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Problem:

Goal:

• From 4 glaciers in 
central western 
Greenland

• All features as 
time series, 
with daily 
interpolationI

• Geometric 
features in 
Lagrangian 
frame with 
changing 
terminus

Ø Run model with Eulerian geometric data
Ø Improve data quantity & quality for 

numerous variables
Ø Model long-term components of terminus 

change
Ø Create & use complex model 

(i.e. neural networks) 
Ø Repeat process on more glaciers
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• Target feature: terminus 
position split into seasonal & 
long-term components

• Best-fit hyperparameters 
determined for calibration

• Model created with XGBoostII
algorithm

• Features evaluated with SHAPIII

analysis

Parameterization of glacier terminus 
retreat in models is poorly defined

Use ML to define variables 
(“features”) in the terminus equation

Future Work

Seasonal results by glacier:

dL/dt = f(internal features, environmental features)
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Challenge 1: domain or ML skills alone are inefficient

Challenge 2: sparse data

gla
ciologist

• ask the right question 
• choose study area
• choose variables
• interpret results

M
L exp

ert

• ask the right question
• choose algorithm
• design model
• results quality control

Challenges 3 & 4: 
• data collection takes 

substantial time 
[~ 1 yr. for this project, vs. 
5 min. model runtime]

• ML modeling is an
iterative process
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