger lexicons add
more neutral words which tend to be harder to pre-
dict in terms of correlation.

As hypothesized, the MTLNN model does in-
deed outperform the single task model on both
data sets. Our data also suggest that the gain from
the MTL approach is larger on smaller data sets
(again in concordance with our expectations). Fig-
ure 3 reveals that this might be due to the regulariz-
ing effect of MTL, since the SepNN model shows
signs of overfitting on the EN data set. Yet, even
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Language Data Embeddings LinReg RidgReg TL Densifier ensembleNN MTLNN

English EN+ GOOGLE 0.696 0.696 0.631 0.622 0.728 0.739***
English EN+ COMMON 0.719 0.719 0.659 0.652 0.762 0.767***
English EN+ WIKI 0.666 0.666 0.591 0.584 0.706 0.712***
English EN GOOGLE 0.717 0.732 0.723 0.712 0.688 0.810***
English EN COMMON 0.731 0.741 0.741 0.726 0.717 0.824***
English EN WIKI 0.656 0.667 0.674 0.665 0.681 0.777***
Spanish ES WIKI 0.698 0.709 0.704 0.690 0.700 0.804***
Spanish ES+ WIKI 0.693 0.694 0.603 0.598 0.766 0.778***
German DE WIKI 0.709 0.719 0.714 0.710 0.700 0.801***
Chinese ZH WIKI 0.716 0.717 0.586 0.599 0.737 0.744**
Polish PL WIKI 0.650 0.650 0.577 0.553 0.687 0.712***
Italian IT WIKI 0.656 0.665 0.672 0.659 0.630 0.751***
Portuguese PT WIKI 0.673 0.684 0.685 0.678 0.672 0.768***
Dutch NL WIKI 0.651 0.652 0.559 0.532 0.704 0.730***
Indonesian ID WIKI 0.581 0.586 0.581 0.576 0.575 0.660***

Average 0.638 0.659 0.611 0.605 0.676 0.728***

Table 4: Results of our main experiment in averaged Pearson correlation; best result per condition (in rows) in
bold, second best result underlined; significant difference (paired two-tailed t-test) over the second best system
marked with “*”, “**”, or “***” for p < .05, .01, or .001, respectively.

when the separate model does not overfit (as on
the EN+ lexicon), MTLNN reveals better results.

Although SepNN needs fewer training steps be-
fore convergence, the MTLNN model trains much
faster, thus still converging faster in terms of run-
time (about a minute on a middle-class GPU). This
is because MTLNN has only about a third as many
parameters as the separate model SepNN.

4.2 Comparison against Reference Methods

We combined each of the selected lexicon data
sets (Table 1) with each of the applicable publicly
available embedding models (Section 2; the em-
bedding model provided by Sedoc et al. (2017)
will be used separately) for a total of 15 condi-
tions, i.e, the rows in Table 4.

For each of these conditions, we performed a
10-fold cross-validation (CV) for each of the 6
methods presented in Section 3 such that each
method is presented with the identical data splits.8

For each condition, algorithm, and VA(D) dimen-
sion, we compute the Pearson correlation r be-
tween gold ratings and predictions. For concise-
ness, we present only the average correlation over
the respective affective dimensions in Table 4 (Va-
lence and Arousal for ES+ and ZH, VAD for the
others). Note that the methods we compare our-
selves against comprise the current state-of-the art
in both polarity and emotion induction (as de-
scribed in Section 2).

8This procedure constitutes a more direct comparison
than using different splits for each method and allows using
paired t-tests.

As can be seen, our proposed MTLNN model
outperforms all other approaches in each of the 15
conditions. Regarding the average over all affec-
tive dimensions and conditions, it outperforms the
second best system, ensembleNN, by more than
5%-points. In line with our results from Sec-
tion 4.1, those improvements are especially pro-
nounced on smaller data sets containing one up
to two thousand entries (EN, ES, IT, PT, ID) with
close to 10%-points improvement over the respec-
tive second-best system.

Concerning the relative ordering of the affec-
tive dimensions, in line with former studies (Sedoc
et al., 2017; Li et al., 2017), the performance fig-
ures for the Valence dimension are usually much
higher than for Arousal and Dominance. Using
MTLNN, for many conditions, we see the pat-
tern that Valence is about 10%-points above the
VAD average, Arousal being 10%-points below
and Dominance being roughly equal to the aver-
age over VAD (this applies, e.g., to EN, EN+ and
IT). On other data sets (e.g., PL, NL and ID), the
ordering between Arousal and Dominance is less
clear though Valence still stands out with the best
results. We observe the same general pattern for
the reference methods, as well.

Concerning the comparison to Sedoc et al.
(2017), arguably one of most related contributions,
they report a performance of r = .768 for Valence
and .582 for Arousal on the EN+ data set in a 10-
fold CV using their own embeddings. In contrast,
MTLNN using the COMMON model achieves r =
.870 and .674 in the same set-up—about 10%-
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Valence Arousal Dominance
MTLNN EN .918 .730 .825
MTLNN EN+ .870 .674 .758
ISR EN ⇠ EN+ .953 .759 .795
SHR EN+ .914 .689 .770

Table 5: Comparison of the MTLNN model against
inter-study reliability (ISR) between the EN and the
EN+ data set and split-half reliability (SHR) of the EN+
data set (in Pearson correlation).

points better on both dimensions. However, the
COMMON model was trained on much more data
than the embeddings Sedoc et al. (2017) use. For
the most direct comparison, we also repeated this
experiment using their embedding model (GIGA).
We find that MTLNN still clearly outperforms
their results with r = .814 for Valence and .607
for Arousal.9

MTLNN achieves also very strong results in di-
rect comparison to human performance (see Table
5). Warriner et al. (2013) (who created EN+) re-
port an inter-study reliability (ISR; i.e., the corre-
lation of the aggregated ratings from two different
studies) between the EN and the EN+ lexicon of
r = .953, .759 and .795 for VAD, respectively.
Since EN is a subset of EN+, we can compare
these performance figures against our own results
on the EN data set where we achieved r = .918,
.730 and .825, respectively. Thus, our proposed
method did actually outperform human reliability
for Dominance and is competitive for Valence and
Arousal, as well.

This general observation is also backed up by
split-half reliability data (SHR; i.e., when ran-
domly splitting all individual ratings in two groups
and averaging the ratings within each group, how
strong is the correlation between these averaged
ratings?). For the EN+ data set, Warriner et al.
(2013) report an SHR of r = .914, .689 and .770
for VAD, respectively. Again, our MTLNN model
performs very competitive with r = .870, .674
and .758, respectively using the COMMON embed-
dings.

5 Conclusion

In this paper, we propose multi-task learning
(MTL) as a simple, yet surprisingly efficient
method to improve the performance and, at the
same time, to deal with existing data limitations

9We also clearly outperform their results for the NL and
ES+ data sets. For these cases, our embedding models were
similar in training size.

in word emotion induction—the task to predict
a complex emotion score for an individual word.
We validated our claim that MTL is superior to
single-task learning by achieving better results
with our proposed method in performance as well
as training time compared to its single-task coun-
terpart. We performed an extensive evaluation of
our model on 9 typologically diverse languages,
using different kinds of word embedding mod-
els for a total 15 conditions. Comparing our
approach to state-of-the-art methods from word
polarity and word emotion induction, our model
turns out to be superior in each condition, thus set-
ting a novel state-of-the-art performance for both
polarity and emotion induction. Moreover, our re-
sults are even competitive to human annotation re-
liability in terms of inter-study as well as split-half
reliability. Since this contribution was restricted to
the VAD format of emotion representation, in fu-
ture work we will examine whether MTL yields
similar gains for other representational schemes,
as well.
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May 2016, pages 2595–2598.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associ-
ation for Computational Linguistics 3:211–225.

Minglei Li, Qin Lu, Yunfei Long, and Lin Gui. 2017.
Inferring affective meanings of words from word
embedding. IEEE Transactions on Affective Com-
puting 8(4):443–456.

1916

112 10 Word Emotion Induction as Deep Multi-Task Learning



PengFei Liu, Xipeng Qiu, and Xuanjing Huang. 2017.
Adversarial multi-task learning for text classifica-
tion. In ACL 2017 — Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics. Vancouver, British Columbia, Canada,
July 30 - August 4, 2017, volume 1: Long Papers,
pages 1–10.

Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng,
Kevin Duh, and Ye-Yi Wang. 2015. Representation
learning using multi-task deep neural networks for
semantic classification and information retrieval. In
NAACL-HLT 2015 — Proceedings of the 2015 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies. Denver, Colorado, USA, May
31 - June 5, 2015, pages 912–921.

Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng.
2013. Rectifier nonlinearities improve neural net-
work acoustic models. In Proceedings of the Work-
shop on Deep Learning for Audio, Speech and Lan-
guage Processing @ ICML 2013. Atlanta, Georgia,
USA, 16 June 2013.
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Abstract

Emotion Representation Mapping (ERM) has the goal to convert existing emotion ratings from
one representation format into another one, e.g., mapping Valence-Arousal-Dominance annota-
tions for words or sentences into Ekman’s Basic Emotions and vice versa. ERM can thus not only
be considered as an alternative to Word Emotion Induction (WEI) techniques for automatic emo-
tion lexicon construction but may also help mitigate problems that come from the proliferation
of emotion representation formats in recent years. We propose a new neural network approach
to ERM that not only outperforms the previous state-of-the-art. Equally important, we present a
refined evaluation methodology and gather strong evidence that our model yields results which
are (almost) as reliable as human annotations, even in cross-lingual settings. Based on these re-
sults we generate new emotion ratings for 13 typologically diverse languages and claim that they
have near-gold quality, at least.

1 Introduction

From its inception, researchers in the field of sentiment analysis aimed at predicting the affective state
that is typically associated with a given word based on a list of linguistic features, a problem referred to
as word emotion induction (WEI) (Hatzivassiloglou and McKeown, 1997; Turney and Littman, 2003).
Early research activities have focused on semantic polarity (the positiveness or negativeness of a feeling)
for quite a long time. But more recently this focus on binary representations has been replaced by more
expressive emotion representation formats such as Basic Emotions or Valence-Arousal-Dominance. In
the meantime, WEI has become an active area of research, regularly featured in shared tasks (Rosenthal
et al., 2015; Yu et al., 2016b). Based on these achievements, WEI techniques have become a natural
methodological choice for the automatic construction of emotion lexicons (Köper and Schulte im Walde,
2016; Shaikh et al., 2016).

Yet, only very recently, a radically different approach to automatic emotion lexicon construction has
been proposed. Instead of relying on linguistic features (such as similarity with seed words or word em-
beddings), the goal of emotion representation mapping (ERM) is to derive new emotional word ratings
in one format based on known ratings of the same words in another format (Buechel and Hahn, 2017a).
For example, ERM could use empirically gathered ratings for Basic Emotions and convert them into a
Valence-Arousal-Dominance representation scheme, with greater precision than currently achievable by
WEI algorithms. As a much appreciated side effect, one of the promises of ERM is to make otherwise
incompatible resources (lexicons or annotated corpora, as well as tools) compatible, and incomparable
systems comparable. Thus, this approach has the potential to mitigate some of the negative effects that
arise from not having a community-wide standard for emotion annotation and representation (Calvo and
Mac Kim, 2013; Buechel and Hahn, 2018a).

We here want to contribute to this endeavor by providing a large-scale evaluation of previously pro-
posed ERM approaches for four typologically diverse languages and report evidence that ERM clearly

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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outperforms current state-of-the-art WEI algorithms. Furthermore, we present our own deep learning
model which performs even better against all competitors. Most importantly, however, we propose a
new methodology for comparing the reliability of ERM against human annotation reliability, a major
shortcoming of previous work. As a result, we find that our proposed model performs competitive to
a reasonably large group of human raters, even in cross-lingual settings. Based on this evidence, we
automatically construct emotion lexicons for 13 languages and claim that they have (near) gold quality.
These lexicons as well as our experimental code base and results are publically available.1

2 Related Work
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Figure 1: Affective space spanned by the Valence-
Arousal-Dominance (VAD) model, together with
the position of six Basic Emotions. Adapted from
Buechel and Hahn (2016).

Psychological Models of Emotion. Models
of emotion typically fall into two main groups,
namely discrete (or categorical) and dimen-
sional ones (Stevenson et al., 2007; Calvo and
Mac Kim, 2013). Discrete models are built
around particular sets of emotional categories
deemed fundamental and universal. Ekman
(1992), for instance, identifies six Basic Emo-
tions (Joy, Anger, Sadness, Fear, Disgust and
Surprise). In contrast, dimensional models con-
sider emotions to be composed out of several in-
fluencing factors (mainly two or three). These
are often referred to as Valence (corresponding
to the concept of polarity), Arousal (a calm–
excited scale), and Dominance (perceived de-
gree of control over a (social) situation)—the
VAD model. The last dimension, Dominance,
is quite often omitted, thus constituting the VA
model. For convenience, both will be jointly re-
ferred to as VA(D). An illustration of VAD and
its relationship to Basic Emotions is given in Figure 1.

Lexical Data Sets. In contradistinction to NLP where many different representation formats for emo-
tions are being used, lexical resources originating from psychology labs almost exclusively subscribe
either to VA(D) or Basic Emotions models (typically omitting Surprise; the BE5 format). Over the years,
a considerable number of resources built on these premises have emerged from psychological research
for various languages.2 In more detail, these lexical ratings have been gathered via questionnaire studies
by collecting individual ratings from a large number of subjects for each lexical item under consideration
(typically between 20 to 30 individual ratings per item). These individual assessments are then averaged
to yield aggregated scores on which we base our experiments. The emotion values we deal with must
thus be understood as an average emotional reaction when presenting a lexical stimulus to a group of
human judges.

In this paper, we restrict ourselves to the VA(D) and BE5 format. Following the conventions
of the emotion lexicons used in our experiments (Table 1), each VA(D) dimension receives a value
from the interval [1, 9] where ‘1’ means “most negative/calm/submissive”, ‘9’ means “most posi-
tive/excited/dominant” and ‘5’ means “neutral”. Conversely, values for BE5 categories range in the
interval [1, 5] where ‘1’ means “absence” and ‘5’ means “most extreme” expression of the respective
emotion.3 Consequently, the VA(D) and BE5 formats are conceptually different from one another inso-
far as VA(D) dimensions are bi-polar, whereas BE5 categories are uni-polar.

1https://github.com/JULIELab/EmoMap
2See, e.g., Tables 1 and 6. An enhanced list of these and similar data sets is provided in Buechel and Hahn (2018a).
3Although these intervals are fairly well established conventions, in some data sets different rating scales were used, never-

theless. In these cases, we linearly transformed the ratings so that they match the defined intervals.

118 11 Emotion Representation Mapping Mostly Performs on Human Level



2894

Abbrev. VA(D) BE5 Dom? Overlap
en 1 Bradley and Lang (1999) Stevenson et al. (2007) 3 1,028
en 2 Warriner et al. (2013) Stevenson et al. (2007) 3 1,027
es 1 Redondo et al. (2007) Ferré et al. (2017) 3 1,012
es 2 Hinojosa et al. (2016b) Hinojosa et al. (2016a) 3 875
es 3 Stadthagen-Gonzalez et al. (2017b) Stadthagen-González et al. (2017a) 7 10,491
de 1 Võ et al. (2009) Briesemeister et al. (2011) 7 1,958
pl 1 Riegel et al. (2015) Wierzba et al. (2015) 7 2,902
pl 2 Imbir (2016) Wierzba et al. (2015) 3 1,272

Table 1: Data sets used in our experiments; with abbreviation (including language code according to
ISO 639-1), the bibliographic sources of the VA(D) and BE5 ratings, information on whether Dominance
is included and the number of overlapping entries.

Word Emotion Induction. Automatically constructing such word-level emotion data sets has been a
focus of NLP-based sentiment analysis studies from the beginning. In fact, the problem to automatically
predict polarity or emotion scores for a given word based on some linguistic features—often referred to
as Word Emotion Induction (WEI)—is already dealt with in the seminal work of Hatzivassiloglou and
McKeown (1997). At first, the features taken into account were typically derived from co-occurrence or
terminology-based similarity with a small set of seed word with known emotional scores (Turney and
Littman, 2003; Esuli and Sebastiani, 2005). Nowadays, these features are almost completely replaced
by word embeddings, i.e., dense, low-dimensional vector representations of words that are trained on
large volumes of raw text in an unsupervised manner. WORD2VEC (Mikolov et al., 2013), GLOVE
(Pennington et al., 2014) and FASTTEXT (Bojanowski et al., 2017) are among today’s most popular
algorithms for generating embeddings.

WEI algorithms constitute a natural baseline for ERM because, first, they produce the same out-
put (emotion ratings for words according to some emotion representation format), yet their predictions
are based on expressively weaker features (word embeddings instead of emotion ratings for the same
word but in another format), thus constituting a harder task. Second, they form the currently prevailing
paradigm for the automatic construction of emotion lexicons (Köper and Schulte im Walde, 2016; Shaikh
et al., 2016), a problem for which ERM offers a promising alternative.

Word V A D J A S F D
sunshine 8.1 5.3 5.4 4.3 1.2 1.3 1.3 1.2
terrorism 1.6 7.4 2.7 1.1 3.0 3.4 4.1 2.5
orgasm 8.0 7.2 5.8 4.3 1.3 1.3 1.4 1.2

Table 2: Three lexical items and their emotion val-
ues in VAD (second column group) and BE5 (third
column group) format. VAD scores are taken from
Warriner et al. (2013), BE5 scores were automatically
derived (see Section 4.4).

Emotion Representation Mapping. In con-
trast to WEI, ERM is based on the condition
that the pairs of data sets in Table 1 are com-
plementary in the sense that, when combining
these lexicons, a subset of their entries are then
encoded in both emotion formats, i.e., VA(D)
and BE5. This condition is illustrated for three
lexical items in Table 2.

Although such complementary data sets
have been available for quite some time, ERM
has only recently been introduced to NLP by
Buechel and Hahn (2016) in order to compare a newly proposed VAD-based prediction system against
previously established results on Basic Emotion gold standards. In a follow-up study, Buechel and Hahn
(2017b) devised EMOBANK, a VAD-annotated corpus which, in part, also bears BE5 ratings on the
sentence level. They found that both kinds of annotation were highly predictive for each other using a
k-Nearest-Neighbor approach. In later studies, they examined the potential of ERM as a substitute for
manual annotation of lexical items, also in cross-lingual settings (Buechel and Hahn, 2017a; Buechel
and Hahn, 2018a). Although their evaluation was limited in expressiveness, they already found evidence
that ERM may be comparable to human performance in terms of the quality of the resulting ratings.

Similar work has, to the best of our knowledge, only been done in the psychology domain. How-
ever, related work from this area does not target the goal of predictive modeling (Stevenson et al., 2007;
Pinheiro et al., 2017). In both contributions, linear regression models were fitted to predict VAD di-

119



2895

mensions given BE5 categories and vice versa. Yet, this was mainly done to inspect the respective
slope-coefficients as an indicator of the relationship of dimensions and categories. Thus, the overall
goodness of the fit was not in the center of interest and was not even reported by Stevenson et al. (2007).

3 Methods

Let L := {w1, w2, ..., wn} be a set of words. Let s,t denote two distinct emotion representation formats
such that both emos(wi) 2 R|s| and emot(wi) 2 R|t| describe the emotion vector associated with
wi relative to s and t, respectively, where |s|, |t| denote the number of variables which each format
employs (e.g., 3 for VAD and 5 for BE5). The task we address in this paper is to predict the target
emotion ratings T := {emot(wi)| wi 2 L} given the set L and the corresponding source emotion
ratings S := {emos(wi)| wi 2 L}. Performance will be measured as Pearson correlation r between
the predicted values and human gold ratings (one r-value per element of the target representation). In
general, the Pearson correlation between two data series X := x1, x2, ..., xn and Y := y1, y2, ..., yn takes
values between +1 (perfect positive correlation) and �1 (perfect negative correlation) and is computed
as

rxy :=

Pn
i=1(xi � x̄)(yi � ȳ)pPn

i=1(xi � x̄)2
pPn

i=1(yi � ȳ)2
(1)

where x̄ and ȳ denote the mean values for X and Y , respectively.

3.1 Reference Methods
The first method against which we will compare our proposed model is linear regression (LR) as used
by Stevenson et al. (2007) in their early study. LR predicts an emotion value in the target representation
t as the affine transformation

emotLR(wi) := W emos(wi) + b (2)

where W is a |t| ⇥ |s| matrix and b is a |t| ⇥ 1 vector. The model parameters are fitted using ordinary
least squares. In contrast, Buechel and Hahn (2017b) proposed the use of k-Nearest-Neighbor Regression
(KNN) for ERM. This simple supervised approach predicts the target value as

emotKNN(wi) :=
1

k

X

wi
02NEAREST(wi,k,S)

emot(wi
0) (3)

where NEAREST yields the k nearest neighbors of wi in the training set (determined by the Euclidean
distance between the source representations of two words). The k parameter was fixed to 20 based on a
pilot study.4 We used the scikit-learn.org implementation for both LR and KNN.

3.2 Proposed Model: A Multi-Task Feed-Forward Neural Network for ERM
Despite the fact that the above set-ups already perform quite well for ERM (see Section 4), both LR and
KNN are rather basic types of models lacking deeper sophistication. As a consequence, we here propose
the use of Feed-Forward Neural Networks5 (FFNNs) for ERM which have been shown to be capable of
approximating arbitrary functions, in theory at least (Hornik, 1991). In general, an FFNN consists of an
input layer with activation a(0) := emos(wi) 2 R|s| followed by multiple hidden layers with activation
a(l+1) := �(W (l+1)a(l) + b(l+1)) where W (l+1) and b(l+1) are the weights and biases for layer l + 1 and
� is a nonlinear activation function. Since the emotion formats under scrutiny capture affective states as
real-valued vectors, the activation on the output layer aout (where out is the number of non-input layers
in the network) is computed as the affine transformation

emotFFNN(wi) := a(out) := W (out)a(out�1) + b(out) (4)
4In contrast, Buechel and Hahn (2017a) determined k for each lexicon individually based on a dev set. Now, we deviate

from this approach since it is inapplicable for the cross-lingual lexicon construction presented in Section 4.4.
5Note that applying neural architectures currently popular for other NLP tasks is not advisable because of the simplicity of

our input data (feature vectors of length 2 to 5). These more complex architectures are instead designed for, e.g., sequential
data (such as the RNN family) or spatially arranged data (such as CNNs).
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Consequently, our model differs from the other approaches presented in this section by sharing model
parameters (weights and biases of the hidden layers) across the different dimensions/categories of the
target format with only the last layer having parameters which are uniquely associated to one of the
outputs (see Equation 4). This can be considered as a mild form of multi-task learning (Caruana, 1997),
a machine learning technique which has been shown to strongly decrease the risk of overfitting (Baxter,
1997) and also speeds up computation by greatly decreasing the number of tunable parameters compared
to training individual layers for each affective dimension/category.

The remaining specifications of our model are as follows. We train two-hidden layer FFNNs (both
with 128 units), ReLU activation, .2 dropout on the hidden layers (none on the input layer)6 and Mean-
Squared-Error loss. Each model was trained for 10, 000 iterations (well beyond convergence, indepen-
dently of the size of the training set) using the ADAM optimizer (Kingma and Ba, 2015). Keras.io
was used for implementation.

3.3 Baseline: Word Emotion Induction
As a natural baseline for ERM, we will use a recent state-of-the-art method for word emotion induc-
tion (WEI) by Du and Zhang (2016).7 They propose Feed-Forward Neural Networks (similar to our
proposed model for ERM) in combination with a boosting algorithm. The authors used FFNNs with a
single hidden layer of 100 units and ReLU activation. The boosting algorithm ADABOOST.R2 (Drucker,
1997) was used to train the ensemble (one per target variable). We implemented this approach with
scikit-learn using exactly the same settings as in the original publication.8 As for the word em-
beddings this method needs as input, we used the pre-trained FASTTEXT embeddings that Facebook
Research makes available for a wide range of languages trained on the respective Wikipedias.9 This way,
we hope to achieve a particularly high level of comparability across languages because, for each of them,
embeddings are trained on data from the same domain and of a similar order of magnitude.10

3.4 Comparison to Human Reliability
Since common metrics for Inter-Annotator Agreement (IAA), such as Cohen’s Kappa, are not applicable
for real-valued emotion scores (Carletta, 1996), we will now discuss how to compare our own results
against human assessments in order to put their reliability on a safe ground.

One possible point of comparison that has been used in previous work (Buechel and Hahn, 2017a;
Buechel and Hahn, 2018a) is inter-study reliability (ISR), i.e., the correlation between the ratings of
common words in different data sets. However, this procedure comes with a number of downsides. First,
the number of pairs of data sets with substantially overlapping entries is rather small since researchers
focus mainly on acquiring ratings for novel words instead of gathering annotations anew for ones already
covered. Thus, employing ISR comparison with human performance is only possible on few data sets. In
particular, we are not aware of any pair of data sets with significantly overlapping BE5 ratings. Second,
ISR is sensitive to differences in acquisition methodologies (e.g., alternative sets of instructions or rating
scales) and may thus vary substantially between different pairs of data sets.

As an alternative, these shortcomings lead us to propose split-half reliability (SHR) as a new basis
for our comparison. SHR is computed by splitting all individual ratings for each of the items into two
groups. These individual ratings are then averaged for both groups and the Pearson correlation between
the group averages is computed. The whole processes is repeated (typically 100 times) with random
splits before averaging the results from each iteration (Mohammad and Bravo-Marquez, 2017). Thus, an

6We found the usual recommendation of .2 on input and .5 on hidden layers (Srivastava et al., 2014) too high given the
small number of features in our task (2 to 5).

7In our most recent contribution featuring a large-scale evaluation of many current WEI approaches on numerous data sets,
we found that among the existing ones the model proposed by Du and Zhang (2016) performs best, only beaten by our own,
newly proposed model (Buechel and Hahn, 2018b). Note that even compared to this more advanced approach to WEI, the
performance figures we report here for ERM still remain much higher (see Section 4). Hence, the claim of this paper that ERM
is superior to WEI, remains valid even despite most recent achievements for the latter task.

8Publicly available at: https://github.com/StevenLOL/ialp2016_Shared_Task
9https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md

10For English, much larger embedding models are publicly available, yet not for the other languages under consideration; cf.
Buechel and Hahn (2018b).
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important difference between SHR and ISR is that the former is computed on a single data set whereas
the latter requires two different data sets with overlapping items. On the other hand, ISR can be computed
on the final ratings alone, whereas SHR requires knowledge of the judgments of the individual raters.
Most often, these individual ratings are not distributed. Yet, luckily, SHR values are commonly reported
when publishing emotion lexicons (see below).

Still, both SHR and ISR—as well as other popular approaches to reliability estimation for numerical
emotion scores, e.g., the leave-one-out approach presented by Strapparava and Mihalcea (2007)—are
heavily influenced by the number of participants of a study. For SHR, this is intuitively clear because
with enough subjects, both groups should yield reliable estimates of the true population mean ratings,
leading to very high correlation values between the groups. As a result, by splitting the number of raters
into two groups for the SHR estimate, this technique will on average produce lower correlation values
than if the study was repeated with the full number of participants and correlation between the first and
second study had been computed (test-retest reliability). To counterbalance this effect, when reporting
SHR values, authors often turn to Spearman-Brown adjustment (SBA; Vet et al. (2017)), a technique
which estimates the reliability r⇤ of a study if the number of subjects was increased by the factor k:

r⇤ :=
k r

1 + (k � 1) r
(5)

were r is the empirically measured SHR and k is set to 2 for the use case discussed above (virtually
doubling the number participants).

Since some authors of the data sets in Table 1 apply SBA while others do not, the reported SHR values
must be normalized to guarantee a consistent evaluation. Going one step further, we can even apply
SBA to normalize the reported values with respect to the number of participants in a given study, thus
establishing an even more consistent ground for evaluation.

Val Aro Dom Joy Ang Sad Fea Dsg
en 1 — — — — — — — —
en 2 .914 .689 .770 — — — — —
es 1 — — — .915 .889 .915 .889 .864
es 2 .839 .730 .730 .915 .915 .915 .889 .889
es 3 .880 .750 — .754 .786 .818 .802 .739
de 1 — — — — — — — —
pl 1 .928 .630 — .884 .802 .821 .821 .802
pl 2 .935 .679 .725 .884 .802 .821 .821 .802

Table 3: Normalized split-half reliabilities for VAD and
BE5 for the data sets used in our experiments. “—” indi-
cates that reliability has not been reported.

We chose the normalized number of
participants to be 20, i.e., the adjusted
scores (reported in Table 3) estimate
the empirical SHR values, if the given
study was conducted with 20 participants
(the average correlation between two ran-
domly assigned groups of 10 raters). Nor-
malization was conducted by applying
Equation (5) to the reported values with
k := N⇤/N , if SBA was not already ap-
plied, or k := N⇤/(2 ⇥ N), if SBA was
already applied to the reported values; N
being the actual number of participants
and N⇤ := 20 being the normalized number of participants.

It is important to note that the decision for N⇤ = 20 is necessarily arbitrary, to some degree, with
higher SHR estimates arising from higher values of N⇤. However, 20 raters are often used in psycho-
logical studies (Warriner et al., 2013; Stadthagen-Gonzalez et al., 2017b), while being way higher than
the number of raters typically used in NLP for emotion annotation, both for the word and sentence level
(Yu et al., 2016a; Strapparava and Mihalcea, 2007). Thus, we argue that this choice constitutes a rather
challenging line of comparison for our system.

Since model performance will be measured in terms of Pearson correlation (see above), the perfor-
mance figures achieved on the gold data can be compared with the adjusted SHR (also based on correla-
tion). We can interpret cases where the former outperforms the latter as the model agreeing more with the
gold data than two random groups of ten annotators would agree with each other. Thus, for these cases
we say our model achieves super-human performance, as it cannot be expected that a well-conducted
annotation study leads to more reliable results.
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4 Results

4.1 Ablation Experiments on Affective Dimensions and Categories

Figure 2: Relative importance of the affec-
tive variables of VAD and BE5 for predicting
the alternative format, respectively; measured
in drop of Pearson r when using all variables
vs. omitting the one under scrutiny.

Previous work has limited itself to data sets compris-
ing all three VAD dimensions with the implicit be-
lief that Dominance provides valuable affective infor-
mation which is important for ERM. However, since
only about half of the data sets developed in psy-
chology labs (and even less provided by NLP groups)
actually do comprise Dominance, this decision mas-
sively decreases the amount of data sets at hand. To
resolve this dilemma, the following experiment aims
at quantifying the relative importance of the different
affective variables of the VAD and the BE5 format.

Our set-up works as follows: For each data set
from Table 1 that includes the Dominance dimen-
sion, we trained one LR model11 (Section 3.1) to map
VAD to BE5 and another one to map BE5 to VAD
(‘dim2cat’ and ‘cat2dim’ for short) applying 10-fold
cross-validation. The resulting performance measure-
ments were averaged over all data sets.

We then repeated this procedure once for each VAD
dimension (when mapping dim2cat) and each BE5 category (when mapping cat2dim), omitting one of
the dimensions/categories from the source representation in every iteration, thus constituting a kind of
ablation experiment. Next, for each of the “incomplete” models, we computed the difference between
its performance and the performance of the “complete” model (not lacking any of the variables). Now,
we can use this loss of performance as an estimate of the relative importance of the respective left-out
dimension or category. The results of this experiment are depicted in Figure 2.

As can be seen, regarding VAD, Valence is by far the most important dimension with a performance
drop of .12 when ablating it. In turn, Arousal, the second-best dimension only increases performance by
.04, whereas Dominance contributes to less than .01 of the performance. Similarly, for Basic Emotions,
Joy is the most important category, although BE5 seems to distribute the affective information more
equally across its variables (with the exception of Disgust which contributes far less than .01 to the
performance).

Since our data suggest that Dominance plays only a minor role within the VAD framework, we will
not limit our further experiments to data sets including this dimension—as it was done in previous work
(Section 2)—but rather include the large variety of bi-representational data sets which leave it out (see
Table 1).

4.2 Monolingual Representation Mapping

In this experiment, we compared the performance of the WEI baseline, the LR- and KNN-based reference
methods for ERM and our newly proposed FFNN model. For each of these methods and data sets in
Table 1, we trained one model to map cat2dim and another one to map dim2cat (for the ERM methods)
or to predict VA(D) ratings and BE5 ratings based on word embeddings for the WEI baseline. The
whole process was conducted using 10-fold cross-validation where we used identical train/test splits
for all methods.12 The results of this experiment are displayed in Table 4a, only showing the average
values over VA(D) and BE5, respectively, but allowing for an easy comparison between the different
approaches.

11Linear regression was used because it does not comprise any hyperparameters that might heavily influence the outcome of
this experiment (thus leading to greater generality of the results).

12This procedure constitutes a more direct comparison than using different splits for each method and allows paired t-tests.
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cat2dim dim2cat
WEI LR KNN FFNN WEI LR KNN FFNN

en 1 .685 .841 .840 .853** .818 .844 .868 .877*
en 2 .741 .827 .828 .843*** .821 .829 .852 .858***
es 1 .709 .856 .855 .869*** .775 .804 .849 .853
es 2 .600 .823 .828 .844*** .797 .863 .882 .889*
es 3 .713 .799 .796 .804*** .743 .776 .820 .826***
de 1 .758 .819 .827 .837** .701 .669 .698 .712
pl 1 .681 .858 .870 .875** .707 .844 .848 .855***
pl 2 .619 .803 .814 .825** .697 .820 .834 .839**
Avg. .688 .828 .832 .844 .757 .806 .831 .839

(a) Results of the monolingual experiment for the WEI base-
line, two reference methods (LR and KNN) as well as our FFNN
model in Pearson r. Best result per data set and emotion format in
bold, second best result underlined; significant difference (paired
two-tailed t-test) over the second best system marked with “*”,
“**”, or “***” for p < .05, .01, or .001, respectively.

Val Aro Dom Joy Ang Sad Fea Dsg
en 1 .969 .741 .848 .962 .876 .871 .873 .805
en 2 .964 .704 .861 .942 .868 .821 .860 .799
es 1 .974 .771 .863 .957 .854 .833 .869 .752
es 2 .986 .828 .720 .977 .913 .867 .878 .807
es 3 .915 .692 — .846 .839 .857 .842 .744
de 1 .929 .745 — .894 .778 .644 .785 .461
pl 1 .963 .787 — .946 .872 .826 .805 .826
pl 2 .947 .768 .760 .935 .844 .805 .790 .819
Avg. .956 .754 .810 .932 .855 .816 .838 .752

(b) Results of the monolingual experiment per affective dimen-
sion in Pearson r. Color indicates outperforming human SHR
( blue ), being outperformed ( red ) or SHR not being reported
(white; “—” meaning that the respective variable is not included).

Table 4: Results of the monolingual experiment.

As can be seen, all of the ERM
approaches (LR, KNN, FFNN) per-
form more than 10%-points bet-
ter than the state of the art in
word emotion induction (WEI) for
VAD prediction and at least about
5%-points better for BE5 predic-
tions (on average over all data sets
and affective variables). This find-
ing already strongly suggests that
ERM is the superior approach for
automatic lexicon creation, given
that the required data are avail-
able. This might be especially use-
ful in situations where, say, large
VAD but only small BE5 lexicons
are available for a given language
(see Section 4.4). Regarding the
ordering of the ERM approaches,
KNN outperforms LR in almost
all cases. The advantage is more
pronounced for mapping dim2cat
(2.5%-points difference on aver-
age) than cat2dim (.4%-points dif-
ference). On top of that, our pro-
posed FFNN model outperforms
KNN by a 1.2%-point margin for
cat2dim and a .8%-point margin for
dim2cat (again as average over all
data sets) performing best on each
single data set. Regarding the 16
cases of Table 4a (8 data sets times two mapping directions), the performance gain of FFNN compared
to the respective second best system is statistically significant13 in all but 2 cases. The differences be-
tween the individual ERM approaches might appear quite small, yet become a lot more meaningful
considering the proximity to human annotation capabilities as discussed in the following paragraphs.

Table 4b displays the performance figures of the FFNN model relative to each affective variable. As
can be seen, among VAD, Valence is the easiest dimension to predict (r = .956 on average over all
data sets) whereas for Arousal the performance is worst . Similarly, for BE5, Joy obtains the best values
(r = .932) and Disgust is the hardest to predict. Interestingly, the overall ordering of performance within
the two formats is consistent with the ordering of human reliability (see Table 3).

Comparing our system performance against human SHR (based on 20 participants per study; see
Section 3.4), again our approach seems to be highly reliable (color coding of Table 4b). In particular,
ERM using the FFNN model outperforms SHR in over half of the applicable cases (25 of 38). For
mapping cat2dim it surpasses human reliability in all but 2 cases whereas when mapping dim2cat the
reported SHR is surpassed in over half of the cases (14 out of 25).

This result, astonishing as it might appear, is yet consistent with findings from previous work which,
in turn, were based on ISR (not on SHR) data (Buechel and Hahn, 2017a; Buechel and Hahn, 2018a). We
conclude that in the monolingual set-up, ERM using the FFNN model substantially outperforms current
capacities in word emotion induction and is even more reliable than a medium sized human rating study.
Thus these automatically produced ratings should be cautiously attributed gold standard quality.

13Paired two-tailed t-tests based on the 10 train/test splits during cross-validation; p < .05.
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4.3 Crosslingual Representation Mapping

Val Aro Joy Ang Sad Fea Dsg
en 1 .966 .683 .955 .858 .838 .817 .781
en 2 .956 .642 .934 .855 .810 .791 .800
es 1 .973 .692 .951 .786 .802 .782 .682
es 2 .985 .735 .974 .881 .860 .835 .787
es 3 .908 .548 .839 .821 .850 .807 .728
de 1 .927 .708 .889 .767 .618 .760 .458
pl 1 .957 .666 .937 .848 .784 .745 .801
pl 2 .938 .720 .932 .816 .785 .751 .809
Avg. .951 .674 .926 .829 .793 .786 .731

Table 5: Results of crosslingual experiment in Pearson
r. Color indicates outperforming human SHR ( blue ),
being outperformed ( red ) or SHR not being reported
(white).

In the crosslingual set-up, we make use of
the fact that our model does not rely on any
language-specific information, since the cat-
egories/dimensions describe supposedly uni-
versal affective states rather than linguistic
entities. Thus, models trained on one lan-
guage could, in theory, be applied to another
one without any need for adaptation. This ca-
pability comes in handy when only data sets
according to one emotion format exist for a
given language. In such cases we could still
train our model on data available for other
languages and use it to produce new ratings
for the language in focus. This section aims
at estimating the performance of lexicons de-
rived in this manner.

For each of the data sets in Table 1, we trained FFNN models to map cat2dim and dim2cat, respec-
tively. We trained on each gold lexicon that did not cover the language of the data set under scrutiny
(e.g., for testing on en 1, the models were trained on all Spanish, Polish and German data sets, but not
on en 2). Since this set-up leads to fixed train and test sets, we did not perform cross-validation. For
comparability between data sets, the Dominance dimension was excluded for this experiment.

Overall, the results remained astonishingly stable compared to the monolingual set-up, with perfor-
mance figures for Valence and Joy dropping by less than 1%-point on average over all data sets (see
Table 5). Also, Anger, Sadness, Fear and Disgust only suffer a moderate decrease of about 5%-points at
most—only the performance of Arousal decreased more than that.

A possible explanation for these strong results is the marked increase in the amount of training data
that comes along with training on the majority of the available data (independent of language). This
circumstance seems to counterbalance much of the negative effects that may arise in this crosslingual
applications.

In comparison to SHR, the ERM approach still turns out to work quite well. Regarding VA, we
outperform human reliability in 8 of 10 cases. Concerning BE5, SHR was beaten in about half of the
cases (11 of 25). We conclude that, although the capability of our mapping approach suffers a bit in the
crosslingual set-up, it still produces very accurate predictions and can thus be attested near gold quality,
at least.

4.4 Automatic Lexicon Construction for Diverse Languages

After the positive evaluation of the FFNN model for ERM, the last bit of our contributions is to apply
the created models to a wide variety of data sets which so far bear emotion ratings for one format only
(either VA(D) or BE5). Based on the experiments reported so far, we claim that these have gold quality
(for the monolingual approach, Section 4.2) or near-gold quality (for the crosslingual approach, Section
4.3).

For the monolingual approach, we train our model on the data set on which we achieved the highest
performance in Section 4.2 for the respective language (assuming this hints at particularly “clean” data).
In contrast, in the crosslingual set-up, training data are acquired by concatenating all the available data
sets from Table 1 (consequently ignoring Dominance for compatibility).

Table 6 lists the emotion lexicons constructed in this manner together with their most important char-
acteristics. The number of new ratings ranges from almost 13,000 (for English) and 10,500 (for Spanish),
over several thousands (for Dutch, Chinese and Polish, ) and around 1,500–1,000 (for Indonesian, Italian,
Portuguese, Greek, French and German) to 200–100 (for Finnish and Swedish). For illustration, Table 2
displays three entries of the English BE5 lexicon, the largest one we constructed.
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5 Conclusion

Mth Lng Format Source #Words
m en BE5 Warriner et al. (2013) 12,884
m es VAD Stadthagen-González et al. (2017a) 10,489
m de BE5 Võ et al. (2009) 944
m pl BE5 Imbir (2016) 3,633
c it BE5 Montefinese et al. (2014) 1,121
c pt BE5 Soares et al. (2012) 1,034
c nl BE5 Moors et al. (2013) 4,299
c id BE5 Sianipar et al. (2016) 1,487
c zh BE5 Yu et al. (2016a); Yao et al. (2017) 3,797
c fr BE5 Monnier and Syssau (2014) 1,031
c gr BE5 Palogiannidi et al. (2016) 1,034
c fn BE5 Eilola and Havelka (2010) 210
c sv BE5 Davidson and Innes-Ker (2014) 99

Table 6: Overview of automatically constructed emotion lexi-
cons; mapping methodology (monolingual or crosslingual), lan-
guage (codes according to ISO 639-1), target emotion format,
source lexicon of the mapping process and number of previously
unknown ratings (excluding those present in other lexicons).

In this paper, we addressed the rel-
atively new task of emotion repre-
sentation mapping. It aims at trans-
forming emotion ratings for lexical
units from one emotion representa-
tion format into another one, e.g.,
mapping from Valence-Arousal-
Dominance representations to Ba-
sic Emotion ones. Based on a
large-scale evaluation we gathered
solid empirical evidence that the
proposed neural network model
consistently outperforms the pre-
vious state-of-the-art performance
figures in both word emotion in-
duction and emotion representation
mapping. Hence, the approach we
propose currently constitutes the
best-performing method for auto-
matic emotion lexicon creation.

We also proposed a novel methodology for comparison against human rating capabilities based on
normalized split-half reliability scores. For the first time, this allows for a large-scale evaluation against
human performance. Our experimental data suggest that our models perform competitive relative to
human assessments, even in cross-lingual applications, thus producing (near) gold quality data. We take
this as a strong hint towards the reliability of the methods we propose.

Finally, we used these models to produce new emotion lexicons for 13 typologically diverse languages
which are publicly available along with our code and experimental data (see Footnote 1).
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Abstract
Emotion lexicons describe the affective mean-
ing of words and thus constitute a centerpiece
for advanced sentiment and emotion analysis.
Yet, manually curated lexicons are only avail-
able for a handful of languages, leaving most
languages of the world without such a precious
resource for downstream applications. Even
worse, their coverage is often limited both in
terms of the lexical units they contain and
the emotional variables they feature. In or-
der to break this bottleneck, we here intro-
duce a methodology for creating almost arbi-
trarily large emotion lexicons for any target
language. Our approach requires nothing but
a source language emotion lexicon, a bilin-
gual word translation model, and a target lan-
guage embedding model. Fulfilling these re-
quirements for 91 languages, we are able to
generate representationally rich high-coverage
lexicons comprising eight emotional variables
with more than 100k lexical entries each. We
evaluated the automatically generated lexicons
against human judgment from 26 datasets,
spanning 12 typologically diverse languages,
and found that our approach produces results
in line with state-of-the-art monolingual ap-
proaches to lexicon creation and even sur-
passes human reliability for some languages
and variables. Code and data are available at
github.com/JULIELab/MEmoLon archived
under DOI 10.5281/zenodo.3779901.

1 Introduction

An emotion lexicon is a lexical repository which
encodes the affective meaning of individual words
(lexical entries). Most simply, affective meaning
can be encoded in terms of polarity, i.e., the dis-
tinction whether an item is considered as positive,
negative, or neutral. This is the case for many
well-known resources such as WORDNET-AFFECT
(Strapparava and Valitutti, 2004), SENTIWORD-
NET (Baccianella et al., 2010), or VADER (Hutto

and Gilbert, 2014). Yet, an increasing number of
researchers focus on more expressive encodings for
affective states inspired by distinct lines of work
in psychology (Yu et al., 2016; Buechel and Hahn,
2017; Sedoc et al., 2017; Abdul-Mageed and Un-
gar, 2017; Bostan and Klinger, 2018; Mohammad,
2018; Troiano et al., 2019).

Psychologists, on the one hand, value such lex-
icons as a controlled set of stimuli for designing
experiments, e.g., to investigate patterns of lexi-
cal access or the structure of memory (Hofmann
et al., 2009; Monnier and Syssau, 2008). NLP
researchers, on the other hand, use them to aug-
ment the emotional loading of word embeddings
(Yu et al., 2017; Khosla et al., 2018), as addi-
tional input to sentence-level emotion models so
that the performance of even the most sophisti-
cated neural network gets boosted (Mohammad and
Bravo-Marquez, 2017; Mohammad et al., 2018;
De Bruyne et al., 2019), or rely on them in a
keyword-spotting approach when no training data
is available, e.g., for studies dealing with historical
language stages (Buechel et al., 2016).

As with any kind of manually curated resource,
the availability of emotion lexicons is heavily
restricted to only a few languages whose exact
number varies depending on the variables under
scrutiny. For example, we are aware of lexicons
for 15 languages that encode the emotional vari-
ables of Valence, Arousal, and Dominance (see
Section 2). This number leaves the majority of the
world’s (less-resourced) languages without such a
dataset. In case such a lexicon exists for a partic-
ular language, it is often severely limited in size,
sometimes only comprising some hundreds of en-
tries (Davidson and Innes-Ker, 2014). Yet, even the
largest lexicons typically cover only some ten thou-
sands of words, still leaving out major portions of
the emotion-carrying vocabulary. This is especially
true for languages with complex morphology or
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productive compounding, such as Finnish, Turkish,
Czech, or German. Finally, the diversity of emotion
representation schemes adds another layer of com-
plexity. While psychologists and NLP researchers
alike find that different sets of emotional variables
are complementary to each other (Stevenson et al.,
2007; Pinheiro et al., 2017; Barnes et al., 2019;
De Bruyne et al., 2019), manually creating emo-
tion lexicons for every language and every emotion
representation scheme is virtually impossible.

We here propose an approach based on cross-
lingual distant supervision to generate almost ar-
bitrarily large emotion lexicons for any target lan-
guage and emotional variable, provided the fol-
lowing requirements are met: a source language
emotion lexicon covering the desired variables, a
bilingual word translation model, and a target lan-
guage embedding model. By fulfilling these pre-
conditions, we can automatically generate emotion
lexicons for 91 languages covering ratings for eight
emotional variables and hundreds of thousands of
lexical entries each. Our experiments reveal that
our method is on a par with state-of-the-art mono-
lingual approaches and compares favorably with
(sometimes even outperforms) human reliability.

2 Related Work

Representing Emotion. Whereas research in
NLP has focused for a very long time almost ex-
clusively on polarity, more recently, there has been
a growing interest in more informative represen-
tation structures for affective states by including
different groups of emotional variables (Bostan and
Klinger, 2018). Borrowing from distinct schools
of thought in psychology, these variables can typ-
ically be subdivided into dimensional vs. discrete
approaches to emotion representation (Calvo and
Mac Kim, 2013). The dimensional approach as-
sumes that emotional states can be composed out
of several foundational factors, most noticeably Va-
lence (corresponding to polarity), Arousal (measur-
ing calmness vs. excitement), and Dominance (the
perceived degree of control in a social situation);
VAD, for short (Bradley and Lang, 1994). Con-
versely, the discrete approach assumes that emo-
tional states can be reduced to a small, evolution-
ary motivated set of basic emotions (Ekman, 1992).
Although the exact division of the set has been sub-
ject of hot debates, recently constructed datasets
(see Section 4) most often cover the categories of
Joy, Anger, Sadness, Fear, and Disgust; BE5, for

short. Plutchik’s Wheel of Emotion takes a middle
ground between those two positions by postulating
emotional categories which are yet grouped into
opposite pairs along different levels of intensity
(Plutchik, 1980).

Another dividing line between representational
approaches is whether target variables are encoded
in terms of (strict) class-membership or scores for
numerical strength. In the first case, emotion analy-
sis translates into a (multi-class) classification prob-
lem, whereas the latter turns it into a regression
problem (Buechel and Hahn, 2016). While our pro-
posed methodology is agnostic towards the chosen
emotion format, we will focus on the VAD and
BE5 formats here, using numerical ratings (see the
examples in Table 1) due to the widespread avail-
ability of such data. Accordingly, this paper treats
word emotion prediction as a regression problem.

Val Aro Dom Joy Ang Sad Fea Dis

sunshine 8.1 5.3 5.4 4.2 1.2 1.3 1.3 1.2
terrorism 1.6 7.4 2.7 1.2 2.9 3.3 3.9 2.5
nuclear 4.3 7.3 4.1 1.4 2.2 1.9 3.2 1.6
ownership 5.9 4.4 7.5 2.1 1.4 1.2 1.4 1.3

Table 1: Sample entries from our English source lexi-
con described via eight emotional variables: Valence,
Arousal, Dominance [VAD], and Joy, Anger, Sadness,
Fear, and Disgust [BE5]. VAD uses 1-to-9 scales (“5”
encodes the neutral value) and BE5 1-to-5 scales (“1”
encodes the neutral value).

Building Emotion Lexicons. Usually, the
ground truth for affective word ratings (i.e.,
the assignment of emotional values to a lexical
item) is acquired in a questionnaire study design
where subjects (annotators) receive lists of words
which they rate according to different emotion
variables or categories. Aggregating individual
ratings of multiple annotators then results in
the final emotion lexicon (Bradley and Lang,
1999). Recently, this workflow has often been
enhanced by crowdsourcing (Mohammad and
Turney, 2013) and best-worst scaling (Kiritchenko
and Mohammad, 2016).

As a viable alternative to manual acquisition,
such lexicons can also be created by automatic
means (Bestgen, 2008; Köper and Schulte im
Walde, 2016; Shaikh et al., 2016), i.e., by learn-
ing to predict emotion labels for unseen words.
Researchers have worked on this prediction prob-
lem for quite a long time. Early work tended to
focus on word statistics, often in combination with
linguistic rules (Hatzivassiloglou and McKeown,
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1997; Turney and Littman, 2003). More recent
approaches focus heavily on word embeddings, ei-
ther using semi-supervised graph-based approaches
(Wang et al., 2016; Hamilton et al., 2016; Sedoc
et al., 2017) or fully supervised methods (Rosenthal
et al., 2015; Li et al., 2017; Rothe et al., 2016; Du
and Zhang, 2016). Most important for this work,
Buechel and Hahn (2018b) report on near-human
performance using a combination of FASTTEXT
vectors and a multi-task feed-forward network (see
Section 4). While this line of work can add new
words, it does not extend lexicons to other emo-
tional variables or languages.

A relatively new way of generating novel labels
is emotion representation mapping (ERM), an an-
notation projection that translates ratings from one
emotion format into another, e.g., mapping VAD la-
bels into BE5, or vice versa (Hoffmann et al., 2012;
Buechel and Hahn, 2016, 2018a; Alarcão and Fon-
seca, 2017; Landowska, 2018; Zhou et al., 2020;
Park et al., 2019). While our work uses ERM to
add additional emotion variables to the source lexi-
con, ERM alone can neither increase the coverage
of a lexicon, nor adapt it to another language.

Translating Emotions. The approach we pro-
pose is strongly tied to the observation by Lev-
eau et al. (2012) and Warriner et al. (2013) who
found—comparing a large number of existing emo-
tion lexicons of different languages—that transla-
tional equivalents of words show strong stability
and adherence to their emotional value. Yet, their
work is purely descriptive. They do not exploit
their observation to create new ratings, and only
consider manual rather than automatic translation.

Making indirect use of this observation, Moham-
mad and Turney (2013) offer machine-translated
versions of their NRC Emotion Lexicon. Also,
many approaches in cross-lingual sentiment analy-
sis (on the sentence-level) rely on translating polar-
ity lexicons (Abdalla and Hirst, 2017; Barnes et al.,
2018). Perhaps most similar to our work, Chen
and Skiena (2014) create (polarity-only) lexicons
for 136 languages by building a multilingual word
graph and propagating sentiment labels through
that graph. Yet, their method is restricted to high
frequency words—their lexicons cover between 12
and 4,653 entries, whereas our approach exceeds
this limit by more than two orders of magnitude.

Our methodology also resembles previous work
which models word emotion for historical language
stages (Cook and Stevenson, 2010; Hamilton et al.,

2016; Hellrich et al., 2018; Li et al., 2019). Work
in this direction typically comes up with a set of
seed words with assumingly temporally stable af-
fective meaning (our work assumes stability against
translation) and then uses distributional methods to
derive emotion ratings in the target language stage.
However, gold data for the target language (stage)
is usually inaccessible, often preventing evaluation
against human judgment. In contrast, we here pro-
pose several alternative evaluation set-ups as an
integral part of our methodology.

3 A Novel Approach to Lexicon Creation

Our methodology integrates (1) cross-lingual gen-
eration and expansion of emotion lexicons and (2)
their evaluation against gold and silver standard
data. Consequently, a key aspect of our workflow
design is how data is split into train, dev, and test
sets at different points of the generation process.
Figure 1 gives an overview of our framework in-
cluding a toy example for illustration.

Lexicon Generation. We start with a lexicon
(Source) of arbitrary size, emotion format1 and
source language which is partitioned into train,
dev, and test splits denoted by Source-train,
Source-dev, and Source-test, respectively.
Next, we leverage a bilingual word translation
model between source and desired target language
to build the first target-side emotion lexicon de-
noted as TargetMT. Source words are translated
according to the model, whereas target-side emo-
tion labels are simply copied from the source to
the target (see Section 2). Entries are assigned to
train, dev, or test set according to their source-side
assignment (cf. Figure 1). The choice of our trans-
lation service (see below) ensures that each source
word receives exactly one translation.
TargetMT is then used as the distant su-

pervisor to train a model that predicts word
emotions based on target-side word embeddings.
TargetMT-train and TargetMT-dev
are used to fit model parameters and opti-
mize hyperparameters, respectively, whereas
TargetMT-test is held out for later evaluation.
Once finalized, the model is used to predict new
labels for the words in TargetMT, resulting in
a second target-side emotion lexicon denoted
TargetPred. Our rationale for doing so is that a
reasonably trained model should generalize well

1This encompasses not only VA(D) and BE5, but also any
sort of (real-valued) polarity encodings.
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fit

predict

silver evaluation

gold evaluation

Source

train
(sunshine, (8.1, 5.3))

dev
(nuclear, (4.3, 7.3))

test
(terrorism, (1.6, 7.4))

TargetMT

train
(Sonnenschein, (8.1, 5.3))

dev
(nuklear, (4.3, 7.3))

test
(Terrorismus, (1.6, 7.4))

(Terrorismus, (1.9, 7.5))
(Erdbeben, (1.4, 7.3))

TargetGold

TargetPred

train
(Sonnenschein, (6.6, 4.1))

dev
(nuklear, (2.7, 5.3))
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(Terrorismus, (2.4, 5.9))

(Erdbeben, (2.7, 6.1))
(Vernunft, (5.6, 4.2))
(langsam, (4.3, 4.5))

translate

model
develop

Erdbeben
Vernunft
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embeddings

Figure 1: Schematic view on the methodology for generating and evaluating an emotion lexicon for a given
target language based on source language supervision. Included is a toy example starting with an English VA
lexicon (sunshine, nuclear, terrorism and the associated numerical scores for Valence and Arousal) and resulting
in an extended German lexicon which incorporates translated entries with altered VA scores and additional entries
originating from the embedding model with newly learned scores.

over the entire TargetMT lexicon because it
has access to the target-side embedding vectors.
Hence, it may mitigate some of the errors which
were introduced in previous steps, either by
machine translation or by assuming that source-
and target-side emotion are always identical. We
validate this assumption in Section 6. We also
predict ratings for all the words in the embedding
model, leading to a large number of new entries.

The splits are defined as follows: let MTtrain,
MTdev, and MTtest denote the set of words in
train, dev, and test split of TargetMT, respec-
tively. Likewise, let Ptrain, Pdev, and Ptest denote
the splits of TargetPred and let E denote the
set of words in the embedding model. Then

Ptrain := MTtrain

Pdev := MTdev \ MTtrain

Ptest := (MTtest [ E) \ (MTdev [ MTtrain)

The above definitions help clarify the way we
address polysemy.2 Ambiguity on the target-side

2In short, our work evades this problem by dealing with
lexical entries exclusively on the type- rather than the sense-
level. From a lexicological perspective, this may seem like
a strong assumption. From a modeling perspective, however,
it appears almost obvious as it aligns well with the major
components of our methodology, i.e., lexicons, embeddings,
and translation. The lexicons we work with follow the design
of behavioral experiments: a stimulus (word type) is given to

may result in multiple source entries translating
to the same target-side word.3 This circumstance
leads to “partial duplicates” in TargetMT, i.e.,
groups of entries with the same word type but dif-
ferent emotion values (because they were derived
from distinct Source entries). Such overlap could
do harm to the integrity of our evaluation since
knowledge may “leak” from training to validation
phase, i.e., by testing the model on words it has
already seen during training, although with distinct
emotion labels. The proposed data partitioning
eliminates such distortion effects. Since partial du-
plicates receive the same embedding vector, the
prediction model assigns the same emotion value
to both, thus merging them in TargetPred.

Evaluation Methodology. The main advantage
of the above generation method is that it allows us
to create large-scale emotion lexicons for languages

a subject and the response (rating) is recorded. The absence of
sense-level annotation simplifies the mapping between lexicon
and embedding entries. While sense embeddings form an
active area of research (Camacho-Collados and Pilehvar, 2018;
Chi and Chen, 2018), to the best of our knowledge, type-level
embeddings yield state-of-the-art performance in downstream
applications.

3Source-side polysemy, in contrast to its target-side coun-
terpart, is less of a problem, because we receive only a single
candidate during translation. This may result in cases where
the translation misaligns with the copied emotion value in
TargetMT. Yet, the prediction step partly mitigates such
inconsistencies (see Section 6).
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for which gold data is lacking. But if that is the
case, how can we assess the quality of the generated
lexicons? Our solution is to propose two different
evaluation scenarios—a gold evaluation which is a
strict comparison against human judgment, mean-
ing that it is limited to languages where such data
(denoted TargetGold) is available, and a silver
evaluation which substitutes human judgments by
automatically derived ones (silver standard) which
is feasible for any language in our study. The ra-
tionale is that if both, gold and silver evaluation,
strongly agree with each other, we can use one as
proxy for the other when no target-side gold data
exists (examined in Section 6).

Note that our lexicon generation approach con-
sists of two major steps, translation and prediction.
However, these two steps are not equally important
for each generated entry in TargetPred. Words,
such as German Sonnenschein for which a trans-
lational equivalent already exists in the Source
(“sunshine”; see Figure 1), mainly rely on transla-
tion, while the prediction step acts as an optional
refinement procedure. In contrast, the prediction
step is crucial for words, such as Erdbeben, whose
translational equivalents (“earthquake”) are miss-
ing in the Source. Yet, these words also depend
on the translation step for producing training data.

These considerations are important for deciding
which words to evaluate on. We may choose to
base our evaluation on the full TargetPred lexi-
con, including words from the training set—after
all, the word emotion model does not have access
to any target-side gold data. The problem with this
approach is that it merges words that mainly rely
on translation, because their equivalents are in the
Source, and those which largely depend on pre-
diction, because they are taken from the embedding
model. In this case, generalizability of evaluation
results becomes questionable.

Thus, our evaluation methodology needs to ful-
fill the following two requirements: (1) evaluation
must not be performed on translational equivalents
of the Source entries to which the model already
had access during training (e.g., Sonnenschein and
nuklear in our example from Figure 1); but, on the
other hand, (2) a reasonable number of instances
must be available for evaluation (ideally, as many
as possible to increase reliability). The intricate
cross-lingual train-dev-test set assignment of our
generation methodology is in place so that we meet
these two requirements.

ID Encoding Size Citation

en1 VAD 1032 Warriner et al. (2013)
en2 VAD 1034 Bradley and Lang (1999)
en3 BE5 1034 Stevenson et al. (2007)
es1 VAD 1034 Redondo et al. (2007)
es2 VA 14031 Stadthagen-González et al. (2017)
es3 VA 875 Hinojosa et al. (2016)
es4 BE5 875 Hinojosa et al. (2016)
es5 BE5 10491 Stadthagen-González et al. (2018)
es6 BE5 2266 Ferré et al. (2017)
de1 VAD 1003 Schmidtke et al. (2014)
de2 VA 2902 Võ et al. (2009)
de3 VA 1000 Kanske and Kotz (2010)
de4 BE5 1958 Briesemeister et al. (2011)
pl1 VAD 4905 Imbir (2016)
pl2 VA 2902 Riegel et al. (2015)
pl3 BE5 2902 Wierzba et al. (2015)
zh1 VA 2794 Yu et al. (2016)
zh2 VA 1100 Yao et al. (2017)
it VAD 1121 Montefinese et al. (2014)
pt VAD 1034 Soares et al. (2012)
nl VA 4299 Moors et al. (2013)
id VAD 1487 Sianipar et al. (2016)
el VAD 1034 Palogiannidi et al. (2016)
tr1 VA 2029 Kapucu et al. (2018)
tr2 BE5 2029 Kapucu et al. (2018)
hr VA 3022 Ćoso et al. (2019)

Table 2: Lexicons used for gold evaluation. IDs consist
of the respective ISO 639-1 language code plus a cardi-
nal number to distinguish different datasets, if needed;
the format of emotion Encoding is specified and Size
gives the number of lexical entries per lexicon.

In particular, for our silver evalua-
tion, we intersect TargetMT-test with
TargetPred-test and compute the corre-
lation of these two sets individually for each
emotion variable. Pearson’s r will be used
as correlation measure throughout this paper.
Establishing a test set at the very start of our
workflow, Source-test, assures that there is
a relatively large overlap between the two sets
and, by extension, that our requirements for the
evaluation are met.

The gold evaluation is a somewhat more chal-
lenging case, because we can, in general, not guar-
antee that the overlap of a TargetGold lexicon
with TargetPred-test will be of any partic-
ular size. For this reason, the words of the em-
bedding model are added to TargetPred-test
(see above), maximizing the expected overlap
with TargetGold. In practical terms, we in-
tersect TargetGold with TargetPred-test
and compute the variable-wise correlation between
these sets, in parallel to the silver evaluation. A
complementary strategy for maximizing overlap,
by exploiting dependencies between published lex-
icons, is described below.
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4 Experimental Setup

Gold Lexicons and Data Splits. We use the En-
glish emotion lexicon from Warriner et al. (2013)
as first part of our Source dataset. This popular
resource comprises about 14k entries in VAD for-
mat collected via crowdsourcing. Since manually
gathered BE5 ratings are available only for a subset
of this lexicon (Stevenson et al., 2007), we add BE5
ratings from Buechel and Hahn (2018a) who used
emotion representation mapping (see Section 2) to
convert the existing VAD ratings, showing that this
is about as reliable as human annotation.

As apparent from the previous section, a cru-
cial aspect for applying our methodology is the
design of the train-dev-test split of the Source
because it directly impacts the amount of words
we can test our lexicons on during gold evaluation.
In line with these considerations, we choose the
lexical items which are already present in ANEW
(Bradley and Lang, 1999) as Source-test set.
ANEW is the precursor to the version later dis-
tributed by Warriner et al. (2013); it is widely
used and has been adapted to a wide range of lan-
guages. With this choice, it is likely that a resulting
TargetPred-test set has a large overlap with
the respective TargetGold lexicon. As for the
TargetGold lexicons, we included every VA(D)
and BE5 lexicon we could get hold of with more
than 500 entries. This resulted in 26 datasets cover-
ing 12 quite diverse languages (see Table 2). Note
that we also include English lexicons in the gold
evaluation. In these cases, no translation will be car-
ried out (Source is identical to TargetMT) so
that only the expansion step is validated. Appendix
A.1 gives further details on data preparation.

Translation. We used the GOOGLE CLOUD
TRANSLATION API4 to produce word-to-word
translation tables. This is a commercial service,
total translation costs amount to 160 EUR. API
calls were performed in November 2019.

Embeddings. We use the fastText embed-
ding models from Grave et al. (2018) trained for
157 languages on the respective WIKIPEDIA and
the respective part of COMMONCRAWL. These
resources not only greatly facilitate our work but
also increase comparability across languages. The
restriction to “only” 91 languages comes from in-
tersecting the ones covered by the vectors with the
languages covered by the translation service.

4https://cloud.google.com/translate/

Models. Since our proposed methodology is ag-
nostic towards the chosen word emotion model, we
will re-use models from the literature. In particular,
we will rely on the multi-task learning feed-forward
network (MTLFFN) worked out by Buechel and
Hahn (2018b). This network constitutes the current
state of the art for monolingual emotion lexicon
creation (expanding an existing lexicon for a given
language) for many of the datasets in Table 2.

The MTLFFN has two hidden layers of 256 and
128 units, respectively, and takes pre-trained em-
bedding vectors as input. Its distinguishing feature
is that hidden layer parameters are shared between
the different emotion target variables, thus consti-
tuting a mild form of multi-task learning (MTL).
We apply MTL to VAD and BE5 variables individ-
ually (but not between both groups), thus training
two distinct emotion models per language, follow-
ing the outcome of a development experiment. De-
tails are given in Appendix A.2 together with the
remainder of the model specifications.

Being aware of the infamous instability of neural
approaches (Reimers and Gurevych, 2017), we also
employ a ridge regression model, an L2 regularized
version of linear regression, as a more robust, yet
also powerful baseline (Li et al., 2017).

5 Results

The size of the resulting lexicons (a complete list is
provided in Table 8 in the Appendix) ranges from
roughly 100k to more than 2M entries mainly de-
pending on the vocabulary of the respective embed-
dings. We want to point out that not every single
entry should be considered meaningful because of
noise in the embedding vocabulary caused by ty-
pos and tokenization errors. However, choosing the
“best” size for an emotion lexicon necessarily trans-
lates into a quality-coverage trade-off for which
there is no general solution. Instead, we release the
full-size lexicons and leave it to prospective users
to apply any sort of filtering they deem appropriate.

Silver Evaluation. Figure 2 displays the results
of our silver evaluation. Languages (x-axis) are
sorted by their average performance over all vari-
ables (not shown in the plot; tabular data given in
the Appendix). As can be seen, the evaluation re-
sults for English are markedly better than for any
other language. This is not surprising since no
(potentially error-prone) machine translation was
performed. Apart from that, performance remains
relatively stable across most of the languages and
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Figure 2: Silver evaluation results in Pearson’s r. Languages (x-axis) are sorted according to mean correlation.

starts degrading more quickly only for the last third
of them. In particular, for Valence—typically the
easiest variable to predict—we achieve a strong per-
formance of r > .7 for 56 languages. On the other
hand, for Arousal—typically, the most difficult
one to predict—we achieve a solid performance
of r > .5 for 55 languages. Dominance and the
discrete emotion variables show performance tra-
jectories swinging between these two extremes. We
assume that the main factors for explaining perfor-
mance differences between languages are the qual-
ity of the translation and embedding models which,
in turn, both depend on the amount of available text
data (parallel or monolingual, respectively).

Comparing MTLFFN and ridge baseline, we find
that the neural network reliably outperforms the
linear model. On average over all languages and
variables, the MTL models achieve 6.7%-points
higher Pearson correlation. Conversely, ridge re-
gression outperforms MTLFFN in only 15 of the
total 728 cases (91 languages ⇥ 8 variables).

Gold Evaluation. Results for VAD variables on
gold data are given in Table 3. As can be seen, our
lexicons show a good correlation with human judg-
ment and do so robustly, even for less-resourced
languages, such as Indonesian (id), Turkish (tr), or
Croatian (hr), and across affective variables. Per-
haps the strongest negative outliers are the Arousal
results for the two Chinese datasets (zh), which are
likely to result from the low reliability of the gold
ratings (see below).

ID Shared (%) Val Aro Dom

en1 1032 100 .94 (.87) .76 (.67) .88 (.76)
en2 1034 100 .92 (.92) .71 (.73) .78 (.82)
es1 612 59 .91 (.88) .71 (.70) .82 (.83)
es2 7685 54 .79 (.82) .64 (.74) —
es3 363 41 .91 .73 —
de1 677 67 .89 (.87) .78 (.80) .68 (.74)
de2 2329 80 .75 .64 —
de3 916 91 .80 .67 —
pl1 2271 46 .83 (.74) .74 (.70) .60 (.69)
pl2 1381 47 .82 .61 —
zh1 1685 60 .84 (.85) .56 (.63) —
zh2 701 63 .84 .44 —
it 660 58 .89 (.86) .63 (.65) .76 (.75)
pt 645 62 .89 (.86) .71 (.71) .75 (.73)
nl 2064 48 .85 (.79) .58 (.74) —
id 696 46 .84 (.80) .64 (.60) .63 (.58)
el 633 61 .86 .50 .74
tr1 721 35 .75 .57 —
hr 1331 44 .81 .66 —

Mn (all) .85 .65 .74
Mn (vs. monolingual) .87 (.84) .68 (.70) .74 (.74)

Table 3: Gold evaluation results for VAD (Valence,
Arousal, Dominance) in Pearson’s r. Parentheses give
comparative monolingual results from Buechel and
Hahn (2018b). Shared words between TargetGold
and TargetPred-test; (%): percentage relative to
TargetGold; Mn (all): mean over all datasets; Mn
(vs. monolingual): mean over datasets with compara-
tive results.

We compare these results against those from
Buechel and Hahn (2018b) which were acquired
on the respective TargetGold dataset in a mono-
lingual fashion using 10-fold cross-validation (10-
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ID Shared (%) Joy Ang Sad Fea Dis

en3 1033 99 .89 .83 .80 .82 .78
es4 363 41 .86 .84 .84 .84 .76
es5 6096 58 .64 .72 .72 .72 .63
es6 992 43 .80 .74 .71 .72 .68
de4 848 43 .80 .66 .52 .68 .42
pl3 1381 47 .78 .71 .66 .69 .71
tr2 721 35 .77 .69 .71 .70 .65

Mean .79 .74 .71 .74 .66

Table 4: Gold evaluation results for BE5 (Joy, Anger,
Sadness, Fear, Disgust) in Pearson’s r. Shared words
between TargetGold and TargetPred-test;
(%): percentage relative to TargetGold; Mean over
all datasets.

CV). We admit that those results are not fully com-
parable to those presented here because we use
fixed splits rather than 10-CV. Nevertheless, we
find that the results of our cross-lingual set-up are
more than competitive, outperforming the mono-
lingual results from Buechel and Hahn (2018b) in
17 out of 30 cases (mainly for Valence and Dom-
inance, less often for Arousal). This is surprising
since we use an otherwise identical model and train-
ing procedure. We conjecture that the large size
of the English Source lexicon, compared to most
TargetGold lexicons, more than compensates
for error-prone machine translation.

Table 4 shows the results for BE5 datasets which
are in line with the VAD results. Regarding the
ordering of the emotional variables, again, we find
Valence to be the easiest one to predict, Arousal the
hardest, whereas basic emotions and Dominance
take a middle ground.

Comparison against Human Reliability. We
base this analysis on inter-study reliability (ISR),
a rather strong criterion for human performance.
ISR is computed, per variable, as the correlation
between the ratings from two distinct annotation
studies (Warriner et al., 2013). Hence, this analysis
is restricted to languages where more than one gold
lexicon exists per emotion format. We intersect
the entries from both gold standards as well as the
respective TargetPred-test set and compute
the correlation between all three pairs of lexicons.
If our lexicon agrees more with one of the gold stan-
dards than the two gold standards agree with each
other, we consider this as an indicator for super-
human reliability (Buechel and Hahn, 2018b).

As shown in Table 5, our lexicons are often com-
petitive with human reliability for Valence (espe-
cially for English and Chinese), but outperform

Gold1
Gold2

Shared
Emo

G1vsG2
G1vsPr

G2vsPr

en1 en2 1032
V .953 .941 .922
A .760 .761 .711
D .794 .879 .782

es1 es2 610 V .976 .905 .912
A .758 .714 .725

es2 es3 222 V .976 .906 .907
A .710 .724 .691

de2 de3 498 V .963 .806 .812
A .760 .721 .663

pl1 pl2 445 V .943 .838 .852
A .725 .764 .643

zh1 zh2 140 V .932 .918 .898
A .482 .556 .455

Table 5: Comparison against human performance. Cor-
relation between two gold standards, Gold1 and Gold2,
with each other (G1vsG2), as well as with our lexicons
TargetPred-test (G1vsPr and G2vsPr) relative
to Emotional variable and Shared number of words.

human reliability in 4 out of 6 cases for Arousal,
and in the single test case for Dominance. There
are no cases of overlapping gold standards for BE5.

6 Methodological Assumptions Revisited

This section investigates patterns in prediction qual-
ity across languages, validating design decisions
of our methodology.

Translation vs. Prediction. Is it beneficial to
predict new ratings for the words in TargetMT
rather than using them as final lexicon entries
straight away? For each TargetGold lexicon (cf.
Table 2), we intersect its word material with that
in TargetMT and TargetPred. Then, we com-
pute the correlation between TargetPred and
TargetMT with the gold standard. This analysis
was done on the respective train sets because using
TargetMT rather than TargetPred is only an
option for entries known at training time.

Table 6 depicts the results of this comparison av-
eraged over all gold lexicons. As hypothesized, the
TargetPred lexicons agree, on average, more
with human judgment than the TargetMT lex-
icons, suggesting that the word emotion model
acts as a value-adding post-processor, partly mit-
igating rating inconsistencies introduced by mere
translation of the lexicons. The observation holds
for each individual emotion variable with partic-
ularly large benefits for Arousal, where the post-
processed TargetPred lexicons are on average
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Val Aro Dom Joy Ang Sad Fea Dis

Pred .871 .652 .733 .767 .734 .692 .728 .650
MT .796 .515 .613 .699 .677 .636 .654 .579

Diff .076 .137 .119 .068 .057 .056 .074 .071

Table 6: Quality of TargetMT vs. TargetPred in
terms of average Pearson correlation over all languages
and gold standards. Diff := Pred� MT.

14%-points better compared to the translation-only
TargetMT lexicons. This seems to indicate that
lexical Arousal is less consistent between trans-
lational equivalents compared to other emotional
meaning components like Valence and Sadness,
which appear to be more robust against translation.

Gold vs. Silver Evaluation. How meaningful is
silver evaluation without gold data? We compute
the Pearson correlation between gold and silver
evaluation results across languages per emotion
variable. For languages where we consider multi-
ple datasets during gold evaluation, we first aver-
age the gold evaluation results for each emotion
variable. As can be seen from Table 7, the corre-
lation values range between r = .91 for Joy and
r = .27 for Disgust. This relatively large disper-
sion is not surprising when we take into account
that we correlate very small data series (for Valence
and Arousal there are just 12 languages for which
both gold and silver evaluation results are available;
for BE5 there are only 5 such languages). How-
ever, the mean over all correlation values in Table
7 is .64, indicating that there is a relatively strong
correlation between both types of evaluation. This
suggests that the silver evaluation may be used as a
rather reliable proxy of lexicon quality even in the
absence of language-specific gold data.

Val Aro Dom Joy Ang Sad Fea Dis

#Lg 12 12 8 5 5 5 5 5
r .54 .57 .52 .91 .85 .57 .87 .27

Table 7: Agreement between gold and silver evaluation
across languages in Pearson’s r relative to the number
of applicable languages (“#Lg”).

7 Conclusion

Emotion lexicons are at the core of sentiment anal-
ysis, a rapidly flourishing field of NLP. Yet, despite
large community efforts, the coverage of existing
lexicons is still limited in terms of languages, size,

and types of emotion variables. While there are
techniques to tackle these three forms of sparsity
in isolation, we introduced a methodology which
allows us to cope with them simultaneously by
jointly combining emotion representation mapping,
machine translation, and embedding-based lexicon
expansion.

Our study is “large-scale” in many respects.
We created representationally complex lexicons—
comprising 8 distinct emotion variables—for 91
languages with up to 2 million entries each. The
evaluation of the generated lexicons featured 26
manually annotated datasets spanning 12 diverse
languages. The predicted ratings showed con-
sistently high correlation with human judgment,
compared favorably with state-of-the-art monolin-
gual approaches to lexicon expansion and even sur-
passed human inter-study reliability in some cases.

The sheer number of test sets we used allowed
us to validate fundamental methodological assump-
tions underlying our approach. Firstly, the evalua-
tion procedure, which is integrated into the gener-
ation methodology, allows us to reliably estimate
the quality of resulting lexicons, even without tar-
get language gold standard. Secondly, our data
suggests that embedding-based word emotion mod-
els can be used as a repair mechanism, mitigating
poor target-language emotion estimates acquired
by simple word-to-word translation.

Future work will have to deepen the way we deal
with word sense ambiguity by way of exchang-
ing the simplifying type-level approach our cur-
rent work is based on with a semantically more
informed sense-level approach. A promising direc-
tion would be to combine a multilingual sense in-
ventory such as BABELNET (Navigli and Ponzetto,
2012) with sense embeddings (Camacho-Collados
and Pilehvar, 2018).
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Per Davidson and Åse Innes-Ker. 2014. Valence and
arousal norms for Swedish affective words. Lund
Psychological Reports, 14:#2.

Luna De Bruyne, Pepa Atanasova, and Isabelle Augen-
stein. 2019. Joint emotion label space modelling for
affect lexica. arXiv:1911.08782 [cs].

Steven Du and Xi Zhang. 2016. Aicyber’s system
for IALP 2016 Shared Task: Character-enhanced
word vectors and boosted neural networks. In IALP
2016 — Proceedings of the 2016 International Con-
ference on Asian Language Processing, pages 161–
163, Tainan, Taiwan, November 21–23, 2016.

Paul Ekman. 1992. An argument for basic emotions.
Cognition and Emotion, 6(3-4):169–200.
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A Appendices

A.1 Data Preparation
The exact design of the Source train-dev-test split
is as follows: All entries (words plus ratings) from
all splits are taken from Warriner et al. (2013).
The data was then partitioned based on the overlap
with the two precursory versions by Bradley and
Lang (1999) (the original ANEW) and Bradley and
Lang (2010) (an early extended version of ANEW
roughly twice as large). Source-test was built
by intersecting the lexicon from Warriner et al.
(2013) with the original ANEW. A similar process
was applied for Source-dev: we intersected the
words from Warriner et al. (2013) and Bradley
and Lang (2010) and removed the ones present
in Source-test. Lastly, Source-train
is made up by all words from Warriner et al.
(2013) which are neither in Source-test nor
in Source-dev. The reason why the ratings in
Source are taken exclusively from Warriner et al.
(2013) is that these are distributed under a more
permissive license compared to their precursors.

We removed multi-token entries (e.g., boa con-
strictor) and entries with upper case characters
(e.g., Budweiser) from all data splits of Source,
thus restricting the lexicon to single-token, non-
proper noun entries to make it more suitable for
word embedding-based research. All splits com-
bined have 13,791 entries (train: 11,463, dev:
1,296, test: 1,032), thus removing less than 1%
from the original lexicon.5

Regarding the remaining gold standards, the
only cases which needed additional preparation
or cleansing steps were zh1 (Yu et al., 2016)
and zh2 (Yao et al., 2017). zh1 was created
and is distributed using traditional Chinese char-
acters, whereas the embedding model by Grave
et al. (2018) employs simplified ones. Therefore,
we converted zh1 into simplified characters using
GOOGLE TRANSLATE6 prior to evaluation.

While manually examining the zh2 lexicon, we
noticed several cases where the ratings seemed
rather counter-intuitive (e.g., seemingly positive
words which received very negative ratings). We
contacted the authors who confirmed the problem
and sent us a corrected version. We did not find any
such problems in the second version. We consulted

5The data split is available at: https://github.com/
JULIELab/XANEW

6In this case the regular Web application, not the API, was
used: https://translate.google.com/

with a Chinese native speaker for both of these
procedures regarding the zh1 and zh2 lexicons.

A.2 Model Training and Implementation
Training of the MTLFFN model closely followed
the procedure specified by Buechel and Hahn
(2018b): For each language, the model was trained
for roughly 15k iterations (exactly 168 epochs)
with a batch size of 128 using the Adam optimizer
(Kingma and Ba, 2015) with learning rate 10�3,
and .5 dropout on the hidden layers and .2 on the
input layer. As nonlinear activation function we
used leaky ReLU with “leakage” of 0.01.

Embedding vectors are the only model input.
They have 300 dimensions for every language, inde-
pendent of their respective training data size (Grave
et al., 2018). Since the automatic translation of
Source is not guaranteed to result in single-word
translations, we use the following workaround to
derive embedding vectors for multi-token trans-
lations: If the translation as a whole cannot be
found in the embedding model, the multi-token
term gets split up into its constituent parts, using
spaces, apostrophes or hyphens as separators. Each
substring is looked up in the embedding model, the
averaged vector is taken as input. If no substring
is recognized, we use the zero vector instead. We
also use the zero vector for single-token entries in
TargetMT that are missing in the embeddings.

Since Buechel and Hahn (2018b) considered
only VAD but not BE5 datasets, we conducted a
development experiment on the TargetMT-dev
sets for all 91 languages where we assessed
whether MTL is advantageous for BE5 variables
as well, or for a combination of VAD and BE5
variables. We found that MTL improved perfor-
mance when applied separately among all VAD
and BE5 variables. Yet, when jointly learning all
eight emotion variables, the results were somewhat
inconclusive. Performance increased for BE5, but
decreased for VAD. Hence, for lexicon creation,
we took a cautious approach and trained two sepa-
rate models per language, one for VAD, the other
for BE5. An analysis of MTL across VAD and BE5
is left for future work.

The MTLFFN model is implemented in PY-
TORCH, adapting part of the TENSORFLOW code
from Buechel and Hahn (2018b). The ridge regres-
sion baseline model is implemented with SCIKIT-
LEARN (Pedregosa et al., 2011) using default pa-
rameters.
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No. ISO Full Name Size Val Aro Dom Joy Ang Sad Fea Dis Mean

1 en English 2,000,004 .94 .76 .88 .90 .91 .90 .89 .89 .88
2 es Spanish 2,001,183 .89 .70 .80 .83 .86 .85 .82 .81 .82
3 it Italian 2,001,137 .88 .69 .81 .82 .85 .84 .82 .81 .81
4 de German 2,000,507 .89 .66 .81 .82 .84 .82 .80 .81 .81
5 sv Swedish 2,000,980 .87 .64 .80 .82 .84 .82 .81 .80 .80
6 pt Portuguese 2,001,078 .86 .70 .78 .78 .83 .81 .78 .82 .79
7 id Indonesian 2,002,221 .85 .67 .79 .78 .82 .80 .79 .77 .79
8 hu Hungarian 2,000,975 .86 .67 .79 .80 .82 .79 .77 .79 .79
9 fr French 2,001,517 .85 .65 .79 .78 .82 .81 .78 .81 .78

10 fi Finnish 2,000,841 .86 .64 .79 .81 .82 .78 .77 .80 .78
11 ro Romanian 2,001,501 .85 .65 .78 .78 .82 .81 .79 .78 .78
12 cs Czech 2,001,203 .84 .64 .77 .78 .82 .80 .79 .79 .78
13 pl Polish 2,001,460 .85 .63 .78 .80 .82 .80 .78 .78 .78
14 nl Dutch 2,000,721 .85 .64 .78 .77 .80 .79 .77 .78 .77
15 no Norwegian (Bokmål) 2,000,876 .84 .63 .77 .78 .82 .78 .78 .78 .77
16 tr Turkish 2,002,489 .84 .62 .78 .78 .80 .80 .75 .77 .77
17 ru Russian 2,001,317 .82 .64 .75 .80 .81 .77 .77 .77 .77
18 el Greek 2,001,704 .82 .63 .76 .78 .80 .78 .77 .78 .77
19 uk Ukrainian 2,001,261 .83 .63 .77 .78 .80 .77 .76 .77 .76
20 et Estonian 2,001,125 .83 .59 .75 .77 .81 .78 .77 .78 .76
21 ca Catalan 2,001,538 .84 .60 .80 .77 .79 .78 .76 .74 .76
22 da Danish 2,000,654 .84 .61 .77 .78 .79 .77 .73 .79 .76
23 lv Latvian 1,642,923 .82 .63 .75 .76 .79 .78 .76 .77 .76
24 lt Lithuanian 2,001,306 .83 .63 .77 .75 .79 .77 .75 .76 .76
25 bg Bulgarian 2,001,391 .82 .60 .76 .75 .77 .77 .73 .76 .74
26 he Hebrew 2,001,984 .80 .62 .72 .76 .78 .76 .74 .75 .74
27 zh Chinese 2,001,799 .79 .60 .75 .72 .77 .75 .75 .73 .73
28 mk Macedonian 1,356,402 .82 .54 .75 .77 .76 .73 .72 .74 .73
29 af Afrikaans 883,464 .80 .58 .74 .76 .75 .74 .71 .74 .73
30 tl Tagalog 716,272 .80 .56 .76 .70 .77 .76 .74 .72 .73
31 sk Slovak 2,001,221 .80 .60 .75 .74 .74 .73 .71 .73 .72
32 sq Albanian 1,169,697 .80 .57 .73 .75 .75 .75 .72 .72 .72
33 az Azerbaijani 2,002,146 .81 .60 .73 .74 .75 .73 .70 .71 .72
34 mn Mongolian 608,598 .78 .57 .73 .71 .78 .72 .74 .74 .72
35 hy Armenian 2,001,329 .80 .52 .72 .75 .77 .73 .71 .73 .72
36 eo Esperanto 2,001,575 .77 .55 .71 .72 .76 .74 .73 .73 .71
37 sl Slovenian 1,992,272 .81 .54 .75 .74 .74 .70 .70 .72 .71
38 hr Croatian 2,001,570 .78 .56 .71 .72 .74 .71 .71 .73 .71
39 gl Galician 1,336,256 .78 .53 .72 .72 .76 .74 .71 .71 .71
40 sr Serbian 2,002,395 .76 .57 .71 .72 .74 .70 .70 .73 .70
41 ar Arabic 2,003,155 .78 .53 .70 .70 .75 .72 .71 .74 .70
42 fa Persian 2,003,533 .77 .58 .70 .70 .74 .73 .70 .70 .70
43 ms Malay 1,213,397 .75 .58 .69 .69 .72 .70 .65 .73 .69
44 mr Marathi 848,549 .74 .54 .68 .70 .74 .70 .69 .71 .69
45 ka Georgian 1,567,232 .76 .52 .72 .70 .72 .71 .70 .66 .69
46 ja Japanese 2,003,306 .72 .58 .67 .68 .71 .70 .70 .68 .68
47 hi Hindi 1,879,196 .76 .56 .68 .69 .73 .64 .65 .72 .68
48 is Icelandic 945,214 .76 .55 .70 .68 .70 .69 .68 .64 .67
49 kk Kazakh 1,981,562 .72 .53 .65 .67 .73 .69 .67 .70 .67
50 ko Korean 2,002,600 .74 .57 .69 .67 .67 .66 .65 .69 .67
51 be Belarusian 1,715,582 .73 .49 .66 .68 .71 .67 .67 .70 .66
52 bn Bengali 1,471,709 .74 .50 .67 .67 .70 .67 .67 .66 .66
53 kn Kannada 1,747,421 .70 .47 .65 .67 .71 .68 .67 .68 .65
54 cy Welsh 502,006 .72 .51 .67 .64 .69 .65 .64 .66 .65
55 ur Urdu 1,157,969 .69 .52 .61 .63 .70 .65 .64 .68 .64
56 ta Tamil 2,002,514 .70 .51 .66 .64 .66 .66 .63 .64 .64
57 eu Basque 1,828,013 .70 .46 .66 .64 .68 .67 .64 .64 .64
58 ml Malayalam 2,002,920 .67 .51 .62 .63 .67 .67 .62 .61 .63
59 gu Gujarati 557,270 .69 .46 .62 .61 .67 .65 .63 .64 .62
60 si Sinhalese 812,356 .66 .48 .59 .65 .67 .62 .63 .65 .62
61 te Telugu 1,880,585 .69 .46 .62 .60 .65 .63 .61 .65 .61
62 ne Nepali 580,582 .68 .44 .62 .63 .65 .63 .61 .62 .61
63 tg Tajik 508,617 .67 .38 .64 .57 .65 .65 .60 .60 .60
64 vi Vietnamese 2,008,605 .65 .47 .58 .59 .65 .59 .58 .62 .59
65 pa Eastern Punjabi 403,997 .67 .37 .61 .59 .64 .61 .58 .62 .59
66 bs Bosnian 1,124,938 .63 .43 .60 .57 .64 .61 .61 .60 .58
67 ky Kirghiz 751,902 .65 .37 .61 .56 .64 .62 .59 .60 .58
68 ga Irish 321,249 .64 .47 .59 .58 .61 .61 .59 .55 .58
69 fy West Frisian 530,054 .61 .43 .54 .53 .60 .59 .55 .58 .56
70 uz Uzbek 833,860 .60 .38 .55 .56 .57 .56 .54 .53 .53
71 sw Swahili 391,312 .59 .34 .57 .52 .59 .58 .57 .51 .53
72 jv Javanese 518,634 .58 .45 .53 .53 .56 .58 .54 .49 .53
73 ps Pashto 300,927 .58 .40 .56 .52 .55 .54 .55 .49 .53
74 am Amharic 308,109 .56 .31 .52 .48 .53 .54 .52 .47 .49
75 lb Luxembourgish 642,504 .53 .37 .47 .45 .55 .52 .50 .51 .49
76 su Sundanese 327,533 .54 .36 .47 .45 .53 .52 .48 .52 .48
77 th Thai 2,006,540 .51 .38 .45 .50 .49 .46 .45 .49 .47
78 km Khmer 247,498 .51 .39 .44 .49 .51 .44 .45 .48 .46
79 sd Sindhi 139,063 .47 .35 .39 .41 .50 .49 .50 .46 .45
80 yi Yiddish 205,727 .49 .34 .40 .43 .50 .47 .45 .44 .44
81 my Burmese 339,628 .49 .36 .42 .43 .49 .45 .46 .43 .44
82 la Latin 1,088,139 .47 .33 .40 .39 .47 .46 .43 .44 .42
83 mt Maltese 204,630 .47 .32 .44 .38 .43 .40 .39 .38 .40
84 gd Scottish Gaelic 150,694 .45 .36 .39 .40 .36 .36 .35 .33 .38
85 so Somali 177,405 .40 .22 .35 .36 .44 .41 .41 .38 .37
86 mg Malagasy 415,050 .40 .32 .36 .34 .41 .37 .36 .36 .37
87 ht Haitian 118,302 .39 .22 .33 .30 .42 .42 .37 .38 .35
88 ku Kurdish (Kurmanji) 395,645 .37 .22 .33 .33 .34 .33 .31 .35 .32
89 ceb Cebuano 2,006,001 .34 .22 .29 .34 .36 .32 .33 .34 .32
90 co Corsican 108,035 .29 .24 .27 .27 .32 .30 .29 .30 .29
91 yo Yoruba 156,764 .24 .08 .19 .18 .24 .21 .21 .26 .20

Table 8: Overview of generated emotion lexicons with silver evaluation results; sorted by Mean performance over
the eight emotional variables.
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Abstract

Research in emotion analysis is scattered
across different label formats (e.g., polarity
types, basic emotion categories, and affective
dimensions), linguistic levels (word vs. sen-
tence vs. discourse), and, of course, (few well-
resourced but much more under-resourced)
natural languages and text genres (e.g., prod-
uct reviews, tweets, news). The resulting het-
erogeneity makes data and software devel-
oped under these conflicting constraints hard
to compare and challenging to integrate. To
resolve this unsatisfactory state of affairs we
here propose a training scheme that learns a
shared latent representation of emotion inde-
pendent from different label formats, natural
languages, and even disparate model architec-
tures. Experiments on a wide range of datasets
indicate that this approach yields the desired
interoperability without penalizing prediction
quality. Code and data are archived under DOI
10.5281/zenodo.5466068.

1 Introduction

Emotion analysis in the field of NLP1 has expe-
rienced a remarkable evolution of representation
schemes. Starting from the early focus on polar-
ity, i.e., the main distinction between positive and
negative feelings emerging from natural language
utterances (Hatzivassiloglou and McKeown, 1997;
Turney and Littman, 2003), the number and variety
of label formats, i.e., groups of emotional target
variables and their associated value ranges, has
been growing rapidly (Bostan and Klinger, 2018;
De Bruyne et al., 2020). This development is a
double-edged sword though.

On the one hand, the wide variety of available
label formats allows NLP models to become more
informative and richer in expressive power. This
gain is because many of the newer representation

1We use “emotion” as an umbrella term for phenomena
such as polarity, sentiment, feelings, or affective states.

schemes follow well-researched branches of psy-
chological theory, such as basic emotion categories
or affective dimensions (Ekman, 1992; Russell and
Mehrabian, 1977), which offer information comple-
mentary to each other (Stevenson et al., 2007). Oth-
ers argue that different emotional nuances turn out
to be particularly useful for specific targeted down-
stream applications (Bollen et al., 2011; Desmet
and Hoste, 2013).

On the other hand, this proliferation of label
formats has led to a severe loss in cross-data com-
parability. As Tab. 1 illustrates, the total volume
of available gold data is spread not only over dis-
tinct languages but also a huge number of emotion
annotation schemes. Consequently, comparing or
even merging data from different rating studies is
often impossible. This, in turn, contributes to the
development of an unnecessarily large number of
prediction models, each with limited coverage of
the full range of human emotion.

To escape from these dilemmata, we propose a
method that mediates between such different rep-
resentation schemes. In contrast to previous work
which unified some sources of heterogeneity (see
§2), to the best of our knowledge, our approach is
the first to learn a representation space for emotions
that generalizes over individual languages, emotion
label formats, and distinct model architectures for
emotion analysis.

Technically speaking, our approach consists of a
set of pre-trained prediction heads that can be easily
attached to existing state-of-the-art neural models.
Doing so, a model learns to embed language items
of a particular domain in a shared representation
space that resembles an “interlingua for emotion”.
These “emotion embeddings” capture a rich array
of affective nuances and allow for a direct com-
parison of emotional load between heterogeneous
samples (see Fig. 1). They may thus form a solid
basis for a broad range of linguistic, psychological,
and cultural follow-up studies.
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Sample Val Aro Dom Joy Ang Sad Fea Dis

rollercoaster 8.0� 8.1� 5.1� 3.4⇤ 1.4⇤ 1.1⇤ 2.8⇤ 1.1⇤

urine 3.3� 4.2� 5.2� 1.9⇤ 1.4 ⇤ 1.2⇤ 1.4⇤ 2.6⇤

szczęśliwy (a) 2.8• 4.0�

College tution continues climbing 0⌅ 54⌅ 40⌅ 3⌅ 31⌅

A gentle, compassionate drama about grief and healing pos4

áÌ⇡�„Ñ/Ó¡✏Ü⇥ (b) 2.8� 6.1�

Value Ranges: �[1, 9] •[�3, 3] 4{pos, neg} ⇤[1, 5] ⌅[0, 100]

Table 1: Sample entries from various sources described along eight emotional variables:
[VAD]—Valence (⇡ Polarity), Arousal, Dominance, and [BE5]—Joy, Anger, Sadness, Fear, and Disgust.
Samples differ in languages addressed (English, Polish, Mandarin), linguistic domain (word vs. text, register) and
label format (covered variables and their value ranges).
Translations: (a) “happy” (from Polish); (b) “This product generation still has terrible speakers.” (from Mandarin)

Figure 1: Emotional loading of heterogenous samples
in common representation space with selected emotion
variables (in capitals); first three principal components.
Color only used as visual aid. Translations for non-
English items are given in Tab. 1.

In terms of practical benefits, our method allows
models to predict label formats unseen during train-
ing and lowers space requirements by reducing a
large number of format-specific models to a small
number of format-agnostic ones. Although not in
the center of interest of this study, our approach
also often leads to small improvements in predic-
tion quality, as experiments on 13 datasets for 6
natural languages reveal.

2 Related Work

Representing Emotion. At the heart of compu-
tational emotion representation lies a set of emotion
variables (“classes”, “constructs”) used to capture
different facets of affective meaning. Researchers
may choose from a multitude of approaches de-
signed in the long and controversial history of the
psychology of emotion (Scherer, 2000; Hofmann
et al., 2020). A popular choice are so-called basic

emotions (Alm et al., 2005; Aman and Szpakowicz,
2007; Strapparava and Mihalcea, 2007), such as
the six categories identified by Ekman (1992): Joy,
Anger, Sadness, Fear, Disgust, and Surprise (BE6,
for short). A subset of these excluding Surprise
(BE5) is often used for emotional word datasets in
psychology (“affective norms”) which are available
for a wide range of languages.

Affective dimensions constitute a popular alterna-
tive to basic emotions (Yu et al., 2016; Sedoc et al.,
2017; Buechel and Hahn, 2017; Li et al., 2017;
Mohammad, 2018). The most important ones are
Valence (negative vs. positive, thus corresponding
to the notion of polarity; Turney and Littman, 2003)
and Arousal (calm vs. excited) (VA). These two di-
mensions are sometimes extended by Dominance
(feeling powerless vs. empowered; VAD).

Other theories influential for NLP include
Plutchik’s (2001) Wheel of Emotion (Mohammad
and Turney, 2013; Abdul-Mageed and Ungar, 2017;
Tafreshi and Diab, 2018; Bostan et al., 2020) and
appraisal dimensions (Balahur et al., 2012; Troiano
et al., 2019; Hofmann et al., 2020). Yet frequently,
studies do not follow any of these established ap-
proaches but rather design a customized set of vari-
ables in an ad-hoc fashion, often driven by the
availability of user-labeled data in social media, or
the specifics of an application or domain which
requires attention to particular emotional nuances
(Bollen et al., 2011; Desmet and Hoste, 2013; Sta-
iano and Guerini, 2014; Qadir and Riloff, 2014; Li
et al., 2016; Demszky et al., 2020).

This proliferating diversity of emotion label for-
mats is the reason for the lack of comparability
outlined in §1. Our work aims to unify these het-
erogeneous labels by learning to translate them into
a shared distributional representation (see Fig. 1).
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Analyzing Emotion. There are several subtasks
in emotion analysis that require distinct model
types. Word-level prediction (or “emotion lexicon
induction”) is concerned with the emotion associ-
ated with an individual word out of context. Early
work exploited primarily surface patterns of word
usage (Hatzivassiloglou and McKeown, 1997; Tur-
ney and Littman, 2003) whereas more recent activ-
ities rely on more sophisticated statistical signals
encoded in word embeddings (Amir et al., 2015;
Rothe et al., 2016; Li et al., 2017). Combinations
of high-quality embeddings with feed-forward nets
have proven to be very successful, rivaling human
annotation capabilities (Buechel and Hahn, 2018b).

In contrast, modeling emotion of sentences or
short texts (jointly referred to as “text”) was tradi-
tionally based largely on lexical resources (Taboada
et al., 2011). Later, those were combined with con-
ventional machine learning techniques (Moham-
mad et al., 2013) before being widely replaced by
neural end-to-end approaches (Socher et al., 2013;
Kim, 2014; Abdul-Mageed and Ungar, 2017). Cur-
rent state-of-the-art results are achieved by transfer
learning with transformer models (Devlin et al.,
2019; Zhong et al., 2019; Delbrouck et al., 2020).

Our work complements these lines of research
by providing a method that allows existing models
to embed the emotional loading of some unit of
language in a common emotion embedding space.
This broadens the range of emotional nuances said
models can capture. Importantly, our method learns
a representation not for a specific unit of language
itself but the emotion attached to it. This differs
from previous work aiming to increase the affective
load of, e.g., word embeddings (see below).

Emotion Embeddings. Several existing studies
have used the term “emotion embeddings” (or sim-
ilar phrasing) to characterize their work, yet either
use the term in a different way or tackle a different
problem compared to our study.

In more detail, Wang et al. (2020) present a
method for increasing the emotional content of
word embeddings based on re-ordering vectors ac-
cording to the similarity in their emotion values,
referring to the result as “emotional embeddings”.
Similarly, Xu et al. (2018) learn word embeddings
that are particularly rich in affective information
by sharing an embedding layer between models for
different emotion-related tasks. They refer to these
embeddings as “generalized emotion representa-
tion”. Different from our work, these two studies

primarily learn to represent words (with a focus
on their affective meaning though), not emotions
themselves. They are thus in line with previous
research aiming to increase the affective load of
word embeddings (Faruqui et al., 2015; Yu et al.,
2017; Khosla et al., 2018).

Shantala et al. (2018) improve a dialogue system
by augmenting their training data with emotion pre-
dictions from a separate system. Predicted emotion
labels are fed into the dialogue model using a rep-
resentation (“emotion embeddings”) learned in a
supervised fashion with the remainder of the model
parameters. These embeddings are specific to their
architecture and training dataset, they do not gener-
alize to other label formats. Gaonkar et al. (2020)
as well as Wang and Zong (2021) learn vector rep-
resentations for emotion classes from annotated
text datasets to explicitly model their semantics
and inter-relatedness. Yet again, these emotion
embeddings (the class representations) do not gen-
eralize to other datasets and label formats. Han
et al. (2021) propose a framework for learning a
common embedding space as a means of joining in-
formation from different modalities in multimodal
emotion data. While these embeddings generalize
over different modalities (audio and video), they do
not generalize across languages and label formats.
In summary, different from these studies, our emo-
tion embeddings are not bound to any particular
model architecture or dataset but instead generalize
across domains and label formats, thus allowing to
directly compare, say, English language items with
BE5 ratings to Mandarin ones with VA ratings (see
Tab. 1 vs. Fig. 1).

Coping with Incompatibility. In face of the va-
riety of emotion formats, Felbo et al. (2017) present
a transfer learning approach in which they pre-train
a model with self-supervision to predict emojis in
a large Twitter dataset, thus learning a representa-
tion that captures even subtle emotional nuances.
Similarly, multi-task learning can be used to fit a
model on multiple datasets potentially having dif-
ferent label formats, thus resulting in shared hidden
representations (Tafreshi and Diab, 2018; Augen-
stein et al., 2018). While representations learned
with these approaches generalize across different
label formats, they do not generalize across model
architectures or language domains.

Cross-lingual approaches learn a common latent
representation for different languages but these rep-
resentations are often specific to only one pair of
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languages and do not generalize to other label for-
mats (Gao et al., 2015; Abdalla and Hirst, 2017;
Barnes et al., 2018). Similarly, recent work with
Multilingual BERT (Devlin et al., 2019) shows
strong performance in cross-lingual zero-shot trans-
fer (Lamprinidis et al., 2021), but samples from
different languages still end up in different regions
of the embedding space (Pires et al., 2019). These
approaches are also specific to a particular model
architecture so that they do not naturally carry over
to, e.g., single-word emotion prediction. Multi-
modal approaches to emotion analysis show some
similarity to our work, as they learn a common la-
tent representation for several modalities which can
be seen as separate domains (Zadeh et al., 2017;
Han et al., 2021; Poria et al., 2019). However, these
representations are typically specific to a single
dataset and are not meant to generalize further.

In a recent survey on text emotion datasets,
Bostan and Klinger (2018) point out naming in-
consistencies between label formats. They build a
joint resource that unifies twelve datasets under a
common file format and annotation scheme. Anno-
tations were unified based on the semantic close-
ness of their class names (e.g., merging “happy”
and “Joy”). This approach is limited by its reliance
on manually crafted rules which are difficult to
formulate, especially for numerical label formats.

In contrast, emotion representation mapping (or
“label mapping”) aims at automatically learning
such conversion schemes between formats from
data (especially from “double-annotated” samples,
such as the first two rows in Tab. 1; Stevenson et al.,
2007; Calvo and Mac Kim, 2013; Buechel and
Hahn, 2018a). As the name suggests, label map-
ping operates exclusively on the gold ratings, with-
out actually deriving representations for language
items. It can, however, be used as a post-processor,
converting the prediction of another model to an
alternative label format (used as a baseline in §4).
Label mapping learns to transform one format into
another, yet without establishing a more general
representation. In a related study, De Bruyne et al.
(2022) indeed do learn a common representation
for different label formats by applying variational
autoencoders to multiple emotion lexicons. How-
ever, their method still only operates exclusively on
the gold ratings without actually predicting labels
based on words or texts.

In summary, while there are methods to learn
common emotion representations across either lan-

guages, linguistic domains, label formats, or model
architectures, to the best of our knowledge, our pro-
posal is the first to achieve all this simultaneously.

3 Methods

Let (X, Y ) be a dataset with samples
X:={x1, . . . xn} and labels Y :={y1, . . . , yn}.
The aim of emotion analysis is to find a model f
that best predicts Y given X . Let us assume that
the samples X are drawn from one of M domains
D1, . . . ,DM and the labels are drawn from one of
N label formats L1, . . . ,LN . A domain refers to
the vocabulary or a particular register of a given
language (word- and text-level prediction). A label
format is a set of valid labels with reference to
particular emotion constructs. For instance, the
VAD format consists of vectors (v, a, d) where the
components v, a, d refer to Valence, Arousal, and
Dominance, respectively, and are bound within a
specified interval, e.g., [1, 9].

3.1 Towards a Common Emotion Space
Fig. 2 provides an overview of our methodol-
ogy. The naïve approach to emotion analysis is
to learn separate models for each language domain,
D1, . . . ,DM , and label format, L1, . . . ,LN , result-
ing in a potentially very high number of relatively
weak models in terms of the emotional nuances
they can capture (a). The alternative we propose
consists of two steps. First, we train a multi-way
mapping that can translate between every pair of la-
bel formats (Li,Lj), i, j 2 [1, N ] via a shared in-
termediate representation layer, the common emo-
tion space (b). In a second step, we adopt existing
model architectures to embed samples from a given
domain in the emotion space, while the format-
specific top layers of said mapping model are now
utilized as portable prediction heads. The emotion
space then acts as a mediating “interlingua” which
connects each language domain, D1, . . . ,DM , with
each label format, L1, . . . ,LN (c).

3.2 Prediction Head Training
A prediction head here refers to a function h that
maps from a Euclidean input space Rd (the “emo-
tion space”) to a label format Lj . We give predic-
tion heads a purposefully minimalist design that
consists only of a single linear layer without bias
term. Thus, a head h predicts ratings ŷ for an emo-
tion embedding x 2 Rd as h(x) := Wx, where W
is a weight matrix. The reason for this simple head
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(a) Standard Procedure (c) Portable Prediction Heads
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Figure 2: Overview of our methodology, illustrated by several choices of language domains and label formats.

design is to ensure that the affective information is
more readily available in the emotion space. Alter-
natively, we can describe the weight matrix W as a
concatenation of row vectors Wi, where each emo-
tion variable corresponds to exactly one row. Thus,
as a positive side effect of the lightweight design,
we can directly locate emotion variables within
the emotion space by interpreting their respective
coefficients Wi as position vector (see Fig. 1).

Our challenge is to train a collection of heads
h1, . . . hN such that all heads produce consistent
label outputs for a given emotion embedding from
Rd. For example, if the VAD head predicts a joyful
VAD label, then the BE5 head should also produce
a congruent joyful BE5 rating. In this sense, the
prediction heads are “the heart and soul” of the
emotion space: they define which affective state a
region of the space corresponds to.

To devise a suitable training scheme for the
heads, we first need to elaborate on our under-
standing of “consistency” between differently for-
matted emotion labels. We argue that an obvious
case of such consistency is found in datasets for
emotion label mapping (see §2). A label map-
ping dataset consists of two sets of labels follow-
ing different formats Y1:={y1,1, y1,2, . . . y1,n} and
Y2:={y2,1, y2,2, . . . y2,n}, respectively. Typically,
they are constructed by matching instances from
independent annotation studies (e.g., the first two
rows in Tab. 1). Thus, we can think of the two sets
of labels as “translational equivalents”, i.e., differ-
ently formatted emotion ratings, possibly capturing
different affective nuances, yet still describing the
same underlying expression of emotion in humans.

The intuition behind our training scheme is to
“fuse” multiple mapping models by forcing them to

produce the same intermediate representation for
both mapping directions. This results in a multi-
way mapping model with a shared representation
layer in the middle (the common emotion space)
followed by the prediction heads on top (Fig. 2b).

In more detail (see also Fig. 3 for an illustration
of the following training procedure), let (Y1, Y2) be
a mapping dataset with a sample (y1, y2). We intro-
duce two new, auxiliary models g1, g2 that we call
label encoders. Label encoders embed input ratings
in the emotion space Rd and can be combined with
the complementary prediction heads h2, h1 to form
a mapping model (the subscript here refers to the
label format). That is h2(g1(y1)) yields predictions
for y2 and h1(g2(y2)) for y1.

Our goal is to align both the intermediate repre-
sentations, g1(y1), g2(y2) while also deriving accu-
rate mapping predictions. Therefore, we propose
the following three training objectives:

Lmap := C[y1, h1(g2(y2))] + C[y2, h2(g1(y1))]

Lauto := C[y1, h1(g1(y1))] + C[y2, (h2(g2(y2))]

Lsim := C[g1(y1), g2(y2)]

where C denotes the Mean-Squared-Error loss cri-
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Figure 3: Training the Multi-Way Mapping Model.
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terion. Lmap is the mapping loss term where we
compare true vs. predicted labels. The two sum-
mands represent the two mapping directions, as-
signing either of the two labels as the source, the
other as the target format. The autoencoder loss,
Lauto, captures how well the model can reconstruct
the original input label from the hidden emotion
representation. It is meant to supplement the map-
ping loss. Lastly, the similarity loss, Lsim, directly
assesses whether both input label formats end up
with a similar intermediate representation. The
total loss for one instance, finally, is given by

Ltotal := Lmap + Lauto + Lsim

In practice, we train a matching label en-
coder g1, . . . , gN for each of our prediction heads
h1, . . . , hN , thus covering all considered label for-
mats L1, . . .LN . All label encoders and prediction
heads are trained simultaneously on a collection
of mapping datasets. This is done as a hierarchi-
cal sampling procedure, where we first sample one
of the mapping datasets (which determines the en-
coder and the head to be optimized in this step),
then a randomly selected instance. The total loss is
computed in a batch-wise fashion and the encoder
and head parameters are updated via standard gra-
dient descent-based techniques (see Appendix A
for details). We use min-max scaling to normal-
ize value ranges of the labels across datasets: for
VAD we choose the interval [�1, 1] and for BE5
the interval [0, 1], reflecting their respective bipolar
(VAD) and unipolar (BE5) nature (see Tab. 1).

3.3 Prediction Head Deployment
Following the training of the prediction heads
h1, . . . , hN , deploying them on top of a base model
architecture f is relatively straightforward, result-
ing in a multi-headed model. The base model’s
output layer must be resized to the dimensionality
of the emotion space Rd and any present nonlin-
earity (e.g, softmax or sigmoid activation) must be
removed. This modified base model f̄ is then opti-
mized to produce emotion embeddings, the heads’
input representation (see Fig. 4).

Head parameters are kept constant so that the
base model is forced to optimize the representa-
tions it provides. Since the heads are specifically
trained to treat emotion embeddings consistently,
producing suitable representations for one head is
also likely to produce suitable representations for
the remaining heads. Yet, to avoid overfitting the

...!!

ℒ"

#!!

ℒ#…ℒ$
ℝ%

...

Figure 4: Schematic illustration of a base model before
(left) and after (right) head deployment.

base model to a particular one (i.e., producing rep-
resentations that are particularly favorable for one
head, but much less so for every other), each model
f̄i is trained using multiple heads depending on the
available data.

If multiple datasets are available that match the
domain of the base model and use different label
formats, we train the base model in a multi-task
setup: We first draw one of the available datasets
and then sample an instance (x, y) from there.
Next, we derive a prediction using the matching
head hj as ŷ := hj(f̄i(x)), before computing the
prediction loss:

Lpred := C[y, ŷ]

If, on the other hand, only one dataset is available
which matches the domain of the base model f̄i,
we complement the prediction loss with additional
error signal using a newly proposed data augmenta-
tion technique. This method which we call emotion
label augmentation synthesizes an alternative la-
bel y⇤ := hk(gj(y)) for a given instance (x, y) by
taking advantage of the label encoder gj that was
trained in the previous step. While gj translates the
label y to the emotion space, the prediction head hk

provides labels in a format different from y. Those
artificial labels are then used in place of actual gold
labels resulting in the data augmentation loss

Laug := C[y⇤, hk(f̄i(x)]

where the second argument to the loss criterion C

denotes the model’s prediction for the previously
synthesized labels. Then, Lpred + Laug yields the
final loss.

4 Experimental Setup

The main idea behind our experimental setup is to
compare a base model trained with the standard
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procedure against the same model with portable
prediction heads (PPH) attached (cf. Fig. 2 (a) vs.
(c)). Our goal is to show that we obtain the same,
if not better, results using PPH compared with the
naïve approach.

This study design reflects two purposes. First,
comparing the base model with the PPH architec-
ture yields experimental data that allow to indi-
rectly assess the quality of the learned emotion rep-
resentations. Second, such a comparison may help
find evidence that the performance of the PPH ap-
proach scales with the employed base model—this
would suggest that our method is likely to remain
valuable even when today’s state-of-the-art models
are replaced by their successors. Importantly, we
train only a single set of prediction heads. Thus,
all experimental results of the PPH condition are
based on the same underlying emotion space.

We distinguish two evaluation settings. In the
first (“supervised”) setting, train and test data come
from (different parts of) the same dataset. Without
PPH, we train one base model per dataset. Yet,
with PPH, base models are shared across datasets
of the same domain, whether or not their label for-
mats agree. Consequently, the emotion space needs
to store heterogeneous affective information in an
easy-to-retrieve way (recall the “lightweight” head
design; §3.2). Thus, positive evaluation results
would indicate that our method learns a particu-
larly rich representation of emotion. A practical
advantage of PPH lies in the reduction of total disk
space utilized by the resulting model checkpoints.

The second (“zero-shot”) setting assumes that
only one dataset per language is available, with one
particular label format, but one would like to pre-
dict ratings in another format as well (e.g., imagine
having a VA dataset for Mandarin but you are ac-
tually more interested in basic emotions for that
language). Doing so with PPH is very simple—one
only has to choose the desired head at inference
time. Yet, doing so with the base model per se
is simply impossible. To still be able to offer a
quantitative comparison, we resort to an external
label mapping component that translates the base
model’s output into the desired format. We empha-
size that this is a very strong baseline due to the
high accuracy of the label mapping approach, in
general (Buechel and Hahn, 2018a). In this case,
the practical advantage of the PPH approach lies in
its independence of (possibly unavailable) external
post-processors.

We conducted experiments on different word and
text datasets. For words, we collected ten datasets
(cf. Tab. 2) covering five languages. These data are
structured as illustrated in the top half of Tab. 1. For
text-level experiments we selected three corpora
(cf. Tab. 3): Affective Text (AFFT; Strapparava
and Mihalcea, 2007), EMOBANK (EMOB; Buechel
and Hahn, 2017), and the Chinese Valence Arousal
Texts (CVAT; Yu et al., 2016). For an illustration
of the type and format of text-level data, see the bot-
tom half in Tab. 1. Since these datasets comprise
real-valued annotations, we will use Pearson Corre-
lation r for measuring prediction quality. Datasets
were partitioned into fixed train-dev-test splits with
ratios ranging between 8-1-1 and 3-1-1; smaller
datasets received larger dev and test shares.

The selected data govern how to train a given
base model with PPH (§3.3). Since, except for
Mandarin, there are always two datasets available
per domain, we train the models in the supervised
setting using the multi-task approach (but use emo-
tion label augmentation for CVAT). By contrast,
in the zero-shot setting, we train a model on one,
yet test on another dataset. Thus, we rely on emo-
tion label augmentation here (and have to exclude
CVAT for a lack of a second Mandarin dataset). We
emphasize that the zero-shot evaluation has very
demanding data requirements: This setting not only
requires two datasets of the same language domain
with different label formats (which is already rare)
but also additional data to fit mapping models for
those particular label formats. To the best of our

ID Vars Size Citation

en1 VAD 1,034 Bradley and Lang (1999)
en2 BE5 1,034 Stevenson et al. (2007)
es1 VA 14,031 Stadthagen-González et al. (2017)
es2 BE5 10,491 Stadthagen-González et al. (2018)
de1 VA 2,902 Võ et al. (2009)
de2 BE5 1,958 Briesemeister et al. (2011)
pl1 VA 2,902 Riegel et al. (2015)
pl2 BE5 2,902 Wierzba et al. (2015)
tr1 VA 2,029 Kapucu et al. (2018)
tr2 BE5 2,029 Kapucu et al. (2018)

Table 2: Word datasets. IDs contain the respective ISO
639-1 language code.

ID Vars Size Lg Domain

AFFT BE5 1,250 en news headlines
EMOB VAD 10,062 en genre-balanced
CVAT VA 2,969 zh mixed online domains

Table 3: Overview of text datasets.
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knowledge, EMOBANK and AFFT form the only
suitable dataset pair on the text-level. At the word-
level, such pairs are somewhat easier to get due
to highly standardized data collection efforts for
affective word norm datasets in psychology (see
§2). For this reason, we employ a larger number of
word- than text-level datasets in our experiments.

Importantly, only the data requirements for eval-
uating our approach in the zero-shot setting are
hard to meet. Yet, inference is much easier to pro-
vide. We would even argue that the reason why
our method is so hard to evaluate is precisely what
makes it so valuable. Take the Mandarin CVAT
dataset, for example. It is annotated with Valence
and Arousal, but there is, to our knowledge, no
compatible Mandarin dataset with basic emotions
(thus, CVAT is not used in the zero-shot setting).
Our method allows to freely switch between output
label formats at inference time without language
constraints. That is, we can predict BE5 ratings in
Chinese even though there is no such training data.

In terms of base models, we used the Feed-
Forward Network developed by Buechel and Hahn
(2018b) for the word datasets. This model predicts
emotion ratings based on pre-trained embedding
vectors (taken from Grave et al., 2018). For text
datasets, we chose the BERTbase transformer model
by Devlin et al. (2019) using the implementation
and pre-trained weights by Wolf et al. (2020). Both
(word and text) base models use identical hyper-
parameter settings with or without PPH extension.
For the word model, we copied the settings of the
authors, whereas text model hyperparameters were
tuned manually for the base model without PPH.

We derived training data for the prediction heads
(label mapping datasets) by combining the rat-
ings of the word datasets en1 and en2. We used
the label mapping model from Buechel and Hahn
(2018a) as auxiliary label encoders. The dimension-
ality of the emotion space was set to 100. The label
mapping models used as external post-processors
in the zero-shot setting were also based on Buechel
and Hahn (2018a) and were trained on the same
data as the label encoders. Further details beneficial
for reproducibility are given in Appendix D.

5 Results

Our main experimental results are summarized in
Tables 4 to 7. For conciseness, correlation values
are averaged over all target variables per dataset.
Per-variable results are given in Appendix B.

Looking at the word datasets in the supervised
setup (Tab. 4), we find that attaching portable pre-
diction heads (PPH) not only retains, but often
enough slightly increases the performance of the
FFN base model (p=.008; two-sided Wilcoxon
signed-rank test based on per-dataset results).
Since we trained only one base model with PPH per
language (but two without PPH), our data suggest
that the emotion representations learned with PPH
can easily hold affective information from differ-
ent label formats at the same time. Moreover, PPH
here offers the practical benefit of reducing the total
disk space used by the resulting model checkpoints
due to the smaller number of trained base models.
Experiments on the text datasets using BERT as
base model show results in line with these findings
(see Tab. 5).

In the zero-shot setup, models are tested on
datasets with label formats different from the train-
ing phase (e.g., en1 and en2). On the word
datasets, using PPH shows small improvements
in comparison with the base model as is (p=.003;
Tab. 6), again suggesting that the learned emotion
representations generalize robustly across label for-
mats. Importantly, the base model is only capable
of producing this label format at all because we
equip it with a label mapping post-processor. While
this procedure is very accurate (indeed, it consti-
tutes a very strong baseline), it depends on an exter-
nal component that may or may not be available for

Base Model (FFN) Base Model + PPH
Test Data Train Data r Train Data r

en1(VAD) en1(VAD) .818 en1+en2 .824
en2(BE5) en2(BE5) .898 en1+en2 .898
es1(VA) es1(VA) .820 es1+es2 .833
es2(BE5) es2(BE5) .789 es1+es2 .820
de1(VA) de1(VA) .822 de1+de2 .836
de2(BE5) de2(BE5) .754 de1+de2 .748
pl1(VA) pl1(VA) .794 pl1+pl2 .835
pl2(BE5) pl2(BE5) .814 pl1+pl2 .845
tr1(VA) tr1(VA) .567 tr1+tr2 .575
tr2(BE5) tr2(BE5) .607 tr1+tr2 .614
Mean .768 .783
Disk Use 4.33 MB 2.52 MB

Table 4: Word-level results of supervised setting.

Base Model (BERT) Base Model + PPH
Test Data Train Data r Train Data r

EmoB EmoB .630 EmoB+AffT .619
AffT AffT .746 EmoB+AffT .755
CVAT CVAT .737 CVAT .748
Mean .704 .707
Disk Use 1.25 GB 0.81 GB

Table 5: Text-level results of supervised setting.
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Base Model (FFN) Base Model + PPH
Test Data Train Data r Train Data r

en1(VAD) en2(BE5) .801 en2 .810
en2(BE5) en1(VAD) .834 en1 .839
es1(VA) es2(BE5) .720 es2 .723
es2(BE5) es1(VA) .777 es1 .792
de1(VA) de2(BE5) .681 de2 .684
de2(BE5) de1(VA) .637 de1 .641
pl1(VA) pl2(BE5) .812 pl2 .812
pl2(BE5) pl1(VA) .787 pl1 .807
tr1(VA) tr2(BE5) .538 tr2 .563
tr2(BE5) tr1(VA) .550 tr1 .554
Mean .714 .723
Method ext. post-processor built-in

Table 6: Word-level results of zero-shot setting.

Base Model (BERT) Base Model + PPH
Test Data Train Data r Train Data r

EmoB AffT .385 AffT .407
AffT EmoB .584 EmoB .582
Mean .485 .495
Method ext. post-processor built-in

Table 7: Text-level results of zero-shot setting.

the desired mapping direction (the source and the
target label format). In contrast, the zero-shot ca-
pability is innate to (“built-in”) the PPH approach.
While we need only one prediction head per label
format, the number of required mapping compo-
nents for the base model grows on a quadratic scale
with the number of considered formats. Again,
text-level experiments show consistent results with
word-level ones (Tab. 7).

One may object that the reduction of memory
footprint shown in Tables 4 and 5 can also be
achieved by traditional multi-task learning (i.e., at-
taching multiple heads to the base model, training
it on two datasets, at once). Likewise, as Tables 6
and 7 indicate, the zero-shot capabilities offered by
PPH can, in principle, be provided by additional
label mapping components. However, PPH offers
a much more elegant solution to combine the ad-
vantages of multi-task learning and label mapping
without calling for additional (language) resources.
Most importantly though, PPH is unique in its abil-
ity to embed samples from such heterogeneous
datasets in a common representation space—a trait
that may offer a general solution to studying emo-
tion across languages, cultures, and individually
preferred psychological theory.

6 Visualization of the Emotion Space

To gain first insights into the structure of our
learned emotion space, we submitted the weight
vectors of the emotion variables to principal com-

ponent analysis (PCA; recall from §3.2 that each
row in a head’s weights matrix W corresponds to
exactly one variable). Further, we derived emo-
tion embeddings for the samples in Tab. 1 using
the PPH-extended models evaluated in the last sec-
tion. Applying the same PCA transformation to
the embedding vectors, we co-locate the samples
next to the emotion variables. The results (for the
first three PCs) are displayed in Fig. 1. As can be
seen, the relative positioning of the samples and
variables shows high face validity—samples asso-
ciated with similar feelings appear close to each
other as well as to their akin variable. Appendix C
provides additional analyses of the learned embed-
ding space (focusing more deeply on the emotional
interpretation of the PC axes and the distribution of
emotion embeddings across languages) that further
support this positive impression.

7 Conclusions & Future Work

We presented a method for learning a common rep-
resentation space for the emotional loading of het-
erogeneous language items. While previous work
successfully unified some sources’ heterogeneity,
our emotion embeddings are the first to compre-
hensively generalize over arbitrarily disparate lan-
guage domains, label formats, and distinct neural
network architectures. Our technique is based on a
collection of portable prediction heads that can be
attached to existing state-of-the-art models. Con-
sequently, a model learns to embed language items
in the common learned emotion space and thus to
predict a wider range of emotional meaning facets,
yet without sacrificing any predictive power as our
experiments on 13 datasets (6 languages) indicate.

Since the resulting emotion representations both
generalize across various use cases and evidently
capture a rich set of affective nuances, we consider
this work particularly useful for downstream appli-
cations. Thus, future work may build on a concept
of emotion similarity to, e.g., cluster diverse lan-
guage items by their associated feeling, retrieve
words that evoke emotions similar to a query, or
compare the affective meaning of phrases and con-
cepts across cultures.
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Algorithm 1 Training the Multi-Way Mapping Model
1: (Y1,1, Y1,2), (Y2,1, Y2,2), . . . (Yn,1, Yn,2) Mapping datasets used for training
2: g1,1, h1,1, g1,2, h1,2, . . . , gn,1, hn,1, gn,2, hn,2  randomly initialized label encoders and prediction

heads †

3: nsteps  total number of training steps
4: for all istep in 1, . . . , nsteps do
5: (Yi,1, Yi,2) randomly sample a mapping dataset
6: (y1, y2) randomly sample a batch s.t. y1 ⇢ Yi,1 and y2 ⇢ Yi,2 with identical indices
7: (e1, e2) (gi,1(y1), gi,2(y2))
8: ŷ1,1  hi,1(e1)
9: ŷ1,2  hi,2(e1)

10: ŷ2,1  hi,1(e2)
11: ŷ2,2  hi,2(e2)
12: Lmap  C(y1, ŷ2,1) + C(y2, ŷ1,2) ‡

13: Lauto  C(y1, ŷ1,1) + C(y2, ŷ2,2)
14: Lsim  C(e1, e2)
15: Ltotal  Lmap + Lauto + Lsim

16: computerLtotal and update weights
17: end for

† If two sets of labels Ya,b, Yc,d follow the same label format, then they use the same label encoders
(i.e, ga,b = gc,d) and prediction heads (ha,b = hc,d).
‡
C denotes Mean-Squared-Error Loss.

A Algorithmic Details for Training the
Multi-Way Mapping Model

The intuition behind Algorithm 1 is as follows:
We simultaneously train multiple label encoders
and prediction heads on several mapping datasets
using three distinct objective functions. First, of
course, we consider the quality of the label map-
ping (mapping loss; line 12). Second, we propose
an autoencoder loss (line 13) where the model must
learn to reconstruct the original input from the emo-
tion embedding. Third, we propose an embedding
similarity loss (line 14) which enforces the simi-
larity of the hidden representation of both formats
for a given instance since they supposedly describe
the same emotion. Our training loop starts by first
sampling one of the mapping datasets and then a
batch from the chosen dataset (lines 5–6). To com-
pute the loss efficiently, we first cache the encoded
representations of both label formats (line 7) before
applying all relevant prediction heads (lines 8–11).

B Per-Variable Results

For readability reasons, the experimental results
reported in §5 only give the average performance
score over all emotional target variables for a given

dataset. To complement this, the full set of per-
variable results are given in Tab. 8.
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Val Aro Dom Joy Ang Sad Fea Dis Mean
Level Test Setting Model Train

word en1 supervised FFN en1 .920 .704 .829 — — — — — .818
FFN+PPH en1+en2 .936 .700 .836 — — — — — .824

zeroshot FFN en2 .932 .664 .808 — — — — — .801
FFN+PPH en2 .927 .701 .802 — — — — — .810

en2 supervised FFN en2 — — — .929 .900 .898 .890 .873 .898
FFN+PPH en1+en2 — — — .936 .890 .895 .901 .869 .898

zeroshot FFN en1 — — — .918 .822 .805 .864 .759 .834
FFN+PPH en1 — — — .914 .835 .850 .843 .751 .839

es1 supervised FFN es2 .848 .792 — — — — — — .820
FFN+PPH es1+es2 .870 .795 — — — — — — .833

zeroshot FFN es2 .873 .567 — — — — — — .720
FFN+PPH es2 .872 .575 — — — — — — .723

es2 supervised FFN es2 — — — .768 .793 .834 .803 .745 .789
FFN+PPH es1+es2 — — — .817 .832 .857 .838 .754 .820

zeroshot FFN es1 — — — .808 .795 .823 .775 .685 .777
FFN+PPH es2 — — — .811 .805 .839 .810 .695 .792

de1 supervised FFN de1 .867 .776 — — — — — — .822
FFN+PPH de1+de2 .892 .780 — — — — — — .836

zeroshot FFN de2 .832 .530 — — — — — — .681
FFN+PPH de2 .836 .532 — — — — — — .684

de2 supervised FFN de2 — — — .812 .766 .738 .798 .653 .754
FFN+PPH de1+de2 — — — .842 .788 .655 .795 .662 .748

zeroshot FFN de1 — — — .824 .717 .500 .733 .411 .637
FFN+PPH de1 — — — .824 .720 .489 .749 .424 .641

pl1 supervised FFN pl1 .852 .735 — — — — — — .794
FFN+PPH pl1+pl2 .907 .764 — — — — — — .835

zeroshot FFN pl2 .919 .705 — — — — — — .812
FFN+PPH pl2 .918 .707 — — — — — — .812

pl2 supervised FFN pl2 — — — .819 .807 .815 .810 .821 .814
FFN+PPH pl1+pl2 — — — .897 .835 .820 .826 .846 .845

zeroshot FFN pl1 — — — .877 .786 .749 .763 .761 .787
FFN+PPH pl1 — — — .893 .798 .777 .779 .789 .807

tr1 supervised FFN tr1 .556 .577 — — — — — — .567
FFN+PPH tr1+tr2 .571 .579 — — — — — — .575

zeroshot FFN tr2 .561 .514 — — — — — — .538
FFN+PPH tr2 .576 .549 — — — — — — .563

tr2 supervised FFN tr1 — — — .607 .603 .628 .627 .568 .607
FFN+PPH tr1+tr2 — — — .611 .608 .628 .634 .589 .614

zeroshot FFN tr1 — — — .547 .566 .563 .579 .495 .550
FFN+PPH tr1 — — — .583 .533 .575 .588 .488 .554

text EmoB supervised BERT EmoB .801 .562 .527 — — — — — .630
BERT+PPH EmoB+AffT .798 .550 .509 — — — — — .619

zeroshot BERT AffT .660 .200 .295 — — — — — .385
BERT+PPH AffT .686 .238 .297 — — — — — .407

AffT supervised BERT AffT — — — .730 .634 .818 .836 .712 .746
BERT+PPH EmoB+AffT — — — .776 .659 .823 .841 .675 .755

zeroshot BERT EmoB — — — .727 .485 .727 .689 .290 .584
BERT+PPH EmoB — — — .724 .491 .736 .704 .255 .582

CVAT supervised BERT CVAT .878 .596 — — — — — — .737
BERT+PPH CVAT .878 .617 — — — — — — .748

Table 8: Full experimental results per dataset and target variable in Pearson’s r. “Mean” column corresponds to
data given in Tabs. 4, 5, 6, and 7.
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C Further Analysis of the Emotion Space

Building on the PCA transformation described in
§6, we illustrate the position of all emotion vari-
ables in Fig. 5.

Within the first three principal components, two
major groups can be visually discerned: the neg-
ative basic emotions of Sadness, Fear, and Anger
forming the first group, and Joy and the two affec-
tive dimensions of Valence and Dominance forming
the second. Intuitively speaking, this stands to rea-
son, as Valence and Dominance typically show a
very high positive correlation in annotation stud-
ies. The same holds for Valence and Joy. Likewise,
Sadness, Fear, and Anger usually correlate posi-
tively with each other. Yet, between these groups
of variables, studies show a negative correlation (cf.
studies listed in Tab. 2). Interestingly, these obser-
vations indicate that the first principal component
of the emotion space may represent a Polarity axis.

The remaining two variables, Disgust and
Arousal, position themselves relatively far from
the aforementioned groups and opposite of each
other in the second principal component. While
it is less obvious what this component represents,
it is worth noting that both Arousal and Disgust
generalize poorly across label formats. That is,
while Joy, Anger, Sadness, and Fear are relatively
easy to predict from VAD ratings in a label map-
ping experiment, and, likewise, Valence and Dom-
inance can well be estimated from BE5 ratings,
the variables of Arousal and Disgust seem to carry
information more specific to their respective label
format (Buechel and Hahn, 2018a). In the light of
these observations, it may not come as a surprise
that these variables receive positions that demarcate
them clearly from the remaining ones.

The third principal component seems to be
linked to the intensity or action potential of a feel-
ing. Here, Arousal, Dominance, and Disgust and,
less pronounced, Fear and Anger score highly,
while Sadness and Joy receive comparatively low
values.

Next, we examine whether the learned repre-
sentations are sufficiently language-agnostic, i.e.,
that samples with similar emotional load receive
similar embeddings independent of their language
domain. We derived emotion embeddings for all en-
tries in all of our word datasets (cf. Tab. 2) using the
base models with portable prediction heads from
the “supervised” setting of our main experiments.
Again building on the previously established PCA

Figure 5: Position of emotion variables in PCA space.

transformation, we plotted the position of these
multilingual samples in 2D (see Fig. 6).

It is noteworthy that entries in our emotion space
seem to form clusters according to their affective
meaning and not within their dataset or language.
As a result, items from different languages overlap
so heavily that their respective markers (�,4,⇤,},
and9) become hard to differentiate.

Furthermore, we selected the highest- and
lowest-rated words for Valence and Arousal and the
highest-rated word for Disgust in each language.
We locate these words in the PCA space and give
translations for non-English entries. As can be seen,
their position shows high face validity relative to
each other and the emotion variables, supporting
our claim that the learned emotion space is indeed
language-independent.

We emphasize that monolingual, rather than
crosslingual, word embeddings were used and that
samples from each language were embedded us-
ing a separate base model. Hence, the observed
alignment of words in PCA space may safely be
attributed to our proposed training scheme using
portable prediction heads.

D Further Details for Reproducibility

D.1 Description of Computing Infrastructure
All experiments were conducted on a single ma-
chine with a Debian 4 operating system. The hard-
ware specifications are as follows:

• 1 GeForce GTX 1080 with 8 GB graphics
memory

• 1 Intel i7 CPU with 3.60 GHz

• 64 GB RAM
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Figure 6: Position of the emotion variables Valence, Arousal, Dominance and joy, anger, sadness, fear, and
disgust in the learned emotion space Rd (first two PCA dimensions; origin marked with “0”) together with entries
from English (�), Spanish (4), German (⇤), Polish (}), and Turkish (9) word datasets, as well as highest and
lowest Valence and Arousal word, and highest Disgust word per language (arrows).

D.2 Runtime of the Experiments
Training the multi-way mapping model takes about
one minute. Training time for the base models
varies depending on the dataset. In the follow-
ing, we report training and inference times for the
largest dataset per condition, respectively, describ-
ing an upper bound of the time requirements.

Regarding the word models, it takes about ten
minutes to train a base model without portable pre-
diction heads (PPH) and about 15 minutes to train
one with PPH. Since the latter base model replaces
two of the former ones in our experiments, the over-
all training time is reduced by using PPH. Training
a word model with emotion label augmentation
(the alternative technique for fitting a model with
PPH) takes 10 minutes, about as long as training it
without PPH. Inference is completed in 1.5 minutes
in either case. However, most of that time is needed
for loading the language-specific word embeddings.
Once this task is done, actually computing the pre-
dictions takes only about one second.

Regarding the text models, a baseline model
without PPH is trained in about 15 minutes. This
number increases with PPH to 30 minutes using
the multi-task approach (but again, one PPH model
replaces two of the baseline models). In line with
the runtime results of the word models, training the
text base model with emotion label augmentation
takes 15 minutes, about as long as training it with-
out PPH. In either case, inference is completed in
well under a minute.

D.3 Number of Parameters in Each Model

The number of parameters per model is given in
Tab. 9.

Model (Component) No. Parameters
Portable Prediction Heads 0.8K
Label Encoders (per format) 18.8K
Label Encoders (in total) 53.4K
Word-Level FFN (per model) 110.6K
BERTbase (per model) 110.0M

Table 9: Number of parameters in each model.

D.4 Validation Performance

Tables 10 – 13 show the dev set results correspond-
ing to the test set results in Tables 4 – 7, respec-
tively. As can be seen, the former are consistent
with the latter, yet overall slightly higher, as is usu-
ally the case.

D.5 Evaluation Metric

Prediction quality is evaluated using Pearson corre-
lation defined as

rx,y :=

Pn
i=1(xi � x̄)(yi � ȳ)pPn

i=1(xi � x̄)2
pPn

i=1(yi � ȳ)2

where x = x1, x2, . . . , xn, y = y1, y2, . . . , yn
are real-valued number sequences and x̄, ȳ are their
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Base Model (FFN) Base Model + PPH
Test Data Train Data r Train Data r

en1(VAD) en1(VAD) .800 en1+en2 .806
en2(BE5) en2(BE5) .876 en1+en2 .877
es1(VA) es1(BE5) .832 es1+es2 .850
es2(BE5) es2(BE5) .783 es1+es2 .820
de1(VA) de1(BE5) .825 de1+de2 .835
de2(BE5) de2(BE5) .780 de1+de2 .792
pl1(VA) pl1(BE5) .794 pl1+pl2 .841
pl2(BE5) pl2(BE5) .784 pl1+pl2 .835
tr1(VA) tr1(BE5) .600 tr1+tr2 .611
tr2(BE5) tr2(BE5) .613 tr1+tr2 .628
Mean .769 .790
Disk Use 4.33 MB 2.52 MB

Table 10: Validation word-level results in the super-
vised setting.

Base Model (BERT) Base Model + PPH
Test Data Train Data r Train Data r

EmoB EmoB .610 EmoB+AffT .600
AffT AffT .783 EmoB+AffT .790
CVAT CVAT .748 CVAT .749
Mean .714 .713
Disk Use 1.25 GB 0.81 GB

Table 11: Validation text-level results in the supervised
setting.

respective means. We rely on the implementation
provided in the SCIPY package.2

D.6 Model and Hyperparameter Selection
As described in §4, we mostly relied on hyperpa-
rameter choices by the authors of our base mod-
els. Hence, we performed only a relatively small
amount of tuning throughout this work.

For the word base model and the label encoder,
no further hyperparameter selection was required.
For the text base model (BERT), we verified via
a first round of development experiments that de-
fault settings yield satisfying prediction quality on
our datasets. The learning rate of the ADAMW
optimizer was set to 10�5 based on established
recommendations. Besides the number of training
epochs (see below), the only dataset-specific hy-
perparameter choice had to be made for the batch
size which we set according to constraints in GPU
memory. (The samples in the CVAT dataset are sig-
nificantly longer than in AFFT so that fewer sam-
ples of the former can be placed in one batch.) We
used the pre-trained weights “bert-base-uncased”
and “bert-base-chinese” from Wolf et al. (2020)
for the English and Mandarin datasets, respectively.
The dimensionality of the emotion space Rd was

2https://docs.scipy.org/doc/scipy/
reference/generated/scipy.stats.pearsonr.
html

Base Model (FFN) Base Model + PPH
Test Data Train Data r Train Data r

en1(VAD) en2(BE5) .762 en2 .778
en2(BE5) en1(VAD) .814 en1 .815
es1(VA) es2(BE5) .759 es2 .758
es2(BE5) es1(VA) .767 es1 .779
de1(VA) de2(BE5) .692 de2 .672
de2(BE5) de1(VA) .696 de1 .696
pl1(VA) pl2(BE5) .806 pl2 .829
pl2(BE5) pl1(VA) .776 pl1 .796
tr1(VA) tr2(BE5) .556 tr2 .571
tr2(BE5) tr1(VA) .556 tr1 .565
Mean .719 .726
Method ext. post-processor built-in

Table 12: Validation word-level results in the zero-shot
setting.

Base Model (BERT) Base Model + PPH
Test Data Train Data r Train Data r

EmoB AffT .353 AffT .368
AffT EmoB .636 EmoB .664
Mean .495 .516
Method ext. post-processor built-in

Table 13: Validation text-level results in the zero-shot
setting.

initially set to 100 and remained unchanged after
verifying that the Multi-Way Mapping Model in-
deed showed good label mapping performance.

For each (word or text) dataset, we trained the
models well beyond convergence, recording their
dev set performance after each epoch (number of
epochs differs between datasets). We then chose
the best-performing checkpoint (according to Pear-
son correlation) for the final test set evaluation.

Hyperparameter choices were identical between
base models with and without PPH. We emphasize
that for each base model, hyperparameters were set
(by us or by the respective authors) with respect to
base model without PPH, thus forming a challeng-
ing testbed for our approach. We see an extensive
hyperparameter search as a fruitful venue for future
work.

D.7 Data Access
Below, we list URLs for all datasets used in our
experiments.

en1 https://osf.io/2k97q/download (ratings
must be extracted from PDF)

en2 https://static-content.springer.com/
esm/art%3A10.3758%2FBF03192999/
MediaObjects/Stevenson-BRM-2007.zip

es1 https://static-content.springer.
com/esm/art%3A10.3758%
2Fs13428-015-0700-2/MediaObjects/
13428_2015_700_MOESM1_ESM.csv
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es2 https://static-content.springer.
com/esm/art%3A10.3758%
2Fs13428-017-0962-y/MediaObjects/
13428_2017_962_MOESM1_ESM.csv

de1 https://www.ewi-psy.fu-berlin.de/
einrichtungen/arbeitsbereiche/
allgpsy/Download/BAWL/index.html

de2 https://static-content.springer.
com/esm/art%3A10.3758%
2Fs13428-011-0059-y/MediaObjects/
13428_2011_59_MOESM1_ESM.xls

pl1 https://static-content.springer.
com/esm/art%3A10.3758%
2Fs13428-014-0552-1/MediaObjects/
13428_2014_552_MOESM1_ESM.xlsx

pl2 https://doi.org/10.1371/journal.pone.
0132305.s004

tr1 https://osf.io/rxtdm

tr2 https://osf.io/rxtdm

AFFT http://web.eecs.umich.edu/
~mihalcea/affectivetext/

EMOB https://github.com/JULIELab/
EmoBank

CVAT http://nlp.innobic.yzu.edu.tw/
resources/cvat.html

D.8 Details of Train-Dev-Test Splits
EMOB comes with a stratified split with ratios of
about 8-1-1 (exactly 8062 train, 1000 dev, 1000 test
samples). Since the samples of AFFT are mostly
also included in EMOB, we decided to use the data
split of the latter for the former, too. Samples of
AFFT that were not included in EMOB (about 5%
of the data) were removed before the experiments.
CVAT features a 5-fold data split but without as-
signing the resulting parts to train, dev, or test uti-
lization. We used the first three for training, the
fourth for development/validation, and the fifth for
testing.

The word datasets in Tab. 2 do not come with
a fixed data split. Instead, we defined splits our-
selves with ratios ranging between 3-1-1 to 8-1-1,
depending on the number of samples. Instances
were randomly assigned to train, dev, and test split
using fixed random seeds. The resulting partitions
were stored as JSON files and placed under version
control.
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