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Goldbach's Conjecture — A Route to the Inconsistency of Arithmetic 
 
 

 Ralf Wüsthofen 
 

 
 
 
 
 
Abstract. This paper proves an inconsistency in Peano arithmetic (PA). The contradiction 
we derive is based on two properties of a specific set which we use to reformulate a 
strengthened form of the strong Goldbach conjecture. 
 
 
 
Notations. Let  denote the natural numbers starting from 1, let n denote the natural 
numbers starting from n > 1 and let 3 denote the prime numbers starting from 3. 

Strengthened strong Goldbach conjecture (SSGB): Every even integer greater than 6 can 
be expressed as the sum of two different primes. 
 
 
 
Theorem.  PA is contradictory, i.e. the statement FALSE can be derived. 
 
 
Proof. We define the set Sg := { (pk, mk, qk) | k, m  ; p, q  3, p < q; m = (p + q) / 2 }. 
 
SSGB is equivalent to saying that every integer x ≥ 4 is the arithmetic mean of two different 
odd primes and so it is equivalent to saying that all integers x ≥ 4 appear as m in a middle 
component mk of Sg. So, by the definition of Sg we have 
 
   SSGB  <=>   x  4    Ǝ (pk, mk, qk)  Sg     x = m. 

SSGB  <=>  Ǝ x  4     (pk, mk, qk)  Sg      x ≠ m. 
 
 
 
The set Sg has the following two properties. 
 
First, the whole range of 3 can be expressed by the triple components of Sg (”covering”), 
because every integer x ≥ 3 can be written as some pk with k = 1 when x is prime, as some 
pk with k ≠ 1 when x is composite and not a power of 2, or as  (3 + 5)k / 2  when x is a 
power of 2; p  3, k  .  So we have  
 
(C)   x  3    Ǝ (pk, mk, qk)  Sg      x = pk      x = mk = 4k. 
 
 
 
 
 

http://en.wikipedia.org/wiki/Even_and_odd_numbers
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Prime_number
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A few examples of the covering: 
 
 
x =       19:  (19∙1, 21∙1, 23∙1), (19∙1, 60∙1, 101∙1) 
 
x =       36:  (3∙12, 7∙12, 11∙12) 
 
x =       38:  (19∙2, 21∙2, 23∙2) 
 
x =       42:  (3∙14, 5∙14, 7∙14), (7∙6, 9∙6, 11∙6) 
 
x =       64:  (3∙16, 4∙16, 5∙16) 
 
x = 10000:  (5∙2000, 6∙2000, 7∙2000). 
 
 
 
 
Second, according to the statement SSGB, all pairs (p, q) of distinct odd primes are used in 
the definition of the set Sg (“maximality”).  So we have 
 
(M)   p, q  3, p < q     k        (pk, mk, qk)  Sg, where m = (p + q) / 2. 
 
 
 
The proof is motivated by the following view. 
 
There are two possibilities for Sg, exactly one of which must occur: Either there is an           
n  4  in addition to all the numbers m defined in Sg or there is not. The latter is equivalent 
to SSGB and the former is equivalent to SSGB. 
 
Since, due to (C), every n given by SSGB as well as every multiple nk, k  , equals a 
component of some Sg triple that exists by definition, the covering of  3  by the Sg triples if 
n exists ( SSGB) is equal to that if n does not exist (SSGB). This causes a contradiction 
because in the case SSGB the numbers m defined in Sg take all integer values x ≥ 4 
whereas in the case SSGB they don’t. 
 
 
 
 
First of all, we note that each of the two properties (C) and (M) is a condition sine qua non 
for the proof, for the following reasons. 
 

(C) immediately implies SSGB, since an n ≥ 4 different from all Sg triple components  pk, 
mk, qk  is in particular different from all m in Sg. 
 
The proof would no longer be possible if, for example, we omitted the factor k in the 
definition of Sg, because then the corresponding (C) could no longer be guaranteed. 
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Similarly, the property (M) rules out the possibility that there is an n ≥ 4 different from all m 
(i.e. SSGB) and n is the arithmetic mean of a pair of primes not used in Sg. Thus (M) 
excludes the possibility that SSGB applies due to a missing prime number pair. This 
means that the proof would no longer be possible here either if we left out any prime 
number pair in the formulation of SSGB and Sg. 
 
 
We will now show that  ((C)  (M))  leads to a contradiction. 
 
 
The following proof is independent of the choice of n if there is more than one in the case of 

SSGB. For example, the minimal such n works. 
 
 
 
We split Sg into two complementary subsets: For any y  3, Sg = Sg+(y) ∪ Sg-(y), with 

Sg+(y) := { (pk, mk, qk) Sg | Ǝ k'     pk = yk'    mk = yk'    qk = yk' }  and  

Sg-(y) := { (pk, mk, qk) Sg |  k'     pk ≠ yk'    mk ≠ yk'    qk ≠ yk' }. 
 
 
 
Let  n  4  be given by SSGB as described above. Then, we have 
 
(*)  SSGB  =>  Sg = Sg+(n) ∪ Sg-(n). 

 
 
More precisely, under the assumption SSGB with the associated n the set Sg can be 
written as the disjoint union of the following triples. 

(i) Sg triples of the form (pk = nk', mk, qk) with k = k' in case n is prime, due to (C) 

(ii) Sg triples of the form (pk = nk', mk, qk) with k ≠ k' in case n is composite and not a 
power of 2, due to (C) 

(iii) Sg triples of the form (3k, 4k = nk', 5k) in case n is a power of 2, due to (C) 

(iv) all remaining Sg triples of the form (pk = nk', mk, qk), (pk, mk = nk', qk) or                  
(pk, mk, qk = nk') 

and 

(v) Sg triples of the form (pk ≠ nk', mk ≠ nk', qk ≠ nk'), i.e. those Sg triples where none of the 
nk' equals a component. 

 

So, Sg+(n) is the union of the triples of the above types (i) to (iv) and Sg-(n) is the union of 
the triples of type (v). 
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Now, we define  

S1 := { (pk, mk, qk)  Sg | SSGB holds } 

S2 := { (pk, mk, qk)  Sg |   SSGB holds }. 
 
 
 

So, by (*) we obtain 

(1)  SSGB  =>  S1 = Sg = Sg+(n) ∪ Sg-(n). 
 
 
 
Since  Sg+(n) ∪ Sg-(n)  is independent of n, we can write 
 
(1')   y  3     SSGB  =>  S1 = Sg = Sg+(y) ∪ Sg-(y). 
 
 
 

Under the assumption SSGB there is no n as above. Therefore, under this assumption, we 
can choose an arbitrary  y  3  such that  Sg = Sg+(y) ∪ Sg-(y). So, we obtain 

(2)   y  3     SSGB  =>  S2 = Sg = Sg+(y) ∪ Sg-(y). 

 

 

We will make use of the following trivial principle. 

If two sets of (possibly infinitely many) x-tuples are equal, then the sets of their 
corresponding i-th components are equal; 1 ≤ i ≤ x. 

 

To this end, for each k   we define 

M(k)  := { mk | (pk, mk, qk)  Sg } 

M1(k) := { mk | (pk, mk, qk)  S1 } 

M2(k) := { mk | (pk, mk, qk)  S2 }. 
 
 
 
 
Then, applying the principle above to the middle component of the triples (pk, mk, qk),      
(1') and (2) imply 
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(3)   k      y  3 

 
       ( SSGB  =>  M1(k) = M(k) = { mk | (pk, mk, qk)   Sg+(y) ∪ Sg-(y) }) 

 
 
(4)   k      y  3 

 
       (   SSGB  =>  M2(k) = M(k) = { mk | (pk, mk, qk)   Sg+(y) ∪ Sg-(y) }). 
 
 
 
 
 
We set M := M(1), M1 := M1(1) and M2 := M2(1). So we get 
 
 
(3')   y  3     ( SSGB  =>  M1 = M = { m | (p, m, q)   Sg+(y) ∪ Sg-(y) }) 
 

 
 
(4')   y  3     (   SSGB  =>  M2 = M = { m | (p, m, q)   Sg+(y) ∪ Sg-(y) }). 
 
 
 
 
 
Since for every y  3  Sg+(y) ∪ Sg-(y) equals Sg, there is a set X such that for every y  3  
{ m | (p, m, q)   Sg+(y) ∪ Sg-(y) } equals X.  So, from (3') and (4') we obtain 
 
 
(5)  ( SSGB  =>  M1 = M = X)        (SSGB  =>  M2 = M = X). 
 
 
 
 
 
The set X is a free variable in (5) that is either equal to 4 or to some non-empty proper 
subset Y of 4. Therefore, (5) splits as follows. 
 
 
(5.1)  ( ( SSGB  =>  M1 = M = 4)               (SSGB  =>  M2 = M = 4) ) 
 

 
 

(5.2)  ( ( SSGB  =>  M1 = M = Y ≠ 4)        (SSGB  =>  M2 = M = Y ≠ 4) ). 
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On the other hand, under the assumption SSGB the numbers m defined in Sg take all 
integer values x ≥ 4 whereas under SSGB they don’t. Therefore, we have 
 
 
(6.1)     SSGB  =>  M2 = M = 4 
 

(6.2)  SSGB  =>  M1 = M ≠ 4. 
 
 
 
 
 
( (5.1)  (5.2) )  together with (6.1) and (6.2) yields 
 
 
         ( (7.11)  SSGB  =>  M1 = M = 4 

          
           (7.12)  SSGB  =>  M1 = M ≠ 4 ) 
 
(7)     
 

         ( (7.21)    SSGB  =>  M2 = M ≠ 4 

          
           (7.22)    SSGB  =>  M2 = M = 4 ). 
 
 
 
 
 
Since  
 
 

SSGB => M1 = M  and  SSGB => M1 = { } ≠ M 
 
and 
 

SSGB => M2 = M  and  SSGB => M2 = { } ≠ M, 
 
 
 

from ( (7.11)  (7.12) ) we get that  M = 4  and  M ≠ 4  if SSGB actually is true, and 

from ( (7.21)  (7.22) ) we get that  M = 4  and  M ≠ 4  if SSGB actually is true. 
 
 
For two statements P and Q, in contrast to the conditional statement 
 
if P is assumed to be true, then (Q  Q) 
 
which symbolically is  ( P  =>  (Q  Q) ), 
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the statement 
 
if P is actually true, then (Q  Q) 
 
is symbolically  ( P    (P  =>  (Q  Q)) ). 
 
 
 
 
 
Therefore, from (7) we obtain 
 
 

(8.1)  ( SSGB        ( SSGB  =>  (M = 4      M ≠ 4)) ) 
 

 
 

(8.2)  (    SSGB        (  SSGB  =>  (M = 4      M ≠ 4)) ). 
 
 
 
 
 
Then, ( (8.1)  (8.2) )  yields  (FALSE    FALSE), which is equivalent to FALSE. 

                                                                                                                           □ 


