JWST: L1527 Figure credit: NASA, ESA, CSA, STScl

# OBSERVATIONAL EVIDENCE OF EPISODIC ACCRETION BURSTS TOWARD YOUNG EMBEDDED DISKS

### Elizabeth Artur de la Villarmois

FONDECYT Postdoctoral fellow - PUC



Accretion/ejection processes in star formation November 30, 2022



LOW-MASS STAR FORMATION



Magnus Persson

## THE COMPLEX ENVIRONMENT OF CLASS I SOURCES

![](_page_2_Figure_1.jpeg)

## RADIO TELESCOPES

### Single dish

![](_page_3_Picture_2.jpeg)

### Array

![](_page_3_Picture_4.jpeg)

 $B_{max} = 16 \text{ km}$ 

### Class I source

![](_page_3_Picture_7.jpeg)

## RADIO TELESCOPES

### Single dish

![](_page_4_Picture_2.jpeg)

![](_page_4_Picture_3.jpeg)

![](_page_4_Figure_4.jpeg)

![](_page_4_Picture_5.jpeg)

![](_page_4_Picture_6.jpeg)

 $B_{max} = 16 \text{ km}$ 

## RADIO TELESCOPES

## Single dish

![](_page_5_Picture_2.jpeg)

![](_page_5_Picture_3.jpeg)

![](_page_5_Picture_4.jpeg)

Array

![](_page_5_Picture_6.jpeg)

## THE COMPLEX ENVIRONMENT OF CLASS I SOURCES

![](_page_6_Figure_1.jpeg)

## SURVEY OF 10 YOUNG EMBEDDED SOURCES

![](_page_7_Figure_1.jpeg)

**T**<sub>bol</sub>: 36 - 420 K **L**<sub>bol</sub>:  $0.12 - 18 \text{ L}_{\odot}$ 

Angular resolution 0.4" (~50 AU)

#### Continuum (0.87 mm)

| Disk tracers:<br>optically thin isotopologues | C <sup>17</sup> O $J = 3-2$<br>H <sup>13</sup> CO <sup>+</sup> $J = 4-3$<br>C <sup>34</sup> S $J = 7-6$ |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Warm chemistry                                | CH <sub>3</sub> OH $J_k = 7_k - 6_k$ branch<br>SO <sub>2</sub> $J_{kakc} = 18_{4,14} - 18_{3,15}$       |
| Envelope                                      | C <sub>2</sub> H $N = 4-3, J = 9/2-7/2$                                                                 |

Artur de la Villarmois et al. (2018) Artur de la Villarmois et al. (2019)

Angular resolution 0.4" (~50 AU)

#### Continuum (0.87 mm)

| Disk tracers:<br>optically thin isotopologues | C <sup>17</sup> O $J = 3-2$<br>H <sup>13</sup> CO <sup>+</sup> $J = 4-3$<br>C <sup>34</sup> S $J = 7-6$ |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Warm chemistry                                | CH <sub>3</sub> OH $J_k = 7_k - 6_k$ branch<br>SO <sub>2</sub> $J_{kakc} = 18_{4,14} - 18_{3,15}$       |
| Envelope                                      | C <sub>2</sub> H $N = 4-3, J = 9/2-7/2$                                                                 |

Artur de la Villarmois et al. (2018) Artur de la Villarmois et al. (2019)

Angular resolution 0.4" (~50 AU)

Continuum (0.87 mm)

![](_page_10_Figure_3.jpeg)

Angular resolution 0.4" (~50 AU)

Continuum (0.87 mm)

![](_page_11_Figure_3.jpeg)

# HOW DOES THE MATERIAL ACCRETE FROM THE DISK ONTO THE PROTOSTAR?

![](_page_12_Figure_1.jpeg)

![](_page_12_Figure_2.jpeg)

$$\dot{M}_{\rm acc} = 2.4 \times 10^{-7} \,\mathrm{M}_{\odot}/\mathrm{yr}$$

Solid circles: Artur de la Villarmois et al. (2019) Open circles: Aso et al. (2015)

# HOW DOES THE MATERIAL ACCRETE FROM THE DISK ONTO THE PROTOSTAR?

![](_page_13_Figure_1.jpeg)

$$\dot{M}_{\rm acc} = \frac{L_{\rm bol} R_{\star}}{G M_{\star}}$$

$$\dot{M}_{\rm acc} = 2.4 \times 10^{-7} \, {\rm M}_{\odot}/{\rm yr}$$

Variable accretion rate (episodic accretion bursts)

Most of the sources are in a quiescent state of accretion

Solid circles: Artur de la Villarmois et al. (2019) Open circles: Aso et al. (2015)

![](_page_14_Figure_1.jpeg)

 $L_{bol} > 6 L_{\odot}$ 

 $L_{bol} \Leftrightarrow \dot{M}_{acc}$ 

![](_page_15_Figure_1.jpeg)

SO<sub>2</sub> is a common shock tracer

Accretion shocks?

![](_page_15_Figure_4.jpeg)

 $L_{bol} \nleftrightarrow M_{acc}$ 

![](_page_16_Figure_1.jpeg)

10 km/s V<sub>source</sub> -10 km/s

![](_page_17_Figure_1.jpeg)

![](_page_18_Figure_1.jpeg)

![](_page_19_Figure_1.jpeg)

### Per-emb 50

Infalling streamer: Mass infall rate =  $1.3 \times 10^{-6} M_{\odot}$ /year From  $L_{bol}$ :  $\dot{M}_{acc} = 1.3 \times 10^{-6} M_{\odot}$ /year !!!

![](_page_19_Figure_4.jpeg)

![](_page_20_Figure_1.jpeg)

## TAKE HOME MESSAGES

Detection of disk tracers is essential to separate the disk from the envelope component and to estimate  $M_{\bigstar}$ 

 $\langle \dot{M}_{acc} \rangle$  is too low for the accretion to be constant in time  $\Rightarrow$  Episodic accretion bursts

 $t_{quiescent} > t_{active}$ 

SO<sub>2</sub> molecules seem to be linked to high  $\dot{M}_{acc}$ , accretion shocks, and the presence of infalling streamers

Streamers:  $\dot{M}_{infall}$  vs.  $\dot{M}_{acc}$