MATHEMATICAL SCIENCES

UDC 511.528.2:514.763.8(045)

SOLUTIONS OF ONE PROBLEM OF A LINEAR HOMOGENEOUS DIFFERENTIAL EQUATION OF THE SECOND ORDER

Tilepiev M.S.,

associate professor,

Candidate of Physical and Mathematical Sciences,

Kazakh Agrotechnical University named after S.Seifullin, Astana, Kazakhstan

Urazmagambetova E.U.,

associate professor,

Candidate of physic-mathematical sciences,

Kazakh Agrotechnical University named after S.Seifullin, Astana, Kazakhstan

Seilova Z.T.,

associate professor,

Candidate of pedagogical sciences,

Korkyt Ata Kyzylorda University, Kyzylorda, Kazakhstan

Dyusembayeva L.K.

Senior Lecturer, Master's degree

Kazakh Agrotechnical University named after S.Seifullin, Astana, Kazakhstan

УДК 511.528.2:514.763.8(045)

РЕШЕНИЯ ОДНОЙ ЗАДАЧ ЛИНЕЙНОГО ОДНОРОДНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ВТОРОГО ПОРЯДКА

Тилепиев М.Ш.,

доцент, к.ф.-м.н.,

Казахский агротехнический университет им.С.Сейфуллина, г.Астана, Казахстан

Уразмагамбетова Э.У.,

доцент, к.ф.-м.н.,

Казахский агротехнический университет им.С.Сейфуллина, г.Астана, Казахстан

Сейлова З.Т.,

доцент, к.п.н.,

Кызылординский университет им.Коркыт Ата, г.Кызылорда, Казахстан

Дюсембаева Л.К.

старший преподаватель, магистр,

Казахский агротехнический университет им.С.Сейфуллина,

г.Астана, Казахстан

Abstract

This article is devoted to the study of the general solution of a linear homogeneous differential equation of the second order by lowering the equation order. Today, there are many methods for finding a general solution of a homogeneous and inhomogeneous second-order differential equation. In this article, a new method is proposed for finding a general solution of a homogeneous second-order differential equation by lowering the order of the differential equation using the formula of the two functions product derivative.

Аннотация

Настоящая статья посвящена изучению общего решению линейного однородного дифференциального уравнения второго порядка с помощью понижения порядка уравнения. На сегодняшний день существуют множество методов нахождения общего решений однородного и неоднородного дифференциального уравнения второго порядка. В данной статье предложен новый метод нахождения общего решения однородного дифференциального уравнения второго порядка, путём понижения порядка дифференциального уравнения, используя формулу производной произведение двух функций.

Keywords: function, derivative, homogeneous, heterogeneous, differential equation, general solution, integration.

Ключевые слова: функция, производное, однородное, неоднородное, дифференциальное уравнение, общее решение, интегрирование.

Настоящая статья посвящена нахождению общего решения некоторых видов линейного

дифференциального уравнения однородное однородного Рассмотрим линейное второго порядка с помощью понижения порядка дифференциальное уравнение второго порядка уравнения.

$$x^{2}y'' + xp y' + q y = 0$$
(1)

где p,q - некоторые действительные числа.

Если обозначим

$$-(p-1) = k_1 + k_2 q = k_1 k_2 (2)$$

тогда $k_1, k_2\,$ является корнем уравнения второго порядка

$$k^{2} + (p-1)k + q = 0. (3)$$

и они находятся по формуле

$$k_1 = -\frac{p-1}{2} - \sqrt{\left(\frac{p-1}{2}\right)^2 - q} \;, \quad k_2 = -\frac{p-1}{2} + \sqrt{\left(\frac{p-1}{2}\right)^2 - q} \tag{4}$$

Тогда уравнение (1) преобразуется в уравнение

$$x^{2}y'' + (-k_{1} - k_{2} + 1)xy' + k_{1}k_{2}y = 0$$
(5)

Умножая обе части уравнения (5) на
$$x^{-k_1-1}$$
 имеем
$$x^{-k_1+1}y''+\left(-k_1-k_2+1\right)\!x^{-k_1}\ y'+k_1k_2x^{-k_1-1}\ y=0$$

$$x^{-k_1+1}y'' + (-k_1+1)x^{-k_1}y' - k_2x^{-k_1}y' + k_1k_2x^{-k_1-1}y = 0$$

$$(x^{-k_1+1}y'' + (-k_1+1)x^{-k_1}y') - k_2(x^{-k_1}y' - k_1x^{-k_1-1}y) = 0$$
(6)

Здесь

$$(-k_1+1)x^{-k_1} = (x^{-k_1+1})'$$
 $-k_1 x^{-k_1-1} = (x^{-k_1})'$

Тогда уравнение (6) имеет вид

$$\left(x^{-k_1+1}(y')' + \left(x^{-k_1+1}\right)'y'\right) - k_2\left(x^{-k_1}y' + \left(x^{-k_1}\right)'y\right) = 0$$
(7)

Если использовать формулу производной произведения двух функций (uv)'=u'v+uv' , то уравнение (7) можно написать в виде

$$(x^{-k_1+1} y')' - k_2 (x^{-k_1} y)' = 0$$

или

$$\left(x^{-k_1+1} y' - k_2 x^{-k_1} y\right)' = 0 \tag{8}$$

отсюла

$$x^{-k_1+1} y' - k_2 x^{-k_1} y = C_1$$

или

$$y' - \frac{k_2}{x} y = C_1 x^{k_1 - 1}$$
(9)

Уравнение (9) является линейным дифференциальным уравнением первого порядка и его общее решение запишется [1]

$$y = e^{\int \frac{k_2}{x} dx} \left(C_2 + \int C_1 x^{k_1 - 1} e^{-\int \frac{k_2}{x} dx} dx \right),$$

$$_{\text{где}} e^{\int \frac{k_2}{x} dx} = e^{k_2 \ln x} = x^{k_2}, \qquad e^{-\int \frac{k_2}{x} dx} = e^{-k_2 \ln x} = x^{-k_2},$$

тогда

$$y = x^{k_2} \left(C_2 + \int C_1 x^{k_1 - 1} x^{-k_2} dx \right) = x^{k_2} \left(C_2 + C_1 \int x^{k_1 - k_2 - 1} dx \right)$$
$$y = C_2 x^{k_2} + C_1 x^{k_2} \int x^{k_1 - k_2 - 1} dx$$
(10)

Далее рассмотрим разные случай

1) Корни уравнения (3) разные и действительные, т.е. [2]

$$k_1 \neq k_2, \left(\frac{p-1}{2}\right)^2 - q > 0$$

тогда из (10) получим

$$y = C_2 x^{k_2} + C_1 x^{k_2} \frac{x^{k_1 - k_2}}{k_1 - k_2} = \frac{C_1}{k_1 - k_2} x^{k_1} + C_2 x^{k_2}$$

Обозначим $\dfrac{C_1}{k_1-k_2}=\overline{C}_1$ и получим

$$y = \overline{C}_1 x^{k_1} + C_2 x^{k_2} \tag{11}$$

Это является общим решением уравнения (1) при $\left(\frac{p-1}{2}\right)^2 - q > 0$.

2) Корни уравнения (3) равны, т.е. [3]

$$k_1 = k_2$$
, $\left(\frac{p-1}{2}\right)^2 - q = 0$

тогда из (10) получим

$$y = C_2 x^{k_2} + C_1 x^{k_2} \int \frac{dx}{x} = C_1 x^{k_2} \ln x + C_2 x^{k_2}$$
$$y = (C_1 \ln x + C_2) x^{k_2}$$
(12)

Это является общим решением уравнения (1) при $\left(\frac{p-1}{2}\right)^2 - q = 0$.

3) Корни уравнения (3) комплексные, т.е. [4]

$$\left(\frac{p-1}{2}\right)^2 - q < 0$$

Обозначим

$$-\frac{p-1}{2} = \alpha \,, \, \sqrt{\left(\frac{p-1}{2}\right)^2 - q} = i\beta, \text{ то } k_{1,2} = \alpha \pm i\beta \text{ тогда из (11) получим}$$

$$y = \overline{C}_1 x^{\alpha - i\beta} + C_2 x^{\alpha + i\beta}$$

$$y = x^{\alpha} \left(\overline{C}_1 x^{-i\beta_1} + C_2 x^{i\beta_1}\right)$$
 (13)

где

$$x^{i\beta} = e^{i\beta \ln x} = \cos(\beta \ln x) + i\sin(\beta \ln x)$$
$$x^{-i\beta} = e^{-i\beta \ln x} = \cos(\beta \ln x) - i\sin(\beta \ln x)$$

Тогда (13) можно написать в виде

$$y = x^{\alpha} \left(\overline{C}_1 \cos(\beta \ln x) - i \overline{C}_1 \sin(\beta \ln x) + C_2 \cos(\beta \ln x) + i C_2 \sin(\beta \ln x) \right)$$
$$y = x^{\alpha} \left(\left(\overline{C}_1 + C_2 \right) \cos(\beta \ln x) + i \left(C_2 - \overline{C}_1 \right) \sin(\beta \ln x) \right)$$

Обозначим

$$\overline{C}_1 + C_2 = \widetilde{C}_1 \quad i(C_2 - \overline{C}_1) = \widetilde{C}_2$$

то получим [5]

$$y = x^{\alpha} \left(\widetilde{C}_1 \cos(\beta \ln x) + \widetilde{C}_2 \sin(\beta \ln x) \right)$$
(14)

Это является общим решением уравнения (1) при $\left(\frac{p-1}{2}\right)^2-q<0$.

Заключение

В настоящей статье получено общее решение линейного однородного дифференциального уравнения второго порядка методом понижения порядка.

References

- 1. Tilepiev M.Sh., Urazmagambetova E.U., Seylova Z.T., Dyussembayeva L.K. On one of the methods for solving a linear differential equation of the first order. The scientific beritage (Budapest, Hungary) №85(85) vol 1 2022, 35-38.
- 2. Tilepiev M.Sh., Urazmagambetova E.U., Berikkhanova G. E., Dyussembayeva L.K. One of the methods for finding a general solution of a linear homogeneous equation of the second order with constant coefficie //ntMaterials of the XI International Scientific Practice. conf. "Science and education in the modern world" (Physical and Mathematical Sciences/LAstana, 2022. pp.7-10.
- 3. S.A.Agafonov, A.D. German, T.V.Muratova. Differential equations. Bauman Moscow State Technical University, 2004.- 348 p.
- 4. Romanko V.K. Course of differential equations and variational calculus. 2nd ed. M.: Laboratory of Basic Knowledge, 2001 344 p:ill.
- 5. E. Kamke. Handbook of Ordinary differential equations. Trans. From German 4th ed., ispr. M.: Nauka: Gl. ed. phys.-mat.lit., 1971. 576 p.

Список литературы

- 1. Тилепиев М.Ш., Уразмагамбетова Э.У., Сейлова З.Т., Дюсембаева Л.К. Об одном из методов решения линейного дифференциального уравнения первого порядка. The scientific beritage (Budapest, Hungary) №85(85) vol 1 2022, 35-38.
- 2. Тилепиев М.Ш., Уразмагамбетова Э.У., Берикханова Г.Е., Дюсембаева Л.К. Один из методов нахождения общего решения линейного однородного уравнения второго порядка с постоянными коэффициентами. Материалы XI Международной науч-прак. конф. «Наука и образование в современ-(Физико-математические мире» науки/ Юридических ЛИЦ В форме ассоциации "Общенациональное движение "Бобек" конгресс учёных Казахстана". сост.: Е. Ешім. – Астана, 2022. стр.7-10.
- 3. С.А.Агафонов, А.Д.Герман, Т.В.Муратова. Дифференциальные уравнения. - МГТУ им. Н.Э.Баумана, 2004.- 348 с.
- 4. Романко В.К. Курс дифференциальных уравнений и вариационного исчесления. 2-е изд. М.: лаборатория Базовых Знаний, 2001 344 с:ил.
- 5. Э. Камке. Справочник по обыкновенным дифференциальным уравнением. Пер. С нем. 4-е изд., испр. М.: Наука: Гл. ред. физ.-мат.лит., 1971. 576 с.