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Abstract. Demand upon the future Air Traffic Management (ATM)
systems is expected to grow to possibly exceed available system capacity,
pushing forward the need for automation and digitisation to maintain
safety while increasing efficiency. This work focuses on a manifestation
of ATM safety, the Loss of Separation (LoS), exploiting safety reports
and ATM-system data (e.g., flights information, radar tracks, and Air
Traffic Control events).
Current research on Data-Driven Models (DDMs) is rarely able to sup-
port safety practitioners in the process of investigation of an incident
after it happened. Furthermore, integration between different sources of
data (i.e., free-text reports and structured ATM data) is almost never
exploited.
To fill these gaps, the authors propose (i) to automatically extract in-
formation from Safety Reports and (ii) to develop a DDM able to au-
tomatically assess if the Pilots or the Air Traffic Controller (ATCo) or
both contributed to the incident, as soon as the LoS happens.
The LoSs’ reported in the public database of the Comisión de Estudio y
Análisis de Notificaciones de Incidentes de Tránsito Aéreo (CEANITA)
support the authors’ proposal.
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1 Introduction

In the last decades, air transportation has seen a considerable increase in de-
mand, and pressure over Air Traffic Management (ATM) system is predicted to
grow to possibly exceed the currently available system capacity [21]. The Single
European Sky ATM Masterplan [22] defines the modernisation of the European
ATM system as a crucial process to maintain safety while increasing efficiency. A
cornerstone of the Masterplan is to further deploy automation and digitisation
tools, leading to an integration of human and technical systems [16].

This work is framed within the context of H2020 FARO project - saFety And
Resilience guidelines for aviatiOn - which focuses on a manifestation of ATM
safety, the loss of separation (LoS). There are two main sources of data which
can inform about what happened during a LoS:
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– the Safety Reports produced by states’ Civil Aviation Authorities and ANSPs
after investigating the safety-related events;

– the Automatic Safety Monitoring Tools (ASMTs), which allow the monitor-
ing and recording of safety-related events. These tools are usually augmented
with ATM system data, which gather surveillance (e.g., flight tracks) and
operational data (e.g., ATC events) [4].

In particular, thanks to the new ASMTs, there are a number of safety-related
occurrences - previously unnoticed by the old systems - which can now be iden-
tified. As a consequence, probably many more LoSs will need to be investigated
and studied in the future. Since human review of incidents is an extensive pro-
cess, the objective of this work is to provide the ability to partially estimate the
results of these investigations timely (i.e., a few minutes after the LoS). This
would facilitate the safety practitioners in prioritising the investigations and in
understanding potential precursors of these LoS events.

To reach this objective, it is vital to connect the historical information in-
cluded in the reports with the one contained in the structured data. Manual
analysis of safety reports is complex and requires considerable resources, so the
approach proposed in this work is twofold:

– First, a simple mining of free-text safety reports is implemented, with the
purpose of identifying the information needed to connect reports to struc-
tured data;

– Then, an Automatic Contribution Assessment model was developed, able to
leverage data to assess if the Pilots or the Air Traffic Controller (ATCo) or
both contributed directly to the incident, almost immediately after the LoS
and before investigation.

The LoS events considered in this study are those reported in the public database
of the Comisión de Estudio y Análisis de Notificaciones de Incidentes de Tránsito
Aéreo (CEANITA).

The exploitation of Data-Driven Models (DDMs) in the ATM domain is quite
extensive. Indeed, research has focused on a number of different fields, such
as taxi-out time prediction [12, 17], trajectory prediction [1, 25], air traffic flow
extraction [6, 26], and flight delay prediction [5, 24]. In the safety domain, some
relevant applications of DDMs are proposed in literature to predict safety events
or performance [7,19], or to provide safety metrics [2] or accident precursors [13].
However, there are very few references aiming at supporting safety practitioners
in facilitating the investigation of an incident after it happened but before it is
reported [18]. To the best of the authors’ knowledge, the approach proposed in
this work is a pioneering one in this field.

2 Scope of the work

The scope of this work is to develop an Automatic Contribution Assessment
model able to leverage ATM-system data to assess whether the Pilots or the
ATCos or both contributed to the incident. The model was able to assess contri-
bution well before (i.e., 10 minutes after the incident) human evaluation (usually
concluded even weeks after the incident).



Data-Driven Methods for Aviation Safety 3

3 Data Description

Two different data sources were exploited in this study: the CEANITA reports
(see Section 3.1) and the structured data from ENAIRE-CRIDA data warehouse,
containing contextual information about the LoSs together with ATC events (see
Section 3.2).

3.1 CEANITA LoS reports

The considered CEANITA LoS reports consist of 70 safety reports, written in
Spanish and published by Spanish Safety Aviation Agency (AESA), which is the
Spanish Civil Aviation Authority, under the commission of CEANITA, covering
safety-related occurrences in the Spanish airspace between January 2018 and
July 2019.

Each report is written as a free text and contains the following information:

– Initial situation: the initial location and condition of the aircraft involved in
the LoS is described with text and images.

– Communications and radar tracks: the communications of interest between
ATCos and pilots.

– Conclusions: the dynamic of the LoS based on the main actions performed
by the involved human actors, the main causes, and Pilots and ATCo con-
tribution (classified as direct, indirect or none).

3.2 ENAIRE-CRIDA Contextual Information

The structured contextual information was provided by ENAIRE-CRIDA. In
particular, they provided high-granularity ATM data such as flight plans, flight
tracks, and ATM-processed information about the Spanish airspace. More pre-
cisely, two main sources were exploited:

– flight tracks and related contextual flight information (e.g., type, speed, and
heading) and

– ATC events of the interactions between ATCos and the Controller Working
Position (CWP).

The complete list of features used in this work can be seen in Figure 1.

4 Methods

This section presents the methods and tools exploited to achieve the scope of
the work (see Section 2) leveraging the data described in Section 3. Data-driven
predictive models are able to learn relations between inputs (e.g., ATC events)
and outputs (e.g., incident direct contribution) based on a series of examples
(i.e., historical data).

In this work, the main model exploited is Random Forests [3], a state-of-the-
art solution in the field of Shallow Machine Learning algorithms. Even if, cur-
rently, Deep Learning approaches [9] were shown to outperform Shallow Learning
models in many tasks, they require a huge amount of data to be trained, which
was not available for this research.

https://www.seguridadaerea.gob.es/es/ambitos/gestion-de-la-seguridad-operacional/ceanita#Informes%20Definitivos
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Random Forests are one of the most effective approaches in the family of
ensemble methods. It is a tree-based ensemble algorithm, combining bagging
to random-subset feature selection. In bagging, each tree is independently con-
structed using a bootstrap sample of the dataset. Random Forests add a further
layer of randomness to bagging, also changing how trees are constructed (the
best split at each node of the tree is chosen among a subset of predictors ran-
domly sampled at that node). Eventually, a simple majority vote is taken for
prediction. Random Forests, while being not too influenced by their hyperpa-
rameters [15], still require to tune the number of trees (since the more trees
the more accurate the model is, this number is chosen by trading off accuracy
and computational complexity), and the number of predictors to be randomly
sampled during trees construction.

So, as just described, the data-driven predictive models need to be tuned
(by finding the optimal hyperparameters); however, at the same time, their per-
formance needs to be estimated in a rigorous statistical way, in order to es-
timate their behaviour in production environment. Model Selection and Error
Estimation deal exactly with this problem [14]. Resampling techniques like k-fold
cross validation and non-parametric bootstrap are commonly exploited solutions,
which work well in many situations [14]. These techniques rely on a simple idea:
the original dataset is re-sampled once or more, without replacement, to build
three independent datasets called learning, validation, and test set. The learning
set is exploited to train the model. The validation set is exploited to find the op-
timal hyperparameters (namely the ones that lead to the optimal performance).
The test set is exploited to estimate the performance of the final model (in this
way, the test is independent from both the learning and the validation, so results
are statically sound and no data snooping is allowed [27]). Performance measures
strongly depend on the task to be solved. In this case, dealing with classification
problems (see Section 5), Accuracy, Confusion Matrix, Area Under the Receiv-
ing Operating Characteristics (AUC), F1 score, Sensitivity, and Specificity are
the most commonly used metrics [23].

Once the model is built and has been confirmed to be sufficiently effective,
it can be of interest to investigate how this model is affected by the different
input features [10, 11]. This procedure is called Feature Ranking and allows the
user to detect if the features are appropriately taken into account by the learned
models, according to their relevance from the perspective of the domain experts.
In particular, Feature Ranking based on Random Forest via Mean Decrease in
Accuracy (i.e., the importance of each feature is assessed by randomly permuting
the values of the feature and measuring the resulting increase in error) is one of
the most effective techniques [8, 20].

5 Experimental Results

This section shows how the methods presented in Section 4 were exploited
to achieve the scope of the work (see Section 2) demonstrating the effective-
ness of the proposed approach on the data described in Section 3. Specifically,
Section 5.1 presents the results of automatic information extraction from the
CEANITA reports (necessary to connect them with the relative structured data),
while Section 5.2 reports the performance of the data-driven model in estimating
who directly contributed to the incident before the actual human evaluation.
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5.1 Automatic information extraction from free text

The information extraction from CEANITA reports was an ancillary process
aimed at retrieving two sets of features:

– The features necessary to connect each (anonymised) report with the relative
structured data: date, time, and position.

– The contribution of Pilots and ATCo, classified as direct or none in both
cases - please note that both Pilots and ATCo may have directly contributed
to the incident. In particular, contribution was assessed as direct in the 36%
of cases for Pilots and in the 72% of cases for ATCo’s.

This task was performed through a rule-based procedure, based on the auto-
mated search of keywords, characters, and punctuation signs. The connection
with the ENAIRE-CRIDA data was successful and enabled the subsequent de-
velopment of the Automatic Contribution Assessment.

5.2 Automatic Contribution Assessment

After the preliminary extraction of information (Section 5.1), a DDM was ex-
ploited to assess agents’ contribution before (i.e., 10 minutes after the incident)
human evaluation (which is a post-operation activity) based on the automatic
analysis of ATC events and other contextual data (i.e., radar tracks of the air-
craft and flight information). Furthermore, the analysis shows that this predictive
model actually captured meaningful relations and not just spurious correlations
from the data (see Section 4).

Specifically, for each incident, the goal was to predict:

– the Pilots’ contribution, i.e., classified as direct or not and
– the ATCo’s contribution, i.e., classified as direct or not.

The prediction was based on a total of 19 features covering:

– the flight type,
– the flight rule at the moment of the incident,
– the flight level at the moment of the incident,
– the airspace class at the moment of the incident, and
– for each of the 15 classes of ATC events recorded from 30 minutes before

to 10 minutes after the incident, their number of occurrences. Considering
this time window is fundamental since the contributions of ATCo and Pilots
depend both on what was done to prevent the potential LoS and on how it
was managed when it became an actual LoS;

Different white-box and grey-box models were tested on this problem (i.e.,
Decision Trees, Logistic Regression, and Random Forests). The choice of not
testing black-box models was due to the necessity of identifying, at least partially,
the underlying process, in order to provide safety practitioners with potential
precursors and to verify how the model is affected by the different features. In
the end, a Random Forest model was selected (see Section 4), as it was proven
to outperform the other ones.

The model was trained on the 70 incidents for which recorded ATC events
were available (the number of trees was set to 1000 and the number of predictors
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to be randomly sampled during trees construction was searched in {5, 6, 7, 8, 9}
according to what was described in Section 4). Random Forests facilitate the
generation of different optimal models changing the cut-off of the voting (i.e.,
how many trees need to agree to decide for a particular class). By doing so, it
was possible to report different models, maximising respectively: the AUC, the
F1 score, the Sensitivity, and the Specificity. Moreover, Random Forests provide
the confidence of the prediction: this allows the user to trust the model only
when its confidence is higher than a certain threshold.

Table 1 reports the confusion matrices of the developed predictive models
(maximising AUC, F1 score, Sensitivity, and Specificity) for both ATCos’ and
Pilots’ contributions.

Table 2, instead, reports the confusion matrices of the predictive models
(maximising the AUC, since they appeared to be the most balanced ones) when
predictions are considered only if their confidence is higher than 60% and 75%.

Table 1 shows that:
– When the AUC is maximised (i.e., assuming the user wants a balanced ac-

curacy on both “Yes” and “No” classes), accuracy reaches ≈75% for Pilots
contribution and ≈81% for ATCo; F1 score is ≈70% for Pilots and ≈86%
for ATCo.

– When the F1 score is maximised (i.e.,assuming the user wants to maximise
the accuracy for the “Yes” class without too many false positives), accuracy
reaches ≈73% for Pilots contribution and ≈85% for ATCo; F1 score is ≈70%
for Pilots and ≈91% for ATCo.

– When the Sensitivity is maximised, (i.e., assuming the user wants to be as
sure as possible that if the Pilots/ATCo contribute to the LoS the algorithm
classifies it as “Yes”) the level of sensitivity reached is ≈100% for Pilots,
with ≈70% of accuracy, and ≈98% for ATCo, with ≈85% of accuracy; F1
score is ≈70% for Pilots and ≈91% for ATCos.

– When the Specificity is maximised (i.e., assuming the user wants to be as
sure as possible that if the Pilots/ATCo are not responsible, the algorithm
classifies it as “No”) the level of specificity reached is ≈100% for Pilots,
with ≈80% of accuracy, and ≈96% for ATCo, at the price of a low accuracy,
≈54%. F1 score is ≈60% for Pilots and ≈56% for ATCos.

Furthermore, Table 2 shows that:

– When just predictions with confidence ≥75% are considered, the accuracy
reaches ≈97% for Pilots contribution and ≈94% for ATCo. With this thresh-
old, only 43% of the predictions are trusted when assessing Pilots contribu-
tion and 44% when considering the ATCo.

– When, instead, the accepted confidence level is decreased from 75% to 60%,
the accuracy reaches ≈86% for both Pilots and ACTo contributions. With
this new confidence level, 62% of observations are classified when assessing
Pilots contribution and 70% when considering ATCo.

Finally, the ranking of the features (see Section 4) produced by the Ran-
dom Forest algorithm is presented in Figure 1 to better understand what the
predictive model actually learned from the data.

Figure 1 allows us to observe that, based on the experience of the domain
experts, the models learned correctly the importance of features related to the
separation responsibility, such as the Flight type, the Flight rules, or the Airspace
Class. In addition, the models learned correctly the relevance of interactions
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Table 1: Confusion matrices of the developed predictive models of contribution
based on the ATC events (maximising AUC, F1 score, Sensitivity, and Speci-
ficity) for both ATCo and Pilots contributions.

(a) Pilots Contribution
(Maximising AUC)

Pred.

No Yes

T
ru

th No 46.0±0.3 18.3±0.3

Yes 6.9±0.3 28.8±0.3

(b) ATCo Contribution
(Maximising AUC)

Pred.

No Yes

T
ru

th No 20.8±0.3 4.9±0.3

Yes 14.1±0.3 60.2±0.3

(c) Pilots Contribution
(Maximising F1 score)

Pred.

No Yes

T
ru

th No 41.7±0.3 22.6±0.3

Yes 4.0±0.3 31.7±0.3

(d) ATCo Contribution
(Maximising F1 score)

Pred.

No Yes
T
ru

th No 12.1±0.3 13.6±0.3

Yes 1.6±0.3 72.7±0.3

(e) Pilots Contribution
(Maximising Sensitivity)

Pred.

No Yes

T
ru

th No 33.9±0.3 30.4±0.3

Yes 0.1±0.2 35.6±0.2

(f) ATCo Contribution
(Maximising Sensitivity)

Pred.

No Yes

T
ru

th No 11.9±0.3 13.8±0.3

Yes 1.4±0.2 72.9±0.2

(g) Pilots Contribution
(Maximising Specificity)

Pred.

No Yes

T
ru

th No 64.3±0.0 0.0±0.0

Yes 20.3±0.2 15.4±0.2

(h) ATCo Contribution
(Maximising Specificity)

Pred.

No Yes

T
ru

th No 24.9±0.2 0.8±0.2

Yes 45.2±0.3 29.1±0.3

between the ATC and the CWP, such as Radar Contact, ETO Over Fix or Action
on Flight Level, in order to identify ATM contributions. These are promising
results as the model presents room for improvement, such as the inclusion of
more surveillance information or operational indicators such as traffic load.
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Table 2: Confusion matrices of the developed predictive models based on the
ATC events (maximising AUC) for both ATCo and Pilots contributions when
predictions are trusted only if their confidence is higher than 60% and 75%.

(a) Pilots contribution
(Confidence ≥60%)

Pred.

No Yes

T
ru

th No 58.1±0.3 9.3±0.3

Yes 4.7±0.3 27.9±0.3

(b) ATCo contribution
(Confidence ≥60%)

Pred.

No Yes

T
ru

th No 20.4±0.3 6.1±0.3

Yes 8.2±0.3 65.3±0.3

(c) Pilots contribution
(Confidence ≥75%)

Pred.

No Yes

T
ru

th No 60.0±0.0 00.0±0.0

Yes 3.3±0.1 36.7±0.1

(d) ATCo contribution
(Confidence ≥75%)

Pred.

No Yes

T
ru

th No 29.0±0.1 3.2±0.1

Yes 3.2±0.2 64.6±0.2

Free Frequency

Radar Restriction on Heading or Speed

Undo Authorisation

Cancel Notice of Transference

Authorise Level

Aircraft Transference Notice

Request to Abandon Hold

Modification of Manual Message on Label

Local Modification of FP

Flight Level Validation

CFL Reached

Action on Flight Level

Assume Communications

Radar Contact

Airspace class

Flight level

ETO over FIX

Flight rule

Flight type

0 5 10 15

Importance

V
ar

ia
b

le

Fig. 1: Average variable importance ranking of the models (metric: mean de-
crease in accuracy).
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6 Conclusions

The objective of this work was to facilitate the automatic extraction of mean-
ingful and actionable information from LoS reports and to investigate how the
information recorded by the systems can help estimating contribution assess-
ment. For this purpose, the authors proposed a twofold approach based on (i)
an automatic extraction of quantitative features from free text and (ii) an auto-
matic contribution assessment model based solely on the information recorded
by the systems and available a few minutes after the ASMTs’ identification of
the LoS. The approach was tested on the LoSs reported in the CEANITA public
database and the related ATC events.

Different performance metrics were considered to evaluate the validity of the
result. In particular, the results show that when only high-confidence predictions
are considered, the model output reaches approximately 97% of accuracy for
pilots’ contribution and 94% for ATCo.

Future work could validate these techniques on other databases of reports
(e.g., UKAB AirProx Board, NTSF Board, etc.). Moreover, integrating other
sources of structured data (e.g., about weather phenomena, STCA or TCAS
activation, or traffic load) to develop richer models could lead to further insights
in the estimation of contributors and precursors.
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