Goldbach's Conjecture — A Route to the Inconsistency of Arithmetic

Ralf Wüsthofen

Abstract. This paper proves an inconsistency in Peano arithmetic (PA). The contradiction we derive is based on two properties of a specific set which we use to reformulate a strengthened form of the strong Goldbach conjecture.

Notations. Let \mathbb{N} denote the natural numbers starting from 1, let \mathbb{N}_n denote the natural numbers starting from n > 1 and let \mathbb{P}_3 denote the prime numbers starting from 3.

Strengthened strong Goldbach conjecture (SSGB): Every even integer greater than 6 can be expressed as the sum of two different primes.

Theorem. *PA is contradictory, i.e. the statement FALSE can be derived.*

Proof. We define the set $S_g := \{ (pk, mk, qk) \mid k, m \in \mathbb{N}; p, q \in \mathbb{P}_3, p < q; m = (p + q) / 2 \}.$

SSGB is equivalent to saying that every integer $x \ge 4$ is the arithmetic mean of two different odd primes and so it is equivalent to saying that all integers $x \ge 4$ appear as m in a middle component mk of S₉. So, by the definition of S₉ we have

$$\begin{split} & \text{SSGB} <=> \ \forall \ x \in \mathbb{N}_4 \quad \exists \ (\text{pk, mk, qk}) \in S_g \quad x = m. \\ & \neg \text{SSGB} <=> \ \exists \ x \in \mathbb{N}_4 \quad \forall \ (\text{pk, mk, qk}) \in S_g \quad x \neq m. \end{split}$$

The set S_9 has the following two properties.

First, the whole range of \mathbb{N}_3 can be expressed by the triple components of S_9 ("*covering*"), because every integer $x \ge 3$ can be written as some pk with k = 1 when x is prime, as some pk with $k \ne 1$ when x is composite and not a power of 2, or as (3 + 5)k / 2 when x is a power of 2; $p \in \mathbb{P}_3$, $k \in \mathbb{N}$. So we have

(C) $\forall x \in \mathbb{N}_3 \exists (pk, mk, qk) \in S_g \quad x = pk \lor x = mk = 4k.$

A few examples of the covering:

- x = 19: (**19·1**, 21·1, 23·1), (**19·1**, 60·1, 101·1)
- x = 36: (**3.12**, 7.12, 11.12)

x = 38: (**19·2**, 21·2, 23·2)

- x = 42: (**3.14**, 5.14, 7.14), (**7.6**, 9.6, 11.6)
- x = 64: (3·16, **4·16**, 5·16)
- x = 10000: (**5·2000**, 6·2000, 7·2000).

Second, according to the statement SSGB, all pairs (p, q) of distinct odd primes are used in the definition of the set S_g ("*maximality*"). So we have

(M) $\forall p, q \in \mathbb{P}_3, p < q \quad \forall k \in \mathbb{N}$ (pk, mk, qk) $\in S_g$, where m = (p + q) / 2.

The proof is motivated by the following view.

There are two possibilities for S_g , exactly one of which must occur: Either there is an $n \in \mathbb{N}_4$ in addition to all the numbers *m* defined in S_g or there is not. The latter is equivalent to SSGB and the former is equivalent to \neg SSGB.

Since, due to (C), every n given by \neg SSGB as well as every multiple nk, $k \in \mathbb{N}$, equals a component of some S_g triple that exists by definition, the covering of \mathbb{N}_3 by the S_g triples if n exists (\neg SSGB) is equal to that if n does not exist (SSGB). This causes a contradiction because in the case SSGB the numbers m defined in S_g take all integer values $x \ge 4$ whereas in the case \neg SSGB they don't.

First of all, we note that each of the two properties (C) and (M) is a condition sine qua non for the proof, for the following reasons.

 \neg (C) immediately implies \neg SSGB, since an n ≥ 4 different from all S_g triple components pk, mk, qk is in particular different from all m in S_g.

The proof would no longer be possible if, for example, we omitted the factor k in the definition of S_g, because then the corresponding (C) could no longer be guaranteed.

Similarly, the property (M) rules out the possibility that there is an $n \ge 4$ different from all m (i.e. \neg SSGB) and n is the arithmetic mean of a pair of primes not used in S_g. Thus (M) excludes the possibility that \neg SSGB applies due to a missing prime number pair. This means that the proof would no longer be possible here either if we left out any prime number pair in the formulation of SSGB and S_g.

We will now show that $((C) \land (M))$ leads to a contradiction.

The following proof is independent of the choice of n if there is more than one in the case of \neg SSGB. For example, the minimal such n works.

We split S_g into two complementary subsets: For any $y \in \mathbb{N}_3$, S_g = S_g+(y) \cup S_g-(y), with

 $S_g+(y) := \{ (pk, mk, qk) \in S_g \mid \exists k' \in \mathbb{N} | pk = yk' \lor mk = yk' \lor qk = yk' \} and$

 $S_g(y) := \{ (pk, mk, qk) \in S_g \mid \forall k' \in \mathbb{N} | pk \neq yk' \land mk \neq yk' \land qk \neq yk' \}.$

Let $n \in \mathbb{N}_4$ be given by \neg SSGB as described above. Then, we have

(*) \neg SSGB => S_g = S_g+(n) \cup S_g-(n).

More precisely, under the assumption \neg SSGB with the associated n the set S_g can be written as the disjoint union of the following triples.

(i) S₉ triples of the form (pk = nk', mk, qk) with k = k' in case n is prime, due to (C)

(ii) S_g triples of the form (pk = nk', mk, qk) with $k \neq k'$ in case n is composite and not a power of 2, due to (C)

(iii) S_g triples of the form (3k, 4k = nk', 5k) in case n is a power of 2, due to (C)

(iv) all remaining S_g triples of the form (pk = nk', mk, qk), (pk, mk = nk', qk) or (pk, mk, qk = nk')

and

(v) S_g triples of the form ($pk \neq nk'$, $mk \neq nk'$, $qk \neq nk'$), i.e. those S_g triples where none of the nk' equals a component.

So, $S_g+(n)$ is the union of the triples of the above types (i) to (iv) and $S_g-(n)$ is the union of the triples of type (v).

Now, we define

 $S_1 := \{ (pk, mk, qk) \in S_g \mid \neg SSGB \text{ holds } \}$ $S_2 := \{ (pk, mk, qk) \in S_g \mid SSGB \text{ holds } \}.$

So, by (*) we obtain

(1) \neg SSGB => S₁ = S_g = S_g+(n) \cup S_g-(n).

Since $S_g+(n) \cup S_g-(n)$ is independent of n, we can write

(1') $\forall y \in \mathbb{N}_3 \quad \neg SSGB \Rightarrow S_1 = S_g = S_g + (y) \cup S_g - (y).$

Under the assumption SSGB there is no n as above. Therefore, under this assumption, we can choose an arbitrary $y \in \mathbb{N}_3$ such that $S_g = S_g+(y) \cup S_g-(y)$. So, we obtain

(2)
$$\forall y \in \mathbb{N}_3$$
 SSGB => S₂ = S_g = S_g+(y) \cup S_g-(y).

We will make use of the following trivial principle.

If two sets of (possibly infinitely many) x-tuples are equal, then the sets of their corresponding i-th components are equal; $1 \le i \le x$.

To this end, for each $k \in \mathbb{N}$ we define

 $M(k) \ := \{ \ mk \mid (pk, \, mk, \, qk) \in S_g \, \}$

 $M_1(k) := \{ mk \mid (pk, mk, qk) \in S_1 \}$

 $M_2(k) := \{ mk \mid (pk, mk, qk) \in S_2 \}.$

Then, applying the principle above to the middle component of the triples (pk, mk, qk), (1') and (2) imply

(3) $\forall k \in \mathbb{N} \quad \forall y \in \mathbb{N}_3$

 $(\neg SSGB \implies M_1(k) = M(k) = \{ mk \mid (pk, mk, qk) \in S_g+(y) \cup S_g-(y) \}$

 \wedge

(4) $\forall k \in \mathbb{N} \quad \forall y \in \mathbb{N}_3$

$$(SSGB = M_2(k) = M(k) = \{mk \mid (pk, mk, qk) \in S_g+(y) \cup S_g-(y)\})$$

We set M := M(1), $M_1 := M_1(1)$ and $M_2 := M_2(1)$. So we get

(3')
$$\forall y \in \mathbb{N}_3$$
 (\neg SSGB => M₁ = M = { m | (p, m, q) \in S_g+(y) \cup S_g-(y) })

 \wedge

(4') $\forall y \in \mathbb{N}_3$ (SSGB => M₂ = M = { m | (p, m, q) \in S_g+(y) \cup S_g-(y) }).

Since for every $y \in \mathbb{N}_3$ $S_g+(y) \cup S_g-(y)$ equals S_g , there is a set X such that for every $y \in \mathbb{N}_3$ { m | (p, m, q) $\in S_g+(y) \cup S_g-(y)$ } equals X. So, from (3') and (4') we obtain

(5) $(\neg SSGB \Rightarrow M_1 = M = X) \land (SSGB \Rightarrow M_2 = M = X).$

The set X is a free variable in (5) that is either equal to \mathbb{N}_4 or to some non-empty proper subset Y of \mathbb{N}_4 . Therefore, (5) splits as follows.

(5.1) $((\neg SSGB \Rightarrow M_1 = M = N_4) \land (SSGB \Rightarrow M_2 = M = N_4))$

(5.2) $((\neg SSGB \Rightarrow M_1 = M = Y \neq N_4) \land (SSGB \Rightarrow M_2 = M = Y \neq N_4)).$

On the other hand, under the assumption SSGB the numbers m defined in S_g take all integer values $x \ge 4$ whereas under \neg SSGB they don't. Therefore, we have

(6.1) SSGB => $M_2 = M = N_4$

(6.2) \neg SSGB => M₁ = M \neq N₄.

 $((5.1) \lor (5.2))$ together with (6.1) and (6.2) yields

((7.11)
$$\neg$$
SSGB => M₁ = M = N₄
(7.12) \neg SSGB => M₁ = M \neq N₄)
(7) \vee
((7.21) SSGB => M₂ = M \neq N₄

((7.21) SSGB => $M_2 = M \neq \mathbb{N}_4$ (7.22) SSGB => $M_2 = M = \mathbb{N}_4$).

Since

 \neg SSGB => M1 = M and SSGB => M1 = { } \neq M

and

SSGB => $M_2 = M$ and \neg SSGB => $M_2 = \{ \} \neq M,$

from ((7.11) \wedge (7.12)) we get that $M = \mathbb{N}_4$ and $M \neq \mathbb{N}_4$ if \neg SSGB actually is true, and from ((7.21) \wedge (7.22)) we get that $M = \mathbb{N}_4$ and $M \neq \mathbb{N}_4$ if SSGB actually is true.

For two statements P and Q, in contrast to the conditional statement

if P is assumed to be true, then $(Q \land \neg Q)$

which symbolically is ($P \implies (Q \land \neg Q)$),

the statement

if P is actually true, then $(Q \land \neg Q)$ is symbolically $(P \land (P \Rightarrow (Q \land \neg Q)))$.

Therefore, from (7) we obtain

(8.1) $(\neg SSGB \land (\neg SSGB \Rightarrow (M = \mathbb{N}_4 \land M \neq \mathbb{N}_4)))$ (8.2) $(SSGB \land (SSGB \Rightarrow (M = \mathbb{N}_4 \land M \neq \mathbb{N}_4))).$

Then, ((8.1) \vee (8.2)) yields (FALSE \vee FALSE), which is equivalent to FALSE.