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 The classification of semantic segmentation-based unmanned aerial vehicle 

(UAV) application based on the datasets used in this work and the necessary 

data preprocessing steps for the optimization and implementation of the 

models are also involved. The optimization of the various models was done 

using the evaluation metrics and loss functions because deep neural 

networks (DNNs) are just about writing a cost function and its subsequent 

optimization. convolutional neural network (CNN) is a common type of 

artificial neural network (ANN) that has found application in numerous 

tasks, such as image and video recognition, image classification, 

recommender systems, financial time series, medical image analysis, and 

natural language processing. CNN is developed to automatically and 

adaptively learn spatial feature hierarchies via backpropagation using 

numerous building blocks, such as pooling, convolution, and fully connected 

layers. The result of identification was excellent. The image segmentation 

was detected and comprehend the actual components of an image down to 

the pixel level. The result created an entire image segmentation masks with 

instances using the new label editor in the label box.  
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1. INTRODUCTION 

These are models whose architecture is made up of layers arranged in stacks. The models of each 

stage learn a useful pattern by successively filtering the input data. Figure 1 depicts a basic 4-layer neural 

network for the classification of handwriting from the Modified National Institute of Standards and 

Technology (MNIST) dataset [1]. The four components of a system for training a neural network include:  

i) Layers; ii) Input data; iii) Loss function; and iv) Optimizer. 

Furthermore, neural networks are trained to identify the correct weight values that will specify the 

transformations to be performed on the incoming data [2]. Figure 2 depicts the network layers 

parameterization process. The setup of these weights is challenging to optimize for varied tasks because there 

can be millions of parameters that are interdependent. A loss function is utilized to generate a weight 

configuration because it measures the extent of performance of the layer representations from the network 

compared to the predicted output. The first stage of the backpropagation (BP) algorithm is the determination 

of the final loss value [3], followed by computation of each parameter’s contribution in the computed loss 

value from the top layer to the bottom layer [4]. The loss function derivative can be determined at a given 
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training point by identifying the required adjustments to minimize the loss and optimize the model to a given 

evaluation metric known as stochastic gradient descent [5], [6]. 

The Figure 3 shows the final representation of a neural network training loop. The weights are 

randomly initialized (using a random initializer) in this training loop, which results in a high loss score because 

the initial weights are likely unsuitable for capturing the data patterns in a usable manner. The network, on the 

other hand, adjusts its weights with each training batch and gradually improves until it has a small loss [7]. 
 

 

 
 

Figure 1. A neural network with four layers 
 
 

 
 

Figure 2. Weight values-based parameterization of DL layers 
 
 

 
 

Figure 3. Training loop for a neural network 
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2. METHOD 

2.1.  Dense layers 

Traditionally, densely linked layers, also known as completely connected layers [8], [9], have been 

used for datasets other than images, in which a form of connection exists between the neurons from one layer 

to the other. These dense layers [10], [11], on the other hand, can only learn patterns that fall within their 

input feature space, while each convolution filter is capable of learning patterns locally (kernel space or 

region of interest) [12]–[14]. This implies the possibility of fragmenting input images into edges and textures 

foreasy learning; they are also more useful for classification rather than global patterns [15]. 

 

2.2.  Convolutional neural networks (CNNs) 

CNNs are a sort of neural network that is largely utilized in deep learning (DL) for tasks in 

computer vision [16]–[18]. CNNs are similar to traditional neural networks, except that rather than generic 

matrix multiplication [19], [20], CNNs depend on a convolution kernel that is found in one or more of the 

CNN network layers [21], [22]. CNNs can be implemented using image tensors as input because they can 

extract the relevant image features for classification or differentiation, and then output classifications [23], 

[24]. CNNs have found wide application because they can use relevant filters to learn translation-invariant 

patterns and spatial hierarchies. Translation invariant patterns learning implies that the network can identify 

similar patterns wherever else in the image after learning it in one region. This ensures image processing 

efficiency owing to the need to learn just few training samples that can be generalized [25]. 

Spatial hierarchies show how the network's initial levels can learn few local patterns that can be 

generalized into larger patterns made up of these few patterns in the subsequent layers. This enhances the 

capability of the network to acquire abstract and complex visual concepts. It also allows these networks to 

produce predictions of greater accuracy rather than just vectorizing a complicated image with heavy reliance 

on pixels. To track these key properties and interactions between features, CNNs must be used in any image 

classification operation [26]. 

 

2.3.  Convolution 

Convolution is a procedure that combines two functions of a real-valued parameter to create a new 

function. Let w(a) represent the weighting function that prioritize recent measurements, s(t) represent the 

time-based output estimate function, and x(a) represent the time-based input position function. Based on 

these defined functions, the generic equation for convolution is shown in (1) and Figure 4 shows visual 

representation of dimensional convolution [27]. 

 

𝑠(𝑡)  =  ∫  𝑥(𝑎)𝑤(𝑡 −  𝑎)𝑑𝑎 (1) 

 

 

 
 

Figure 4. Visual representation of dimensional convolution 

 

 

The x(a) is the input function, w(a) is the kernel, and s(t) is the feature map in CNNs. In CNNs, 

convolutions are done on 2-D tensors made up of the input images' height, width, and color channels [28]. 

These operations take patches from the input and apply transformations to create a feature map with varying 
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depths as an output. The output feature map depth, which indicates the number of filters built by the layer 

and each of which can encode a different input data feature, is one of the two key criteria for creating these 

convolutions, coupled with the size of the extracted patches [29].  

The computation of 2D convolutions is done by moving a square window of defined width and 

height across all input feature map pixels. For images, the input feature map has three dimensions which are 

height, breadth, and color bands (corresponding to red, green, and blue). When these feature maps are 

subjected to 2D convolution, -2-D patches of the surrounding features are created. Then, these patches are 

turned into a 1-D vector that reflects the output depth using a convolution kernel. After that, the vectors are 

spatially reconstructed into a 2-D output map that corresponds to all the input map's locations. Figure 4 

depicts the process of this convolution [30].  

 
2.4.  Strides 

The stride of the convolution is a characteristic that can determine the size of the output in CNNs. 

Stride is a convolution operation parameter that specifies the distance between the derived patches from the 

input feature map. A stride of 2 implies that the output feature map's width and height are downsized by a 

factor of 2 without padding as shown in Figure 5 [31].  

 

 

 
 

Figure 5. Strides 

 

 
2.5.  Semantic segmentation 

Each pixel in an image is given a class label using the image classification approach known as 

semantic segmentation. For aerial imagery, semantic segmentation for use in a feature extractor is carried out 

to locate pertinent areas of an image that may point to invariance between seasons and times of the day. Even 

though fully convolutional networks (FCNs) can be used for this task, precise/accurate image segmentation 

and localizations learning necessitates a large amount of data. Due of the lengthy time required to manually 

label satellite images with many classifications, there are not many datasets with extensive pixel-by-pixel 

labels that are publicly available. Hence, FCNs and U-Nets are commonly employed in aerial imagery 

segmentation to address both issues [32]. 

 
2.6.  Fully convolutional networks (FCN) 

The advent of a variant of the CNN known as the FCN represents a big advancement in picture 

segmentation. The difference between FCN and the traditional CNN is that in the CNN, the completely 

linked terminal layers are transformed into convolution layers, resulting in the creation of a nonlinear filter 

for each output vector layer in the network. As a result, the completed network can function on inputs of any 

size and produce outputs with the same spatial dimensions. Hence, the classification network can generate a 

heatmap of the selected item class. The addition of layers and a spatial loss to the network results in an 

efficient scheme for end-to-end dense learning. Figure 6 depicts an example of this transformation [33]. 

FCNs are not only more flexible because they can take a variety of input image sizes, but they've 

also been shown to be more efficient for learning dense predictions thanks to in-network up-sampling. The 

FCN may also keep track of the input's spatial information, which is important for semantic segmentation 

because it requires both classification and localization. Although an FCN can accept any size input image, 

non-padded convolutions are used to decrease the output resolution. These were created to keep filter sizes 

modest and reduce the computational demands. The outcome is a coarse output with a size reduction equal to 

the pixel stride of the output units' receptive field [34], [35]. 
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Figure 6. FCN making dense predictions for per-pixel tasks such as semantic segmentation 

 

 

3. RESULTS AND DISCUSSION 

The unmanned aerial vehicle (UAV) system benefits from this model application especially with the 

limited resources of UAVs system. Fully autonomous UAVs need to understand their surrounding 

environments in detail. Always the surouding objects are in 3D while token pictures were shown in 2D which 

is critical for high-level decision-making. For example, always dorones need to understand their surrounding 

environment in real time; therefore, real-time semantic mapping is significant and worth exploring in this 

type of drone application. Such application and processes will be effective for most important factor of UAV 

which is the power resources, so semantic segmentation will reduce the time and used power to process video 

images or frames in order to reach a final decision [36]. 

 

 

4. CONCLUSION 

Using FCN has been shown to be not only more flexible as images can be obtained with different 

input sizes, but also more efficient as the network uses upsampling to learn dense predictions increase. The 

input's spatial information can also be preserved using FCN, especially for semantic segmentation 

applications. This task requires both classification and localization, hence, any image size can be used as an 

input with FCN, even though the output resolution is negatively impacted by convolution without padding. 

Hence, these were introduced as a way of reducing the computational demands and filter sizes. The result is a 

coarse output that is reduced in size by a factor equivalent to the pixel pitch of the incoming field of the 

output unit. 
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