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Abstract. In Multiple Object Tracking (MOT), data association is a
key component of the tracking-by-detection paradigm and endeavors to
link a set of discrete object observations across a video sequence, yield-
ing possible trajectories. Our intention is to provide a classification of
numerous graph-based works according to the way they measure object
dependencies and their footprint on the graph structure they construct.
In particular, methods are organized into Measurement-to-Measurement
(MtM), Measurement-to-Track (MtT), and Track-to-Track (TtT). At
the same time, we include recent Deep Learning (DL) implementations
among traditional approaches to present the latest trends and develop-
ments in the field and offer a performance comparison. In doing so, this
work serves as a foundation for future research by providing newcomers
with information about the graph-based bibliography of MOT.

Keywords: Multiple object tracking · Data association · Graph opti-
mization · Graph neural networks.

1 Introduction

Multiple Object Tracking (MOT) aims to determine and maintain the identities
of all the depicted objects in a video sequence and output their trajectories. The
objects of interest, namely targets, can be pedestrians, vehicles, or even subcellu-
lar structures. Due to its academic importance and practical application, MOT
has received a great deal of attention recently, considering the multiple related
challenges [8], as well as the growing number of applications that incorporate
tracking technologies. Among its applications are autonomous driving and video
surveillance, such as traffic control and activity recognition [29].

Apart from the difficulty in finding multiple objects’ trajectories simultane-
ously, some challenges for MOT algorithms stem from the changing scales of
objects due to their motion and moving cameras. Additionally, the highly re-
sembled targets and the frequent occlusions make the targets indistinguishable
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and the maintenance of their trajectories a complicated task. The complexity
is further increased when the input object observations are not precise, as they
can suffer from duplicated, false, or missed detections. The MOT algorithms
are also subject to inherent ambiguities caused by weather conditions, varying
illuminations, or shadows. Therefore, many studies [30,38] have tried over the
last decades to give a solution to the MOT problem, but since of these diverse
challenges, research continues.

MOT methods have been dominated by the tracking-by-detection paradigm
[30], which requires linking together a set of object detections through a process
known as data association. A common and general way to formulate data asso-
ciation is by using graph models, as they can offer a natural way to represent
the MOT problem [4]. The two key concepts behind this formulation are the
graph network construction as well as its optimization framework. In this sense,
the solution of data association in a graph is a set of independent paths that
connects the objects’ observations.

Recently, several review papers have proposed different taxonomies to cate-
gorize the MOT bibliography, with many focusing on methods that adopt the
tracking-by-detection paradigm [30]. Although data association through classi-
cal graph methods has already been analyzed in MOT reviews [4,10], there is no
significant reference to the impact of learning on graphs, as relevant studies [37]
have been conducted over the last few years. Consequently, there is still scope
for investigation and analysis considering the broad task of data association.
Thereby, this survey provides a comprehensive overview of data association via
graph models in order to present their utility for the topic of MOT thoroughly.

In summary, the core of this work is to categorize graph-based solutions
for MOT, as graphs have been inextricably linked to the topic for decades and
have shown potential when dealing with complicated scenes (e.g. crowded en-
vironments). Specifically, we include a range of methods and create a concrete
classification based on the different graph formulations resulting from the differ-
ent types of associating the input data. In particular, the methods are classified
into Measurement-to-Measurement (MtM), Measurement-to-Track (MtT), and
Track-to-Track (TtT) association, where the measurement refers to object de-
tection and the track to object trajectories. To cover a wider range of methods,
our examination includes learning-based graph models among traditional model-
based ones, so as to demonstrate how Deep Learning (DL) can operate in the
graph domain. The analysis is also accompanied by a theoretical explanation to
provide a better understanding of the basic graph notions.

2 Related Work

There is a sufficient number of existing surveyed works on the topic of MOT,
proposing different categorizations. One conventional and broad category is to
classify methods as online and offline [30,38,20]. In the former category, infor-
mation is leveraged from past frames up to the incoming ones, while methods
leverage past and future frames in the latter. Moreover, many works [30,38,5]
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highlight the differences between learning-based and model-based techniques in
terms of the improvements the learning can bring.

Particularly, the authors in [30] draw a timeline of pedestrians-related
tracking methods, emphasizing the advancements of the tracking-by-detection
paradigm and providing its general formulation. In [38], learning-based MOT
methods are summarized, which are competitive and top-ranked in public bench-
marks. Alongside online and offline classification, the categorization continues in
terms of DL contribution to deep descriptions enhancement and the construction
of end-to-end methodologies. In [9], the authors focus on the data association
part of MOT, introducing the linear and multidimensional assignment formu-
lations and reviewing learning and non-learning algorithms to determine the
optimal matching.

In [5], the main parts of the multiple target tracking pipeline, including target
detection, track filtering, and data association, are presented. Particularly in
the task of proposed tracks evaluation, the categorization of DL methods in
MtM, MtT, or feature association is based on the matching score generation.
In [20], the variety of model-based solutions for MOT is reviewed according
to different aspects, such as the initialization strategies, the processing mode,
and the randomness of the output, making it easy for newcomers to enter the
field. In [8], tracking trends, such as global optimization, regression, and learning
models, are presented, comparing State-of-the-Art (SotA) methods in terms of
performance, along with extended details regarding the standardized framework
in the context of MOTChallenge 1 evaluation.

In [10], the authors present the different implemented methodologies for fea-
ture generation and object tracking. The functions used to provide object fea-
tures, such as appearance, velocity, and location, are mainly handcrafted. At the
same time, the authors separate Bayesian-based from association-based detec-
tion linking methods. Regarding data association, they also demonstrate further
partitioning according to local and global optimization. In [4], a methodology-
based work focusing on two types of graphs is presented, where the track and
factor graph approaches are discussed. However, the above surveys are too gen-
eral and do not capture the algorithms used in detail in terms of data association.
Thus, this work extensively examines and categorizes the graph-based methods
considering the different types of associating the input data.

3 Theoretical Background

Graphs are defined as the mathematical structures that are used to describe a
set of discrete objects via nodes connected by edges. A graph can be classified
as undirected when its edges can be traversed in either direction or as directed if
its edges have a definite direction. In graph theory, NFs are examples of directed
graphs G = (Nodes,Edges). Each edge e(u, v), from node u to node v, has
a capacity c(u, v) > 0, a flow f(u, v), and a cost a(u, v). NFs also have two

1 https://motchallenge.net
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additional nodes; the source s ∈ N and the sink t ∈ N , with no incoming and
no outgoing edges, respectively. In particular, each edge’s flow cannot exceed
its capacity’s value, and the total cost for the edge is equal to f(u, v) · a(u, v).
Furthermore, the amount of flow that enters a node should be equal to the
amount of flow that outgoes unless it is the source or the sink node.

In graph optimization, the goal of the NF problem is to find the amount of
flow, or else the different paths, starting from the source node and ending at
the sink node. In doing so, a linear objective function is defined with regard to
the total cost of the flow over all edges, and the problem is then reduced to a
minimization problem. In the case that the capacity of every edge is unit, the
problem is known as the disjoint paths problem, as the resulted paths do not
have any common edges.

Some types of NF problems are the Maximum Flow (MF) problem, the
Minimum-Cost Flow (MCF) problem, and the assignment problem. The MF
problem aims to maximize the total amount of flow in the network, while the
MCF problem aims to attain a predefined (or the maximum) amount of flow
with the minimum possible cost. A case of NF problems is the assignment ones,
which perform in a weighted BG. In BG G = (N,V,E), there are two disjoint
and independent sets N and V of nodes, and a set E of edges denotes the con-
nections between the nodes of these two sets. In case the nodes are divided into
k different independent sets, the graph is called K-Partite Graph (KG).

Unlike directed graphs, where graph partitioning aims to find a set of in-
dependent paths when dealing with undirected graphs, the problem’s goal is
to decompose the graph nodes into mutually exclusive groups. The generalized
Minimum Clique Problem (GMCP) and the Minimum Cost Multicut Problem
(MCMP) are two related optimization problems in the bibliography. GMCP
is applied to undirected graph G = (Nodes,Edges,weights). Given a number
k ∈ N>1, the set of nodes is divided into k partitions of nodes that do not
share common nodes. GMCP seeks to find the subgraph Gs, named clique, with
the minimum total cost encompassing only one node from every partition. Each
node in a clique is adjacent to each other, as there is an edge that connects them.
The latter makes the subgraph Gs complete. In MCMP, graph decomposition
includes the identification of a set of edges, named multicut of the graph, that
straddles graph components into groups.

More recently, several studies have tried to apply deep learning to graph op-
timization, using Graph Neural Networks (GNNs) [26], which perform on graph-
structured data. Given as input a graph with nodes and edges, GNNs attempt to
discover nodes’ features and learn the topology pattern of the input data by ex-
ploiting their neighboring nodes’ information via feature aggregation. Different
GNN models [37] have been proposed, each with a different feature aggregation
function. Message Passing Neural Networks (MPNNs) -introduced in [11] - con-
sist of multiple propagation layers, which propagate information by updating
each node regarding their adjacent nodes’ features. Graph Convolutional Net-
works (GCNs) [15] are considered a case of the message passing paradigm, with
a different design in their aggregation function.
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(a) NF in a T-frame batch. (b) BP in two consecutive frames.

Fig. 1: Illustration of two basic formulations in graph-based MOT.

4 Analysis of MOT Methods

4.1 Measurement-to-Measurement Association

Most methods in this category interpret the association task as an NF problem
(i.e. MCF, MF), as shown in Figure 1(a), while few perform graph partitioning
as an MCMP. The association is made over a batch of frames or an entire video
sequence, which refers to the offline association. Methods can either use static
or updated graph models [18]. Static graphs refer to traditional approaches that
leverage local information among neighboring nodes, while updated graphs use
an updating mechanism to capture the global interplay of nodes. The updating
mechanism is directly linked to the use of GNNs and their feature aggregation
functionality.

Static Graphs NFs are typical among MOT methods [39,16,17] of this category.
Object detections and their associations are interpreted with nodes and edges, as
shown in Figure 2. In particular, objects are demonstrated with two separated
nodes connected by an observation-green edge, which models the observation
likelihood, while blue edges, between observations of different frames, express
the transition probability. Additionally, the source s and the sink t nodes of
NF are connected with all the detections (orange edge), indicating whether a
particular detection is the start or end of a trajectory. This is a disjoint paths
problem as the desired set of object trajectories (flow paths) should not share
any common edges.

The methods that incorporate NF try to identify the set of possible trajecto-
ries that can optimally explain the set of input object measurements, which can
be expressed theoretically as a Maximum A-Posteriori (MAP) problem [39,17]
and practically as a Linear Program (LP) [39,16,17] or an Integer Linear Pro-
gram (ILP) [23]. The formulation can either be set as a MF [2] or equivalently,
a MCF algorithm [39,16,17,23]. Many algorithms can reach a solution, some
of which are the push-relabel [39], the simplex [17] or the k-shortest paths [2].
For an approximate solution, a greedy shortest-path algorithm is used by [23]
that embeds pre-processing steps, such as Non-Maximum Suppression (NMS),
to boost the performance.
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Fig. 2: An NF [39] sample containing six observations spanning over three frames.

Additionally, another method [27] relies on bi-level optimization [6], solving
the NF problem and learning the pairwise cost functions for the data association
task in an end-to-end manner. Constant cost functions are thus replaced by
parameterized ones, allowing the model to be more flexible as it embeds inference
into learning. Similarly, the authors in [19] adopt a differentiable NF, but instead
of using a local edge loss, they incorporate a global loss during training solving
the bi-level optimization problem.

On the other hand, methods [32,33] that treat MOT as an MCMP propose
that object detections can be linked not only across time but also space. Unlike
NF methods, the possible solutions are now components of the graph instead of
paths, which are clustered into different sets that indicate the proposed trajec-
tories. An advantage of these techniques is that no pre or post-processing steps,
such as NMS, are required to filter out the detections or the final tracks, allow-
ing it to tackle the challenge of duplicated object detections. Especially in [33],
they suggest lifted edges, along with the regular ones, as a way for long-range
optimization.

Updated Graphs An attempt to introduce GNNs [26] to the MOT problem is
accomplished by [3], where the regular NF formulation becomes fully differen-
tiable. Unlike learning only pairwise costs, this method directly solves the data
association problem with edge classification, using a time-aware neural message
passing update step [11] to optimize feature representation.

Partially motivated by the probabilistic graph approaches for MOT, [24] pro-
poses an undirected BG, where the association happens dynamically, adding the
newest detections and removing the classified or inactive ones. The latter makes
the method suitable for online applications, in contrast to other techniques [3],
where batches of detections are processed in an offline manner. The difference
in the graph construction is that both object detections and their pairwise as-
sociations are represented as nodes, which form two different independent and
disjoint sets of the BG. Furthermore, an MPNN [11] is performed to update the
graph components and circulate information across many timesteps.
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Due to the powerful information transmission capability in GNNs, an end-to-
end method [21], named Deep Association Network (DAN), introduces a CNN
and a Motion Encoder (ME) to extract appearance and motion features, respec-
tively. Subsequently, a GCN [15] associates detections within a batch of frames
(local graph optimization) and between consecutive batches of frames (inter-
graph optimization).

The MtM category includes methods that most of them perform in an offline
manner so as focus on improving the accuracy over the speed. In addition, these
methods follow a sliding window approach of variant window sizes that increase
the computational complexity as the size of the window broads; however, they
contribute to the robustness and better generalization of the results. Further,
the use of GNNs in updated graphs improves stability and efficiency.

4.2 Measurement-to-Track Association

The methods that fall into this category endeavor to find a solution for MOT
performing BG matching. One popular strategy is to assume a BG and associate
new detections with past ones or already created fragments of object trajectories,
called tracklets, as shown in Figure 1(b). Since all the methods of this category
incorporate GNNs, their graphs are considered updated.

An extension of BG matching is presented in [13], where they update the
classical formulation to graph level, performing graph matching in an end-to-
end manner. There are two graphs to be matched; the former is constructed by
the new detections in a new frame and the second by the existing tracklets. In
doing so, they focus on the intra-frame relationships among detections. To this
end, they adopt a GCN for feature enhancement and then a differentiable graph
matching layer which yields the final matching scores. In another work [36],
GNNs are also used to obtain discriminative features that would later benefit
both object detection and data association tasks. The association of detections
to past tracklets is repeated at every new frame in an online manner.

The paradigm of BG matching is also applied in [22]. Their architecture
employs a CNN to extract appearance features from both tracklets and new de-
tections and then a GCN model to update those features through multiple layers.
In this case, the association is driven by the sinkhorn algorithm, which is used to
normalize the matching scores of the final association matrix. A similar frame-
work is adopted by [14], but instead of using the sinkhorn algorithm as in [22] to
satisfy the constraints of one-to-one BG association, they construct a multi-level
matrix loss. In [18], two GNNs are designed to elaborate the appearance and
the motion features separately. Additionally, each graph network is composed
of nodes, edges, and a global variable, with the latter to store past information
during tracking. They also introduce four updating mechanisms for the graph
components to be updated and to form the connections between detections and
already defined objects.

The MtT category meets the real-time response requirement since there has
been an improvement in computational complexity as a result of a limited num-
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ber of frames used in the analysis. Despite the addition of GNNs serves to ag-
gregate past information, improving computational cost alongside performance.

4.3 Track-to-Track Association

This category refers to tracklet association, where different methods [1,23] are
firstly used to generate fragments of tracks (tracklets) across a relatively small
number of consecutive frames and then stitch tracklets of different time intervals
together in a graph. Every step of connecting tracklets together to form longer
ones is called association layer and the methods that use this strategy are usually
named hierarchical. A variety of formulations is used to solve the data association
problem in this category, such as GMMCP, MCMP, or NF.

Performing to a timeframe of a video longer than two consecutive frames (BG
match), some approaches [7,25] define a KG to formulate data association, con-
sidering all pairwise connections among targets. In the case of [25], the GMCP
aims to find the subgraph (clique) that has the least cost compared to the total
number of subgraphs in the graph. In the first stage, a video sequence is split
into segments, and mid-level tracklets are generated using the GMCP as the
best possible clique of a person. Then the resultant tracklets merge again into
the final trajectories according to GMCP. An extension of this approach is pre-
sented in [7], whereby formulating the association as a Generalized Maximum
Multi Clique Problem (GMMCP), they succeed in creating multiple tracks si-
multaneously instead of finding one at a time [25], following joint optimization.
Similarly to [25], the process combines detections of few consecutive frames in
low-level tracklets, using overlapping constraints. After the two layers of apply-
ing the CMMCP tracker, the final trajectories are ready as a result of merging
shorter tracklets to create longer.

In [31], MOT is treated as an MCMP, named Minimum Cost Subgraph Mul-
ticut Problem (MCSMP), but instead of using detections as graph components
[32,33], they create overlapping tracklet hypotheses according to [1] over a small
number of frames. As an alternative to learning the start and end probabilities of
an NF, the authors [35] design a simple setup setting an assignment formulation
between tracklets. Additionally, they use Siamese CNNs to obtain tracklet affin-
ity features, which are learned concerning a loss function that treats relations
of neighboring segments differently than the non-neighboring ones. Given the
affinities, the assignment problem is solved using the softassign algorithm [12].

NF in tracklet association uses tracklets as nodes instead of detection re-
sponses, enabling long-term object tracking. In [34], they first generate the ini-
tial tracklets from the detection set using the NF formulation of [23] and then
define an affinity model which estimates the probability (cost) of two tracklets
belonging to the same object. The affinity model aims to learn and estimate
appearance and motion cues online, i.e. while tracking. Similar to [27], the work
in [28] establishes a bi-level optimization, combining feature learning and data
association using a learnable NF in an end-to-end framework where tracklets are
connected to form the final objects’ trajectories.
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Table 1: Graph-based methods for Multiple Object Tracking (MOT)
Method Year Graph Opt. Upt. Aff. Learn. Mode E2E

M
t
M

MCNF [39] 2008 MCF x x Offline x
LP2D [17] 2011 MCF x x Offline x
DP NMS [23] 2011 MCF x x Offline x
K Shortest [2] 2011 MF x x Offline x

SiameseCNN [16] 2016 MCF x D Offline x
JMC [32] 2016 MCMP x x Offline x

LMP [33] 2017 MCMP x D Offline x

DeepNetFlow [27] 2017 MCF x D Offline D
DAN [21] 2019 MCF, GCNs D D Near-online D
MPNTrack [3] 2020 MCF, GNNs D D Offline x

TrackMPNN [24] 2021 BG, GNNs D D Online x

LPT [19] 2022 MCF x D Offline x

M
t
T

EDA GNN [14] 2019 BG, GNNs D D Online D
GCNNMatch [22] 2020 BG, GCNs D D Online D
GNMOT [18] 2020 BG, GNNs D D Near-online D
GMTracker [13] 2021 BG, GCNs D D Online D
GSDT [36] 2021 BG, GNNs D D Online x

T
t
T

GMCP-Tracker [25] 2012 GMCP x x Offline x
GMMCP-Tracker [7] 2015 GMMCP x x Offline x
SubgraphMulticut [31] 2015 MCMP x x Offline x

CNNTCM [35] 2016 BG x D Offline x
TSML [34] 2016 MCF x x Offline x

TAT [28] 2018 MCF x D Offline D
Table legend: Graph Opt. - Graph Optimization; Upt. - Updated graph; Aff. Learn. - Affinity Learning; E2E -
End-to-End

In TtT category, methods use tracklets that encode high-level information
compared to detections and thus enable long-range tracking, increasing the ro-
bustness and the reliability of the results. A particular drawback of this category
is that the computational complexity of a method increases alongside the number
of association levels.

5 Qualitative Comparison and Discussion

In this section, the classification and the performance of the aforementioned
MOT methods are illustrated. Table 1 presents the classification of every method
into three categories, namely MtM, MtT, and TtT, sorted by year. The key con-
sideration for this qualitative comparison is to present the similarities/dissim-
ilarities of methods in graph optimization, mode (online/offline), and whether
they include updated graphs or affinity learning or are trained end-to-end.

Table 2 depicts the performance evaluation of each MOT method using the
four public benchmarks of MOTChallenge [8] 2D MOT2015, MOT16, MOT17,
and MOT20. The results were collected from the official MOTChallenge leader-
boards or included in the evaluation of the methods in case they are missing
from them. The metrics used for the evaluation include MOTA (MOT Accu-
racy), IDF1 (ID F1-Measure), MT (Mostly Tracked Target Percentage), ML
(Mostly Lost Target Percentage), and IDSW (Identity Switch). MOTA is the
most important metric since it combines the FP (False Positives), FN (False
Negatives), and IDSW. For more details about the metrics see [8].

In general, most of the latest methods belong to the MtT category and adopt
BG matching strategies, as well as GNNs, which help update the graph com-
ponents systematically. By performing online, BG strategies [36,22] are compu-
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Table 2: MOT Evaluation on 2D MOT2015/MOT16/MOT17/MOT20 test sets
Method MOTA↑ IDF1↑ MT↑ (%) ML↓ (%) IDSW↓

M
O

T
1
5

DP NMS [23] 14.5 19.7 6.0 40.8 4537
EDA GNN [14] 21.8 27.8 9.0 40.2 1488
SiameseCNN [16] 29.0 34.3 8.5 48.4 639
CNNTCM [35] 29.6 36.8 11.2 44.0 712
TSML [34] 34.3 44.1 14.0 39.4 618
GCNNMatch [22] 46.7 43.2 21.8 28.2 820
MPNTrack [3] 51.5 58.6 31.2 25.9 375
GSDT [36]∗ 60.7 64.6 47.0 10.5 480

M
O

T
1
6

DP NMS [23] 26.2 31.2 4.1 67.5 365
GMMCP-Tracker [7] 38.1 35.5 8.6 50.9 937
JMC [32] 46.3 46.3 15.5 39.7 657
GNMOT [18]∗ 47.7 43.2 16.1 34.3 1907
DAN [21]∗ 48.6 49.3 13.2 43.5 594
LMP [33] 48.8 51.3 18.2 40.1 481
TAT [28] 49.0 48.2 19.1 35.7 899
GCNNMatch [22] 57.2 55.0 22.9 34.0 559
LPT [19]∗ 57.4 58.7 22.7 37.2 427
MPNTrack [3] 58.6 61.7 27.3 34.0 354
GMT CT [13] 66.2 70.6 29.6 30.4 701
GSDT [36]∗ 74.5 68.1 41.2 17.3 1229

M
O

T
1
7

EDA GNN [14] 45.5 40.5 15.6 40.6 4091
GNMOT [18]∗ 50.2 47.0 19.3 32.7 5273
TAT [28] 51.5 46.9 20.6 35.5 2593
GCNNMatch [22] 57.3 56.3 24.4 33.4 1911
LPT [19]∗ 57.3 57.7 23.3 36.9 1424
MPNTrack [3] 58.8 61.7 28.8 33.5 1185
GMT CT [13] 65.0 68.7 29.4 31.6 2200
GSDT [36]∗ 73.2 66.5 41.7 17.5 3891

M
O

T
2
0 GCNNMatch [22] 54.5 49.0 32.8 25.5 2038

MPNTrack [3] 57.6 59.1 38.2 22.5 1210
LPT [19] 57.9 53.5 39.0 22.8 1827
GSDT [36]∗ 67.1 67.5 53.1 13.2 3133

∗MOTChallenge [8] leaderboards do not include these results; they are only available in the evaluation section of
the current method.

tationally efficient and suitable for real-time applications, boosting their popu-
larity. MCF formulations [3] have also been devoted to inferring optimal trajec-
tories, offering optimization in a batch of frames or even the entire video, but
they are not suitable for real-time applications. In this sense, there is a trade-
off between speed and accuracy, as online strategies provide a faster solution,
but since they take into account a small number of frames, they lack robustness
and generalization compared to offline methods. This problem can be solved by
adding GNNs, as their updated mechanism contributes to information aggrega-
tion enabling long-term associations.

Moreover, the latest trends in research have shown a shift from model-based
[39,17,23,2] to learning-based methods, as deep learning can benefit both feature
extraction and data association. Regarding data association, learning can either
be achieved by learning the cost functions [27,28] or by performing edge classi-
fication [3]. In the near future, trends are leaning towards end-to-end trainable
models [27,22,14,18] as well as architectures that design a joint framework for
affinity learning [14] or object detection [36] with graph optimization.

6 Conclusion

This survey condenses a summary and review of graph-based approaches pro-
posed for MOT, in terms of data association, an essential internal part of the
tracking-by-detection paradigm that directly impacts a method’s performance.



Graph-Based Data Association in MOT: A Survey 11

The aim of this review is to organize methods into MtM, MtT and TtT cat-
egories, according to how they associate detections and their reflection on the
graph structure. Finally, the qualitative and quantitative breakdown of methods
in tables offers an insight into the characteristics of each category, providing the
reader with all the information needed for future research.
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