
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/354264727

A Low-Code Development Environment to Orchestrate Model Management

Services

Chapter · August 2021

DOI: 10.1007/978-3-030-85874-2_36

CITATIONS

3
READS

215

3 authors:

Some of the authors of this publication are also working on these related projects:

Collaborative MDSE View project

CROSSMINER: Developer-Centric Knowledge Mining from Large Open-Source Software Repositories View project

Arsene Indamutsa

Università degli Studi dell'Aquila

4 PUBLICATIONS 95 CITATIONS

SEE PROFILE

Davide Di Ruscio

Università degli Studi dell'Aquila

214 PUBLICATIONS 3,148 CITATIONS

SEE PROFILE

Alfonso Pierantonio

Università degli Studi dell'Aquila

199 PUBLICATIONS 3,065 CITATIONS

SEE PROFILE

All content following this page was uploaded by Arsene Indamutsa on 29 September 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/354264727_A_Low-Code_Development_Environment_to_Orchestrate_Model_Management_Services?enrichId=rgreq-d4eb30547c2e9f734e2c18b2065c4c4a-XXX&enrichSource=Y292ZXJQYWdlOzM1NDI2NDcyNztBUzoxMDczMjkyMTYxMDg1NDQyQDE2MzI5MDQyMDA1NTE%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/354264727_A_Low-Code_Development_Environment_to_Orchestrate_Model_Management_Services?enrichId=rgreq-d4eb30547c2e9f734e2c18b2065c4c4a-XXX&enrichSource=Y292ZXJQYWdlOzM1NDI2NDcyNztBUzoxMDczMjkyMTYxMDg1NDQyQDE2MzI5MDQyMDA1NTE%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Collaborative-MDSE?enrichId=rgreq-d4eb30547c2e9f734e2c18b2065c4c4a-XXX&enrichSource=Y292ZXJQYWdlOzM1NDI2NDcyNztBUzoxMDczMjkyMTYxMDg1NDQyQDE2MzI5MDQyMDA1NTE%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/CROSSMINER-Developer-Centric-Knowledge-Mining-from-Large-Open-Source-Software-Repositories?enrichId=rgreq-d4eb30547c2e9f734e2c18b2065c4c4a-XXX&enrichSource=Y292ZXJQYWdlOzM1NDI2NDcyNztBUzoxMDczMjkyMTYxMDg1NDQyQDE2MzI5MDQyMDA1NTE%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-d4eb30547c2e9f734e2c18b2065c4c4a-XXX&enrichSource=Y292ZXJQYWdlOzM1NDI2NDcyNztBUzoxMDczMjkyMTYxMDg1NDQyQDE2MzI5MDQyMDA1NTE%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arsene-Indamutsa?enrichId=rgreq-d4eb30547c2e9f734e2c18b2065c4c4a-XXX&enrichSource=Y292ZXJQYWdlOzM1NDI2NDcyNztBUzoxMDczMjkyMTYxMDg1NDQyQDE2MzI5MDQyMDA1NTE%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arsene-Indamutsa?enrichId=rgreq-d4eb30547c2e9f734e2c18b2065c4c4a-XXX&enrichSource=Y292ZXJQYWdlOzM1NDI2NDcyNztBUzoxMDczMjkyMTYxMDg1NDQyQDE2MzI5MDQyMDA1NTE%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita_degli_Studi_dellAquila?enrichId=rgreq-d4eb30547c2e9f734e2c18b2065c4c4a-XXX&enrichSource=Y292ZXJQYWdlOzM1NDI2NDcyNztBUzoxMDczMjkyMTYxMDg1NDQyQDE2MzI5MDQyMDA1NTE%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arsene-Indamutsa?enrichId=rgreq-d4eb30547c2e9f734e2c18b2065c4c4a-XXX&enrichSource=Y292ZXJQYWdlOzM1NDI2NDcyNztBUzoxMDczMjkyMTYxMDg1NDQyQDE2MzI5MDQyMDA1NTE%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Davide-Di-Ruscio?enrichId=rgreq-d4eb30547c2e9f734e2c18b2065c4c4a-XXX&enrichSource=Y292ZXJQYWdlOzM1NDI2NDcyNztBUzoxMDczMjkyMTYxMDg1NDQyQDE2MzI5MDQyMDA1NTE%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Davide-Di-Ruscio?enrichId=rgreq-d4eb30547c2e9f734e2c18b2065c4c4a-XXX&enrichSource=Y292ZXJQYWdlOzM1NDI2NDcyNztBUzoxMDczMjkyMTYxMDg1NDQyQDE2MzI5MDQyMDA1NTE%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita_degli_Studi_dellAquila?enrichId=rgreq-d4eb30547c2e9f734e2c18b2065c4c4a-XXX&enrichSource=Y292ZXJQYWdlOzM1NDI2NDcyNztBUzoxMDczMjkyMTYxMDg1NDQyQDE2MzI5MDQyMDA1NTE%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Davide-Di-Ruscio?enrichId=rgreq-d4eb30547c2e9f734e2c18b2065c4c4a-XXX&enrichSource=Y292ZXJQYWdlOzM1NDI2NDcyNztBUzoxMDczMjkyMTYxMDg1NDQyQDE2MzI5MDQyMDA1NTE%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alfonso-Pierantonio?enrichId=rgreq-d4eb30547c2e9f734e2c18b2065c4c4a-XXX&enrichSource=Y292ZXJQYWdlOzM1NDI2NDcyNztBUzoxMDczMjkyMTYxMDg1NDQyQDE2MzI5MDQyMDA1NTE%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alfonso-Pierantonio?enrichId=rgreq-d4eb30547c2e9f734e2c18b2065c4c4a-XXX&enrichSource=Y292ZXJQYWdlOzM1NDI2NDcyNztBUzoxMDczMjkyMTYxMDg1NDQyQDE2MzI5MDQyMDA1NTE%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita_degli_Studi_dellAquila?enrichId=rgreq-d4eb30547c2e9f734e2c18b2065c4c4a-XXX&enrichSource=Y292ZXJQYWdlOzM1NDI2NDcyNztBUzoxMDczMjkyMTYxMDg1NDQyQDE2MzI5MDQyMDA1NTE%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alfonso-Pierantonio?enrichId=rgreq-d4eb30547c2e9f734e2c18b2065c4c4a-XXX&enrichSource=Y292ZXJQYWdlOzM1NDI2NDcyNztBUzoxMDczMjkyMTYxMDg1NDQyQDE2MzI5MDQyMDA1NTE%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arsene-Indamutsa?enrichId=rgreq-d4eb30547c2e9f734e2c18b2065c4c4a-XXX&enrichSource=Y292ZXJQYWdlOzM1NDI2NDcyNztBUzoxMDczMjkyMTYxMDg1NDQyQDE2MzI5MDQyMDA1NTE%3D&el=1_x_10&_esc=publicationCoverPdf

A Low-Code Development Environment to
Orchestrate Model Management Services?

Arsene Indamutsa, Davide Di Ruscio, and Alfonso Pierantonio

Università degli Studi dell’Aquila, Italy
{firstname,lastname}@univaq.it

Abstract. The current digital transformation in production systems
has positioned model-driven engineering (MDE) as a promising devel-
opment solution to leverage models as first-class entities and support
complex systems’ development through dedicated abstractions. Models
are specified through domain-specific languages and consumed by ded-
icated model management services, which implement automation and
analysis services. Achieving complex model-driven tasks that involve sev-
eral model management services and multiple model repositories can be
a difficult and error-prone task. For instance, modelers have to identify
the proper atomic operations among available services, connect to re-
mote model repositories, and figure out their composition to satisfy the
final goal. Different composition proposals have been introduced in MDE
even though a satisfactory solution is still missing. In this paper, we pro-
pose a low-code development environment to support citizen developers
to plan, organize, specify and execute model-management workflows un-
derpinning the development of complex systems. Thus, developers are
relieved from managing low-level details, e.g., related to the discovery,
orchestration, and integration of the needed model management services.

Keywords: Production System Development · Low-code Development
Platform · Domain Specific Language · Cloud-based Model Repository ·
Workflow Engine

1 Introduction

Production systems are highly interwoven systems that span through different
engineering fields such as mechanical, electrical, network, software engineering,
and control systems [21]. Such a synergistic integration introduce additional
complexities due to the management of cross-disciplinary methods and the inte-
gration of heterogeneous artifacts together with their supporting tools. Model-
Driven Engineering (MDE) is a software discipline that leverages the adoption
of models to support the understanding and the engineering of large, complex,
and interdisciplinary systems, such as production systems while minimizing their

? This work is funded by the European Union’s Horizon 2020 research and innovation
programme under the Marie Sk lodowska-Curie – ITN grant agreement No 813884

2 A. Indamutsa et al.

complexity through the systematic adoption of abstractions [3]. Models are speci-
fied through graphical or textual domain-specific languages, and dedicated model
management services consume them, e.g., to perform early analysis or automat-
ically generate target software artifacts [2].

To foster reusability of modeling artifacts, and to support collaboration
among modelers and developers [8], over the last decade, several model repos-
itories have been proposed by the MDE community [2]. Thus, specific system
models, and developed model management tools are made available in some
of the existing repositories to promote their reuse during the development of
new systems. However, in such contexts, model-based development of complex
software systems requires the definition of different processes, consisting of the
coordinated composition of different tools and the usage of various languages.
Thus, developers must discover from available repositories the needed modeling
tools and related model management services and work on their composition to
develop the wanted system. The current main challenges that make the compo-
sition of model management operations a strenuous activity are the following:

– Current composition tools mainly deal with locally available resources;
– Composition mechanisms like ANT tasks are specific for the particular ecosys-

tem at hand (e.g., Epsilon1);
– The development of complex engineering processes require technical exper-

tise that citizen developers (i.e., domain experts with limited programming
skills) might not necessarily have, though deemed to be aware of involved
services.

In this paper, we propose the adoption of a low-code development platform
(LCDP) to develop complex model management processes. LCDPs provide in-
tuitive visual environments to citizen developers to build fully operational ap-
plications, which do not require a strong programming background [14]. The
considered context is characterized by atomic model management operations
provided as services by (potentially) different providers. The envisioned LCDP
supports the discovery and the orchestration of the services needed to develop
the wanted composed process. The objective is to develop an event-driven ap-
proach based on trigger-action programming as done by LCDPs like IFTTT and
Zapier among popular services [20]. In such platforms, users can connect various
independent services, organize and customize them in a specific flow to achieve
their goal [13]. Similarly to such services, the proposed platform will support
high-level abstraction and automation to compose model management services
provided by different repositories. The current work is under development, and
its code repository is publicly available online.2

The paper is organized as follows: Section 2 presents the background and mo-
tivation of this work. Section 3 presents the proposed approach. The related work
is discussed in Section 4, whereas Section 5 concludes the paper and describe
prospective work.

1 https://www.eclipse.org/epsilon/doc/workflow/
2 https://github.com/Indamutsa/model-management-services.git

3

2 Background and motivation

The digital transformation undergoing traditional production systems heavily
impacts product types’ variability, and customization possibilities during their
life cycles [22, 19]. Significant efforts and investments are required to imple-
ment and maintain complex production systems, limiting their acquisition by
small and medium-sized enterprises (SMEs) [21]. Such systems’ complexity is
amplified when relying on the use of code-centric approaches that have proven
daunting due to the arduous effort involved in programming, customization, and
integration of complex heterogeneous systems coming from different engineering
domains and processes [5].

This complexity sparked the need for flexible approaches that adapt to sys-
tems behaviour regarding the ever-changing requirements, structural transfor-
mations, and unexpected conditions [19]. To develop production systems and
cyber-physical systems in general, MDE promotes the adoption of models as
machine-readable and processable abstractions specified employing dedicated
languages such as System Modeling Language (SysML).3 Dedicated tools are
employed to support development and analysis tasks, to integrate engineering
processes and stakeholders’ perspectives, and they also foster information ex-
change during different engineering process [3].

To simplify the development of complex systems, trigger-action program-
ming paradigms can be employed to facilitate automation and abstraction. Such
a paradigm is employed, for instance, in the Internet of Things (IoT) domain to
develop applications in smart home management, agriculture, e-health, indus-
trial automation, and robotics [15]. Systems like IFTTT, and Zapier are exam-
ples of LCDPs that facilitate business automation processes by giving users the
means to specify processes [13]. In particular, they permit the creation of new
services known as recipes out of custom chaining of services based on conditional
statements [20]. For instance, a user can like a particular post on Facebook and
automatically archive it on a corresponding storage in the cloud [11].

In [4] authors propose the Modeling as a Service (MaaS) initiative as an ap-
proach to deploy and execute model-driven services over the Internet. In such a
direction, over the last years, several model repositories have been proposed to
promote the reuse of modeling artifacts and to enable their remote execution on
demand as services. For instance, in [2] authors propose MDEForge as a plat-
form to enable the remote application of different services like model validation,
transformation, and analytics. The composition of model management services
is under the complete responsibility of developers that, e.g., have to define the
programmatic orchestration of the services of interest and the ways data have
to be produced and consumed.

By relying on the concepts and tools previously mentioned in a model-driven
engineering setting, we aim at developing complex model management composed
operations by specifying custom workflows. We leverage trigger-action paradigm

3 https://sysml.org/

4 A. Indamutsa et al.

so that based on particular events (e.g., when you upload your model on a given
repository), corresponding actions will be executed. For instance, some analytics
are performed on the uploaded model depending on some condition. Then, if the
performed analytics produce higher values than a certain threshold, some model
transformations are executed, and the produced models are saved to enable the
application of additional manipulations.

3 Proposed low-code development environment

In this section we describe the proposed low-code development environment.
The front-end of the proposed platform is presented in Section 3.1. The core
services of the platform are presented in Section 3.2 and its related limitations
are mentioned in Section 3.3

3.1 Environment front-end

Figure 1 shows a mock-up of the proposed environment providing users with
the ability to create and automate workflows on cloud-based repositories using
graphical environments with drag and drop capabilities, and custom scripting
by the use of a domain specific language as referred to in figure 3. The custom
scripting is enabled by an editor where the user can programmatically express
complex expressions of the workflow. The services and extensions on the reposi-
tories are organized in decoupled and distributed microservices to emphasize the
separation of concerns and foster individual service maintainability, scalability,
and extensibility [16].

According to the explanatory workflow shown in Fig. 1, the citizen developer
might want to upload a Performance Model Interchange Format (PIMF) model
[10] and generate a corresponding SySML model out of it. Then, she can validate
the model, calculate dedicated metrics, extract some metadata, and once done,
merge the obtained information into another SySML model. The obtained model
can be stored in the repository, and the user can be notified together with the
complete execution logs. The services used in the above scenario are remotely ac-
cessed as services through APIs, and the storage systems are distributed services
consisting of several network nodes.

Developing and execute model management workflows like the one shown
in Fig. 1 without proper support can be time and resource consuming, labori-
ous, hard to maintain and error-prone. The proposed approach aims at enabling
citizen developers to create and automate workflows based on selected model
management services using a graphical environment with drag and drop capa-
bilities. The proposed environment is based on the metamodel shown in Fig. 2.
According to the shown metamodel fragment, workflows consists of nodes, which
are an abstract representation of activities referred to as actions and decisions.
Several events can trigger activities, and the node can receive different types of
inputs, such as modeling artefacts and variables. Events of interest and their

5

Available services

- Validation
- Transformation
- Remote model calculation
- Automated clustering
- Recommendation
- Notification
- Search
- Data mining
- Analytics

Service operations

- Change operation
- Commit
- Delete
- Retrieve
- Rollback operation

Microflow operators

- Parameter
- Conditional (Decision)
- Loop
- Annotate

Event

- Start event
- End event
- Error event
- Continue event
- Break event

Integration activities

- Call REST service
- Call web service

Client activities

- Close microflow
- Download file
- Show message
- Validation feedback
- Log message

Retrieve PIMF model

Validate
(PIMF model)Input Output

Transform
(PIMF -->

 SysML model)
Input Output

Perform model
metrics calculations If Threshold Message

Classify the model Data mining Save the model

Save metadata Notify by email

Run Stop

False

True

Start event

End event

End event

Fig. 1. Example mock-up of graphical task workflow environment

sources are defined as seen in Fig 1, and they result from different providers that
trigger specific actions as instructed. Nodes represent decoupled, and indepen-
dent microservices orchestrated when the specified workflow is executed.

3.2 Core services

Figure 3 shows a logical view of the system and the corresponding stakeholders,
notably two prominent actors involved, i.e., citizen developers and software engi-
neers. The former can specify task workflows through the provided environment,
whereas the latter can extend the repository services by adding new functionali-
ties. The typical user (citizen developer) can access the repository, select services
to automate, configure triggers and actions, and authorize task workflows. Inter-
estingly, advanced support is provided to recommend modeling elements while
editing workflows, and analyse, test, and deploy models by means of a dedicated
DevOps support. Such support is provided by the workflow definition and anal-
ysis component. The service integration component ensures seamless integration
of external and internal services. Once the modeled workflow is ready, the incom-
ing model (task workflow) encoded in format such as xml/json, is transformed
and executed by the engine. Mining and analysis services are performed before
the model is persisted with the help of MDEForge [2]. Hence a backup is per-
formed to facilitate data and service recovery, and rollbacks in case program
execution encounters an impediment.

The user has control over the use of her task workflow, configuration, and
termination. The developer can do whatever the user can do, but also, she can
register services, establish connectors, and define triggers and actions related to
the added service. The task workflow expressed as models are managed by an

6 A. Indamutsa et al.

Fig. 2. Fragment of the proposed workflow metamodel

engine and persisted as models by MDEForge, a cloud-based model repository,
[2] to ensure their management and reusability. The engine has dedicated compo-
nents that ensure the security, privacy integrity of services and data from several
data sources. The engine benefits from inherent services from MDEForge such
as recommendation system, quality assurance, service integrator, data mining
and analytics as seen in Figure 3.

Use case I

Citizen developer

Use case II

Software engineer

Workflow LCDP:
- Drag and drop visual editor
- Domain specific language

Workflow definition analysis

Model test
workbench

Requirement editor

Requirement engineering
specification

Service configuration

Extension installation
workspace

Service and extension integration
engine(API connector)

Workflow execution
engine

Mining & analysis tool

Model artifacts Configuration scripts Metadata

Model management services

Data mining and
analytics engine

Service integrator connector
handler

Recommendation
system

DevOps support
tool

Quality
assurance

Lowcomote forge core extensions and services

MDEForge

Define

Define

Editor support Model analytics
web support DevOps support

Fig. 3. Logical view describing the backend and frontend aspects of the system

7

Service orchestration is enabled by Kubernetes technology4, which comes
bundled with out-of-box benefits such as auto-scalability and extensibility to
handle a flux of users, support continuous integration and load balance container-
ized workloads and services [7] [17]. By managing distributed and containerized
services, we define the utilization and boundaries of resources, reduce hardware
costs, deploy resilient, loose coupled, self-healing, elastic distributed services [7].
In addition, we benefit from service discovery, load-balancing, storage orches-
tration by mounting the volume of your choice on-the-fly from several providers
and technologies, and importantly enable automatic bin packaging while ensur-
ing automated rollout and rollbacks to a given state [17].

3.3 Limitations

The first and foremost challenge that trigger-action programming solutions have
faced are security and privacy concerns as suggested by previous research [18],
especially when independent services are involved [1]. Existing approaches have
limited facilities supporting the reusability of already created task workflows to
avoid replication and adequately manage the collections of modeled workflows
[18]. The proposed approach aims at addressing such issues even though debug-
ging facilities are not supported yet. Moreover, while developing task workflows,
it is crucial to avoid ambiguity in terminologies that hamper efficiency creation
and the use of task workflows [18]. The proposed approach does not provide yet
any mechanism to check the terminology used for naming workflows tasks.

4 Related work

Berardinelli et al. [3] identified relevant challenges that hinder the adoption
of model-driven approaches for cyber-physical production systems engineering
and discussed issues related to integrating several modelling tools. An auto-
mated engineering toolchain has been proposed to perform early design and
validation. Vogel-Heuser et al. [19] presented an approach to support the model-
driven engineering of manufacturing systems. The SysML-AT language (SysML
for automation) has been proposed to specify both functional and non-functional
hardware components’ requirements. Chen et al.[6] presented an approach for
automatic translation of natural language descriptions into executable If-Then
programs. The system helps users to synthesize If-Then programs by proac-
tively predicting triggers and actions related to their descriptions using neural
networks. Dzulqornain et al. [9] also developed a real-time monitoring and con-
trolling smart aquaculture system based on IFTTT and cloud integration. The
system facilitates interoperability and integration of sensors, system controllers,
client data visualizations, and system monitors. Quirk et al. [12] presented an ap-
proach to map natural language descriptions with If-Then patterns to executable
programs. They use semantic parser-learners that utilize already defined recipe

4 https://kubernetes.io

8 A. Indamutsa et al.

descriptions to train semantic parsers that automatically map these descriptions
to executable programs.

Differently from such related work, we presented a low-code environment to
specify and execute workflows of model management tasks in this paper. The
approach is agnostic from the languages used to specify the models that are
transformed and later analyzed.

5 Conclusion

This paper proposed a novel approach to support the development of complex
model management operations. In particular, a low-code development platform is
presented by resembling the functionalities offered by currently available LCDPs
like IFTTT and Zapier. Such platforms permit the development of complex pro-
cesses by integrating and executing different services. The proposed approach
proposes the adoption of a microservice-based architecture to integrate and exe-
cute model management services, which are orchestrated on the cloud according
to specifications given by the user by means of a BPMN-like modeling language.
The proposed approach aims to overcome current challenges faced by traditional
modelling environments that heavily rely on locally downloaded resources. Such
environments are limited in their scalability and extensibility and their services
exhibit high coupling with the local environment. The complete implementation
of the proposed low-code development environment is ongoing and its application
on real scenarios, validation, and testing remain as future work.

References

1. Baruah, B., Dhal, S.: A two-factor authentication scheme against FDM attack in
IFTTT based Smart Home System. Computers and Security 77, 21–35 (2018)

2. Basciani, F., Di Rocco, J., Di Ruscio, D., Di Salle, A., Iovino, L., Pierantonio,
A.: MDEForge: An extensible Web-based modeling platform. CEUR Workshop
Proceedings 1242(September), 66–75 (2014)

3. Berardinelli, L., Mazak, A., Alt, O., Wimmer, M.: Model-Driven Systems Engi-
neering: Principles and Application in the CPPS Domain, pp. 261–299 (05 2017)

4. Brunelière, H., Cabot, J., Jouault, F.: Combining Model-Driven Engineering and
Cloud Computing. In: MDA4ServiceCloud’10 Workshop co-located with ECMFA
(Jun 2010)

5. Chen, X., Nophut, C., Voigt, T.: Manufacturing execution systems for the food
and beverage industry: A model-driven approach. Electronics 9(12) (2020)

6. Chen, X., Liu, C., Shin, R., Song, D., Chen, M.: Latent attention for if-then pro-
gram synthesis. Advances in Neural Information Processing Systems (2016)

7. David, O., Lloyd, W., Rojas, K., Arabi, M., Geter, F., Ascough, J., Green, T.,
Leavesley, G., Carlson, J.: Model-as-a-service (MaaS) using the Cloud Services
Innovation Platform (CSIP). Proceedings - 7th International Congress on Envi-
ronmental Modelling and Software, iEMSs 2014

8. Di Ruscio, D., Franzago, M., Malavolta, I., Muccini, H.: Envisioning the future of
collaborative model-driven software engineering. Proceedings - 2017 IEEE/ACM
39th International Conference on Software Engineering Companion, ICSE-C 2017

9

9. Dzulqornain, M.I., Harun Al Rasyid, M.U., Sukaridhoto, S.: Design and Develop-
ment of Smart Aquaculture System Based on IFTTT Model and Cloud Integration.
MATEC Web of Conferences 164 (2018)

10. Llad, C.M., Smith, C.U.: Performance model interchange format (pmif 2.0): Xml
definition and implementation. In: Quantitative Evaluation of Systems, Interna-
tional Conference on. IEEE Computer Society, Los Alamitos, CA, USA (sep 2004)

11. Ovadia, S.: Automate the Internet With “If This Then That” (IFTTT). Behavioral
and Social Sciences Librarian 33(4), 208–211 (2014)

12. Quirk, C., Mooney, R., Galley, M.: Language to code: Learning semantic parsers
for if-This-Then-That recipes. ACL-IJCNLP 2015 - 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing of the Asian Federation of Natural Language
Processing, Proceedings of the Conference 1, 878–888 (2015)

13. Rahmati, A., Fernandes, E., Jung, J., Prakash, A.: IFTTT vs. Zapier: A Compar-
ative Study of Trigger-Action Programming Frameworks (2017)

14. Sahay, A., Indamutsa, A., Ruscio, D.D., Pierantonio, A.: Supporting the under-
standing and comparison of low-code development platforms. 2020 46th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA) pp. 171–
178 (2020)

15. Surbatovich, M., Aljuraidan, J., Bauer, L., Das, A., Jia, L.: Some recipes can do
more than spoil your appetite: Analyzing the security and privacy risks of ifttt
recipes. In: Proceedings of the 26th International Conference on World Wide Web.
pp. 1501–1510 (2017)

16. Taibi, D., Lenarduzzi, V., Pahl, C.: Processes, Motivations, and Issues for Mi-
grating to Microservices Architectures: An Empirical Investigation. IEEE Cloud
Computing 4(5), 22–32 (2017)

17. Tomarchio, O., Calcaterra, D., Di Modica, G.: Cloud resource orchestration in
the multi-cloud landscape: a systematic review of existing frameworks. Journal of
Cloud Computing 9(1), 1–24 (2020)

18. Ury, B., Ho, M.P.Y., Brawner, S., Lee, J., Mennickenz, S., Picard, N., Schulze, D.,
Littman, M.L.: Trigger-action programming in the wild: An analysis of 200,000
IFTTT recipes. Conference on Human Factors in Computing Systems - Proceed-
ings pp. 3227–3231 (2016)

19. Vogel-Heuser, B., Schütz, D., Frank, T., Legat, C.: Model-driven engineering of
manufacturing automation software projects – a sysml-based approach. Mechatron-
ics 24(7), 883–897 (2014), 1. Model-Based Mechatronic System Design 2. Model
Based Engineering

20. Vorapojpisut, S.: A Lightweight Framework of Home Automation Systems Based
on the IFTTT Model. Journal of Software 10(12), 1343–1350 (2015)

21. Weißenberger, B., Flad, S., Chen, X., Rösch, S., Voigt, T., Vogel-Heuser, B.: Model
driven engineering of manufacturing execution systems using a formal specification.
In: 2015 IEEE 20th Conference on Emerging Technologies Factory Automation
(ETFA). pp. 1–8 (2015)

22. Zacharewicz, G., Daclin, N., Doumeingts, G., Haidar, H.: Model driven interoper-
ability for system engineering. Modelling 1(2), 94–121 (2020)

View publication stats

https://www.researchgate.net/publication/354264727

