

Deliverable D3.5

Infrastructural code generation – v2

Editor(s): Lorenzo Blasi

Responsible Partner: HPE

Status-Version: Final–v1.0

Date: 01.12.2022

Distribution level (CO, PU): PU

DRAFT

D3.5 – Infrastructural code generation – v2 Version 1.0 – Final. Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 2 of 24

www.piacere-project.eu

Project Number: 101000162

Project Title: PIACERE

Title of Deliverable: Infrastructural code generation – v2

Due Date of Delivery to the EC 30.11.2022

Workpackage responsible for the
Deliverable:

WP3 - Plan and create Infrastructure as Code

Editor(s): Lorenzo Blasi (HPE)

Contributor(s):
Laurentiu Niculut (HPE CDS), Debora Benedetto (HPE
CDS), Lorenzo Blasi (HPE)

Reviewer(s): Radosław Piliszek (7BULLS)

Approved by: All Partners

Recommended/mandatory
readers:

WP3, WP4, WP5

Abstract1: These deliverable presents the advancements of Task
T3.4 made in year 2. It comprises both an updated
version of the software prototype [KR3] and a Technical
Specification Report. The document includes the
technical design of the current version of the ICG,
installation instructions and user manual.

Keyword List: Code generation, Infrastructure as Code

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein

1 This is the same deliverable description provided in the DoA

DRAFT

http://www.medina-project.eu/
http://creativecommons.org/licenses/by-sa/3.0/

D3.5 – Infrastructural code generation – v2 Version 1.0 – Final. Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 3 of 24

www.piacere-project.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 30.09.2022 Definition of the ToC Lorenzo Blasi, HPE

v0.2 26.10.2022 Updated ToC according to the new
common template

Benedetto Debora,
HPECDS

v0.3 28.10.2022 Added first draft Benedetto Debora,
HPECDS

v0.4 28.10.2022 Added chapter integration Niculut Laurentiu,
HPECDS

v0.5 16.11.2022 Updated sections on scenarios, user
manual and template library

Benedetto Debora,
Niculut Laurentiu,
HPECDS, Lorenzo Blasi,
HPE

v0.6 17.11.2022 Version ready for review Benedetto Debora,
Niculut Laurentiu,
HPECDS, Lorenzo Blasi,
HPE

v0.7 28.11.2022 Corrections done as required from
review

Benedetto Debora,
Niculut Laurentiu,
HPECDS

v1.0 01.12.2022 Ready for submission Juncal Alonso,
TECNALIA

DRAFT

http://www.medina-project.eu/

D3.5 – Infrastructural code generation – v2 Version 1.0 – Final. Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 4 of 24

www.piacere-project.eu

Table of contents

Terms and abbreviations ... 5

Executive Summary ... 6

1 Introduction .. 7

1.1 About this deliverable ... 7

1.2 Document structure .. 7

2 Implementation ... 8

2.1 Changes in v2 .. 8

2.2 Functional description ... 8

2.2.1 ICG Scenarios ... 10

2.2.2 Fitting into overall PIACERE Architecture .. 12

2.3 Technical description .. 13

2.3.1 Prototype architecture .. 13

2.3.2 Components’ description .. 14

2.3.3 Output description .. 18

2.3.4 Technical specifications ... 20

3 Delivery and usage .. 21

3.1 Package information ... 21

3.2 Installation instructions ... 21

3.3 User Manual .. 22

3.4 Licensing information .. 22

3.5 Download .. 22

4 Conclusions ... 23

5 References ... 24

 List of tables

TABLE 1 KR3 - ICG REQUIREMENTS.. 9
TABLE 2 KR3 – ICG SCENARIOS ... 10
TABLE 3 DOML AND DOMLX EXAMPLE ... 15

List of figures

FIGURE 1: ICG COMPONENT REPRESENTATION ... 8
FIGURE 2: ICG SEQUENCE DIAGRAM OVERVIEW .. 12
FIGURE 3: IDE-ICG INTEGRATION .. 13
FIGURE 4: ICG INTERNAL SEQUENCE DIAGRAM .. 14
FIGURE 5: TEMPLATES LIBRARY .. 17
FIGURE 6: TEMPLATE-LOCATION.PROPERTIES FILE .. 18
FIGURE 7: ICG OUTPUT COMPRESSED FOLDER .. 19
FIGURE 8: ICG OUTPUT CONFIG.YAML ... 19
FIGURE 9: OUTPUT TERRAFORM FOLDER .. 20
FIGURE 10: ICG REST APIS .. 22

DRAFT

http://www.medina-project.eu/

D3.5 – Infrastructural code generation – v2 Version 1.0 – Final. Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 5 of 24

www.piacere-project.eu

Terms and abbreviations

AWS Amazon Web Services

DevOps Development and Operation

DoA Description of Action

DOML DevOps Modelling Language

GA Grant Agreement to the project

IaC Infrastructure as Code

ICG Infrastructural Code Generator

IDE Integrated Development Environment

IEM IaC Executor Manager

KR Key Result

MC Model Checker

IOP IaC Optimization

IR Intermediate Representation

JSON JavaScript Object Notation

VT Verification Tool

PRC PIACERE Runtime Controller

DRAFT

http://www.medina-project.eu/

D3.5 – Infrastructural code generation – v2 Version 1.0 – Final. Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 6 of 24

www.piacere-project.eu

Executive Summary

This deliverable describes the second iteration of the PIACERE Infrastructural Code Generator
(ICG), developed in Task 3.4. The document reports updates to the ICG component developed
in the second year of the project, its functional and technical description, and how it can be
installed and used.

This release of ICG greatly improves over the first version by implementing the Parser for DOML
models, by packaging the component into a container image offering a REST interface and by
tightly integrating with the other design-time PIACERE components, especially with the IDE. The
deliverable reports the functional and technical updates to the ICG component, and describes
the output provided by the Code Generator, with details on the configuration files that drive the
execution of the generated IaC code. Another improvement to the ICG is in its library of
templates, which in this release has been expanded and better structured. This version of the
ICG is compatible with v2 of DOML and it was aligned with each update of DOML during the last
year. A final important novelty in this release is that the ICG source code has been release in
open source, with the Apache 2.0 license.

The next version of the ICG will further enhance the template library to offer more complete

code generation capabilities, both for improving the support of DOML elements and possibly for

supporting other target platforms, depending on Use Case requirements.

DRAFT

http://www.medina-project.eu/

D3.5 – Infrastructural code generation – v2 Version 1.0 – Final. Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 7 of 24

www.piacere-project.eu

1 Introduction

1.1 About this deliverable

This deliverable is a second version of the deliverable about the Infrastructural Code Generator
(ICG) component of PIACERE. The document reports about updates to the ICG component
developed in the second year of the project, how the new version fits into the overall PIACERE
framework, and how it can be installed and used. This release of ICG greatly improves over the
first version (D3.4 [1]) by implementing the Parser for DOML models, by packaging the
component into a container image offering a REST interface and by tightly integrating with the
other design-time PIACERE components, especially with the IDE.

1.2 Document structure

Section 2 of the document explains what has changed in the second release of ICG, describes its
architecture and functionalities and provides some high-level usage scenarios; this section also
offers a complete technical description of the component, including a description of each
subcomponent and details about the structure and purpose of the produced output files.

The D3.5 deliverable is a software deliverable, therefore this document also provides details
about the released software in section 3: how it is structured, how it can be obtained, installed
and used, plus licensing information. In section 4 there are the conclusions and some indications
about the next steps.

DRAFT

http://www.medina-project.eu/

D3.5 – Infrastructural code generation – v2 Version 1.0 – Final. Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 8 of 24

www.piacere-project.eu

2 Implementation

2.1 Changes in v2

The second version of the ICG has been released in M24 and it contains several improvements
with respect to ICG v1 released in M12 (D3.4 [1]). The ICG is now fully functional, all the
components now work as required, the component that has seen more improvements being the
ICG Parser that was entirely developed during this year. The component is now packaged into a
Docker image and supports both command line execution and http-based Rest API calls using
the Open API interface definition. It is integrated in the PIACERE Framework, it correctly parses
DOML v2, is called by the PIACERE IDE and when required also by the PRC and it generates IaC
code compatible with the IEM requirements for execution. The template library was reorganized
and extended to support new providers, such as Openstack, and resources like security groups
or applications like Nginx. The ICG has also been released in Open Source with the Apache 2.0
license. Thus, the following sections of this document have been accordingly updated to reflect
those changes in the functional and technical description of the ICG (sections 2.2 and 2.3) as well
as in the delivery and usage of this release.

Requirements in Table 1 have been updated and most of them fulfilled: REQ96 is achieved
thanks to the implementation of the ICG DOML Parser, REQ29 has been discarded and replaced
by REQ100 which is achieved and will be furthermore extended in the next ICG version, REQ41
has been discarded and replaced by REQ110.

2.2 Functional description

Figure 1: ICG component representation

The ICG version 2 evolved from a command line application into a microservice. Thus, the tool
is aligned with the PIACERE microservices framework architecture: it is invoked through the REST
API and takes as input the DOML model in the XML format for the generation of the
Infrastructure as Code (IaC) which is returned in an archive (zip) format.

Figure 1 shows the internal ICG architecture, which has the same components declared in the
D3.4 [1] section 2.1. It is slightly revised due to the adoption of the new microservice
architecture. Below, we report the updates affecting each internal component.

DRAFT

http://www.medina-project.eu/

D3.5 – Infrastructural code generation – v2 Version 1.0 – Final. Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 9 of 24

www.piacere-project.eu

ICG Controller is the main component and in this new version it is invoked by the PIACERE IDE
or PIACERE PRC through its REST API. It reads the parameters and controls the internal flow
between the other components of the ICG.

ICG DOML Parser is now implemented. It is activated by the Controller. It parses the input DOML
model to produce an Intermediate Representation. The Parser reads the input model in XML
format, a DOML representation that is called DOMLx. The current version of the Parser is
compatible with DOML v2.

The Intermediate Representation is not changed, see D3.4 [1] section 2.1.

ICG Code Generator is not changed, see D3.4 [1] section 2.1.

The Templates Library has been extended to support more resources from more cloud
providers. The list of the new resources can be found in Section 2.3.2.5.

The IaC folder is a new ephemeral storage to host the IaC files and configuration produced
during the generation process. This folder will be the output of the ICG and will be described in
Section 2.3.3.

The ICG main functionalities are the same as in D3.4 [1], and we recap them here:

▪ F1. Read the input DOML model to extract all the needed information.
▪ F2. Generate executable code for selected IaC languages.
▪ F3. Provide enough extensibility to support the DOML extension mechanism [KR4]
▪ F4. Provide enough extensibility to generate code for new IaC languages
▪ F5. Generate IaC code that supports different cloud platforms

In this second release, the functionality F1 is implemented, F2 and F5 have been extended and
the others are still partially implemented.

Below, Table 1 is reporting the updates about the coverage of each ICG requirements indicated
in deliverable D2.2 in relation to the functionalities.

Table 1 KR3 - ICG Requirements

Funct. Req ID Description Status Requirement Coverage at
M24

F1 REQ96 ICG must be able to read
DOML language.

Achieved ICG can parse the DOML v2.

F2 REQ31 ICG should provide verifiable
and executable IaC
generated from DOML for
selected IaC languages (e.g.,
TOSCA/Ansible/Terraform).

Achieved Already implemented in v1,
see previous deliverable
(D3.4 [1])

F2 REQ77 ICG may generate IaC code
for different
supported/target tools
according to the required
DevOps activity (as listed in
REQ76).

Partially
Achieved

There are no changes from v1
(D3.4 [1]), deployment and
configuration are available,
orchestrations is not yet
implemented

F3 REQ41 The IDE should be extensible
through the plugin
mechanism. Not only to

Discarded This requirement should be
fulfilled by the KR2.

DRAFT

http://www.medina-project.eu/

D3.5 – Infrastructural code generation – v2 Version 1.0 – Final. Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 10 of 24

www.piacere-project.eu

support PIACERE assets (ICG,
VT) but also for third party
collaborators.

The new REQ110 assigned to
KR3 replaces this
requirement.

F3 REQ110 ICG should provide enough
extensibility to: comply with
the DOML extension
mechanism; be capable of
integrating new IaC
languages

Partially
Achieved

The ICG is setup to be
extendable, the full
extension mechanism
though is yet to be
implemented.

F4 REQ110 ICG should provide enough
extensibility to: comply with
the DOML extension
mechanism; be capable of
integrating new IaC
languages

Partially
Achieved

Regarding this functionality
there are no changes in
comparison with v1 (D3.4 [1])

F5 REQ29 DOML should support the
modelling of VM
provisioning for different
platforms such as
(OpenStack, AWS) for canary
and production
environments.

Discarded This requirement should be
fulfilled by the KR1.

The new REQ100 assigned to
KR3 replaces this
requirement.

F5 REQ100 ICG should generate IaC
code that supports different
cloud platforms.

Achieved ICG can generate IaC code
(Virtual Machine, Network,
Security Group, Ssh Keys) for
AWS, Azure and OpenStack
platforms.

2.2.1 ICG Scenarios

To better define the functionalities and requirements of the ICG a few end user scenarios have
been defined. In these scenarios the process of using the ICG will be explained using the
Cucumber/Gherkin notation [2]. The scenarios below are complementary to the ones from the
D2.2 deliverable, going more in detail on the available options.

Table 2 KR3 – ICG Scenarios

Phase Title Scenario Description Requirements

design-
time

Generation of
infrastructure
provisioning
code

Given a verified DOML
model containing the
infrastructure
definition
When a user navigates
to the DOML document
And right-clicks on it
And selects "PIACERE"
And selects "Generate
IaC code"
Then a compressed
folder containing the
infrastructural IaC code
is generated

From IDE GUI
the user can
generate IaC
files

REQ96, REQ31, REQ77,
REQ110

DRAFT

http://www.medina-project.eu/

D3.5 – Infrastructural code generation – v2 Version 1.0 – Final. Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 11 of 24

www.piacere-project.eu

design-
time

Generation of
infrastructure
provisioning
code for
multiple
providers

Given a verified DOML
model containing the
infrastructure
definition
And two different
providers between the
supported ones
And a user selects one
of the two as active
When a user navigates
to the DOML document
And right-clicks on it
And selects "PIACERE"
And selects "Generate
IaC code"
Then a compressed
folder containing the
infrastructural IaC code
for the active provider
is generated

From IDE GUI
the user can
generate
Infrastructural
code for
different
providers

REQ96, REQ31, REQ77,
REQ100,
REQ110

design-
time

Generation of
bundled
provisioning
and
configuration
code

Given a verified DOML
model containing the
infrastructure and
coherent application
definition
When a user navigates
to the DOML document
And right-clicks on it
And selects "PIACERE"
And selects "Generate
IaC code"
Then a compressed
folder containing the
infrastructural and
subsequent application
configuration IaC code
is generated

From IDE GUI
the user can
generate code
that can in a
single deploy
provision the
infrastructure
and configure
the related
application

REQ96, REQ31, REQ77,
REQ110

design-
time

Generation of
monitoring
and security
agents
configuration
code

Given a verified DOML
model containing the
infrastructure
definition
And at least a virtual
machine is defined
When a user navigates
to the DOML document
And right-clicks on it
And selects "PIACERE"
And selects "Generate
IaC code"
Then a compressed
folder is generated that

The user can
be provided
with
monitoring
and/or
security
agents
configuration
codes

REQ96, REQ31, REQ77,
REQ110

DRAFT

http://www.medina-project.eu/

D3.5 – Infrastructural code generation – v2 Version 1.0 – Final. Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 12 of 24

www.piacere-project.eu

contains also the
monitoring and security
agents configuration
IaC code

2.2.2 Fitting into overall PIACERE Architecture

The role of the ICG inside the PIACERE framework is the same described in D3.4 [1]. During this
second iteration, the main effort was to the integrate the component with the other PIACERE
tools.

Figure 2: ICG sequence diagram overview

Figure 2 shows the ICG sequence diagram respect to the other PIACERE components. The IDE
and PIACERE Runtime Controller (PRC) request to the ICG the generation of the IaC code, the IaC

DRAFT

http://www.medina-project.eu/

D3.5 – Infrastructural code generation – v2 Version 1.0 – Final. Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 13 of 24

www.piacere-project.eu

Executor Manager (IEM) and IaC Scan Runner (previously named “Verification Tools”) consume
the IaC code generated.

The ICG generates IaC code both for the user and the PIACERE internal components, thus it
handles the generation of the IaC code for the deployment of the PIACERE monitoring and
security agents. This version only integrates the monitoring agents, the security agents will be
added during the next iteration.

Figure 3: IDE-ICG integration

Figure 3 shows the usage of the ICG through the IDE: the user describes their infrastructure in
the DOML language and converts it into the DOMLx file, finally he/she requests the generation
of the IaC code using menu selection. After that, the IDE requests through the ICG POST API the
generation of the IaC code and obtains a compressed folder with the execution files. This folder
will be used by the IEM and the IaC Scan Runner.

2.3 Technical description

This section describes the technical details of the implemented software for the M24 release.

2.3.1 Prototype architecture

The current Internal ICG sequence diagram can be seen inFigure 4.

DRAFT

http://www.medina-project.eu/

D3.5 – Infrastructural code generation – v2 Version 1.0 – Final. Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 14 of 24

www.piacere-project.eu

Figure 4: ICG Internal Sequence Diagram

Since the previous prototype in M12, there were a few minor changes to the architecture.
The ICG Controller had internal updates, mainly due to the implementation of the Parser that
required updates to the controller to handle the interactions to the Parser. Regarding its
functionalities, the ICG Controller did not have any updates.
The ICG Parser was implemented for this prototype. The solution selected for the
implementation of the ICG Parser was Python and PyEcore for the DOML metamodel
interpretation.
In the same way as the Controller, the Intermediate Representation, the ICG Code Generator
and the ICG Plugins functionalities were not updated, the updates were in the internal
optimization and evolution of this components.
Lastly, the ICG was updated from a command line compiler to a microservice called through the
REST API, this also changed how the IaC code files are managed to be returned as output.

2.3.2 Components’ description

Most of the ICG components did not have functional changes from the last prototype so the
next chapters will focus mainly on the evolution of these components.

2.3.2.1 ICG Controller

In the current prototype of the ICG, the Controller is complete and all the required functionalities
were implemented.

DRAFT

http://www.medina-project.eu/

D3.5 – Infrastructural code generation – v2 Version 1.0 – Final. Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 15 of 24

www.piacere-project.eu

First, the ICG controller code was updated with the addition of a REST API interface which
receives the input from the other components, allowing the ICG to receive the DOML model as
input (the old prototype used the intermediate representation as input).

The other major improvement was in the definition of all the methods related to the newly
developed Parser. After the Controller is called by the IDE or the PRC, it takes the DOMLx
received as input and passes it to the Parser that returns the derived Intermediate
Representation. Once the Intermediate Representation is generated, the remaining
functionalities are as described in the previous deliverable.

2.3.2.2 ICG DOML Parser

In the last prototype the ICG Parser wasn’t yet developed so this component is the one that
experienced the most prominent evolution. First of all, contrary to the studies made for the
previous prototype, the implementation choice was to have this component integrated inside
the ICG and not inside the IDE. To better fit in the ICG architecture, the ICG Parser was developed
in Python and integrates the PyEcore library to read and navigate the DOML metamodel.

The Parser is called by the Controller, receives as input the DOMLx model and returns as output
the Intermediate Representation. DOMLx is the machine-readable version of the DOML model
and is generated by the IDE at design time. The ICG Parser extrapolates from the DOMLx all the
relevant information necessary to generate the IaC code.

In the table below, a small example of DOML and the related DOMLx representation are
presented. It is important to note that the example provided is of v2 of DOML which is the
current supported version DOML by the ICG.

Table 3 DOML and DOMLx example

doml mysql
application app {
 software_component mysql {
 }
}
infrastructure infra {
 key_pair ssh_key {
 keyfile "local path to ssh key"
 }
 vm vm1 {
 os "ubuntu-20.04.3"
 credentials ssh_key
 iface i1 {
 belongs_to net1
 }
 }
 net net1 {
 address "10.10.10.0/24"
 protocol "tcp/ip"
 }
}
deployment config {
 mysql -> vm1
}
active deployment config
concretizations {
 concrete_infrastructure con_os_infra {
 provider openstack {
 properties {}
 vm concrete_vm1 {
 properties {
 vm_flavor = "small-centos";
 }
 maps vm1
 }
 net concrete_net {
 properties {}
 maps net1
 }
 }
 }
 active con_os_infra
}

<?xml version="1.0" encoding="ASCII"?>
<commons:DOMLModel xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:app="http://www.piacere-project.eu/doml/application"
xmlns:commons="http://www.piacere-project.eu/doml/commons"
xmlns:infra="http://www.piacere-project.eu/doml/infrastructure"
name="mysql" activeConfiguration="//@configurations.0"
activeInfrastructure="//@concretizations.0">
 <application name="app">
 <components xsi:type="app:SoftwareComponent" name="mysql"/>
 </application>
 <infrastructure name="infra">
 <nodes xsi:type="infra:VirtualMachine" name="vm1" os="ubuntu-20.04.3"
credentials="//@infrastructure/@credentials.0">
 <ifaces name="i1" belongsTo="//@infrastructure/@networks.0"/>
 </nodes>
 <networks name="net1" protocol="tcp/ip" addressRange="10.10.10.0/24"
connectedIfaces="//@infrastructure/@nodes.0/@ifaces.0"/>
 <credentials xsi:type="infra:KeyPair" name="ssh_key" keyfile="local path to
ssh key"/>
 </infrastructure>
 <concretizations name="con_os_infra">
 <providers name="openstack">
 <vms name="concrete_vm1" maps="//@infrastructure/@nodes.0">
 <annotations xsi:type="commons:SProperty" key="vm_flavor"
value="small-centos"/>
 </vms>
 <networks name="concrete_net" maps="//@infrastructure/@networks.0"/>
 </providers>
 </concretizations>
 <configurations name="config">
 <deployments component="//@application/@components.0"
node="//@infrastructure/@nodes.0"/>
 </configurations>
</commons:DOMLModel>

DRAFT

http://www.medina-project.eu/

D3.5 – Infrastructural code generation – v2 Version 1.0 – Final. Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 16 of 24

www.piacere-project.eu

From the example we can observe that the DOML has different layers. The ICG takes care of the
concretization, deployment and application layers, navigates, reorganizes and saves this
information in a JSON format, the Intermediate Representation.

The Intermediate Representation generated is compatible with the one that was constructed by
hand for the previous prototype, allowing for an easy integration with the other ICG
components.

2.3.2.3 Intermediate Representation

The Intermediate Representation has not been updated from the last prototype, see D3.4 [1]
section 2.2.2.3 for further details.

2.3.2.4 ICG Code Generator

The ICG Code Generator for this prototype did get some refactoring done and due to the changes
of the overall ICG structure there were also some updates to the Code Generator, but in the
same way as the other ICG component the functionalities of the Code Generator did not change.

The first change to be observed is due to the containerization of the ICG. In the previous
prototype, the Plug-ins, after generating the code, wrote it on the filesystem where the other
components could retrieve it or the code could simply be viewed by the user. With the new
approach, the code is only temporarily stationed on the container’s ephemeral volume to be
packaged and returned as body of the REST API call.

From the previous prototype there were also relevant changes in the folder structure the Code
Generator provides for the output code. This update was made to allow for a more readable and
organized output code.

In the same line, to also allow for the proper integration with the IaC Executor Manager (IEM),
the new folder structure was accompanied by new configuration files. These files are generated
by the Plug-ins and indicate to the IEM the required properties and information to execute the
code.

Lastly, to integrate the monitoring agents, the Code Generator for this prototype provides the
IaC required to configure them on the defined virtual machines.

2.3.2.4.1 Terraform plug-in
The Terraform plug-in did not receive updates that would change its functionalities or inner
workings. Its changes are strictly related to the changes of all ICG Code Generator. The main
update was the general refactoring of the code that made the ICG faster and more robust.

Aside from that, the plug-ins were not impacted by any other addition to the providers or
resources available in DOML. This was possible due the extensibility features present in the ICG,
mainly the capability to add or update the template library as a way to easily add new resources.

2.3.2.4.2 Ansible plug-in
Same as for the Terraform plug-in the Ansible plug-in main update was the refactoring of the
code, which increased the robustness and performance of the code.

The IaC code used to configure the monitoring agents is Ansible-based, so it counts as a new
addition to the Ansible template library. This update also did not directly impact the functionality
of the Ansible plug-in.

DRAFT

http://www.medina-project.eu/

D3.5 – Infrastructural code generation – v2 Version 1.0 – Final. Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 17 of 24

www.piacere-project.eu

2.3.2.5 Template library

The IaC templates collection is expanded and re-organized. Now, the ICG can create IaC code for
new resources defined in the DOML language and can extend its set of templates in an easy way.

The main directory is the “template” directory, and it is organized with one folder per IaC
language supported by the ICG. At the moment, these folders are “ansible” and “terraform”, but
in the future an expert user can make new ones dedicated to new IaC languages.
In these folders, there are the templates for the generation of the target IaC language. Thus in
the “ansible” directory there are the Ansible IaC templates grouped by operating system and in
the “terraform” directory there are the Terraform IaC templates grouped by the cloud provider
(see Figure 5). Here again, an expert user can add his/her templates to allow the creation of new
IaC code for that specific IaC language.

Figure 5: Templates library

Regarding the Ansible templates, the ICG can now generate IaC code for the creation of the
nginx application, the PIACERE monitoring agents, WordPress and the MySQL and Postgres
databases.

Regarding the Terraform templates, ICG now supports AWS, Azure and OpenStack cloud
providers and can generate Network, Subnet, Security Group, Virtual Machine and SSH Keys
cloud resources.

The ICG plug-ins generate the IaC code choosing the right template from a properties file called
“template-location.properties”, shown in Figure 6. In this file, for each DOML resource there is
the path to the template to be used. Thanks to this approach, an expert user can add the
reference to his new templates adding the right path.

For instance, referring to the properties files presented in Figure 6, let’s see what happens if the
XML representation of DOML model presented in Table 3 is provided to the ICG. The first

DRAFT

http://www.medina-project.eu/

D3.5 – Infrastructural code generation – v2 Version 1.0 – Final. Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 18 of 24

www.piacere-project.eu

information the ICG obtains in this example is contained inside the concretizations layer and is
the “provider”. Once the provider is specified the second object it recognizes is the “vms” object,
this is associated to a template in the properties file (see line 19 of properties file Figure 6) which
is then selected. The same happens for the next object “networks” and so on until all the DOML
model is completed. The selected templates will be used by the ICG to provide the required IaC.

Note: The elements present inside the XML format of the DOML are different from the ones
inside the DOML model, for example the element referred as “vm” inside the DOML model
becomes part of the “vms” element in the DOMLx representation.

Figure 6: template-location.properties file

2.3.3 Output description

The ICG output is a compressed folder with the IaC files and the instructions about how to
execute them.

DRAFT

http://www.medina-project.eu/

D3.5 – Infrastructural code generation – v2 Version 1.0 – Final. Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 19 of 24

www.piacere-project.eu

Figure 7: ICG output compressed folder

Figure 7 shows the root of the output compressed folder. It contains one folder per each module
to be executed: the “terraform” folder contains the files for the provisioning of the
infrastructure, the “piacere_monitoring” folder is dedicated to the installation of the PIACERE
monitoring agents, the “nginx” folder is for the installation of the nginx. The configuration file
describes the order of execution of the folders, it is called “config” and it uses the YAML format
(see Figure 8).

Figure 8: ICG output config.yaml

Each folder in the root contains the IaC files and a config.yaml file. This time, the configuration
file contains instructions about:

▪ “engine”: it is the IaC language to be used
▪ “input”: it is a list of input variables to be passed during the execution of the IaC files
▪ “output”: it is a list of output variables coming from the execution of the IaC files.

Figure 9 shows an example of the config.yaml file and files structure belonging to the
“terraform” folder.

DRAFT

http://www.medina-project.eu/

D3.5 – Infrastructural code generation – v2 Version 1.0 – Final. Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 20 of 24

www.piacere-project.eu

Figure 9: output terraform folder

2.3.4 Technical specifications

The ICG components are still written with Python version 3.6 and use the Jinja2 Python library
version 3.0.3. In this new version more libraries have been used:

▪ Fast API version 0.74.1 and Uvicorn version 0.17.5 for the REST API implementation
▪ PyEcore version 0.12.2 for the ICG Parser
▪ PyYaml version 6.0 for the creation of the configuration files given in the output

compressed folder

DRAFT

http://www.medina-project.eu/

D3.5 – Infrastructural code generation – v2 Version 1.0 – Final. Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 21 of 24

www.piacere-project.eu

3 Delivery and usage

3.1 Package information

During this second iteration a refactoring has been done to the ICG code.

The folders and files most useful to the user for the setup and management of the ICG are the
following:

▪ Templates folder: contains the templates to be used for the IaC code generation
grouped by the IaC language

▪ Template-location.properties file: this file lists the reference to the proper template to
be used for the generation of a specific DOML resource

▪ Input_file_generated folder: contains the Intermediate Representation generated by
the ICG

▪ Dockerfile and requirements.txt files: used for the Docker packaging of the application
▪ Doc folder: contains some example scenarios of usage of the ICG

The ICG components are organized in packages and folders containing these packages are the
following:

▪ Controller: folder dedicated to the ICG Controller package
▪ Icgparser: folder dedicated to the ICG Parser package
▪ Plugin: folder containing the packages of the Terraform and the Ansible ICG plug-ins

3.2 Installation instructions

This new version of the ICG runs into Docker container and no Python nor Python library
installation is needed.

The code is available on the public TECNALIA GitLab repository and can be downloaded through
the following command:

git clone https://git.code.tecnalia.com/piacere/public/the-platform/icg.

Once the tool is downloaded, you can run it with docker executing these commands from the
root of the project:

docker build -t icg:1.0.0 .

docker run --name icg -d -p 5000:5000 icg:1.0.0

and finally the API docs are available at: http://localhost:5000/docs.

The ICG command line is still available and the tool can be executed with Python 3.6 too as
described in D3.4 [1], installing Jinja2 v3.0.3 library as in the previous version and including also
PyYAML v6.0, FastAPI v0.74.1, Uvicorn v0.17.5 and PyEcore 0.12.2 libraries. The following
command can be used to install all these libraries:

pip install -r requirements.txt

As previously introduced the ICG can be run as a command line tool, an example of how it can
be done on Windows is the following:

py .\main.py -d icgparser/doml --single icgparser/doml/nginx-openstack_v2.domlx

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/public/the-platform/icg
http://localhost:5000/docs

D3.5 – Infrastructural code generation – v2 Version 1.0 – Final. Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 22 of 24

www.piacere-project.eu

3.3 User Manual

The initial step for the component installation is described in Section 213.2. After that, the ICG
REST APIs are described at: http://localhost:5000/docs.

Figure 10: ICG REST APIs

There are two API endpoints:

▪ POST /infrastructure/files: takes as input the Intermediate Representation as JSON and
produces in output the compressed folder. This API is used mostly for testing purposes.

▪ POST /iac/files: takes as input the XML representation of the DOML model and returns
the compressed folder containing the IaC code and execution instructions.

The local ICG installation can be tested with the following command:

curl -X 'POST' \

 'https://localhost:5000/iac/files' \

 -H 'accept: application/json' \

 -H 'Content-Type: application/xml' \

 -d "@model.domlx" \

 -o "output.tar.gz"

Where model.domlx is the XML representation of a given DOML model, see Table 3 for an
example of a possible DOML model.

In section 2.2.1, there are also some scenarios that indicate how the ICG can be used through
the IDE to fulfil different user stories.

3.4 Licensing information

The ICG component has been released in open source under the Apache 2.0 license.

3.5 Download

The ICG can be downloaded from the public TECNALIA GitLab repo at
https://git.code.tecnalia.com/piacere/public/the-platform/icg or from the public HPE GitHub
repo at: https://github.com/HewlettPackard/icg-iac-code-generator.

DRAFT

http://www.medina-project.eu/
http://localhost:5000/docs

D3.5 – Infrastructural code generation – v2 Version 1.0 – Final. Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 23 of 24

www.piacere-project.eu

4 Conclusions

This document described the second release of the ICG component, implemented in the second
year of the PIACERE project. The component is now fully operational, integrated with other
design-time components and works with DOML v2. As the next version of DOML will be released
the compatibility of the ICG with it will also be guaranteed.

The main functionalities of the ICG have been listed, along with its internal architecture, the
relationship among the implemented functionalities and the updated requirements collected in
deliverable D2.2, plus some advanced usage scenarios.

All internal ICG components have been described, along with their interactions. Furthermore,
the deliverable described in detail the files included in the delivered package and documents
how to install and use the released software.

The next version of the ICG will further enhance the template library to offer more complete
code generation capabilities, both for improving the support of DOML elements and possibly for
supporting other target platforms, depending on Use Case requirements.

In the final release, due at M30 (deliverable D3.6), we plan to provide guidelines for writing new
templates, so that expert users will be able to develop their own templates or to modify existing
ones, both for supporting new DOML concepts and for providing support for new IaC languages.

DRAFT

http://www.medina-project.eu/

D3.5 – Infrastructural code generation – v2 Version 1.0 – Final. Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 24 of 24

www.piacere-project.eu

5 References

[1] «PIACERE Deliverable D3.4 - Infrastructural code generation – v1». [Online]

https://zenodo.org/record/6821657#.Y0_Gr3ZBw2x

[2] «Gherkin Reference» [Online] https://cucumber.io/docs/gherkin/reference/.

DRAFT

http://www.medina-project.eu/
https://zenodo.org/record/6821657#.Y0_Gr3ZBw2x
https://cucumber.io/docs/gherkin/reference/

