

Deliverable D2.2

PIACERE DevSecOps Framework Requirements
specification, architecture and integration strategy – v2

Editor(s): Emanuele Morganti

Responsible Partner: Hewlett Packard Enterprise - HPE

Status-Version: Final-v1.0

Date: 01.12.2022

Distribution level (CO, PU): PU

DRAFT

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 2 of 88

www.piacere-project.eu

Project Number: 101000162

Project Title: PIACERE

Title of Deliverable:
PIACERE DevSecOps Framework Requirements
specification, architecture and integration strategy – v2

Due Date of Delivery to the EC 31.10.2022

Workpackage responsible for the
Deliverable:

WP2 - PIACERE Requirements, Architecture and
DevSecOps

Editor(s): Hewlett Packard Enterprise - HPE

Contributor(s):

Aleš Černivec – XLAB
Annelisa Motta – HPE
Elisabetta Di Nitto – POLIMI
Eliseo Villanueva Morte - Prodevelop
Emanuele Morganti – HPE
Eneko Osaba Icedo – Tecnalia
Jesús López Lobo - Tecnalia
Galia Novakova Nedeltcheva – POLIMI
Iñaki Etxaniz - Tecnalia
Gorka Benguria Elguezabal – Tecnalia
Ismael Torres Boigues – Prodevelop
Lorenzo Blasi – HPE
Matija Cankar – XLAB
Paweł Skrzypek – 7BULLS
Radosław Piliszek – 7BULLS

Reviewer(s): Matija Cankar (XLAB)

Approved by: All Partners

Recommended/mandatory
readers:

WP2, WP3, WP4, WP5, WP6, WP7

Abstract: This document is the second release of the PIACERE

DevSecOps Framework requirements Specification,
architecture and integration strategy document. It
contains 1) the updated list of the functional and non-
functional requirements related to the PIACERE
DevSecOps Framework, including its components; 2) the
updated architecture of the DevSecOps framework
[KR13] and the workflow; 3) the updated requirements
of the DevOps infrastructure to be used in the
development of PIACERE as well as the updated steps to
be followed for the continuous integration of the
PIACERE solution.

Keyword List: Architecture, Integration Strategy

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein

DRAFT

http://www.medina-project.eu/
http://creativecommons.org/licenses/by-sa/3.0/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 3 of 88

www.piacere-project.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 26.09.2022 First draft version including TOC and
assignments

HPE

v0.2 25.10.2022 Updates of IaC Scan Runner.
Suggestions and updates received by
consortium partners

All

v0.3 15.11.2022 Document fully reviewed, ready for
internal review and candidate to the
final version v1.0

HPE

v0.4 25.11.2022 Revision of content after quality
review by Matija Cankar (XLAB)

HPE

v0.5 29.11.2022 Second Revision of content after
quality review by Matija Cankar (XLAB)

HPE

v1.0 01.12.2022 Ready for submission TECNALIA

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 4 of 88

www.piacere-project.eu

Table of contents

Executive Summary ... 8

1 Introduction .. 10

1.1 About this deliverable ... 10

1.2 Document structure .. 10

1.3 Key Results (KRs) relationship ... 10

2 Requirements Specification .. 12

2.1 Changes in v2 .. 12

2.2 General description ... 12

2.3 Requirements Collection ... 12

2.3.1 Functional Requirements .. 15

2.3.2 Non-Functional Requirements .. 19

2.3.3 Business Requirements ... 19

2.3.4 Use Cases mapped on requirements .. 20

2.4 Requirements Summary Dashboard ... 25

3 PIACERE Architecture .. 27

3.1 Changes in v2 .. 27

3.2 General description ... 27

3.3 Logical/Functional View .. 28

3.4 Architecture components ... 38

3.4.1 Integrated Development Environment - IDE (KR2) ... 38

3.4.2 DevOps Modelling Language – DOML/DOML-E (KR1-KR4) 40

3.4.3 Infrastructural Code Generator - ICG (KR3) .. 41

3.4.4 Verification Tool - VT ... 44

3.4.5 IaC Executor Manager – IEM (KR10) ... 48

3.4.6 Runtime Controller – PRC .. 50

3.4.7 Canary Sandbox Environment – CSE (KR8) .. 50

3.4.8 Infrastructure Advisor ... 52

3.4.9 Infrastructural Elements Catalogue (KR9) ... 59

3.5 PIACERE Multi-User Approach .. 60

3.6 PIACERE Security Approach ... 62

3.7 PIACERE Scenarios ... 63

4 Integration Strategy (KR13) ... 67

4.1 Changes in v2 .. 67

4.2 Integration strategy – definitions .. 67

4.3 Framework components ... 68

4.3.1 Integration Repository .. 68

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 5 of 88

www.piacere-project.eu

4.3.2 CI/CD Flow ... 68

4.4 Framework description DevOps Pipeline .. 68

4.5 Selection of integration strategy ... 68

5 Conclusions ... 70

6 References ... 71

APPENDIX: PIACERE Glossary .. 72

Changes in v2 .. 72

Glossary structure ... 72

Basic Terms.. 72

The application .. 72

Technical Requirements (TR) .. 72

Non-Functional Requirements (NFR) .. 73

Configuration Management .. 73

Infrastructure Provisioning.. 73

Orchestration .. 73

Infrastructure as Code (IaC) .. 73

Infrastructure as a Service (IaaS) ... 74

Target IaC Language (TIaCL) .. 74

Configuration Drift .. 74

DevOps Modelling Language (DOML) ... 75

Infrastructure Element (IE) .. 75

PIACERE design time ... 75

PIACERE runtime ... 75

Resource Provider (RP) .. 76

Execution Environment (EE) .. 76

Production Execution Environment (PEE) ... 76

Canary Execution Environment (CEE) .. 77

Components .. 77

Integrated Development Environment (IDE) .. 77

Infrastructural Code Generator (ICG) .. 77

Canary Sandbox Environment (CSE) .. 78

DOML & IaC Repository ... 79

Infrastructural Elements Catalogue (IEC) .. 79

Verification Tool (VT)... 80

PIACERE Runtime Controller (PRC) .. 82

IaC Executor Manager (IEM) ... 83

Infrastructure Advisor (IA) ... 83

Addenda .. 87

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 6 of 88

www.piacere-project.eu

IaaS and Cloud Computing Models ... 87

List of tables

TABLE 1: CHANGES FROM PREVIOUS VERSION (D2.1) .. 8
TABLE 2: REQUIREMENTS/KRS .. 14
TABLE 3: FUNCTIONAL REQUIREMENTS .. 16
TABLE 4: NON-FUNCTIONAL REQUIREMENTS .. 19
TABLE 5: BUSINESS REQUIREMENTS .. 20
TABLE 6: USE CASE AND REQUIREMENTS MAPPING ... 20
TABLE 7: PIACERE REQUIREMENTS SUMMARY TABLE ... 25
TABLE 8: PIACERE DESIGN WORKFLOW ... 29
TABLE 9: PIACERE RUNTIME WORKFLOW .. 34
TABLE 10: PIACERE TEST WORKFLOW ... 37
TABLE 11: PIACERE MULTI-USER APPROACH ... 60
TABLE 12: PIACERE SCENARIOS .. 63
TABLE 13: TERMS AND ACRONYMS FOR INTEGRATION STRATEGY .. 67
TABLE 14: INTEGRATION STRATEGY EVALUATION CRITERIA ... 69

List of figures

FIGURE 1: PIACERE KEY RESULTS .. 11
FIGURE 2: KEY RESULTS RELATIONSHIP .. 11
FIGURE 3: REQUIREMENT’S COLLECTION WORKFLOW ... 13
FIGURE 4: PIACERE REQUIREMENTS SUMMARY DASHBOARD .. 26
FIGURE 5: PIACERE DESIGN TIME ... 29
FIGURE 6: KRS INVOLVED IN PIACERE DESIGN TIME ... 31
FIGURE 7: PIACERE RUNTIME – DEPLOYMENT ACTIVITIES ... 32
FIGURE 8: PIACERE RUNTIME – MONITORING ACTIVITIES ... 33
FIGURE 9: KRS INVOLVED IN PIACERE RUNTIME .. 37
FIGURE 10: IDE SEQUENCE DIAGRAM ... 39
FIGURE 11: INTERACTION OF THE PIACERE USER WITH DOML AND THE IDE ... 41
FIGURE 12: INTERNAL ICG ARCHITECTURE .. 42
FIGURE 13: ICG INTERNAL AND EXTERNAL BEHAVIOUR ... 43
FIGURE 14: INTERNAL ARCHITECTURE OF THE MODEL CHECKER. .. 44
FIGURE 15: MODEL CHECKER INTERNAL AND EXTERNAL BEHAVIOUR. ... 45
FIGURE 16: IAC SCAN RUNNER ARCHIVE SCAN WORKFLOW WITH PERSISTENCE AND CONFIGURATIONS 46
FIGURE 17: IAC SECURITY AND COMPONENT SECURITY INSPECTOR .. 48
FIGURE 18: START OF DEPLOYMENT .. 49
FIGURE 19: REQUEST OF THE STATUS OF A DEPLOYMENT .. 50
FIGURE 20: CANARY SANDBOX ENVIRONMENT PROVISIONER (CSEP) .. 51
FIGURE 21: IOP IN RUN TIME .. 53
FIGURE 22: IOP IN DESIGNTIME .. 53
FIGURE 23: MONITORING ... 55
FIGURE 24: MONITORING SYSTEM ... 56
FIGURE 25: SELF-LEARNING (PERFORMANCE) .. 57
FIGURE 26: SECURITY SELF-LEARNING ... 58
FIGURE 27: SELF-HEALING .. 59
FIGURE 28: INFRASTRUCTURE ELEMENTS CATALOGUE ... 60
FIGURE 29: STATUS OF CLOUD COMPUTING MODELS (SOURCE: H-CLOUD) .. 88

DRAFT

http://www.medina-project.eu/
file:///C:/Users/106776/Fundacion%20Tecnalia%20Research%20&%20Innovation/SP-REPEXT.083815%20-%20Documentos/WP2/Deliverables/D2.2/Submitted/D2.2%20PIACERE%20DevSecOps%20Framework%20Requirements%20specification,%20architecture%20and%20integration%20strategy%20-%20v2_v1.0.docx%23_Toc120803729

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 7 of 88

www.piacere-project.eu

Terms and abbreviations

Amazon EC2 Amazon Elastic Compute Cloud

API Application Programming Interface

AWS Amazon Web Services

CEE Canary Production Execution Environment

CRP Canary Resource Provider

CSE Canary Sandbox Environment

CSEM Canary Sandbox Environment Mocklord

CSPE Canary Sandbox Environment Provisioner

CSI Component Security Inspector

CSP Cloud Service Provider

DevOps Development and Operations

DoA Description of Action

DOML DevOps Modelling Language

DOML-E DevOps Modelling Language -Extensions

EC European Commission

EE Execution Environment

FR Functional Requirement

GA Grant Agreement to the project

GUI Graphical User Interface

IA Infrastructure Advisor

IaC Infrastructure as Code

ICG Infrastructure Code Generator

IDE Integrated Development Environment

IEC Infrastructural Elements Catalogue

IEM IaC Executor Manager

IOP IaC Optimizer Platform

KPI Key Performance Indicator

KR Key Result

MC Model Checker

MDE Model-Driven Engineering

PEE Production Execution Environment

PRC Piacere Runtime Controller

PRP Production Resource Provider

REQ Requirement

RP Resource Provider

SW Software

TR Technical Requirement

UC Use Case

VT Verification Tool

WP Work Package

Y1 Year 1

Y2 Year 2

Y3 Year 3

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 8 of 88

www.piacere-project.eu

Executive Summary

This deliverable is the version 2 release of following WP2 tasks outcome:

▪ Task 2.1-Requirement’s specification, with the aim to define the PIACERE functional and
non-functional requirements as well to identify requirements for the use cases
identified in WP7 (Use Case Validation);

▪ Task 2.2-PIACERE Architecture definition with the aim to describe how PIACERE
components interact with each other;

▪ Task 2.3-PIACERE DevSecOps delivery strategy and continuous integration with the aim
to integrate all PIACERE components (KR1-KR12).

This document is therefore an update at M24 of the deliverable D2.1, PIACERE DevSecOps
Framework requirements Specification, architecture and integration strategy-v1 released at
M12. As it reflects the architecture of the final PIACERE solution framework, the document
reports about updates in the second year of the project, but it includes also the sections and
parts that have remained unchanged to maintain consistency and completeness.
The main changes in version 2 are related to Requirements Specification and PIACERE

Architecture Definition topics (section 2 and section 3 of this document) as reported in the

table below:

Table 1: Changes from previous version (D2.1)

Topic Description of changes from previous version (D2.1)

Requirements
Specification
(Task 2.1)

• The requirement collection process has been improved to allow re-
discussion for specific requirements considering feedback from
integration and UC validation.

• The relationship between requirements and KRs has been reviewed and
in some cases updated after in-depth analysis.

• New requirements have been proposed and accepted.

• The list of requirements for the development of PIACERE components
has been updated and completed, except for minor adjustments
resulting from Piacere component integration session and UC validation
still on going.

Architecture
Definition
 (Task 2.2)

• The general architecture workflows of design and runtime have been
improved and updated in the communication mechanisms between
some KRs, identifying requests, responses and user interactions.

• Some components can be involved in both design and runtime phases:
ICG (KR3) is mainly involved in the design phase, but it can also be
invoked in the runtime phase; similarly, IOP (KR9) is mainly involved in
the runtime phase, but it can be invoked in the design phase. The
sequence diagrams of ICG, IOP and IDE have been changed accordingly.

• Self-healing mechanism and related sequence diagrams have been
updated: if the self-learning or the monitoring component detects a
failure or potential failure, the self-healing component receives an
alerting message. The self-healing component categorizes the incidence
to start the appropriate workflows (redeploy, scale, quarantine) calling
the PRC.

• The IaC Scan Runner component has been added to manage the security
checks.

DRAFT

http://www.medina-project.eu/
https://zenodo.org/record/6801782#.Y20TEnbMI2z

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 9 of 88

www.piacere-project.eu

• PRC remains the sole contact between the design time (IDE) and
runtime tools: the sequence diagrams of IEM and IDE have been
changed accordingly.

• The sequence diagram of Infrastructural Elements Catalogue has been
updated to point out its role in design time and runtime phases.

• An overview to the multi-user approach has been presented.

• Some scenarios of the using of PIACERE framework from the user
perspective have been described.

Integration
Strategy
(Task 2.3)

No changes respect version 1 on the strategy to follow for the continuous
integration of the PIACERE solution.

PIACERE
Glossary

The glossary, which includes the most common terms used in PIACERE with
a high-level description of all components, has been updated including the
IaC Scan Runner component that acts as KR6-KR7 executor.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 10 of 88

www.piacere-project.eu

1 Introduction

This deliverable provides an analysis on the different architectural aspects that describe how
PIACERE framework works and what are the main building blocks of the solution. It reports about
updates in the outcomes of requirements specification and PIACERE architecture definition tasks
in the second year of the project, but it also includes the sections and parts that have remained
unchanged to maintain consistency and completeness. In that sense it can be considered as a
rolling deliverable.

1.1 About this deliverable

The deliverable will serve as an architectural document for the other work packages of PIACERE
project that are involved in developing blocks of the PIACERE solution.

It contains all functional and non-functional requirements, selected from different sources, to
develop each component and to integrate each other generating the DevSecOps PIACERE
Framework, explaining also the approach used to propose and select the requirements.

It describes the outcome of architectural analysis work of PIACERE framework, showing the
workflow and interaction between components and the multi-user approach.

Finally, it presents the strategy and steps to be followed for the continuous integration of the

PIACERE solution.

1.2 Document structure

The rest of this document is structured as follows:

▪ Section 1 presents an overall description of the deliverable and its main goal is provided.
▪ Section 2 focuses on the outcome, at M24, of the analysis of requirements related to

the development of PIACERE platform and the process used to select them.
▪ Section 3 presents the description of the final PIACERE architectural design choices,

observed from different perspectives, highlighting the workflow with internal and
external communication mechanisms details and the multi-user approach.

▪ Section 4 presents the strategy to follow for the continuous integration of the PIACERE
solution.

▪ Section 5 presents a summary of discernments achieved through this deliverable and
draws the conclusions.

▪ Section 6 presents any relevant additional documentation as citations.
▪ APPENDIX: PIACERE Glossary provides a glossary of the terms used within PIACERE to

effectively unify the vocabularies and describes the main components that involve the
PIACERE architecture.

1.3 Key Results (KRs) relationship

The main objective of this deliverable is to provide requirements specification (initial and
updated in last year) for the different Key Results (KRs) under development in PIACERE project
and to describe what are the main building blocks of the PIACERE framework. The following two
figures Figure 1 and Figure 2 represent the different KRs and the relationship between KRs.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 11 of 88

www.piacere-project.eu

Figure 1: PIACERE Key Results

Figure 2: Key Results relationship

 DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 12 of 88

www.piacere-project.eu

2 Requirements Specification

This section describes the process to analyse and define the PIACERE requirements for the
development of PIACERE components (KR1-KR13).

2.1 Changes in v2

This section reports the updates in the outcome of requirement’s specification task in the

second year of the project. The requirement collection process has been improved to allow re-

discussion for specific requirements considering feedback from integration and UC validation.

The relationship between requirements and KRs has been reviewed in Table 2 and in some cases

updated after in-depth analysis on the impacts. Requirements in Table 3 and Table 4 have been

updated with new requirements and removing the discarded ones after the review process. The

mapping between requirements, KRs and UC has been updated with the new requirements in

Table 6. The requirements summary dashboard has been updated as well (Table 7, Figure 4).

The details of changes are reported in the sub-section below.

2.2 General description

The purpose of this section is to list the requirements collected for implementing the PIACERE
solution, grouped by typology [1]:

▪ Functional requirements are presented as lists of features or services that the system
has to provide according to the assigned priority. They also describe the behaviour of
the system in the face of particular inputs and how it should react in certain situations.

▪ Non-Functional requirements represent system-related constraints and properties,
such as time constraints, constraints on the development process and on the standards
to be adopted. Non-functional requirements are not just about the software system
being developed; some may constrain the process used to develop the system (e.g.,
performance, usability).

▪ Business requirements provide the scope, business needs or issues that need to be
addressed through specific activities. These requirements provide the information to
ensure that the PIACERE project achieves the identified objectives.

Regarding requirements there are two different perspectives: in the Requirement Specification
section we specify the requirements to implement the PIACERE solution (section 2.3.1). On the
other hand, the PIACERE solution has to offer to end-users the ability to express requirements
that are related to the system they want to run through the PIACERE solution. This topic is more
detailed in the APPENDIX PIACERE Glossary sections Technical Requirements (TR), Non-
Functional Requirements (NFR).

2.3 Requirements Collection

To achieve the purpose of analysis and definition of the PIACERE requirements, an iterative
process that involves all partners has been set up at the beginning of the project. It has been
improved after Y1 to allow re-discussion for specific requirements during the KR development
stage. Below it is described the updated workflow:

▪ Each new requirement is proposed with adding a new row in a shared spreadsheet
specifying the following fields:

• Description - short description of requirement

• Type - possible values: functional, non-functional, business

• Complexity - possible values: low, medium, high, N.A.

• Involved KR and Involved WP(s)/task(s) - list of KRs and involved task

• Source - possible values: DoA, Use Case, Other

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 13 of 88

www.piacere-project.eu

• Status - proposed

• Priority [2] - possible values: must have, should have, could have, won’t have

• Timeline - possible values according to priority: Y1, Y2, Y3
▪ Each requirement collected is analysed and discussed according to the workflow

described in Figure 3.
o During the analysis and discussion of the requirements, the relationships

between requirements, KRs and UCs are checked and updated if necessary. In
addition, the priorities and the timeline are reviewed.

▪ When the workflow has been completed the status of each requirement can be
‘duplicate’, ‘discarded’ or ‘accepted’. The status under ‘discussion’ or ‘proposed’ means
that the workflow is still on-going for that requirement.

▪ When a further deep discussion is needed for an ‘accepted’ or ‘discarded’ requirement
the field ‘Re-discuss’ set at ‘yes’ can restart the workflow.

To identify the relationship between the requirements and the supported UCs, the mapping
between requirements, KRs and UCs is achieved by adding the following values for each
requirement in the columns UC1, UC2 and UC3: UC Priority ; Impact ; Version.
Column UC1, UC2 and UC3 refer respectively to Slovenian Ministry of Public Administration,
Critical Maritime Infrastructures and Public Safety on IoT in 5G use cases.

Figure 3: Requirement’s collection workflow

In this document only requirements without the ‘discarded’ or ‘duplicate’ status are presented.
As the task 2.1 related to requirement’s specification is closed, the list of the requirements is
the final version. However, minor adjustments to the requirements might be necessary during
the last stage of PIACERE tools development and integration.

In Table 2 it is presented the updated mapping between requirements (REQ) and PIACERE’s Key
Results (KR1/KR13) with the planned Timeline estimated to achieve each requirement. In this
table, the relationship between requirements and KRs has been reviewed in Y2 and in some
cases updated after in-depth analysis on the requirements and impacts.

For each row, the ‘x’ in a cell specifies the key result (one or more than one) to which that
requirement refers. In the last row, a grand total count is added to gain visibility of distribution
of REQs towards KRs. The last column (Status), shown the implementation status of the

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 14 of 88

www.piacere-project.eu

requirement. The possible values for this column are: R - realized ; tbv - to be validated ; tbm -
to be made.

The table shows that 58% of requirements are related to KRs focusing to the design, planning
and verify the trustworthiness of IaC (PIACERE design time), indication already obtained in the
studies conducted for the first version of this document. Almost all requirements have been
implemented in Y1 and Y2 to allow the validation process of the PIACERE Use Cases. The status
of the achievement for each requirement is monitored by involved KRs owners, adjusting the
Timeline if needed.

More details regarding the relationship between Requirements, KRs and work packages are
highlighted in the dashboard section 2.4.

Table 2: Requirements/KRs

REQ ID
KR
1

KR
2

KR
3

KR
4

KR
5

KR
6

KR
7

KR
8

KR
9

KR
10

KR
11

KR
12

KR
13

Timeline Status

REQ01 x x Y1 R

REQ03 x Y1 R

REQ04 x Y2 tbv

REQ10 x Y2 tbv

REQ11 x Y1 R

REQ12 x Y2 tbv

REQ14 x Y1 R

REQ15 x Y2 tbv

REQ16 x x Y2 tbv

REQ17 x x Y1 R

REQ18 x Y1 R

REQ19 x Y2 tbv

REQ21 x Y2 tbv

REQ23 x Y1 R

REQ24 x x Y1 R

REQ25 x Y1 R

REQ26 x Y1 R

REQ27 x x Y1 R

REQ28 x x Y1 R

REQ29 x x Y1 R

REQ30 x x Y2 tbv

REQ31 x Y2 tbv

REQ33 x Y1 R

REQ34 x Y1 R

REQ36 x x Y2 tbv

REQ37 x Y2 tbv

REQ38 x Y1 R

REQ39 x Y2 tbv

REQ40 x Y1 R

REQ41 x Y2 tbv

REQ42 x Y1 R

REQ43 x Y1 R

REQ44 x Y2 tbv

REQ46 x x Y1 R

REQ47 x Y1 R

REQ48 x Y2 tbv

REQ50 x x Y1 R

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 15 of 88

www.piacere-project.eu

REQ ID
KR
1

KR
2

KR
3

KR
4

KR
5

KR
6

KR
7

KR
8

KR
9

KR
10

KR
11

KR
12

KR
13

Timeline Status

REQ51 x x Y1 R

REQ52 x Y1 R

REQ55 x Y2 tbv

REQ57 x Y2 tbv

REQ58 x Y2 tbv

REQ59 x Y2 tbv

REQ60 x Y1 R

REQ61 x Y1 R

REQ62 x x Y1 R

REQ63 x Y1 R

REQ64 x Y2 tbv

REQ65 x x Y1 R

REQ66 x Y1 R

REQ67 x Y1 R

REQ70 x Y1 R

REQ72 x Y2 tbv

REQ76 x x Y1 R

REQ77 x Y1 R

REQ81 x Y1 R

REQ82 x Y2 tbv

REQ83 x Y2 tbv

REQ84 x Y2 tbv

REQ85 x Y2 tbv

REQ87 x Y1 R

REQ88 x Y2 tbv

REQ92 x Y1 R

REQ93 x Y1 R

REQ94 x Y2 tbv

REQ95 x Y1 R

REQ96 x Y1 R

REQ97 x Y2 tbv

REQ98 x Y2 tbv

REQ99 x Y1 R

REQ100 x Y1 R

REQ101 x Y2 tbv

REQ103 x Y1 R

REQ104 x Y1 R

REQ105 x Y1 R

REQ106 x x Y3 tbm

REQ107 x x Y3 tbm

REQ108 x x Y3 tbm

REQ109 x x Y3 tbm

REQ110 x Y3 tbm

Grand total 17 11 5 5 4 7 8 5 4 8 14 9 2

2.3.1 Functional Requirements

In Table 3 it is presented the updated list of functional requirements without the ‘discarded’ and
‘duplicate’ status to be considered for the development of the involved KRs. Respect the
previous version REQ101 has been added for KR2; REQ100 for KR3, from REQ103 to REQ105 for

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 16 of 88

www.piacere-project.eu

KR5, REQ106 and REQ109 for KR6, KR7; conversely REQ68, REQ69, REQ71, REQ78, REQ79,
REQ80 and REQ89 have been removed as they were discarded.

Table 3: Functional requirements

REQ ID Description Priority Timeline Involved KRs

REQ01 The DOML must be able to model infrastructural elements.
MUST
HAVE

Y1 KR1, KR4

REQ03

IOP will include a catalogue of infrastructural elements - e.g., node
computation, networks, cloud services like IaaS, PaaS, SaaS - classifiable
by a set of constraints - e.g., memory, disk. This catalogue of
infrastructural elements should be clearly defined, including possible
restrictions and dynamic variations. These infrastructural elements will
be transformed as optimization variables, and they will be intelligently
treated by the optimization algorithm seeking to find the best
configuration deployment.

MUST
HAVE

Y1 KR9

REQ04

Provide the means for the IOP to properly consume all the data related
with the catalogue of infrastructural elements status, as well as their
characteristics and possible variations. Special mention shall be done
here to the values monitored by the self-learning algorithm / monitoring
component. This module shall provide real measures regarding the
infrastructural elements in order to update their characteristics.

MUST
HAVE

Y2 KR9

REQ12
The IEM shall allow redeployment and reconfiguration, both full and
partial, as allowed by the used IaC technology.

MUST
HAVE

Y2 KR10

REQ14
Runtime security monitoring must provide monitoring data from the
infrastructure's hosts with regard to security metrics.

MUST
HAVE

Y1 KR12

REQ15
Runtime security monitoring could provide monitoring data from the
application layer (infrastructure's guest) with regard to security metrics.

COULD
HAVE

Y2 KR12

REQ16
Runtime security monitoring should contribute to mitigation actions
taken when considering plans and strategies for runtime self-healing
actions.

SHOULD
HAVE

Y2 KR11, KR12

REQ18
Runtime security monitoring must be able to detect different types of
metrics in run-time: integrity of IaC configuration, potential attacks to
the infrastructure, IaC security issues (known CVEs of the environment).

SHOULD
HAVE

Y1 KR12

REQ19
Runtime security monitoring and alarm system (self-learning) integration
must be implemented.

MUST
HAVE

Y2 KR12

REQ21
Runtime security monitoring and Runtime monitoring infrastructure
should be integrated with minimal extensions.

SHOULD
HAVE

Y2 KR12

REQ23
IaC Code Security Inspector must analyse IaC code with regard to
security issues of the modules used in the IaC.

MUST
HAVE

Y1 KR7

REQ24
Security Components Inspector must analyse and rank components and
their dependencies used in the IaC.

MUST
HAVE

Y1 KR6, KR7

REQ25
DOML should support the modelling of security rules (e.g., by type
TCP/UDP, and ingress/egress port definition).

MUST
HAVE

Y1 KR1

REQ26
DOML should support the modelling of security groups (containers for
security rules).

MUST
HAVE

Y1 KR1

REQ27
DOML should support the modelling, provisioning, configuration and
usage container engine execution technologies (e.g., docker-host).

SHOULD
HAVE

Y1 KR1, KR4

REQ28
DOML should support the modelling of containerized application
deployment (e.g., pull/run/restart/stop docker containers).

MUST
HAVE

Y1 KR1, KR2

REQ29
DOML should support the modelling of VM provisioning for different
platforms such as (OpenStack, AWS) for canary and production
environments.

MUST
HAVE

Y1 KR1, KR4

REQ31
ICG should provide verifiable and executable IaC generated from DOML
for selected IaC languages (e.g., TOSCA/Ansible/Terraform).

MUST
HAVE

Y2 KR3

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 17 of 88

www.piacere-project.eu

REQ ID Description Priority Timeline Involved KRs

REQ33
CSE to provide a viable alternative target for IaC executors to run
against, i.e., usable by the IaC Executor Manager (IEM).

MUST
HAVE

Y1 KR8

REQ34
CSE to keep track of and allow querying of the deployment state to allow
comparison against the expected one.

MUST
HAVE

Y1 KR8

REQ36 DOML to enable writing infrastructure tests.
MUST
HAVE

Y2 KR1, KR4

REQ38
CSE to have a "real" mode where resources are really provided and can
be used for configuration and other further steps.

MUST
HAVE

Y1 KR8

REQ39
CSE to enable extensibility (documented way): adding new mocked
services, adding new "real" deployments.

SHOULD
HAVE

Y2 KR8

REQ40
The IDE should provide a visual diagram functionality to visualise the
different assets defined through the DOML and DOML Extensions.

MUST
HAVE

Y1 KR2

REQ41
The IDE should be extensible through the plugin mechanism. Not only to
support PIACERE assets (ICG, VT) but also for third party collaborators.

MUST
HAVE

Y2 KR2

REQ43 The IDE should be easily updatable to newer software versions.
MUST
HAVE

Y1 KR2

REQ44
The IDE could provide an import mechanism to automatically fulfil
partial DOML.

COULD
HAVE

Y2 KR2

REQ46

The monitoring component shall gather metrics from the instances of
the infrastructural elements at run time. These metrics need to be
related to the TR and accessible for the IOP (through the dynamic part of
the infrastructural catalogue).

MUST
HAVE

Y1 KR9, KR11

REQ47
The monitoring component shall include the needed elements in the
stack to monitor the infrastructural elements.

MUST
HAVE

Y1 KR11

REQ48
The monitoring component shall transform the real time values into the
correct format/type/nature for the self-learning component.

MUST
HAVE

Y2 KR11

REQ50
The monitoring component shall monitor the metrics associated with
the defined measurable NFRs (e.g., performance, availability, and
security through the runtime security monitoring).

MUST
HAVE

Y1 KR11, KR12

REQ51

The self-learning component shall ensure that the conditions are met
(compliance with respect to SLO) and that a failure or a non-compliance
of a NFRs is not likely to occur. This implies the compliance of a
predefined set of non-functional requirements (e.g., performance).

MUST
HAVE

Y1 KR11, KR12

REQ52

Self-learning shall consume the data monitored and store it in a time-
series database to create discriminative complex statistical variables and
train a predictor which will learn potential failure patterns in order to
prevent the system from falling into an NFR violation situation.

MUST
HAVE

Y1 KR11

REQ55
The IEM will log the whole IaC execution run, making metadata and
metrics (time it took to run) about the creation of resources available to
the rest of the PIACERE components.

MUST
HAVE

Y2 KR10

REQ57
It is desirable to enable both forward and backward translations from
DOML to IaC and vice versa.

SHOULD
HAVE

Y2 KR1

REQ58
DOML should offer the modelling abstractions to define the outcomes of
the IoP.

MUST
HAVE

Y2 KR1

REQ59
The DOML should allow users to define rules and constraints for
redeployment, reconfiguration and other mitigation actions.

MUST
HAVE

Y2 KR1

REQ60
DOML should support the modelling of security metrics both at the level
of infrastructure and application.

MUST
HAVE

Y1 KR1

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 18 of 88

www.piacere-project.eu

REQ ID Description Priority Timeline Involved KRs

REQ61 DOML must support the modelling of TRs and of SLOs.
MUST
HAVE

Y1 KR1

REQ62 DOML must support different views.
SHOULD
HAVE

Y1 KR1, KR2

REQ63 DOML must be unambiguous.
MUST
HAVE

Y1 KR1

REQ65
IaC Security Inspector and Component Security Inspector should hide
specificities and technicalities of the current solutions in an integrated
IDE.

MUST
HAVE

Y1 KR6, KR7

REQ66
IaC Code security inspector must provide an interface (CLI or REST API)
to integrate with other tools or CI/CD workflows.

MUST
HAVE

Y1 KR6

REQ67
IaC Component security inspector must provide an interface (CLI or REST
API) to integrate with other tools or CI/CD workflows.

MUST
HAVE

Y1 KR7

REQ70
The DOML should allow users to state correctness properties in a
suitable sub-language (possibly Formal Logic).

MUST
HAVE

Y1 KR1

REQ72
Verification Tool must verify the completeness of the IaC generated by
ICG.

SHOULD
HAVE

Y2 KR11

REQ76
The runtime monitoring component should provide an UI for the end
users to see the monitored resources and the corresponding
metrics/TRs in real time.

SHOULD
HAVE

Y1 KR1, KR2

REQ77
DOML should allow the user to model each of the four considered
DevOps activities (Provisioning, Configuration, Deployment,
Orchestration).

SHOULD
HAVE

Y1 KR3

REQ81
IEM should be able to execute IaC generated by ICG for selected IaC
languages (e.g., TOSCA/Ansible/Terraform)

MUST
HAVE

Y1 KR10

REQ82
IEM shall register the status of past and present executions and enable
an appropriate way to query it.

MUST
HAVE

Y2 KR10

REQ83
IEM should be able to communicate with the relevant actors
(orchestrators, infrastructural elements) in a secure way.

MUST
HAVE

Y2 KR10

REQ84 IEM should be able to utilize the required credentials in a secure way.
MUST
HAVE

Y2 KR10

REQ85 IEM should be able to clean up the resources being allocated.
MUST
HAVE

Y2 KR10

REQ87
IEM shall work against the production environment and the canary
environment.

MUST
HAVE

Y1 KR10

REQ92 Self-healing component shall receive notifications from the self-learning.
MUST
HAVE

Y1 KR11

REQ93
Self-healing component shall classify the events received from the self-
learning and derive corrective actions.

MUST
HAVE

Y1 KR11

REQ94
Self-healing component shall inform the run-time controller about the
different components to orchestrate (the workflow to be executed).

MUST
HAVE

Y2 KR11

REQ95 VT tools (model checker) must be able read DOML language.
MUST
HAVE

Y1 KR5

REQ96 ICG must be able read DOML language.
MUST
HAVE

Y1 KR3

REQ97

The Self-Healing components provide feedback on the DOML code,
without doing automatic writes. The end user can choose to accept or
not the feedback received. The current planned implementation will
send a modified DOML to PRC and PRC will communicate it to the user.

MUST
HAVE

Y2 KR11

REQ98
The IOP components provide feedback on the DOML code, without
doing automatic writes. The end user can choose to accept or not the
feedback received.

MUST
HAVE

Y2 KR9

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 19 of 88

www.piacere-project.eu

REQ ID Description Priority Timeline Involved KRs

REQ99 IDE to integrate with both local and remote Git repositories.
MUST
HAVE

Y1 KR2

REQ100 ICG should generate IaC code that supports different cloud platforms.
MUST
HAVE

Y1 KR3

REQ101
IDE should allow to create and edit a graphical DOML model. Possibly
starting from a palette of supported components that can be drag&drop
in the graphical model.

SHOULD
HAVE

Y2 KR2

REQ103
Verification Tool (model checker) must verify the structural consistency
of the DOML models.

MUST
HAVE

Y1 KR5

REQ104
Verification Tool (model checker) must verify the correctness of DOML
models, with respect to some correctness properties provided in DOML.

MUST
HAVE

Y1 KR5

REQ105
Verification Tool (model checker) must verify the completeness of DOML
models.

MUST
HAVE

Y1 KR5

REQ106

Organization of scan results with respect to the scan outcome.
Aggregate the results of distinct scan tools in a form of unified results
summary that makes distinction of the result into the following cases:
passed – scan is performed without any issues detected.

MUST
HAVE

Y3 KR6, KR7

REQ109
Scan configuration management. There should be a possibility to
maintain multiple scans concurrently for multiple users.

SHOULD
HAVE

Y3 KR6, KR7

2.3.2 Non-Functional Requirements

In Table 4 it is presented the list of non-functional requirements without the ‘discarded’ and
‘duplicate’ status to be considered for the development of the involved KRs. In respect to the
previous version the REQ110 has been added for KR3, and REQ107 and REQ108 for KR6, KR7.

Table 4: Non-Functional requirements

REQ ID Description Priority Timeline Involved KRs

REQ10
The communication within the different components of the architecture
should be done in a secure way (e.g., https, Keycloak).

MUST
HAVE

Y2 KR13

REQ11
The learning algorithm (anomaly and drift) should be executed as fast as
possible as it should provide an outcome before more data arrives.

MUST
HAVE

Y1 KR11

REQ17
Deployment of runtime security monitoring should happen seamlessly or
with minimal effort and configuration required by the user.

MUST
HAVE

Y1 KR11, KR12

REQ30
DOML should enable support for policy definition constraints for QoS/TR
requirements.

MUST
HAVE

Y2 KR1, KR4

REQ37 CSE to have a simulated mode limited to provisioning.
MUST
HAVE

Y2 KR8

REQ42 The IDE should be implemented using open-source software.
SHOULD

HAVE
Y1 KR2

REQ88
PIACERE framework should be usable by a team of people collaborating in
the development of the same IaC.

MUST
HAVE

Y2 KR13

REQ107

Improvement of scan response time. Compatibility matrix is adopted
containing the list of available scans for various file types detected within
IaC archive. Therefore, the execution of non-compatible scans for
submitted IaC archive should be avoided.

SHOULD
HAVE

Y3 KR6, KR7

REQ108

Management and persistence of scan results after the scan process is
finished. Scan results are persisted into database for limited period (14
days), so users can look on their previous scan tasks and the achieved
outcomes.

MUST
HAVE

Y3 KR6, KR7

REQ110
ICG should provide enough extensibility to: comply with the DOML
extension mechanism; be capable of integrating new IaC languages.

SHOULD
HAVE

Y3 KR3

2.3.3 Business Requirements

In Table 5 is presented the list of business requirements without the ‘discarded’ and ‘duplicate’
status to be considered for the development of the involved KRs. This list remains the same in
respect to the version in the previous deliverable (D2.1).

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 20 of 88

www.piacere-project.eu

Table 5: Business requirements

REQ ID Description Priority Timeline Involved KRs

REQ64
The IDE should provide a text-based representation of DOML to ease
version control.

SHOULD
HAVE

Y2 KR2

2.3.4 Use Cases mapped on requirements

To enable the relationship between KRs and corresponding Use cases (UC) requirements, the
document reports the updated mapping between requirements, KRs and UCs. In respect to the
previous version, the column KRs in Table 6 has been added. Other parts of the section remain
the same as in D2.1.

In the requirements are mapped on the following three Use Cases:

▪ UC1: Slovenian Ministry of Public Administration
▪ UC2: Critical Maritime Infrastructures
▪ UC3: Public Safety on IoT in 5G

The mapping between requirements, KRs and UC in Table 6 has been updated with the new
requirements. For each row in the columns UC1, UC2 and UC3 are reported the UC Priority,
Impact and Version information according requirement collection process described in 2.3
section. Below the possible values for UC Priority, Impact and Version:

▪ UC Priority – Requirement priority for the use case – possible values MUST, DESIRABLE.
▪ Impact – how requirement affects the UC – possible values: FULL, PARTIAL.
▪ Version – a version of Use Case application related to the year of release - possible

values: V1-Y1/2, V2-Y2/3.

Table 6: Use Case and requirements mapping

REQ ID KRs Description UC1 UC2 UC3

REQ01
KR1,
KR4

The DOML must be able to model infrastructural elements.
Must
have; Full;
V1-Y1.

Must
have; Full;
V1-Y2.

Must
have; Full;
V1-Y2.

REQ03 KR9

IOP will include a catalogue of infrastructural elements - e.g., node
computation, networks, cloud services like IaaS, PaaS, SaaS -
classifiable by a set of constraints - e.g., memory, disk. This
catalogue of infrastructural elements should be clearly defined,
including possible restrictions and dynamic variations. These
infrastructural elements will be transformed as optimization
variables, and they will be intelligently treated by the optimization
algorithm seeking to find the best configuration deployment.

Must
have; Full;
V1-Y1.

Must
have; Full;
V1-Y2
(Lightweig
ht testing).

Partially
validated
(not
optimizati
on)
V1-Y2.

REQ04 KR9

Provide the means for the IOP to properly consume all the data
related with the catalogue of infrastructural elements status, as
well as their characteristics and possible variations. Special
mention shall be done here to the values monitored by the self-
learning algorithm / monitoring component. This module shall
provide real measures regarding the infrastructural elements in
order to update their characteristics.

Must
have; Full;
V1-Y2.

Desirable;
Partial; V2-
Y3.

Desirable;
Partially
validated
V2-Y3.

REQ10 KR13
The communication within the different components of the
architecture should be done in a secure way (e.g., https,
Keycloak).

Must
have; Full;
V1-Y2.

Affects
(EDI, ENS -
critical
infrastruct
ures).

Must
have; Full;
V1-Y2.

REQ11 KR11
The learning algorithm (anomaly and drift) should be executed as
fast as possible as it should provide an outcome before more data
arrives.

Not
validated
in the UC.

Affects
(probabilis
tic
algorithms
can be set
to execute

Not
validated
in the UC.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 21 of 88

www.piacere-project.eu

REQ ID KRs Description UC1 UC2 UC3

up to a
pre-set
time limit
or with
multiple
restarts).

REQ12 KR10
The IEM shall allow redeployment and reconfiguration, both full
and partial, as allowed by the used IaC technology.

Must
have; Full;
V1-Y2.

Desirable
(CI/CD
pipeline).

Must
have; Full;
V1-Y2.

REQ14 KR12
Runtime security monitoring must provide monitoring data from
the infrastructure's hosts with regard to security metrics.

Must
have; Full;
V1-Y1.

Affects
(vendor-
supplied -
critical
infrastruct
ures).

Not
validated
in the UC.

REQ15 KR12
Runtime security monitoring could provide monitoring data from
the application layer (infrastructure's guest) with regard to
security metrics.

Could
have; Full;
V1-Y2.

Affects
(Desirable
for full
integration
with
vendor´s
toolset).

Not
validated
in the UC.

REQ16
KR11,
KR12

Runtime security monitoring should contribute to mitigation
actions taken when considering plans and strategies for runtime
self-healing actions.

Should
have; Full;
V1-Y2.

Affects
(vendor-
supplied).

Not
validated
in the UC.

REQ17
KR11,
KR12

Deployment of runtime security monitoring should happen
seamlessly or with minimal effort and configuration required by
the user.

Must
have; Full;
V1-Y1

Affects
(Desirable:
vendor-
supplied).

Not
validated
in the UC.

REQ18 KR12

Runtime security monitoring must be able to detect different
types of metrics in run-time: integrity of IaC configuration,
potential attacks to the infrastructure, IaC security issues (known
CVEs of the environment).

Should
have; Full;
V1-Y1.

Affects
(Desirable:
vendor-
supplied).

Not
validated
in the UC.

REQ19 KR12
Runtime security monitoring and alarm system (self-learning)
integration must be implemented.

Must
have; Full;
V1-Y2.

Affects
(vendor-
supplied
or ad-hoc
solution).

Not
validated
in the UC.

REQ21 KR12
Runtime security monitoring and Runtime monitoring
infrastructure should be integrated with minimal extensions.

Should
have; Full;
V1-Y2.

Affects.
Not
validated
in the UC.

REQ23 KR7
IaC Code Security Inspector must analyse IaC code with regard to
security issues of the modules used in the IaC.

Must
have; Full;
V1-Y1.

Desirable.
Must
have; Full;
V1-Y2.

REQ24
KR6,
KR7

Security Components Inspector must analyse and rank
components and their dependencies used in the IaC.

Must
have; Full;
V1-Y1.

Desirable.
Must
have; Full;
V1-Y2.

REQ25 KR1
DOML should support the modelling of security rules (e.g., by type
TCP/UDP, and ingress/egress port definition).

Must
have; Full;
V1-Y1.

Affects.
Must
have; Full;
V1-Y2.

REQ26 KR1
DOML should support the modelling of security groups
(containers for security rules).

Must
have; Full;
V1-Y1.

Affects.
Must
have; Full;
V1-Y2.

REQ27
KR1,
KR4

DOML should support the modelling, provisioning, configuration
and usage container engine execution technologies (e.g., docker-
host).

Should
have; Full;
V1-Y1.

Desirable.
Must
have; Full;
V1-Y1.

REQ28
KR1,
KR2

DOML should support the modelling of containerized application
deployment (e.g., pull/run/restart/stop docker containers).

Must
have; Full;
V1-Y1.

Affects.
Must
have; Full;
V1-Y1.

REQ29
KR1,
KR4

DOML should support the modelling of VM provisioning for
different platforms such as (OpenStack, AWS) for canary and
production environments.

Must
have; Full;
V1-Y1.

Affects
(vendor-
supplied).

Must
have; Full;
V1-Y1.

REQ30
KR1,
KR4

DOML should enable support for policy definition constraints for
QoS/TR.

Must
have; Full;
V1-Y2.

Affects.
Must
have; Full;
V1-Y2.

REQ31 KR3
ICG should provide verifiable and executable IaC generated from
DOML for selected IaC languages (e.g., TOSCA/Ansible/Terraform).

Must
have; Full;
V1-Y2 (at

Affects
(vendor-
supplied

Must
have; Full;
V1-Y1.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 22 of 88

www.piacere-project.eu

REQ ID KRs Description UC1 UC2 UC3

least
Ansible).

or ad-hoc
solution).

REQ33 KR8
CSE to provide a viable alternative target for IaC executors to run
against, i.e., usable by the IaC Executor Manager (IEM).

Must
have; Full;
V1-Y1.

Affects
(redundan
cy
desirable
for
resiliency
and fault-
prevention
).

Not
validated
in the UC.

REQ34 KR8
CSE to keep track of and allow querying of the deployment state
to allow comparison against the expected one.

Must
have; Full;
V1-Y1.

Affects
(necessary
).

Not
validated
in the UC.

REQ36
KR1,
KR4

DOML to enable writing infrastructure tests.
Must
have; Full;
V1-Y1.

Affects.
Must
have; Full;
V1-Y2.

REQ37 KR8 CSE to have a simulated mode limited to provisioning.
Must
have; Full;
V1-Y2.

Affects
(vendor-
supplied).

Not
validated
in the UC.

REQ38 KR8
CSE to have a "real" mode where resources are really provided
and can be used for configuration and other further steps.

Must
have; Full;
V1-Y1.

Affects
(vendor-
supplied).

Not
validated
in the UC.

REQ39 KR8
CSE to enable extensibility (documented way): adding new
mocked services, adding new "real" deployments.

Should
have; Full;
V1-Y2.

Affects.
Not
validated
in the UC.

REQ40 KR2
The IDE should provide a visual diagram functionality to visualise
the different assets defined through the DOML and DOML
Extensions.

Must
have; Full;
V1-Y1.

Affects.
Must
have; Full;
V1-Y1.

REQ41 KR2
The IDE should be extensible through plugin mechanism. Not only
to support PIACERE assets (ICG, VT) but also for third party
collaborators.

Must
have; Full;
V1-Y2.

Affects
(vendor-
supplied
or ad-hoc
solution).

Must
have; Full;
V1-Y2.

REQ42 KR2 The IDE should be implemented using open-source software.
Should
have; Full;
V1-Y1.

Affects
(Desirable
- vendor-
supplied).

Could
have; Full;
V1-Y1.

REQ43 KR2 The IDE should be easily updatable to newer software versions.
Must
have; Full;
V1-Y1.

Affects.
Must
have; Full;
V1-Y1.

REQ44 KR2
The IDE could provide an import mechanism to automatically fulfil
partial DOML.

Could
have; Full;
V1-Y2.

Affects
(Desirable
for
efficiency).

Could
have; Full;
V1-Y1.

REQ46
KR9,
KR11

The monitoring component shall gather metrics from the
instances of the infrastructural elements at run time. These
metrics need to be related to the TR and accessible to the IOP
(through the dynamic part of the infrastructural catalogue).

Must
have; Full;
V1-Y1.

Affects.
Not
validated
in the UC.

REQ47 KR11
The monitoring component shall include the needed elements in
the stack to monitor the infrastructural elements.

Must
have; Full;
V1-Y1.

Affects
(Necessary
).

Not
validated
in the UC.

REQ48 KR11
The monitoring component shall transform the real time values
into the correct format/type/nature for the self-learning
component.

Must
have; Full;
V1-Y2.

Affects
(Necessary
).

Not
validated
in the UC.

REQ50
KR11,
KR12

The monitoring component shall monitor the metrics associated
with the defined measurable TRs (e.g., performance, availability,
and security through the runtime security monitoring).

Must
have; Full;
V1-Y1.

Affects.
Not
validated
in the UC.

REQ51
KR11,
KR12

The self-learning component shall ensure that the conditions are
met (compliance with respect to SLO) and that a failure or a non-
compliance of a TRs is not likely to occur. This implies the
compliance of a predefined set of non-functional requirements
(e.g., performance).

Must
have; Full;
V1-Y1.

Affects
(Desirable
for
performan
ce, service
availability
, elasticity,
other
operationa
l metrics).

Not
validated
in the UC.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 23 of 88

www.piacere-project.eu

REQ ID KRs Description UC1 UC2 UC3

REQ52 KR11

Self-learning shall consume the data monitored and store it in a
time-series database to create discriminative complex statistical
variables and train a predictor which will learn potential failure
patterns in order to prevent the system from falling into a TR
violation situation.

Must
have; Full;
V1-Y1.

Affects.
Not
validated
in the UC.

REQ55 KR10
The IEM will log the whole IaC execution run, making metadata
and metrics (time it took to run) about the creation of resources
available to the rest of the PIACERE components.

Must
have; Full;
V1-Y2.

Desirable.
Must
have; Full;
V2-Y3.

REQ57 KR1
It is desirable to enable both forward and backward translations
from DOML to IaC and vice versa.

Should
have; Full;
V1-Y1.

Desirable.
Should
have; Full;
V2-Y3.

REQ58 KR1
DOML should offer the modelling abstractions to define the
outcomes of the IoP.

Must
have; Full;
V1-Y1.

Affects
(Required)
.

Not
validated
in the UC

REQ59 KR1
The DOML should allow users to define rules and constraints for
redeployment, reconfiguration and other mitigation actions

Must
have; Full;
V1-Y2

Affects
(Required)
.

Must
have; Full;
V1-Y2.

REQ60 KR1
DOML should support the modelling of security metrics both at
the level of infrastructure and application.

Must
have; Full;
V1-Y1.

May affect
(Desirable
for full
application
-level
integration
).

Must
have; Full;
V1-Y2.

REQ61 KR1 DOML must support the modelling of NFRs and of SLOs.
Must
have; Full;
V1-Y1.

Affects.
Must
have; Full;
V1-Y2.

REQ62
KR1,
KR2

DOML must support different views.
Should
have; Full;
V1-Y1.

Affects
(Abstractio
n levels).

Should
have; Full;
V1-Y2.

REQ63 KR1 DOML must be unambiguous.
Must
have; Full;
V1-Y1.

Affects
(Required
and
enforced).

Must
have; Full;
V1-Y1.

REQ64 KR2
The IDE should provide a text-based representation of DOML to
ease version control.

Should
have; Full;
V1-Y2.

Affects
(Desirable)
.

Should
have; Full;
V1-Y2.

REQ65
KR6,
KR7

IaC Security Inspector and Component Security Inspector should
hide specificities and technicalities of the current solutions in an
integrated IDE.

Must
have; Full;
V1-Y1.

Desirable
(built-in
account
privilege-
based
security by
a need-to-
know
principle).

Must
have; Full;
V1-Y1.

REQ66 KR6
IaC Code security inspector must provide an interface (CLI or REST
API) to integrate with other tools or CI/CD workflows.

Must
have; Full;
V1-Y1.

Desirable.
Must
have; Full;
V1-Y1.

REQ67 KR7
IaC Component security inspector must provide an interface (CLI
or REST API) to integrate with other tools or CI/CD workflows.

Must
have; Full;
V1-Y1.

Desirable.
Must
have; Full;
V1-Y1.

REQ70 KR1
The DOML should allow users to state correctness properties in a
suitable sub-language (possibly Formal Logic).

Must
have; Full;
V1-Y1.

Affects
(Vendor-
supplied
or ad-hoc
solution).

Must
have; Full;
V1-Y1.

REQ72 KR11
The runtime monitoring component should provide an UI for the
end users to see the monitored resources and the corresponding
metrics/TRs in real time.

Should
have; Full;
V1-Y2.

Affects
(Desirable
- vendor-
supplied).

Not
validated
in the UC.

REQ76
KR1,
KR2

DOML should allow the user to model each of the four considered
DevOps activities (Provisioning, Configuration, Deployment,
Orchestration).

Should
have; Full;
V1-Y1.

Affects
(required
for
DevSecOp
s).

Should
have; Full;
V1-Y1.

REQ77 KR3
ICG may generate IAC code for different supported/target tools
according to the required DevOps activity (as listed in REQ76).

Should
have; Full;
V1-Y1

Affects
(required
for

Should
have; Full;
V1-Y1

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 24 of 88

www.piacere-project.eu

REQ ID KRs Description UC1 UC2 UC3

DevSecOp
s).

REQ81 KR10
IEM should be able to execute IaC generated by ICG for selected
IaC languages (e.g., TOSCA/Ansible/Terraform).

Must
have; Full;
V1-Y1 (at
least
Ansible).

Desirable
(Vendor-
supplied
or ad-hoc
solution).

Must
have; Full;
V1-Y1.

REQ82 KR10
IEM shall register the status of past and present executions and
enable an appropriate way to query it.

Must
have; Full;
V1-Y2.

Desirable.
Must
have; Full;
V1-Y2.

REQ83 KR10
IEM should be able to communicate with the relevant actors
(orchestrators, infrastructural elements) in a secure way.

Must
have; Full;
V1-Y2.

Desirable
(DevSecOp
s, ENS).

Must
have; Full;
V1-Y2.

REQ84 KR10
IEM should be able to utilize the required credentials in a secure
way.

Must
have; Full;
V2-Y3.

Desirable.
Must
have; Full;
V2-Y3.

REQ85 KR10 IEM should be able to clean up the resources being allocated.
Must
have; Full;
V1-Y2.

Desirable
(required
for
efficiency-
related
garbage-
collection)
.

Must
have; Full;
V1-Y2.

REQ87 KR10
IEM shall work against the production environment and the
canary environment.

Must
have; Full;
V1-Y1.

Desirable.
Desirable;
Full: V1-
Y2.

REQ88 KR13
PIACERE framework should be usable by a team of people
collaborating in the development of the same IaC.

Must
have; Full;
V1-Y2.

Affects
(required).

Must
have; Full
V1-Y2.

REQ92 KR11
Self-healing component shall receive notifications from the self-
learning.

Must
have; Full;
V1-Y1.

Affects
(Required
- useless
otherwise)
.

Not
validated
in the UC.

REQ93 KR11
Self-healing component shall classify the events received from the
self-learning and derive corrective actions.

Must
have; Full;
V1-Y1.

Affects
(Required
- useless
otherwise)
.

Not
validated
in the UC.

REQ94 KR11
SelfHealing component shall inform the run time controller about
the different components to orchestrate (the workflow to be
executed).

Must
have; Full;
V1-Y2.

Affects
(Required
- useless
otherwise)
.

Not
validated
in the UC.

REQ95 KR5 VT tools (model checker) must be able read DOML language.
Must
have; Full;
V1-Y1.

Affects.
Must
have; Full;
V1-Y2.

REQ96 KR3 ICG must be able read DOML language.
Must
have; Full;
V1-Y1.

Affects.
Must
have; Full;
V1-Y2.

REQ97 KR11
The SelfHealing components provide feedback on the DOML code,
without doing automatic writes. The end user can choose to
accept or not the feedback received.

Must
have; Full;
V1-Y1.

Affects.
Not
validated
in the UC.

REQ98 KR9
The IOP components provide feedback on the DOML code,
without doing automatic writes. The end user can choose to
accept or not the feedback received.

Must
have; Full;
V1-Y1.

Desirable.
Not
validated
in the UC.

REQ99 KR2 IDE to integrate with both local and remote Git repositories.
Must
have; Full;
V1-Y1.

Desirable.
Must
have; Full;
V2-Y3.

REQ100 KR3
ICG should generate IaC code that supports different cloud
platforms.

Must
have; Full;
V1-Y1

Affects
(vendor-
supplied)

Must
have; Full;
V1-Y1

REQ101 KR3
IDE should allow to create and edit a graphical DOML model.
Possibly starting from a palette of supported components that can
be drag&drop in the graphical model.

Desirable;
Full; V2-Y2

Desirable;
Full; V2-Y2

Must
have; Full;
V1-Y2

REQ103 KR5
Verification Tool (model checker) must verify the structural
consistency of the DOML models.

Desirable;
Full; V2-Y2

Desirable;
Full; V2-Y2

Desirable;
Full; V2-Y2

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 25 of 88

www.piacere-project.eu

REQ ID KRs Description UC1 UC2 UC3

REQ104 KR5
Verification Tool (model checker) must verify the correctness of
DOML models, with respect to some correctness properties
provided in DOML.

Desirable;
Full; V2-Y2

Desirable;
Full; V2-Y2

Desirable;
Full; V2-Y2

REQ105 KR5
Verification Tool (model checker) must verify the completeness of
DOML models.

Desirable;
Full; V2-Y2

Desirable;
Full; V2-Y2

Desirable;
Full; V2-Y2

REQ106
KR6,
KR7

Organization of scan results with respect to the scan outcome.
Aggregate the results of distinct scan tools in a form of unified
results summary that makes distinction of the result into the
following cases: passed – scan is performed without any issues
detected.

Not
validated
in the UC.

Not
validated
in the UC.

Desirable;
V2-Y3

REQ107
KR6,
KR7

Improvement of scan response time. Compatibility matrix is
adopted containing the list of available scans for various file types
detected within IaC archive. Therefore, the execution of non-
compatible scans for submitted IaC archive should be avoided.

Not
validated
in the UC.

Not
validated
in the UC.

Desirable;
V2-Y3

REQ108
KR6,
KR7

Management and persistence of scan results after the scan
process is finished. Scan results are persisted into database for
limited period (14 days), so users can look on their previous scan
tasks and the achieved outcomes.

Not
validated
in the UC.

Not
validated
in the UC.

Desirable;
V2-Y3

REQ109
KR6,
KR7

Scan configuration management. There should be a possibility to
maintain multiple scans concurrently for multiple users.

Not
validated
in the UC.

Not
validated
in the UC.

Desirable;
V2-Y3

REQ110 KR3
ICG should provide enough extensibility to: comply with the DOML
extension mechanism; be capable of integrating new IaC
languages.

Not
validated
in the UC.

Not
validated
in the UC.

Not
validated
in the UC.

2.4 Requirements Summary Dashboard

The following Table 7 summarizes how the requirements are distributed among KRs and work
packages.

This table shows the association between KRs and WPs and the planning of the implementation
of the requirements during the 3 years of the PIACERE project.

The major development efforts were made in Y1, to allow the first integration tests done in Y2.
This explains the higher number of requirements met in Y1. In Y2 and Y3 we are focusing more
on the Integration between KRs and on UCs validation and finally on the residual part of the
requirements to be achieved.

Table 7: PIACERE Requirements Summary Table

KR WP
Accepted

requirements
Y1 Y2 Y3

KR1 WP3 17 12 5 0

KR2 WP3 11 7 4 0

KR3 WP3 5 3 1 1

KR4 WP3 5 3 2 0

KR5 WP4 4 4 0 0

KR6 WP4 7 3 0 4

KR7 WP4 8 4 0 4

KR8 WP5 5 3 2 0

KR9 WP5 4 2 2 0

KR10 WP5 8 2 6 0

KR11 WP6 14 9 5 0

KR12 WP6 9 5 4 0

KR13 WP2 2 0 2 0

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 26 of 88

www.piacere-project.eu

In Figure 4 it is shown in a more intuitive way the accepted requirements distribution among
KRs.

Figure 4: PIACERE Requirements Summary Dashboard

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 27 of 88

www.piacere-project.eu

3 PIACERE Architecture

The PIACERE Architecture, whose purpose is to support the modelling and creation of the
infrastructure an application is running upon, is structured in blocks that correspond to the
PIACERE Key results from KR1 to KR12 (see Figure 1), composing the final KR13, that is the
PIACERE DevSecOps Framework.

3.1 Changes in v2

This section reports the updates in the outcome of architecture definition task in the second
year of the project.

The general architecture workflows of design and runtime phases have been improved since the
submission of deliverable D2.1 and updated in the communication mechanisms between some
KRs, identifying requests, responses and user interactions (Figure 5, Figure 7 and Figure 8). The
description of each interaction in Table 8, Table 9 and Table 10 has been presented more
effectively specifying the activity. These updates have resulted in the complete revision of
section 3.3.

In section 3.4 the architecture of some components and the presentation of some sequence
diagrams describing the functioning of the KRs, has been updated.

Some components can be involved in both design and runtime phases: ICG (KR3) is mainly
involved in the design phase, but it can also be invoked in the runtime phase; similarly, IOP (KR9)
is mainly involved in the runtime phase, but it can be invoked in the design phase. The sequence
diagrams of ICG, IOP, IDE have been changed accordingly in sections 3.4.3, 3.4.8.1 and 3.4.1
respectively.

The IaC Scan Runner component has been added in section 3.4.4 to manage the security checks
related to IaC Security Inspector (KR6) and Component security inspector (KR7).

Self-healing mechanism and sequence diagram (Figure 27) have been updated: if the self-
learning or the monitoring component detects a failure or potential failure, the self-healing
component receives an alerting message. The self-healing component categorizes the incidence
to start the appropriate workflows (redeploy, scale, quarantine) calling the PRC. The other
sequence diagrams of the monitoring components have been updated accordingly.

PRC remains the sole contact between the design time (IDE) and runtime tools: the sequence
diagrams of IEM, IDE have been changed accordingly in sections 3.4.5 and 3.4.1 respectively.

The sequence diagram of Infrastructural Elements Catalogue (Figure 28) has been updated to
point out its role in design time and runtime phases.

Overall, the section 3.4 reports about updates to the PIACERE components based on the
development in the second year of the project

An overview to the multi-user approach has been presented in section 3.5. Some scenarios of
the using of PIACERE framework from the user perspective have been described in section 3.7.

3.2 General description

The PIACERE DevSecOps framework (KR13) is the integration point for all PIACERE Key Results.
It provides three main functionalities:

1. It serves as entry point to PIACERE. A user wishing to utilize the tools will do so through
the DevSecOps framework.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 28 of 88

www.piacere-project.eu

2. It integrates the different tools and KRs.
3. It orchestrates the workflow, supporting the integrated continuous development and

operation approach. The DevSecOps framework will launch the appropriate tool for
each phase of the application’s lifecycle.

The main entry point of the framework is the GUI provided by IDE (KR2) that drives the design
phase and acts as a gateway to the runtime phase.

3.3 Logical/Functional View

The PIACERE architecture can be divided into two macro areas called "Design" and "Runtime".

In Figure 5, Figure 7 and Figure 8 the interaction among the components of the PIACERE
framework in a typical workflow is shown for both areas.
In these figures, we have the components represented by symbol and two
different kinds of flows:

▪ Request, represented by the solid line, to indicate a call from a component to the next
one.

▪ Response, represented by the dashed line, to indicate the response sent back to the
component needed for the next step.

The PIACERE Design architectural area describes the components that carry out the design and
planning phase of the automation code providing the user with the tools to design, plan, create,
verify the trustworthiness of IaC as well packing it for the deployment.

The PIACERE Design time, as shown in Figure 5 is composed by the following components:

▪ Integrated Development Environment (IDE, KR2)
▪ Verification Tool (VT) which includes Model Checker (KR5) and the two components

IaC Security Inspector (KR6), Component Security Inspector (KR7) grouped in IaC Scan
Runner that acts as KR6-KR7 executor

▪ Infrastructural Code Generator (ICG, KR3)
▪ IaC Optimizer Platform (IOP, KR9)

PIACERE uses a proprietary modelling language, called DOML (KR1), represented in the Figure 5

by the green box. This language includes the DOML extension mechanisms, called DOML-E (KR4),

concerning the ability of PIACERE users to extend the DOML elements and to support to new IaC

languages.

ICG is mainly involved in the design phase, but it can also be invoked in the runtime phase.

Similarly, IOP is mainly involved in the runtime phase, but it can be invoked in the design phase.

PIACERE Data Repository consists of:

▪ “DOML and IaC repository”
▪ “Infrastructural Elements Catalogue”

“DOML and IaC repository” stores DOML models and IaC code while the “Infrastructural
Elements Catalogue” is a repository for storing the description of the infrastructure elements
together with their historical and statistical data.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 29 of 88

www.piacere-project.eu

Figure 5: PIACERE Design Time

Table 8 describes the design steps allowing a user to create and save new DOML model(s) and
correlated infrastructural elements in the PIACERE Data Repository.

The Arrow # column corresponds to the arrows of Figure 5 and also to the step, the From and
To are respectively the starting and ending point of the flow, Interaction could be Request to
indicate a call to a PIACERE component with any data needed, Response to indicate a response
to a previous request or User Interaction when the user interaction is expected, finally
Description describes the step.

Table 8: PIACERE Design Workflow

Arrow # From To Interaction Description

1 User GUI IDE
User
interaction

DOML generation: User interacts with GUI IDE
and can start design DOML (build or import
DOML).

2 GUI IDE
DOML&IaC
Repository

Request
DOML generation: IDE search DOML model in
the repository.

3
DOML&IaC
Repository

GUI IDE Response
DOML generation: IDE gets DOML information
from the repository.

4 GUI IDE User
User
Interaction

DOML generation: The user inspects DOML
model.

5 User GUI IDE
User
Interaction

DOML verification: the user requests DOML
verification.

6 GUI IDE
Model
Checker

Request DOML verification: Verify DOML model.

7
Model
Checker

GUI IDE Response
DOML verification: Model Checker return an
answer to IDE. In case of positive answer go to
next step otherwise the process restart.

8 GUI IDE
Infrastructura
l elements
catalogue

Request
Targeted environment information to be
considered in the optimization process by the
IOP.

9
Infrastructural
elements
catalogue

GUI IDE Response Targeted environment information acquired.

10 User GUI IDE
User
Interaction

DOML optimization (optional): The user
requests optimization of DOML.

11 GUI IDE IOP Request
DOML optimization (optional): IDE requests to
IOP to optimize DOML model.

12 IOP GUI IDE Response
DOML optimization (optional): IOP send back
the optimized DOML.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 30 of 88

www.piacere-project.eu

Arrow # From To Interaction Description

13 GUI IDE User
User
Interaction

DOML optimization (optional): the user can
inspect the optimized DOML.

14 User GUI IDE
User
Interaction

DOML optimization (optional): DOML
verification request.

15 GUI IDE
Model
Checker

Request
DOML optimization (optional): Verify DOML
model.

16
Model
Checker

GUI IDE Response
DOML optimization (optional): Model Checker
return an answer to IDE.

17 User GUI IDE
User
Interaction

The user commits the changes.

18 GUI IDE
DOML &
IaC
Repository

Request IDE saves the new version in the repository.

19
DOML &
IaC
Repository

GUI IDE Response IDE receives feedback (new version pushed).

20 GUI IDE User
User
Interaction

IDE sends the acknowledge to the user.

21 User GUI IDE
User
Interaction

IaC Generation: Request to generate IaC

22 GUI IDE

Infrastructura
l Code
Generator
(ICG)

Request

IaC Generation: IDE calls ICG with the request
to generate IaC. ICG may generate IaC for
different tools/languages, according to the
DevOps activity to be automated.

23

Infrastructural
Code
Generator
(ICG)

GUI IDE Response
IaC Generation: ICG generates code based on
the received DOML.

24 GUI IDE User
User
Interaction

IaC Generation: IDE gives feedback on the IaC
code generated.

25 GUI IDE
IaC Scan
Runner

Request

IaC Security Inspection: IaC Security Inspector
and Component Security Inspector checks the
code, the cryptographic libraries and the
configuration files provided.

26
IaC Scan
Runner

GUI IDE Response

IaC Security Inspection: IaC Security Inspector
and Component Security Inspector return a set
of warnings, errors and recommendations to
the GUI.

27 GUI IDE
DOML & IaC
Repository

Request IaC code is saved into IaC Repository.

28 User GUI IDE
User
Interaction

Add/commit repository changes.

29 GUI IDE
DOML & IaC
Repository

Request
Commit the new version in the DOML & IaC
Repository.

30
DOML & IaC
Repository

GUI IDE Response New version committed.

31 GUI IDE User
User
interaction

Push notification to the user.

Figure 6 shows the sequence of use of the components involved in the design phase. The colours
chosen to identify the components indicate the type of action they perform (as shown in the
legend in the picture).

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 31 of 88

www.piacere-project.eu

Figure 6: KRs involved in PIACERE Design Time

The PIACERE Runtime architectural area describes the components necessary for automated
deployment, for the dynamic environment that is created during the deployment phase itself
and for the infrastructure resource monitoring activation and deactivation activities.

To simplify the reading of the PIACERE Runtime workflow, the PIACERE Runtime diagrams have
been divided according to the different component roles:

▪ Release, configure, check, and deploy (Figure 7)
▪ Monitor, self-healing, self-learning (Figure 8)

The PIACERE Runtime, as shown in Figure 7 and Figure 8, is composed by the following
components:

▪ Runtime Controller (PRC)
▪ IaC Executor Manager (IEM, KR10)
▪ Resource Provider
▪ Canary Sandbox Environment Provisioner
▪ Canary Sandbox Environment Mocklord
▪ Infrastructure Advisor

• IDE Plug-in/Dashboard

• IaC Optimizer Platform (IOP, KR9)

• Monitoring Controller

• Performance Monitoring (KR12)

• Security Monitoring (KR12)

• Performance Self-Learning (KR11)

• Security Self-Learning (KR11)

• Self-Healing (KR11)

The IDE and the PIACERE data repository have been already described above for the Design
phase, IDE also supports users during the Runtime phase. The PIACERE PRC acts as the runtime
workflow engine.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 32 of 88

www.piacere-project.eu

Figure 7: PIACERE Runtime – Deployment activities

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 33 of 88

www.piacere-project.eu

Figure 8: PIACERE Runtime – Monitoring activities

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 34 of 88

www.piacere-project.eu

Table 9 describes the runtime steps allowing a user to implement and manage the execution
and the monitoring of the environment; Table 10 describes the runtime steps allowing a user to
dynamically test the IaC using the Canary environment.

The Arrow # column corresponds to the arrows of Figure 7, Figure 8 and also to the step of the
process, the From and To are respectively the starting and ending point of the flow, Interaction
could be Request to indicate a call to a PIACERE component with any data needed, Response to
indicate a response to a previous request or User Interaction when the user interaction is
expected, finally Description describes the step of the process.

There are cases where arrow numbers are identical with an additional label (e.g. 20a, 20b), this
means simultaneous actions and steps. The arrow numbers preceded by “test” in Table 10 refer
to interactions related to the Canary environment.

Table 9: PIACERE Runtime Workflow

Arrow # From To Interaction Description

1 User GUI IDE
User
interaction

Interaction User-IDE: User interacts with
Infrastructure Advisor and vice versa via GUI
IDE.

2 GUI IDE
Runtime
Controller
(PRC)

Request
Interaction User-IDE: IDE activates the PRC
with the request from the user.

3
Runtime
Controller
(PRC)

GUI IDE Response
Interaction User-IDE: At the end of the
requested activity, the PRC sends the response
to the IDE.

4 GUI IDE User
User
Interaction

Interaction User-IDE: User receives the
response via GUI IDE.

5
Runtime
Controller
(PRC)

IaC Executor
manager
(IEM)

Request Deployment activities: Deployment request.

6
IaC Executor
manager
(IEM)

DOML & IaC
Repository

Request
Deployment activities: IaC Deployment
request.

7
DOML & IaC
Repository

IaC Executor
manager
(IEM)

Response
Deployment activities: IaC Deployment
response.

8
IaC Executor
manager
(IEM)

Resource
Provider (RP)

Request Deployment activities: Deployment commands.

9
IaC Executor
manager
(IEM)

Runtime
Controller
(PRC)

Response Deployment activities: Deployment response.

10
Runtime
Controller
(PRC)

IaC Executor
manager
(IEM)

Request
Deployment status activities: Deployment
status request.

11
IaC Executor
manager
(IEM)

Runtime
Controller
(PRC)

Response
Deployment status activities: Deployment
status response.

12
Runtime
Controller
(PRC)

IaC Optimizer
Platform
(IOP)

Request
Optimization process: Launch new optimization
process.

13
IaC Optimizer
Platform (IOP)

DOML & IaC
Repository

Request
Optimization process: IOP requests information
about optimization requirements and
objectives.

14
DOML & IaC
Repository

IaC Optimizer
Platform
(IOP)

Response
Optimization process: IOP receives information
about optimization requirements and
objectives.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 35 of 88

www.piacere-project.eu

Arrow # From To Interaction Description

15
IaC Optimizer
Platform (IOP)

Infrastructura
l elements
catalogue

Request
Optimization process: IOP requests targeted
environment information.

16
Infrastructural
elements
catalogue

IaC Optimizer
Platform
(IOP)

Response
Optimization process: IOP receives targeted
environment information.

17
IaC Optimizer
Platform (IOP)

DOML & IaC
Repository

Request
Optimization process: provides feedback about
the new deployment configuration.

18
IaC Optimizer
Platform (IOP)

Runtime
Controller
(PRC)

Response Optimization process: optimization finished.

19
Runtime
Controller
(PRC)

Monitoring
Controller

Request
Monitoring process: start monitoring for a
given application by means of PRC.

20a
Monitoring
Controller

Performance
Monitoring

Request
Monitoring process: start monitoring for a
given application.

20b
Monitoring
Controller

Performance
SelfLearning

Request
Monitoring process: start monitoring for a
given application.

20c
Monitoring
Controller

Security
Monitoring

Request
Monitoring process: start monitoring for a
given application.

20d
Monitoring
Controller

Security
SelfLearning

Request
Monitoring process: start monitoring for a
given application.

20e
Monitoring
Controller

SelfHealing Request
Monitoring process: start monitoring for a
given application.

21
Performance
Monitoring

Infrastructura
l elements
catalogue

Request
Monitoring process: request of performance
information related to the infrastructure
elements to support IOP algorithms.

22
Infrastructural
elements
catalogue

Performance
Monitoring

Response Monitoring process: return of requested data.

23
Security
Monitoring

Infrastructura
l elements
catalogue

Request
Monitoring process: request of security
information related to the infrastructure
elements to support IOP algorithms.

24
Infrastructural
elements
catalogue

Security
Monitoring

Response Monitoring process: return of requested data.

25
Performance
Monitoring

SelfHealing Request
Monitoring process: send a “notify event” in
cases a warning threshold has been raised by
monitoring.

26
Performance
SelfLearning

Performance
Monitoring

Request Monitoring process: request of timeseries data.

27
Performance
Monitoring

Performance
SelfLearning

Response
Monitoring process: timeseries of different
performance metric provided (eh.g. memory,
disk usage, etc).

28a
Performance
SelfLearning

SelfHealing Request
Monitoring process: send a “notify event” in
cases a warning threshold has been raised by
monitoring.

28b
Performance
Monitoring

SelfHealing Request
Monitoring process: send a “notify event” in
cases a warning threshold has been raised by
monitoring.

28c
Security
Monitoring

SelfHealing Request
Monitoring process: send a “notify event” in
cases a warning threshold has been raised by
monitoring.

28d
Security
SelfLearning

SelfHealing Request
Monitoring process: send a “notify event” in
cases a warning threshold has been raised by
monitoring.

29
Security
SelfLearning

Security
Monitoring

Request Security monitoring process: acquire data.

30
Security
Monitoring

Security
SelfLearning

Response Security monitoring process: data continuous.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 36 of 88

www.piacere-project.eu

Arrow # From To Interaction Description

31
Security
SelfLearning

Infrastructura
l elements
catalogue

Request
Security monitoring process: model training
(optional) - store model to storage.

32
Infrastructural
elements
catalogue

Security
SelfLearning

Response
Security monitoring process: model training
(optional) - store data acknowledge.

33 SelfHealing
Runtime
Controller
(PRC)

Request
Self-healing process: propose to redeploy the
workflow.

34
Runtime
Controller
(PRC)

IaC Executor
manager
(IEM)

Request Self-healing process: destroy deployment.

35
Runtime
Controller
(PRC)

IaC Executor
manager
(IEM)

Request
Self-healing process: execute IaC (restart
deployment).

36 SelfHealing
Runtime
Controller
(PRC)

Request
Self-healing process: propose to scale the
workflow.

37
Runtime
Controller
(PRC)

IaC Optimizer
Platform
(IOP)

Request
Self-healing process: launch new optimization
process.

38
IaC Optimizer
Platform (IOP)

DOML & IaC
Repository

Request
Self-healing process: store new deployment
configuration.

39
DOML & IaC
Repository

IaC Optimizer
Platform
(IOP)

Response
Self-healing process: acknowledge previous
request.

40
IaC Optimizer
Platform (IOP)

Runtime
Controller
(PRC)

Request Self-healing process: optimization finished.

41
Runtime
Controller
(PRC)

Infrastructura
l Code
Generator
(ICG)

Request Self-healing process: create new IaC.

42

Infrastructural
Code
Generator
(ICG)

Runtime
Controller
(PRC)

Response Self-healing process: done.

43
Runtime
Controller
(PRC)

IaC Executor
manager
(IEM)

Request Self-healing process: execute new IaC.

44
IaC Executor
manager
(IEM)

Runtime
Controller
(PRC)

Response Self-healing process: new IaC executed.

45 SelfHealing
Runtime
Controller
(PRC)

Request
Self-healing process: Propose user feedback
workflow.

46 GUI IDE
Performance
Monitoring

Request Monitoring process: request Dashboard.

47
Performance
Monitoring

GUI IDE Response
Monitoring process: IDE received the
dashboard link.

48 GUI IDE SelfHealing Request Self-healing process: request Dashboard.

49 SelfHealing GUI IDE Response
Self-healing process: IDE received the
dashboard link.

50 GUI IDE
Security
Monitoring

Request
Security monitoring process: Request
Dashboard.

51
Security
Monitoring

GUI IDE Response
Security monitoring process: IDE received the
dashboard link.

52
Runtime
Controller
(PRC)

Monitoring
Controller

Request
Monitoring process: request to stop monitoring
for a given application.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 37 of 88

www.piacere-project.eu

Arrow # From To Interaction Description

53a
Monitoring
Controller

Performance
Monitoring

Request
Monitoring process: request to stop monitoring
for a given application.

53b
Monitoring
Controller

Performance
SelfLearning

Request
Monitoring process: request to stop monitoring
for a given application.

53c
Monitoring
Controller

Security
Monitoring

Request
Monitoring process: request to stop monitoring
for a given application.

53d
Monitoring
Controller

Security
SelfLearning

Request
Monitoring process: request to stop monitoring
for a given application.

53e
Monitoring
Controller

SelfHealing Request
Monitoring process: request to stop monitoring
for a given application.

Table 10: PIACERE Test Workflow

Arrow # From To Interaction Description

test 1 User GUI IDE
User
interaction

Interaction User-IDE: User interacts with
Canary Sandbox Environment to request a new
deployment via GUI IDE.

test 2 GUI IDE Canary
Sandbox
Environment
Provisioner

Request Request new deployment

test 3 Canary
Sandbox
Environment
Provisioner

GUI IDE Response Respond with new deployment identifier

test 4 GUI IDE Canary
Sandbox
Environment
Provisioner

Request Register to watch for that new deployment
entry status change

test 5 Canary
Sandbox
Environment
Provisioner

GUI IDE Response Notify finished deployment

test 6 GUI IDE User User
Interaction

Interaction User-IDE: User receives the
response via GUI IDE.

In Figure 9 the main role of PIACERE KRs that compose the Runtime area is shown:

Figure 9: KRs involved in PIACERE Runtime

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 38 of 88

www.piacere-project.eu

3.4 Architecture components

The purpose of this chapter is to describe in detail all the functional and non-functional
components of the PIACERE architecture.

For each of the following sections, Component description has the aim to describe the
component, its functions, any subdivisions of the same and everything necessary to correctly
indicate it; Component behavioural description aims to describe the behaviour of the component
with the other components, internal and external.

This section presents all KR updated with the changes performed in Y2. The most significant
changes are on KR2, KR3, KR6, KR7 and KR9.

Overall, this section reports about updates to the PIACERE components according to the
development in the second year of the project.

These developments have also led to a revision of the sequence diagrams, with the exception of
those relating to the KR5, KR8 and KR10.

3.4.1 Integrated Development Environment - IDE (KR2)

Component Description

The PIACERE IDE (Integrated Development Environment) is a tool for modelling and verifying IaC
solutions following the Model-Driven Engineering (MDE) approach. The IDE will enable to define
IaC at an abstract level independently of the target environment and at concrete level, based on
the PIACERE DOML (DevOps Modelling Language) and DOML-E (DOML Extensions).

At the technological level, the IDE has been developed using the Eclipse Modelling Framework,
a technology developed to create own tools or IDEs and to describe metamodels. The IDE is the
main tool for interaction with PIACERE users and acts as a vertebral element of the project. It
has a user interface that allows interaction with other PIACERE tools/components. The IDE is set
to be extensible by design, so to allow the new IaC tools and the new abstractions of
infrastructural components that will be incorporated into DOML as Extensions.

Component behavioural description

The IDE, as the main interface for user’s interaction, is connected with other PIACERE
tools/components. The design time components are more tightly integrated with the IDE as they
all belong to the design phase of the solution and make intensive use of the DOML. The other
components belong to the runtime phase and are less coupled with the IDE, but nevertheless
the IDE is still the summoning point for these components, and the communication between
them is done through different communication interfaces such as REST APIs.

Through the IDE, users can describe their models according to the underlying metamodel, which
in the case of PIACERE is the DOML. The model will contain the abstract and the concrete
specification of the problem/project.

The IDE will integrate the Verification Tool (VT) and the Infrastructural Code Generator (ICG).
Thanks to the VT, it will be possible to validate the defined models and to make suggestions,
possible substitutions, and improvements. The ICG tool, when triggered from the IDE, will
automatically obtain the corresponding IaC in a specific target environment (e.g., Terraform,
Ansible, TOSCA, …) from DOML.

All the information produced at design time will be stored into the PIACERE data repository, and
after finalising the design time phase, a DOML specification will be complete, and an IaC of the

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 39 of 88

www.piacere-project.eu

project will be generated. Before generating the IaC, it is possible to make a call to the IOP, to
obtain which is the best solution for the concretization layer, setting a series of criteria in the
call. This returns several solutions that the user can check and select the one he/she considers
most appropriate and later, call the VT to ensure that everything is OK and, once this is done,
call the ICG to obtain the IaC from DOML.

The runtime components of the PIACERE will be also linked with the IDE. The runtime controller
(PRC) will be invoked through the IDE. This component will oversee doing the deployments and
link them with the Infrastructure Advisor components.

Figure 10: IDE sequence diagram

Figure 10 shows the interaction of the IDE with the different components of the design stage.
Following the normal workflow, the first stage is the generation of the DOML, user can create a
new file or import an existing one from a repository. Next step is the verification of the created

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 40 of 88

www.piacere-project.eu

DOML. After this, the user can consult the catalogue of the elements to check the available
elements for the deployment, but they can also define their optimization criteria and call the
IOP that will return several options for concretization of the infrastructure and the user must
select one and re-validate calling VT again. Once this is done you could save it in the repository
to keep it and call the code generator that will return the corresponding IaC that can be scanned
by the IaC Scan Runner to ensure the absence of errors.

3.4.2 DevOps Modelling Language – DOML/DOML-E (KR1-KR4)

Component Description

The DOML is the modelling language that is being defined to help PIACERE users in defining the
deployment-relevant information concerning their software system.

The usage of the language is supported by a subcomponent in the IDE which includes those data
structures representing the main elements that are part of the language. This subcomponent
offers to the user a suggestion-based editing approach. More specifically, through the IDE, the
user creates a DOML file and starts editing it. Based on what he/she is typing, the DOML
component suggests how to complete the specification fragment and creates in memory the
instances of the corresponding linguistic elements. These can be queried and serialized in a
textual, XML or JSON file. The XML serialization (we call it DOMLx) has been implemented and
is used as interchange format between the PIACERE tools.

The DOML extension mechanisms concern the ability of PIACERE users to extend the DOML in
the following directions:

▪ Creation of new DOML elements: The types of computational nodes that can be adopted
for hosting an application component, as well as the resources used to interconnect
computational nodes and to control their execution can vary depending on the new
technological advantages. To enable the PIACERE expert users to represent these new
resources in the DOML, it should be possible to extend the language. Such extension should
be similar to the type of creation mechanism offered by typical programming languages. In
the second project year this mechanism has been used to accommodate the needs of the
PIACERE case studies. The procedure to extend the DOML editor to support suggestion-
based capabilities in this case has been manually followed. The possibility to let the user
develop such extension by himself/herself is under study.

▪ Extend current DOML elements: This feature allows the user to add new attributes and
properties to currently existing DOML elements. This aspect has been implemented and is
currently being tested within the PIACERE case studies.

▪ Support to new IaC languages: The objective of this feature is to allow users to exploit new
IaC languages for performing specific actions. We are studying two possibilities. The first one
concerns the possibility to incorporate into the DOML references to code fragments/scripts
written in specific IaC languages. The second one concerns the possibility to generate from
a DOML specification scripts into multiple IaC languages. In the second project year we have
addressed the first point by introducing in the language a new concept that allows the user
to refer through a URI to specific code fragments and to explicitly indicate the executor to
be used for running that code fragment. The second point has been addressed by the ICG
that is currently able to generate both Terraform and Ansible code from a DOML
specification. The possibility to generate code in other languages is being analysed and will
be an aspect tackled in the last project year.

Component behavioural description

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 41 of 88

www.piacere-project.eu

Figure 11 below shows the interaction between the user and the DOML, mediated by the IDE.

More specifically, the figure highlights two logical subcomponents of DOML, the DOML Manager

and the DOML Model. The first one is in charge of managing the interaction with the user, while

the second one represents the set of data structures defining the DOML. When the user creates

a DOML model through the IDE, it activates the DOML Manager which, in turn, instantiates a

new DOML Model. The DOML Manager is the engine that from the knowledge of the DOML

structure (the entities to be modelled and the needed relationships among them) ensures that

a DOML Model is created properly. The DOML Manager includes editing features. Moreover, it

helps the PIACERE user in his/her work by providing proper suggestions. Whenever the user

adds a new DOML element, the corresponding object is created in the DOML Model. The

interaction with the user can continue alternating suggestions, insertions of new DOML

elements as well as modifications of existing elements. From time to time, the user will save the

model, this operation will result in a serialization of the model into an XML, JSON or pure textual

format. Finally, through the IDE, the user will push the model into a proper repository.

Figure 11: Interaction of the PIACERE User with DOML and the IDE

3.4.3 Infrastructural Code Generator - ICG (KR3)

Component Description

The Infrastructural Code Generator (ICG) is the PIACERE component that allows generating
executable infrastructural code (IaC) from models written in DOML. ICG is a microservice
application inside the PIACERE framework and is called through REST API: it takes the source

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 42 of 88

www.piacere-project.eu

DOML model in the XML format (DOMLX) as input and produces IaC code files as output. The
previous version of the ICG was developed as a command line interface compiler, as such the
source code of the ICG retains the capability of being called through command line. In the
current version, the ICG is extended and now it adopts REST API interfaces too and is aligned
with the PIACERE microservices approach. This new solution allows the ICG to run as a
standalone component capable of being called by the IDE and all the other components such as
the PRC.

ICG will be able to produce, from a given DOML model, IaC code in multiple different target
languages. The first version supports both Terraform and Ansible, and future versions may
support further languages, possibly integrating new code generators as plugins.

In this first version, the generated code supports both provisioning and configuration and the
second version will support orchestration. It allows provisioning Virtual Machines (VM) and
other cloud resources for the selected Cloud provider and configuring those VMs with the
installation of software components.

The internal components of ICG are shown in Figure 12 below.

Figure 12: Internal ICG architecture

Component behavioural description

The sequence diagram shown in Figure 13 below exemplifies the behaviour of the ICG
component from a high-level point of view. Internal interactions are shown in a summarized
way; detailed interactions between the internal components are documented in the D3.4
deliverable.

As shown in the diagram in Figure 13, ICG is invoked through REST API. The ICG executable starts
parsing the DOMLX model given as input. From the DOMLX model, ICG generates the
Intermediate Representation, checks if any errors occur and generates IaC code using its
templates.

Currently the ICG is called by the IDE at design time and the PRC at run time.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 43 of 88

www.piacere-project.eu

Figure 13: ICG internal and external behaviour

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 44 of 88

www.piacere-project.eu

3.4.4 Verification Tool - VT

3.4.4.1 Model Checker (KR5)

Component Description

The Model Checker (MC) is the verification tool component which is devoted to check the main
properties of the DOML model. In particular, the MC is going to check the consistency,
completeness and some general issues of the model, including, if available, some special user-
defined properties. The MC is called by the IDE, which sends to it a representation of the model,
and returns either a positive result if the properties hold and no issues are found, or a negative
result with some comprehensive counter-examples in case issues are indeed found.

Internally, the Model Checker consists of a component which translates the DOML model
received from the IDE into an internal, logic-based format, that is called Target Logic Model
Representation (or TLMR). The MC then calls the Logic Engine (LE) which is an external tool for
the checking, that is the z3 SMT-solver (Satisfiability Modulo Theories). The output of the LE is
then interpreted by the MC, in particular by the component that is called Logic to DOML Mapper,
to translate the problems found by the LE (i.e., the counter-example) into a form compatible
with DOML.

The internal architecture of the Model Checker is depicted in Figure 14.

Figure 14: Internal architecture of the Model Checker.

Component behavioural description

Figure 15 below represents the typical behaviour of the MC. As depicted, the IDE sends a
representation of the DOML model to the MC; then, the MC performs some abstractions or
filtering, depending on the size, capabilities or other aspects of the model which could make the
verification too expensive, for verification time or space needed.

The next step is the translation into the internal TLMR format and the verification of the
standard consistency and completeness properties, by calling the external logic tool for the
verification. In case more complex properties are present, these are translated into the TLMR
format as well, and then the verification is performed.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 45 of 88

www.piacere-project.eu

The result of the verification is then returned to the IDE. In case of a negative verification result,
the result also contains a counter-example evidencing the issues found by the MC.

Figure 15: Model Checker internal and external behaviour.

3.4.4.2 IaC Scan Runner – (KR6 and KR7 executor)

As in depth presented in the D4.4 and D4.5 deliverables, the IaC Security Inspector (KR6) and
Component Security Inspector (KR7) have very similar inputs and outputs handling. Therefore,
a single tool has been designed in a way to act and fulfil the requirements of any or both KRs.
IaC Scan Runner introduces the utilization of persistence layer for purpose of scan result
persistence which enables browsing them later and also re-use of user-defined check scan
preferences. In the Figure 16 the IaC Scan Runner sequence diagram is given. DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 46 of 88

www.piacere-project.eu

Figure 16: IaC Scan Runner archive scan workflow with persistence and configurations

In the first step of the sequence, it is possible to create a new scan project with default set of
checks enabled. As outcome, project id is returned to the user/IDE. After that, user/IDE is able
to set configuration parameters that would enable some of the tools (or additional paid services)
that require client-related info, such as access tokens, password, identifiers or secrets.

The update of project parameters is persisted into database, so it can be later re-used and
configuration time for each scan reduced.

Additionally, user/IDE is able to update the list of considered check tools, by enabling or
disabling them individually, which is also persisted as part of project configuration.

Once the project configuration is done, user/IDE is able to assign their scan to a particular project
in order to use the previously defined configuration. Additionally, list of preferred checks can be
provided, so the final list of checks that will actually be performed is intersection of enabled and
selected, considering file type and compatibility aspects as well. During the scan workflow, each
of the check tools returns log. The returned logs are processed and summarized into JSON file.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 47 of 88

www.piacere-project.eu

Depending on the selected outcome, end-user receives either JSON file or HTML visualization
summary which is generated taking the JSON file as input. Later, user is able to browse the
previously created projects and scans.

3.4.4.3 IaC Security Inspector (KR6)

Component Description

IaC security inspector is the second verification tool providing statical analysis of the PIACERE

designed application. In the contrast to the Model Checker, IaC Security Inspector performs

security checks on the generated IaC instead of checking the DOML representation. The Security

Inspector consists of a configuration part, where the set of security checks is selected and

defined, and the runtime part, which performs checks on the IaC and builds the report.

The security inspector takes the IaC code generated by ICG from the DOML for an input and

generates errors and recommendations. The first version of the IaC Security Inspector will focus

on the framework, API and initial checks.

Component behavioural description

The IaC security inspector is an isolated service accessible to the other services through a REST
API. The interface commands are very straightforward, facilitating the code inspection and
configuration of the checks and are available through OpenAPI specification.

We defined performing the set of checks as a one scan of the IaC code. While designing the
interfaces we realised that IaC Security Inspector and Component Security Inspector require the
same interface performing different checks performed over the IaC. This led to the decision to
create a single IaC Scan Runner component that will be able to run checks for both Inspectors.
The detailed inspection of the checks showed us that some checks could be listed in both
Inspector types (Figure 17).

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 48 of 88

www.piacere-project.eu

Figure 17: IaC Security and Component Security Inspector

3.4.4.4 Component Security Inspector (KR7)

Component Description

The component security inspector is a tool that makes static analysis of the IaC code, searching
for components and searching for known vulnerabilities of the components. In other words, the
Component Security Inspector will find dependencies used in the IaC and provide user a list of
the vulnerabilities that are published by internet security authorities or are the result of
misconfiguration of the component in IaC.

Component behavioural description

From the user's perspective, the behaviour of the Component Security Inspector will be identical
to the behaviour of the IaC Security Inspector. The only difference is in the performed checks.
As described in the section 3.4.4.2, the IaC Scan Runner component will run IaC Security
Inspector or IaC Component Inspector checks included in scans.

3.4.5 IaC Executor Manager – IEM (KR10)

Component Description

The PIACERE project aspires to provide a common manner to utilize different IaC technologies
in a unified way. The IaC component is of paramount importance to reach this overarching goal,
since it oversees the utilization for the IaC code being generated in previous stages of the
PIACERE infrastructure and execute the different technologies provided to obtain the desired
infrastructural architecture. In addition, the IEM is able to leverage different IaC paradigms to

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 49 of 88

www.piacere-project.eu

reach its goal, such as: the provisioning of the heterogeneous infrastructural devices required
that may span different public and private cloud providers; the configuration of each and every
infrastructural device that will support the PIACERE ecosystem, including the required
dependencies for the elements that will support the PIACERE use cases; and the
operationalization of the applications of the use cases that will utilize the PIACERE framework.

Additionally, the IEM will offer a unified approach to query the information regarding the
deployments being made. This query method includes metrics about past and present
executions of the IEM component, such as the duration of a given deployment or the status of
the deployment (e.g., success, failure, pending). Furthermore, it provides a method to obtain
information about the different IaC technologies supported by the IEM.

Finally, the IEM will expose its services through a REST API described in the OpenAPI specification
format. This way, components willing to utilize the IEM, should implement its specification. The
methods offered by the IEM must be used securely through token-based authentication
technologies.

Component behavioural description

Figure 18: Start of deployment

The diagram above, Figure 18, exemplifies the sequence diagram regarding the start of a
deployment. In this scenario, the Runtime Controller communicates with the IEM to initiate a
deployment. This call is asynchronous given that an entire deployment may take a long time to
finish, hence an immediate response is sent back to the Runtime Controller. Alongside the
request, it provides the location of a deployment with the appropriate authentication and
credentials. The IEM incorporates a persistence layer which will track the status of the recently
started deployment. Then, the IEM retrieves the IaC files related with the initiated deployment
and hands over the request to the executors, which will trigger the deployment in the
Infrastructure Provider Resources. Finally, the status of the deployment is updated in the
Persistence layer so it can be queried appropriately.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 50 of 88

www.piacere-project.eu

Figure 19: Request of the status of a deployment

The diagram above, Figure 19, shows the sequence diagram regarding the request of the status
of a deployment by the user. This is a synchronous call; hence the user obtains real time
feedback on the request. The IEM stores this information in the persistence layer and keeps
track of all the present and past deployments that have been initiated by this component.

3.4.6 Runtime Controller – PRC

Component Description

PIACERE Runtime Controller (PRC) is the main control component of PIACERE runtime. It is a
workflow engine that guides the overall workflow within the PIACERE runtime. Actions of PRC
are targeted against a specified set of resource providers (including Canary and Production) via
the integrated components such as the IEM (IaC Executor Manager) and the IA (Infrastructure
Advisor), particularly its own controller component.

The PRC is involved in the PIACERE framework integration. This is described in more detail in a
later section of this document.

Component behavioural description

PRC does not have any sequence diagrams as there is no native sequence diagram to be shown.
PRC integrates the flows of other components into a single, coherent flow spanning the whole
PIACERE runtime. The IDE queries and controls the PIACERE runtime via the PRC.

3.4.7 Canary Sandbox Environment – CSE (KR8)

3.4.7.1 Canary Sandbox Environment Provisioner - CSEP

Component Description

The role of the Canary Sandbox Environment Provisioner (CSEP) is to create the desired Canary
Resource Provider (CRP). This may entail provisioning and configuring new systems to provide
the desired platform. There are two approaches to the CSE: to provide a real (non-simulated)
CRP and a simulated one. Depending on the variant, the scope and characteristics of testing
differs. Real providers require resources and allow to complete all steps of deployment as long
as the supporting infrastructure (beneath the created CRP) is sufficient. The assumption is that
the user is able to provide the hardware (e.g., because they have bare metal or virtual machines,
either on premise or elsewhere – the CSE is agnostic to that). On the other hand, the simulated

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 51 of 88

www.piacere-project.eu

variant does not consume resources but does not allow further steps other than provisioning of
the infrastructure elements. The initial set of planned supported platforms is OpenStack (for real
[non-simulated] actions) and the Canary Sandbox Environment Mocklord (for simulation).

Component behavioural description

Figure 20: Canary Sandbox Environment Provisioner (CSEP)

As shown in Figure 20 In the initialisation stage, both the API and worker components connect
to the internal database to watch for deployment status changes.

The primary sequence of actions regarding the Canary Sandbox Environment Provisioner (CSEP)
involves provisioning of the chosen Canary Resource Provider (CRP) that can be used as a
Resource Provider (RP) with other PIACERE tools, notably IEM. The user, possibly indirectly via
the IDE, invokes the command to provision a new CRP (create new deployment). The CSEP API
component handles this request and creates an appropriate record in the internal database. This
record is then detected by the worker component and acted upon (and updated in the internal
database along the way). Finally, when the worker finishes its job, i.e., deploys the CRP or fails

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 52 of 88

www.piacere-project.eu

to do so, the worker saves the final state in the internal database. This information can then be
read by the user, possibly indirectly with IDE.

The alternative and complementary flows involve the following actions:

▪ destroying the deployment (when the flow of actions is analogous to creation)
▪ listing deployments
▪ getting details about a particular deployment.

3.4.7.2 Canary Sandbox Environment Mocklord – CSEM

Component Description

Canary Sandbox Environment Mocklord (CSEM) is to be provisioned on demand by the CSEP.
The role of CSEM is to simulate an existing resource provider so that the user can easily test
interactions against it. The plan is to research the usefulness of such approach to dynamic IaC
testing. The prototype will target a subset of AWS [3] APIs. CSEM is assumed to have a much
lower cost compared to real (non-simulated) resource providers. Due to simulation, this variant
of Canary Resource Provider will allow only the provisioning step to happen.

Component behavioural description

CSEM does not have any sequence diagrams as there is no native sequence diagram to be
shown. CSEM will offer a simulation of the possible upstream API flows, e.g., actions possible
against the EC2 API of AWS.

3.4.8 Infrastructure Advisor

3.4.8.1 IaC Optimizer Platform - IOP (KR9)

Component Description

The optimization problem formulated in PIACERE and solved by the IOP consists of having a
service to be deployed and a catalogue of infrastructural elements, with the main challenge of
finding an optimized deployment configuration of the IaC on the appropriate infrastructural
elements that best meet the predefined constraints (e.g., types of infrastructural elements,
technical requirements, and so on). In this context, it is the IOP component which is the
responsible for finding the best possible infrastructure given the input data received. This input
data is provided in DOML format and will include the optimization objectives (such as the cost,
performance, or availability), optimization requirements, and previous deployments (in case it
is necessary). Then, the IOP performs the matchmaking for the infrastructure via the execution
of optimization intelligent techniques by using the information taken as input against the
available infrastructure and historical data, available from the catalogue of Infrastructural
elements.

In other words, the optimizer will use artificial intelligence optimization algorithms, seeking for
an optimized deployment configuration of the IaC on the appropriate infrastructural elements
that best meet the predefined constraints. Thus, the IOP will success if it is able to propose the
most optimized deployment configuration of the infrastructural code taking into consideration
the constraints predefined. To this end, several deployment configurations will be shown and
ranked.

Finally, two considerations should be considered. The first one is that the problem to be
optimized will be a multi-objective one, which means that it will be composed by several
conflicting objectives (such as cost and performance). The second aspect to consider is that two
different optimizations will be conducted in the context of PIACERE: the initial deployment of

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 53 of 88

www.piacere-project.eu

the service, and the redeployment of an already running service (if the Self-Healing detects it is
necessary).

Component behavioural description

Figure 21: IOP in Run Time

Figure 22: IOP in DesignTime

The IOP receives all the information about the available elements from the IEC. These elements
are transformed in optimization variables and are employed for optimizing the functional and
non-functional requirements. Obtained optimized solutions are provided to the Runtime
Controller when the service is called if the self-learning has detected the necessity of finding a
new deployment configuration. Furthermore, the IOP can also be called in the Design Time
phase, when the first deployment is needed. In this situation, the user can ask for the
optimization of the deployment through the PIACERE IDE.

Having said that, the role of the IOP in both Run Time and Design Phase can be summarized as
follows:

▪ Role of the IOP in the Run Time phase (Figure 21): in this phase, the IOP is involved in
the seal-healing process when needed asking for a re-deployment, and it is called by the
PIACER Runtime Controller.

▪ Role of the IOP in the Design Time Phase (Figure 22): in this case, the IDE can call the IOP
as an optional step (user choice), after the DOML Model Checker interaction. Thus, the
IOP will return the optimization to the IDE, and the user can accept or not the proposed
optimization.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 54 of 88

www.piacere-project.eu

3.4.8.2 Run-time Monitoring System (KR12)

Component Description

The monitoring mechanisms present in PIACERE allow gathering non-functional measures over
the infrastructure resources that run the components that build up the application. Currently
PIACERE supports the monitoring of two non-functional measures categories: performance and
security.

▪ The Performance Monitoring component focuses on gathering performance related
measures from the infrastructure resources. The measures are gathered by agents
running in the infrastructure resources: this allow us to gather data about some
individual metrics that may be useful to get idea about the overall health of those
resources. Examples of metrics are: memory use, disk use, processes, CPU usage, etc.

▪ The Security Monitoring component focuses on gathering performance related
measures from the infrastructure resources. The measures are gathered by agents
running in the infrastructure resources.

Component behavioural description

There are two main aspects in the lifecycle of the Monitoring components: the new applications
configuration and the monitoring loop.

The new application configuration has two main parts: the deployment of monitoring agents
and the configuration of the monitoring components to follow the deployed application. The
deployment of the monitoring agents is expected to be done during the application deployment
as part of the activities requested to by the PRC to the IEM. The configuration of monitoring
components to follow the deployed application is centralized by the monitoring Controller. This
is a utility component in charge of notifying the inner monitoring components to start and stop
gathering information for a given application. This is shown in the Figure 23 under the group
“start”.

On the other hand, the application decommissioning has also two main parts: the un-
deployment of the agents and the configuration of the monitoring components to stop following
the deployed application. As with the new application configuration, the un-deployment of the
monitoring agents is expected to be done during the application decommissioning as part of the
activities requested by the PRC to the IEM. The configuration of the monitoring components to
stop following the deployed application is centralized by the monitoring Controller. This is shown
in the Figure 23 under the group “end”.

The Performance Monitoring component focuses on continuously gather the data coming from
the multiple monitoring agents, evaluate the configured threshold and if necessary, send alerts
to the Self-healing component. This is shown in the Figure 23 under the group “loop”.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 55 of 88

www.piacere-project.eu

Figure 23: Monitoring

NOTE: The above figure does not cover the security monitoring activities as these are covered in
the security monitoring diagram (Figure 24).

The Security Monitoring component’s role is two-fold: to gather data from the security
monitoring agents and notify the Self-Healing component on the potential issues to be acted
upon, and to gather data for the Security Self-Learning component for detecting anomalies
regarding security events. The monitoring system is depicted in Figure 24. As soon the
application has been configured and deployed with the rest of monitoring infrastructure, the
data is started to be gathered and analysed. Events are being continuously evaluated and in case
an event related to a specific PIACERE-relevant metric and with the PIACERE rule being triggered,
the Self-Healing component is being notified on this event.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 56 of 88

www.piacere-project.eu

Figure 24: Monitoring System

Note: Security Monitoring component is depicted above the Security Self-Learning part.

3.4.8.3 Self-Learning (KR11)

Component Description

The self-learning mechanism present in PIACERE allows analysing the deployed elements using
a set of monitored parameters and predicting anomalous situation that would require an action
(i.e., deployment of new infrastructural elements). The Self-Learning component will be
responsible for checking that the different elements present on the platform are in good
condition and do not show any degraded or anomalous behaviour. Currently, PIACERE supports
the self-learning of two non-functional categories: performance and security.

▪ The PerformanceSelfLearning component focuses on incrementally online learning and
predicting the performance of the elements to guarantee their constant high-level

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 57 of 88

www.piacere-project.eu

performance. To do that, the component receives monitoring data from the
PerformanceMonitoring component.

▪ The SecuritySelfLearning component makes use of state-of-the-art Natural Language
Processing (NLP) architectures to model log streams as a language and capture their
normal operating conditions. These models can then be used to detect deviations from
the normal behaviour.

Component behavioural description

The PerformanceMonitoring provides the PerformanceSelfLearning component with the

monitoring data of each element hosted in the system, after being requested by the

PerformanceSelfLearning. The CPU usage idle, as part of this monitoring data, is requested,

learnt, and predicted in an online fashion manner by the PerformanceSelfLearning, through an

online learning algorithm that can deal with drifts and anomalies. When the prediction of the

next CPU usage idle data point is below a threshold (i.e., 70%), the PerformanceSelfLearning

component sends a warning to the Self-Healing component. Then, this latter component will

have to decide what to do or how to consider such warning. This is shown in the Figure 25.

Figure 25: Self-Learning (Performance)

NOTE: The above figure does not cover the security monitoring activities as these are covered in
the security monitoring diagram (Figure 24).

The SecuritySelfLearning component (activity diagram depicted in Figure 26) receives data from

the SecurityMonitoring component. As a first necessary step, a specified subset of the data has

to be used to train a behavioural model. This subset of data, along with the necessary

configuration files, is provided to the ModelTraining component, which eventually stores every

trained model in the ModelRepository. Once a model is trained, this step is repeated only if

requested to do so. A trained model is loaded from the ModelRepository to carry out anomaly

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 58 of 88

www.piacere-project.eu

detection of the data received from the SecurityMonitoring component. Under previously

specified conditions e.g., high number of anomalies in a short period, the SecuritySelfLearning

component will notify the Self-Healing component.

Figure 26: Security Self-Learning

3.4.8.4 Self-Healing (KR11)

Component Description

The Self-Healing mechanism present in PIACERE allows to receive incidence or forecast
notification from monitoring and self-learning components. Based on the typology of the
notification the Self-Healing component identifies the mitigation strategy to be applied and
proceeds with its execution.

Component behavioural description

The SelfHealing component waits for alerts from the monitoring components. This includes:
Performance monitoring, Performance Self-Learning, security monitoring and Security Self-
Learning. There will be different types of alerts for example monitoring components will inform
that some threshold has been exceeded or that something has happen, while Self-Learning
components will inform that something may happen based on the evolution of the metrics
analysed.

Once a notification has been received, the Self-Healing component classifies the event and
based on that classification it applies a strategy. The strategy will be realized by sending a Self-
Healing workflow to the PRC. Different strategies are envisioned, such as reboot, migrate, scale.
This is shown in Figure 27.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 59 of 88

www.piacere-project.eu

Figure 27: Self-Healing

3.4.9 Infrastructural Elements Catalogue (KR9)

Component Description

The Infrastructural Elements Catalogue present in PIACERE stores information about the services
available at service providers as well as the instances of each of these services being used by the
different application being deployed by the PIACERE infrastructure.

Component behavioural description

The Infrastructural Elements Catalogue component is a persistence component that stores
information required by different PIACERE components. As a persistence component there are
two critical aspects to be covered: how the information is added and how the information is
retrieved.

Regarding the feed of information there are three main interactions: the GUI/IDE (Eclipse), the
PRC and the monitoring components. The GUI/IDE will add information about the available
services. The PRC will add information about the instances used from those available services.
Finally, the monitoring components (both performance and security) will add average
information that will be latter used by the IOP. This is shown in Figure 28.

Regarding the usage of information, there is one main interaction: the IOP. The IOP requires to
use information about the services in order to identify the optimal combination of services to
support the application non-functional requirements. This is shown in Figure 28.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 60 of 88

www.piacere-project.eu

Figure 28: Infrastructure Elements Catalogue

3.5 PIACERE Multi-User Approach

The purpose of this chapter is to evaluate which components may need to manage multiple
users with different roles or privileges, which ones are ready or have defined the steps to
accommodate this functionality and, which ones should be analysed more to manage the multi-
user approach. The result of this analysis is presented in Table 11, where the KR column
corresponds to the key result, Component to the PIACERE component name, Phase to the stage
where the component is used, Multi-user indicates if the component may need this feature,
Ready presents the status of feature’s achievement, Notes includes some comments related to
the status and the need of more investigation.

Although the multi-user scenario is not necessary for the realization of the use cases and
therefore it is not essential for the realization of the PIACERE prototype (there are no
requirements related to the need to have multiple users with different roles or privileges), it
could be connected to the exploitation work-package for future evolutions of the PIACERE
framework, as it is and advanced feature relevant in the industrial context.

Table 11: Piacere multi-user approach

KR Component Phase Multi-user Ready Notes

KR1 DevSecOps Modelling
Language (DOML)

design N/A N/A This is not a component but the
modelling language.

KR2 Integrated
Development
Environment (IDE)

design Yes Yes The IDE will be a desktop tool that will
use a repository to store the models
(git). The models will be synchronized
in a similar way that the code
(developer projects) is synchronized.
The user of the IDE should commit the
model before it will be available for
other users or tools.

KR2 DOML & IaC
Repository

design Yes Yes The IDE supports Git repositories.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 61 of 88

www.piacere-project.eu

KR Component Phase Multi-user Ready Notes

KR3 Infrastructural Code
Generator (ICG)

design
&
runtime

No N/A ICG by itself is not impacted by a multi-
user scenario: like any compiler it
depends on its input and generates the
related output. The execution of the
generated IaC code may be impacted in
some cases, e.g. Terraform should use a
remote state common to all developers.

KR4 DOML Extension
mechanism (DOML-E)

design N/A N/A This is not a component but the
modelling language.

KR5 Verification Tool -
Model Checker

design No N/A This component is activated by the IDE
only to check the validity of the models
used for the DOML code.

KR6 Verification Tool - IaC
Security Inspector

design Yes No This service can work independently,
executed on demand individually by all
team members. The only issue arises if
the output needs to be presented to all
developers, independently of who did
run the service. It should be analysed
more.

KR7 Verification Tool -
Component Security
Inspector

design Yes No This service can work independently,
executed on demand individually by all
team members. The only issue arises if
the output needs to be presented to all
developers, independently of who did
run the service - so in this case we need
to store outputs in the user/team
space. It should be analysed more.

KR8 Canary Sandbox
Environment
Provisioner (CSEP)

test Yes Partially This could benefit from PIACERE-wide
multiuser identity and permissions to
let user deploy independently (or
shared on demand). It should be
analysed more.

KR8 Canary Sandbox
Environment
Mocklord (CSEM)

test Yes Partially This can be deployed once per each
user and avoid any collisions. It should
be analysed more.

KR9 IaC Optimizer Platform
(IOP)

design
&
runtime

Yes No This service can work independently,
and it is executed on demand. This
service can be called under two
different contexts: for the first
deployment of the service and when it
is required by the self-healing
mechanism. Because this service is
executed independently regardless its
context, it does not create any collision.
It should be analysed more.

KR9 Infrastructural
Elements Catalogue

design
&
runtime

Yes Yes The catalogue relating to the
infrastructures used by the
components of the PIACERE framework
are stored on this git repository.

KR10 IaC Executor Manager
(IEM)

runtime Yes No Each deployment can be shared among
different users. This component should
not be affected by this multi-user
scenario. It should be analysed more.

KR11 Infrastructure Advisor
(IA)
- Self Learning
-Performance Self
Learning
- Security Self
Learning

runtime Under
evaluation

No This component is independent from
the multi-user scenario. Monitoring
tool calls self-learning component at
the beginning of the monitoring
process, and the self-learning remains
alive/working during the lifespan of the
process. There is no human interaction

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 62 of 88

www.piacere-project.eu

KR Component Phase Multi-user Ready Notes

KR11 Infrastructure Advisor
(IA) - Self Healing

runtime Under
evaluation

No with this component, at least for the
moment. It should be analysed more in
the future as monitoring data and
components as self-learning/self-
healing will probably need some API or
GUI (Dashboard) so the user will be able
to see the logs and results of that self-
healing.

KR12 Infrastructure Advisor
(IA):
- Monitoring System
- Performance
Monitoring
- Security Monitoring

runtime Under
evaluation

No This component is affected in the same
way as runtime monitoring system.
However, each deployment of the
system can be shared among different
users (users of the group working on
the same project). The component
should not be affected by the multi-
developers scenario. Access to the data
originating from the component needs
to be managed by monitoring or some
other component. The component itself
will be using system-level user (or the
user from the configuration) to
manage/access component's data
directly. It should be analysed more.

KR13 Runtime Controller
(PRC)

runtime Yes No This component integrates others and
therefore is not directly impacted by
single vs multiple user scenario. Other
components would have to be
multiuser-aware. It should be analysed
more.

3.6 PIACERE Security Approach

Regarding Security approach there are different perspectives:

▪ the trustworthiness and security of the IaC and of the associated software
components, realized with the PIACERE Verification Tools 3.4.4,

▪ the continuous monitor of performance and security metrics gathering security-
related measures from the infrastructure resources, realized with the PIACERE
security monitoring components 3.4.8,

▪ the secure communication between the components of PIACERE Framework.

The realization of secure communication between components is related to requirement 10,
described in Table 4: “The communication within the different components of the architecture
should be done in a secure way”.
At the current state of the art, a secure communication between the components of the PIACERE
framework is ensured by the use of REST APIs. As regards the management of the credentials
necessary to access internal services (e.g. the DOML code repository and internal catalogs such
as the IEC), the Json Web Token (JWT) credential transmission mechanism is used. To safeguard
the credentials the use of "Hashicorp Vault" has been suggested and used in the CSEP
component). Details of how these tools have been integrated into the KRs are available in the
related deliverables.
The communication between components in a safe way is continuously updated during the
integration process still on going.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 63 of 88

www.piacere-project.eu

3.7 PIACERE Scenarios

The purpose of this chapter is to describe some scenarios of the using of PIACERE framework
from the user perspective, linking them to the requirements according to the following needs:

▪ as a PIACERE user I want prepare and use the PIACERE IDE environment to design
applications and verify them,

▪ as a PIACERE user I want to test, deploy and manage the lifecycle of the deployment.

The first need is related to the design time that focuses on the tools needed to design, plan,
create, verify the trustworthiness of IaC as well packing it for the deployment. The second one
is related to the runtime that focuses on the tools needed to package, release and configure IaC
as well to monitor the infrastructure.

In Table 12 the main PIACERE scenarios are presented, using the Cucumber/Gherkin notation
[4].

This table shows the relationship between the scenarios proposed to showcase the PIACERE
framework and the requirements met for their realization. Using the proposed scenarios to test
the PIACERE framework, it will be possible to verify if the requirements are met. More detailed
scenarios are provided by the KRs in the specific deliverables, covering the specificities of the
usage of each KR.

Table 12: Piacere Scenarios

Phase Title Scenario Main KR Description Requirements

design-
time

Create new
DOML

Given an installed PIACERE IDE
When user starts a new PIACERE
DevOps project
Then a new DOML file is created

KR2

From IDE GUI the user
can create a new
project and a new
application design
(DOML file).

REQ28, REQ40,
REQ41, REQ42,
REQ43, REQ44,
REQ62, REQ64

design-
time

DOML
Development

Given a DOML document
When user modifies the DOML
content
And creates a new DOML node or
changes the DOML content
Then autocompletion functions
helps the user to modify the
content

KR1

From IDE GUI the user
can create a new
DOML node or change
the DOML content.

REQ01, REQ25,
REQ26, REQ27,
REQ28, REQ29,
REQ30, REQ58,
REQ59, REQ61,
REQ62, REQ63,
REQ70, REQ76

design-
time

Convert
DOML to
DOMLX

Given a DOML document
When a user navigates to the
DOML document
And right-clicks on it
And selects "Piacere"
And selects "Generate DOMLX
Model"
Then a DOMLX file containing the
original DOML document in XMI
format is generated

KR1

The user can create
from IDE a different
representation of
DOML.

REQ01, REQ 25,
REQ 26, REQ27,
REQ28, REQ29,
REQ30, REQ58,
REQ59, REQ61,
REQ62, REQ63,
REQ70, REQ76

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 64 of 88

www.piacere-project.eu

Phase Title Scenario Main KR Description Requirements

design-
time

DOML
Verification -
Model
Checker

Given A DOMLX document
And a check configuration is
prepared
When a user navigates to the
DOMLX document
And right-clicks on it
And selects "Piacere"
And selects "Validate DOML"
Then a KR5 model checker is
invoked
And a response is returned

KR5

The user can check
inconsistences and
validate the DOML
through the model
checker.

REQ68, REQ69,
REQ71, REQ95

design-
time/
runtime

Optimise IaC

Given a verified DOML document
And the user has already
introduced the optimization
objectives
When user navigates to the
DOML document,
And right-click on the file
And selects "Optimise"
Then the IOP is invoked
And runs the optimisation
algorithm
And returns the optimised IaC
examples
And the user evaluates and
verifies the output results

KR9

The user can run the
optimisation algorithm
inserting the objectives
to optimize and the
requirements that
should be met by the
solution.

REQ03, REQ04,
REQ46, REQ98

design-
time

Initiate ICG

Given a verified DOMLX
document
When user navigates to the
DOMLX document,
And right-click on the file
And selects "Piacere"
And selects "Generate IaC Code"
Then ICG is invoked
And generated IaC is returned

KR3
The user can generate
IaC code invoking the
ICG that reads DOMLx.

REQ31, REQ77,
REQ96, REQ100

design-
time

Initiate IaC
Scan runner

Given a generated IaC code from
DOML
And a set of required checks is
enabled on IaC Scan Runner
When user navigates to the IaC
document/zip,
And right-click on the file
And selects "IaC Scan run"
Then IaC scan runner is invoked
And a response is returned

KR6,
KR7

The user can perform
security scan invoking
IaC Security Inspector
and/or Security
Component Inspection.
The scan result is
returned to the user.

REQ24, REQ65,
REQ66, REQ91

runtime

Initiate the
deployment
of the Canary
Sandbox
Environment
(CSE)

Given the PIACERE IDE
And the Canary Sandbox
Environment Provisioner (CSEP)
connection details
When The user provides the CSEP
connection details to the IDE
And user requests CSE creation
from the IDE
Then The user is notified that the
CSE deployment request is
accepted
And the new deployment record
appears in the list of CSE
deployments in the IDE

KR8

The user can invoke to
initiate the deployment
of the desired Canary
environment specifying
the resource provider
connection details in a
user-friendly form.

REQ33, REQ34,
REQ37, REQ38,
REQ39

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 65 of 88

www.piacere-project.eu

Phase Title Scenario Main KR Description Requirements

runtime
Check the
status of CSE
deployment

Given the PIACERE IDE
And an initiated CSE deployment
When the user navigates to the
CSE deployment record in the IDE
And the user requests more
details about the CSE deployment
Then the IDE presents the user
with CSE deployment status
details

KR8

The user can check the
status of the
deployment of the
desired Canary
environment.

REQ33, REQ34,
REQ37, REQ38,
REQ39

runtime
Initiate the
deployment
of IaC on CSE

Given the PIACERE IDE
And a deployed CSE
And a generated IaC
When the user navigates to the
IaC code documents
And the user selects "Run in
PIACERE Canary Sandbox
Environment"
And the user selects the CSE to
use
Then the user is notified that the
deployment is initiated
And the new deployment record
appears in the list of IaC
deployments in the IDE

KR10,
KR13

The user can deploy IaC
in the Canary Sandbox
environment already
deployed. In this
scenario, the IDE calls
the PRC which, in turn,
calls the IEM.

REQ10, REQ12,
REQ 55, REQ 81,
REQ82, REQ83,
REQ84, REQ85,
REQ87, REQ88

runtime

Initiate the
deployment
of IaC in the
target
environment

Given the PIACERE IDE
And a generated IaC
And the target environment
credentials
When the user navigates to the
IaC code documents
And the user selects "Run in the
target environment"
And the user chooses the target
environment credentials
Then the user is notified that the
deployment is initiated
And the new deployment record
appears in the list of IaC
deployments in the IDE

KR10,
KR13

The user can deploy IaC
in the target
environment. In this
scenario, the IDE calls
the PRC which, in turn,
calls the IEM.

REQ10, REQ12,
REQ 55, REQ 81,
REQ82, REQ83,
REQ84, REQ85,
REQ87, REQ88

runtime
Check the
status of IaC
deployment

Given the PIACERE IDE
And An initiated IaC deployment
When the user navigates to the
IaC deployment record in the IDE
And the user requests more
details about the IaC deployment
Then the IDE presents the user
with IaC deployment status
details

KR10,
KR13

The user can check the
status of IaC
deployment.

REQ10, REQ12,
REQ 55, REQ 81,
REQ82, REQ83,
REQ84, REQ85,
REQ87, REQ88

runtime

Inspect
PIACERE
continuous
performance
monitoring

Given an initiated IaC deployment
When the user navigates to the
IaC deployment record in the IDE
And the user requests to see
Performance Monitoring
Dashboard
Then the user's browser is
launched with the Performance
Monitoring Dashboard shown
And The user can navigate to the
other Monitoring Dashboards

KR11,
KR12

The user can request to
see the Performance
Monitoring Dashboard
and navigate to the
other related
dashboards
(Performance
monitoring,
Performance Self-
Learning, Security
Monitoring, Security
Self-Learning
dashboards).

REQ11, REQ16,
REQ17, REQ46,
REQ47, REQ50,
REQ51, REQ52,
REQ72, REQ92,
REQ93, REQ94,
REQ97

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 66 of 88

www.piacere-project.eu

Phase Title Scenario Main KR Description Requirements

runtime
PIACERE self-
healing start

Given the deployment is defined
in the IDE
When the user runs the
deployment in the IDE
The user will be able to access
the self healing log for that
application in the IDE, this could
be opened from the IDE in the
Piacere runtime controller
clicking the right button on the
deployment
There we will be able to see the
related self healing actions taken,
and we will be able to trigger
manually some strategies.

KR12

The user can access the
self healing log and can
trigger manually some
strategies suggested by
the self-healing
mechanism.

REQ16, REQ17

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 67 of 88

www.piacere-project.eu

4 Integration Strategy (KR13)

4.1 Changes in v2

There are no changes respect version 1 on the strategy to follow for the continuous integration
of the PIACERE solution. The sections 4.2, 4.3, 4.3 and 4.5 remain unchanged.

4.2 Integration strategy – definitions

The following terms and acronyms are used in this section.

Table 13: Terms and Acronyms for Integration Strategy

Terms used in

section
Explanation of the term

High Availability
(HA)

High level of availability of an IT system or application. This usually means
that the system is installed in more than one instance.

Business Process
Management
(BPM)

A standard process for the management of business processes that is
enabled through the use of Workflow / Process Engines.

Strategy
A general plan to achieve one or more long-term or overall goals under
conditions of uncertainty.

Method Detailed approach or solution to achieve a goal.

Integration
strategy

Set of guidelines, assumptions and general directives related to the
integration of components within a given IT system.

Integration
Alternative: process of linking together different components or systems in
order to act as a coherent, coordinated whole.

Application
Programming
Interface (API)

The definition of the interfaces of a system or application made available
to be invoked by external parties.

Enterprise
Service Bus (ESB)

A method for integration of IT systems or components.

Enterprise
Application
Integration (EAI)

All tasks, activities, methods and tools used for integrating applications
within an enterprise.

Representationa
l State Transfer
(REST)

A nowadays most common protocol for the integration of IT systems.

Message-
oriented
middleware
(MOM)
communication

Communication between IT systems based on a queue of messages, usually
asynchronous.

Synchronous
communication

Direct method of communication between IT systems, where the invoker
is blocked until it receives a corresponding response.

Asynchronous
communication

Indirect (usually through a queue message broker) method of
communication between IT systems, where the invoker is not blocked until
it receives the respective response.

Repository A dedicated storage place where code and/or artifacts are versioned.

Branch
A movable reference to a commit that is interpreted as a sequence of such
with the referenced commit being at the tip of the branch.

Tag
An unmovable reference to a commit, highlighting a certain commit for
identification purposes, often meant to mean a certain state of the

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 68 of 88

www.piacere-project.eu

Terms used in

section
Explanation of the term

repository, e.g., a particular version/revision of the software that was made
available to the public.

Pipeline A sequence of modules that facilitate a certain flow.

Flow A sequence of actions that happens in a defined way.

Continuous
Integration (CI)

The continuous process of integrating multiple software components to
ensure they provide a coherent service.

Continuous
Delivery (CD)

The continuous process of ensuring the latest integrated solution is
available for installation (or already deployed).

4.3 Framework components

4.3.1 Integration Repository

The GitLab’s CI/CD will be used for integration and testing. It needs certain configuration that
will be provided by a central, integration, repository. The same repository will also host the
descriptions of flows that are tested in that integration.

4.3.2 CI/CD Flow

The CI/CD flow will involve packaging the non-graphical components in containers and running
example scenarios against the components as they run on Docker [5]. The flow will be largely
based on the integration tooling as delivered in PIACERE Runtime Controller with the motivation
described further below in the strategy section. The CI/CD flow will trigger on Pull/Merge
requests to ensure that the code-to-be-integrated passes the defined tests.

4.4 Framework description DevOps Pipeline

The PIACERE framework components are version-controlled inside Tecnalia’s GitLab using git [6]
repositories branches and tags. Each component resides in a dedicated git repository as tracked
by an internal spreadsheet. We plan to use GitLab’s CI/CD functionalities to deliver the
integration and testing pipeline. The interfaces offered by different components are described
using OpenAPI and tracked in another internal spreadsheet as part of task 2.3 efforts.

GitLab was chosen as the already-available solution and its CI/CD were evaluated as matching
the needs of the PIACERE project, and hence other solutions were not further evaluated. The
features of CI/CD that were evaluated include:

▪ The ability to trigger on Pull/Merge requests.
▪ The ability to work across multiple projects/repositories.
▪ The ability to understand packaging and artifact distribution systems.
▪ The ability to integrate with code quality tools.

4.5 Selection of integration strategy

One main factor for the successful design and implementation of PIACERE is to provide a proper
integration strategy that integrates the components on which PIACERE is built and thus
mandates proper orchestration of the flow.

From the viewpoint of integration models, we investigate four popular integration strategies,
including point-to-point integration, Message Oriented Middleware (MOM) integration,
Enterprise Application Integration (EAI) or Enterprise Service Bus (ESB) based integration, and
EAI/ESB integration with Business Process Management (BPM) orchestration.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 69 of 88

www.piacere-project.eu

The purpose of this section is to evaluate the different strategies for integration, and to select
the most efficient according to the objectives of the PIACERE project. The selected strategy will
also be analysed in order to highlight its main benefits and advantages.

The PIACERE framework integrates several underlying components into one platform. The
proper selection of the integration architecture with PIACERE is a crucial point for the success of
this project. An additional element to consider was the level of effort needed to implement the
chosen integration method. A Business Process Management (BPM) orchestration was chosen
as the most flexible and easy method of integration. BPMN (BPM Notation) [7] is a standard for
the description and execution of business processes.

The key benefits of this approach are:

▪ Flexible logic implementation in the BPM flow with no hard coding.
▪ Support for both synchronous and asynchronous communication.
▪ Support for most of the integration protocols.
▪ Reliability, configuration easiness, and high availability.

For the BPM engine implementation, there are four possible solutions that have been evaluated:

1. Activiti [8] – one of the oldest and most mature open-source BPM implementations.
2. jBPM [9] – also, a mature and stable BPM implementation, developed by JBoss, with

integration support for the business rule server Drools.
3. Camunda [10] – a mature and robust implementation of BPM, which does not require

the whole JBoss stack to work.
4. Flowable [11] – the newest solution, developed by a team of former Activiti developers.

Based on our research and experience in other projects, Camunda has been chosen as the BPM
implementation for the PIACERE project as it matches our requirements. The jBPM from JBoss
requires the whole stack of the JBoss technology, which complicates the implementation of the
project and increases the resource footprint of the platform. Key advantages of choosing
Camunda are as follows:

▪ Lightweight implementation which is easy to deploy and maintain.
▪ Full support for the REST communication protocol.
▪ Easily available docker images, which allow for fast deployment.
▪ Low level of dependencies to other projects, which allows for easier upgrades and

maintainability in the future.

Table 14: Integration Strategy Evaluation Criteria

Criteria Activity jBPM Camunda Flowable

Easy maintenance and deployment Yes No Yes Yes

REST support Yes Yes Yes Yes

Docker images availability Yes Yes Yes Yes

Easy upgrade and maintainability No No Yes No

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 70 of 88

www.piacere-project.eu

5 Conclusions

The document described the updates realized in the second year of the project, also including
parts that have remained unchanged to maintain consistency and completeness. It serves as an
architectural document for the other work packages that are involved in developing the KRs of
the PIACERE solution.

The list of requirements was updated with the new requirements presented in year two and it
was completely revised thanks to the analysis process that allowed to accept the indications
provided by the UCs and to consolidate the relationship between UCs and KRs.

The general architecture described in the document has been updated considering the
indications derived from the development operations of the KRs carried out in second year. The
revision of the internal functioning of the PIACERE components required a revision of the
sequence diagrams, that illustrate their updated functionality, as well of the general workflows.

The document presented an approach to define the strategy for implementing multi-user
functionalities, considering the technical decisions made in collaboration by the partners. It
could be connected to the exploitation work-package for future evolutions of the PIACERE
framework.

The study of the relationships between UCs and KRs led to the identification of some usage
scenarios presented in this document, that will be extended in the deliverables of the related
KRs.

The document also confirmed the integration strategy proposed in the first year of the project
to integrate the components on which PIACERE is built and thus mandates proper orchestration.
The combination of PIACERE Key Results and related components supports the extended
DevSecOps approach.

Although this document is the final version and no further iterations are planned, the continuous
improvement of the functionalities of the KRs and the validation of the UCs will be able to
identify new requirements and optimizations of the general architecture.

 DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 71 of 88

www.piacere-project.eu

6 References

[1] ISO/IEC/IEEE International, «Systems and software engineering—Vocabulary,» 2017.

[2] International Institute of Business Analysis, MoSCoW Analysis (6.1.5.2)". A Guide to the
Business Analysis Body of Knowledge (2 ed.), 2009.

[3] «Amazon Web Services,» [Online]. Available: https://aws.amazon.com/.

[4] «Gherkin Reference,» [Online]. Available: https://cucumber.io/docs/gherkin/reference/.

[5] «Docker,» [Online]. Available: https://www.docker.com/.

[6] «GIT,» [Online]. Available: https://git-scm.com/.

[7] «Business Process Model and Notation,» [Online]. Available: https://www.bpmn.org/.

[8] «Activiti,» [Online]. Available: https://www.activiti.org/.

[9] «JBPM,» [Online]. Available: https://www.jbpm.org/.

[10] «Camunda,» [Online]. Available: https://camunda.com/.

[11] «Flowable,» [Online]. Available: https://www.flowable.com/.

 DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 72 of 88

www.piacere-project.eu

APPENDIX: PIACERE Glossary

Changes in v2

The glossary has been updated including the IaC Scan Runner component that acts as KR6-KR7
executor. Although no further changes have been made, the entire glossary is reported in the
appendix to maintain completeness.

Glossary structure

The Glossary is structured in two main sections. The first called Basic Terms defines the terms
used for the PIACERE project. The second section indicates the components expected for the
project and their descriptions. Below there is a logical diagram of how the second section is
composed. The items indicated are indicative and not mandatory.

Functional Description: [Description of the components functions and features, what part of the
PIACERE workflow is covered. This includes the standard workflow.]

Input: [What this component takes as input (models, JSON payload, blueprint or similar)]

Output: [What this component returns as output (file, entry or log in system, response)]

Programming languages/tools: [Python/Java/.NET/ …]

Dependencies: [On other internal or external components with specific interaction description]

Critical factors: [Any critical factors that may include errors in the received inputs, configuration
and mitigation.]

Basic Terms

The application

As PIACERE is considering the application components to be a black box, we must define the line
between the application itself and the IaC. The aim is to have as clear division and understanding
of what the application and IaC actually can be. The main actor is the user, which decides the
granularity of the application and the corresponding IaC to be modelled in the PIACERE. We
model IaC required to run the application and not modify the application components
themselves. The configuration files, FRs, TRs should be provided in DOML to successfully model,
deploy and manage the application. The aforementioned configuration files, FRs, TRs are part of
the DOML.

NOTE: please see the DOML definition.

Technical Requirements (TR)

The explicit requirements concerning the infrastructural elements to be used for a certain
application. These are provided by the end-user in charge of modelling the application
deployment.

Under Technical Requirements we deem explicit requirements for:

▪ The characteristics of computational environments and networks – e.g., CPU, memory,
cores

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 73 of 88

www.piacere-project.eu

▪ The type of computational environments and networks – e.g., AWS S3 services,
Kubernetes, Google Cloud, etc.

Non-Functional Requirements (NFR)

The explicit requirements, provided by the end-user modelling the application deployment,
concerning the non-functional properties of the application that will be running on top of the
infrastructure.

Under Non-Functional Requirements we deem explicit requirements for the response times,
availability of the infrastructure, cost, etc.

Note that in PIACERE we do not focus on the functional requirements offered by a certain
application and, in fact, the PIACERE platform is completely agnostic with respect to this aspect.

Configuration Management

Configuration Management: by infrastructure configuration we mean the process that enables

to create and update a software environment on existing servers according to a given set of

requirements. This means for example installing software packages, then configuring and

starting them, but also configuring networks.

e.g., Chef, Puppet, SaltStack, xOpera, Ansible, CFEngine.

Infrastructure Provisioning

Infrastructure Provisioning: help in automating the basic lifecycle steps of infrastructure

resources: create, update, and delete. These provisioning steps usually target virtual resources,

either on premises or in the cloud, such as Virtual Machines (VMs), but can also target physical

resources by using suitably flexible hardware platforms such as HPE Synergy.

e.g., Terraform, AWS CloudFormation, xOpera, OpenStack Heat.

Orchestration

Orchestration: it is a process composed of a set of workflows of low-level operations like

provisioning of resources, configuring and installing components, connecting components to

apply dependencies, or tear down individual components. Orchestrators can work with any of

the resource types – compute, networking, storage, services and more.

e.g., Apache Brooklyn, Alien4Cloud, xOpera, Cloudify, ARIA TOSCA, OpenTOSCA, Kubernetes,

OpenStack Tacker.

Container Orchestration

Container Orchestration: It is the set of processes to automate the deployment, runtime

management, scaling, and networking of containers. Examples of tools that support these

processes are Kubernetes, Docker Swarm.

Infrastructure as Code (IaC)

Infrastructure as Code (IaC) is the code needed to automate provisioning of resources, their
configuration, the deployment of software components on top of them, their configuration and
execution. The initial set of IaC languages, as described in DoA, is Terraform, TOSCA and Ansible.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 74 of 88

www.piacere-project.eu

This automation eliminates the need for developers to manually provision and manage servers,
operating systems, database connections, storage, and other infrastructure elements and
application components.

It promotes managing knowledge and experience of plethora of subsystems as a single
commonly available source of truth instead of traditionally reserving it for system
administrators.

Infrastructure as a Service (IaaS)

A platform is described as a collection of hardware and software components that are needed
for a software tool used for computer-aided software engineering (CASE) to operate. As cloud
computing has grown in popularity, several different models and deployment strategies have
emerged to help meet specific needs of different users. Each type of cloud service and
deployment method provides with different levels of control, flexibility, and management.

Among Cloud Computing Models, Infrastructure as a Service (IaaS) contains the basic building
blocks for Cloud Information Technology, and typically provides access to networking features,
data storage space, and computing nodes (either virtualized or running on dedicated hardware).

Typically, in IT industry, the fewer the abstraction layers, the more control one has over
resources, and the lower the payments to mediating service providers. This works both ways, as
a lower abstraction level involves higher complexity, but lower costs if one is capable to control
efficiently and effectively all related intricacies.

More details in IaaS and other Cloud Computing Models can be found in the addenda.

Target IaC Language (TIaCL)

DOML models define the organization of software applications in terms of components and
connectors and their mapping into middleware level and infrastructural components. Such
models must be translated into executable Infrastructure as Code formats that can be used to
automate the phases concerning provisioning and configuration of the infrastructure and the
deployment, configuration and operation of middleware and application-level components.

A target IaC language is one of the executable IaC formats into which PIACERE can translate
DOML models. PIACERE will offer translators for at least Terraform for provisioning of
infrastructural elements and Ansible for the other configuration and deployment steps. Other
IaC target languages could be plugged into the platform by exploiting the PIACERE extension
mechanism.

Configuration Drift

In this project we can consider two levels of configuration drift:

▪ configuration drift happens when, usually due to manual intervention, the hardware
and software infrastructure configurations “drift” or become different in some way from
the IaC that generated the configuration.

It is possible to call Configuration Drift also the modification of IaC with respect to DOML that
generated it:

▪ any changes to the IaC, deployed application or the runtime infrastructure not stemming
from PIACERE (i.e., DOML or any PIACERE component) is considered a configuration drift
and as such, undesired state. Please see the definition of DOML.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 75 of 88

www.piacere-project.eu

DevOps Modelling Language (DOML)

The DevOps Modelling Language (DOML) is the language PIACERE offers to its end-users
(DevOps team members) to allow them to describe the external structure of their application
(seen in terms of black-box components to be deployed) together with any technical and non-
functional requirement concerning the infrastructure to be provisioned and configured to run
such an application.

The DOML allows PIACERE end-users to work at different levels of abstraction and, thus, to
incrementally specify a set of sub-models that include the following elements:

▪ The application structure using the modelling abstractions that are made available at
the Application Layer.

▪ The underlying abstract resources to be used and their association to the application´s
components. In this step the abstractions made available at the Abstract Infrastructure
Layer are used.

▪ Finally, the concretization of the previous model in terms of concrete resources offered
by concrete providers. This is done by relying on the abstractions made available at the
Concrete Infrastructure Layer.

We separate the Abstract Infrastructure Layer from the Concrete Infrastructure Layer to allow
users to produce models that can have multiple realizations. This allows, on the one side, to
have people with different roles and competences intervening at the different layers. On the
other side, it offers a tool to easily change concrete resources, while keeping models at the
higher levels unaltered.

The information inserted in the models at the various levels will allow provisioning,
configuration, deployment and runtime orchestration activities to be executed. More
specifically, the Concrete Infrastructure Layer will be used to generate IaC for provisioning
purposes. The other layers will provide information relevant to the generation of the IaC
relevant for the other purposes.

Infrastructure Element (IE)

A single entity that is both modelled in DOML and later managed in PIACERE runtime.

PIACERE design time

PIACERE design time is the (time) scope of the PIACERE project that involves the initial tasks to
design the desired infrastructure using the PIACERE tooling as well as any further user-driven
process involving modifications in the initial design.
PIACERE design time involves such components as: IDE, DOML, ICG, VT.

PIACERE runtime

PIACERE runtime is the (time) scope of the PIACERE project that involves managing the

running infrastructure that was previously designed at design time.

PIACERE runtime involves some shared components from the design time as helpers (ICG, VT)

and means of communication (DOML).

PIACERE runtime operates using one or more Target Environments

PIACERE runtime is responsible for implementing and managing the Execution Environment.

PIACERE runtime is mainly comprised of the following components: PIACERE Runtime Controller

(PRC), IaC Executor Manager (IEM), Infrastructure Advisor (IA).

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 76 of 88

www.piacere-project.eu

Resource Provider (RP)

PIACERE is creating/using resources through the selected Target IaC Language and tooling on
Resource Providers, to create the Execution Environment for the application.

Examples of: AWS and friends, OpenStack, bare-metal, IoT

NOTE: This (as well as TIaCL) was mentioned as Target Environment in the DoA.

Cloud Service Provider (CSP)

One kind of cloud resources provider, e.g., Amazon’s AWS, Google’s GCP, Microsoft’s Azure,

Alibaba Cloud, some OpenStack.

Production Resource Provider (PRP)

The production (non-canary) variant of the Resource Provider (RP).

Canary Resource Provider (CRP)

The canary (non-production) variant of the Resource Provider (RP).

RPs of this kind are provided by the Canary Sandbox Environment (CSE) task.

They come in two variants: real and simulated, i.e., with mock-ups.

Mock-up

A functionality, which has the same API as an existing infrastructure provider (e.g., AWS) and
returns the success/failure along with the expected data that would be returned from the real
API call.

It is used in the simulated variants of the Canary Resource Provider.

For more details see the Canary Sandbox Environment in Components.

Execution Environment (EE)

The Execution Environment is essentially what we model in DOML and then realise through IaC,
up to the point when we deploy the application and run it. The Execution Environment is thus
an environment in which the application is running. It can span over different CSPs, different
technologies (i.e., may be heterogeneous). Any non-user changes of the Execution Environment
are realised through the Optimizer (IOP), either in the initial phase or when invoked by the
SelfHealing component. All non-user changes are reflected in the updated DOML. User changes
are considered a Configuration Drift.

PIACERE runtime creates the EE using the DOML converted to IaC and run using appropriate
tooling.

Production Execution Environment (PEE)

Production Execution Environment (PEE), in the strict sense, is an EE that is hosting the
application on an infrastructure, built using DOML and implemented by IaC, for production
purposes.

In the weaker sense, it is any EE that is not a Canary EE.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 77 of 88

www.piacere-project.eu

Canary Execution Environment (CEE)

Canary Execution Environment (CEE) is an EE that is created using one or more Canary Resource
Providers. It might or might not allow to run any steps beyond the infrastructure deployment,
e.g., it might be entirely mocked up and not use any resources it claims to have.

Components

Integrated Development Environment (IDE)

Functional Description: The PIACERE IDE (Integrated Development Environment) will be a tool
for modelling and verifying IaC solutions following the Model-Driven Engineering (MDE)
approach. The IDE will enable to define IaC at an abstract level independently of the target
environment based on the PIACERE DOML (DevOps Modelling Language).

Input: No inputs

Output: A DOML instance of the solution to be deployed.

Programming languages/tools: Eclipse Theia + EMF Cloud

Dependencies: The IDE will integrate the Verification Tool (VT) and Infrastructural Code
Generator (ICG). Thanks to the VT, it will be possible to validate the defined models and to make
suggestions, possible substitutions and improvements. Through the ICG tool, the corresponding
IaC in a specific target environment (e.g., Terraform, Ansible, TOSCA…) will be automatically
obtained.

Critical factors: The IDE will be designed to be extensible, so to allow the new IaC tools and the
new abstractions of infrastructural components that will be incorporated into DOML (DOML-
Extensions).

Infrastructural Code Generator (ICG)

Functional Description: This component generates the required IaC from DOML and possibly,
the configuration files. The proposed DoA IaC languages are Terraform and Ansible with possible
extensions to Chef, Puppet, SaltStack. The conversion from DOML into IaC is a pure function1
that is, deterministic. ICG may generate IaC for different tools/languages, according to the
DevOps activity to be automated (Provisioning, Configuration, Deployment, Orchestration). ICG
will be a command-line tool, reading input from and writing output to the underlying file system,
like common compilers do.

 Input: File from DOML (the files could be more than one).

 Output: File containing code in the chosen target IaC language (the files could be more than
one, possibly organized in a directory structure as defined by the respective target tool).

 Programming languages/tools: Python

 Dependencies: ICG has dependencies on the DOML source and the target service provider.

1 In computer programming, a pure function is a function that has the following properties:

1. The function return values are identical for identical arguments
2. The function application has no side effects

https://en.wikipedia.org/wiki/Pure_function

DRAFT

http://www.medina-project.eu/
https://en.wikipedia.org/wiki/Pure_function

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 78 of 88

www.piacere-project.eu

Critical factors: ICG needs to know the target provider because the infrastructure component
definitions (in Terraform) are provider-specific.

Canary Sandbox Environment (CSE)

CSE is one of key results within PIACERE. The goal is to provide tools that would allow to
dynamically test the IaC in a fast and cheap manner. The tools are described in the following
subsections: CSEP and CSEM. There are two approaches to the CSE: to provide a real (non-
simulated) Canary Resource Provider and a simulated one. Depending on the variant, the scope
and characteristics of testing differs. Real providers require resources and allow to complete all
steps of deployment as long as the supporting infrastructure (beneath the created provider) is
sufficient. The assumption is that the user is able to provide the hardware (e.g., because they
have bare metal or virtual machines, either on premise or elsewhere – the CSE is agnostic to
that). On the other hand, the simulated variant does not consume resources but does not allow
further steps other than provisioning of the infrastructure elements.

Note: CSE can be used to test other relevant PIACERE components, e.g., IEM.

Properties possible to be studied using a Canary Resource Provider are:

▪ Technical Requirements (TR)
• Are the right resources really provided?

▪ Security (security testing) – e.g., if connections are allowed or not
• Limited to infrastructure elements in the simulated case
• Allows DAST in the real case

▪ Robustness (stress testing) – e.g., if the VM creation fails, how to react.
• Limited in the simulated case – it might be too permissive due to no real

constraints
▪ Integration test or “Completeness”, that is check if everything is deployed correctly,

every connection is properly opened, every component is properly connected, etc.:
• Are all network segments defined?
• Do we have connectivity from VMs (internal/external)?

o Only a declaration-based check in the case of simulation
▪ In the real case also configuration tests via tools like Serverspec

Examples of properties NOT possible to be studied within the CSE AT ALL are:

▪ Non-Functional Requirements (NFRs)
• The performance

o It will either differ from the production (in the case of a real provider)
so not useful or not be measurable at all (in the case of a fake one).

• All others are not applicable at all as there is no notion of cost, availability,
region, policies etc.

Canary Sandbox Environment Provisioner (CSEP)

Functional Description: The role of this component is to create the desired Canary Resource
Provider(s). This may entail provisioning and configuring new systems to provide the desired
platform. The initial set of supported providers is OpenStack (for real [non-simulated] actions)
and CSEM (for simulation, see below). The discussion continues on whether we consider Docker
Swarm and/or Kubernetes at this level. Note: they might be deployed further on top of
OpenStack for flexibility.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 79 of 88

www.piacere-project.eu

Note: An interesting case would be to actually use PIACERE toolset to be the basis for CSEP but
it is a chicken and egg problem at the moment.

Input: The input to this component constitutes the configuration with respect to what Canary
Resource Provider(s) should be provided and what their config values are.

Output: This component returns information on the provisioned Canary Resource Providers
including but not limited to: API endpoints, credentials.

Programming languages/tools: Python

Dependencies: ICG must be able to generate code compatible with deployable Canary Resource
Providers. Weak dependency on CSEM (CSEP needs to know how to deploy it). Other PIACERE
components may depend on it to provide a testing environment for PIACERE itself.

Canary Sandbox Environment Mocklord (CSEM)

Functional Description: The role of this component is to simulate an existing resource provider
so that the user can easily test interactions against it. The plan is to research the usefulness of
such approach to dynamic IaC testing. The prototype will target a subset of AWS APIs. CSEM is
deployed and configured by CSEP and is assumed to have much lower cost compared to real
(non-simulated) resource providers. Due to simulation, this variant of Canary Resource Provider
will allow only the provisioning step to happen.

Note: it is unlikely to be able to guarantee 100% compatibility with the mocked provider (e.g.,
AWS) due to them being effectively black boxes.

Input: It should allow API calls allowed by the provider being mocked.

Output: This component records the state of the mocked-up environment and allows to retrieve
information on it, e.g., created VMs, opened ports.

Programming languages/tools: Python + e.g., moto library for mocking AWS

Dependencies: ICG must be able to output IaC compatible with the simulation (i.e., the
provisioning step must be separate from further ones). Infrastructural Services Catalogue might
be used to decide on offered resources dynamically (e.g., types of VMs) - note: this should be
the same functionality as the one required by IOP already – to know “the offer” but it can also
be configured via a side channel. Other PIACERE components may depend on it to provide a
testing environment for PIACERE itself.

DOML & IaC Repository

The DOML models, as well as the generated IaC, will be stored in the user’s file system or, upon
a proper configuration of the IDE, in a version management system such as git. This will give the
possibility to all PIACERE component to share the DOML model files by using the corresponding
links. This will also allow multiple versions of a DOML model to be available and used by different
tools if this will be necessary.

Infrastructural Elements Catalogue (IEC)

The Infrastructural Elements Catalogue is a required service for the optimizer (IOP) and it
contains the description (NFR, TR and dynamic runtime metrics) of the available IEs to be
considered in the optimization process by the IOP

Each item within the Infrastructural Elements Catalogue is associated with the historical data on
the important properties of the infrastructure, emanating from the monitoring data:

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 80 of 88

www.piacere-project.eu

▪ Real availability
▪ Real response times,
▪ Etc.

This information (dynamic monitored data) along with the static characteristics of the
infrastructural elements will serve for the IOP to select the best combination of infrastructural
elements given a set of TRs.

Initially the catalogue will include basic infrastructural elements (VMs + storage + IoT gateways)
and then it will be enlarged with other types of elements such as Kubernetes.

Verification Tool (VT)

The VT focuses on static analysis of the IaC (IaC Static Verification).

The VT consists of the following components:

▪ Model Checker: Given a DOML description checks for the consistency and completeness
of the DOML and associated topology. It would be possible to provide some correctness
properties given in a suitable DOML sub-language. The VT provides the outputs:

• Yes, the provided DOML is consistent and complete.
• No, the DOML should be changed – provides suggestions on what are the

problems and (possibly) ways to fix them.
• (Correctness): Yes, the provided DOML satisfies the correctness properties.
• (Correctness): No, the provided DOML is not correct and at least one counter-

example is provided.
▪ IaC Static and Security Verification

• BASIC: Yes: correct & complete; No: provides suggestions on what is to be
changed.

• ADVANCED: to evaluate the IaC code for quality, maintainability – check
SonarCloud (currently does not support IaC).

▪ Security Components Inspector: provides checks of the cryptographic libraries to be
used within the application deployment using the DOML, IaC and configuration files
provided.

Model Checker

Functional Description: The Model Checker performs the following checks, based on DOML:

▪ Checking whether the model is consistent and complete (e.g., there are no dangling
connections, all components have defined a corresponding infrastructure…).

▪ Checking whether data flow from a component to the other according to the defined
constraints (e.g., for privacy reason, certain pieces of data cannot reach some
component A).

▪ Checking whether the model complies with the properties provided by the user, if
present.

Input: DOML model
Output: Yes/No and a counterexample in case of a negative result
Programming languages/tools: Python, Z3 SMT solver
Dependencies: IDE – the IDE will provide the input and consume the output.
Critical factors: DOML syntax compatibility

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 81 of 88

www.piacere-project.eu

IaC Security Inspector

Functional Description: The IaC Code Security Inspection provides the IaC static tests - SAST
tests, using the tools from the open-source communities. The IaC is tested against predefined
policies (TR, NFR), enabling regulation of the IaC code based on the overall company policies and
against the potentially harmful IaC code patterns.

 The component will follow these steps:

▪ Traverse through IaC, find a set of dependent/used libraries in IaC
▪ Check versions (detection of vulnerable ones)
▪ Check configuration (i.e., ports, credentials)
▪ Check whether inputs are valid
▪ Find hardcoded usernames/passwords, etc. and typos
▪ License check
▪ Prepare output (warn, recommend).

Input: API or CLI call takes as input the IaC code, generated by the ICG.

Output: A set of warnings and recommendations as a response to the API call.

Programming languages/tools: Python

Dependencies:

▪ ICG – the Infrastructural Code Generator will provide the input.
▪ IDE – the IDE will consume output from the component.

Critical factors: Any critical factors that may include errors in the received inputs, configuration
and mitigation.

Component Security Inspector

Functional Description: An analyser and ranker of components (libraries, middleware) from a
security point of view. Code Security Inspector will extract dependency information from the
IaC, detect included programs and libraries with known vulnerabilities by querying public
vulnerability databases in order to produce a report to the PIACERE user (IDE), informing the
user about the appropriateness of the components included in their solution.

Main functionalities:

▪ Cryptographic software libraries will be analysed
▪ Most appropriate frequently used (based on used modules within IaC) cryptographic

libraries will be selected
▪ The tool will include tests for attacks against them
▪ This tool will verify vulnerabilities by using carefully designed test cases to execute

libraries' functions and observe their behaviour and output to detect the possibility of
attacks.

▪ Tests will be made periodically.
Process and steps of the tool: prepare knowledge base of crypto libraries, check if libraries are
used (subset of SAST libraries), check versions/configuration, prepare output (warn,
recommend).

Input: IaC code, generated by the ICG

Output: A set of warnings and recommendations

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 82 of 88

www.piacere-project.eu

Programming languages/tools: Python, Java

IaC Scan Runner

Functional Description: A component combining IaC Security Inspector (KR6) and Component
security inspector (KR7). Apart from features of these two distinct parts, IaC Scan Runner also
introduces improved scan result aggregation and summary, in form of visual tabular
representation, ordered with respect to outcome results within HTML web page. Additionally, it
also includes scan result persistence and re-use of user-defined preferences in form of
configuations. It requires MongoDB document store in order to leverage the persistence layer

Input: IaC code, generated by the ICG

Output: A set of warnings and recommendations with visual summary (HTML page) showing
sorted results with respect to their outcomes.

Programming languages/tools: Python, MongoDB

Dependencies:

▪ ICG – the Infrastructural Code Generator provides the input.
▪ IDE – the IDE consumes output from the component.

Critical factors: Any critical factors that may include errors in the received inputs, configuration
and mitigation.

Dependencies:

▪ ICG – the Infrastructural Code Generator provides the input.
▪ IDE – the IDE consumes output from the component.

Critical factors: Any critical factors that may include errors in the received inputs, configuration
and mitigation.

PIACERE Runtime Controller (PRC)

Functional Description: This component is the main control component of PIACERE runtime. It
is a state machine that guides the overall workflow within PIACERE runtime. Actions of PRC are
targeted against a specified set of resource providers (including Canary and Production).

Input: This component receives messages of two types: events (notifications) and commands
(RPCs) from other components via a queue interface.

Output: This component produces further messages which are placed in the queue system and
handled by other components.

Programming languages/tools: Java + Camunda BPM + ActiveMQ

Dependencies: This component does not strictly depend on other PIACERE components, but it
interacts with other PIACERE components, mostly runtime: including IaC Executor Manager
(IEM), which it controls, and Infrastructure Advisor (IA) which it sets up and communicates with
(note: IA is made of several distinct components). Absence of these means there is no real work
being done by PRC. Similarly, IDE interacts with PRC.

Critical factors: The received messages may be mis-formatted and hence un-handable. Sent
messages may have no receivers or receivers are unable to handle them. The queue system
might fail.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 83 of 88

www.piacere-project.eu

Comments/open questions/issues: Who/what sets up PRC? Also, I see some components have
already declared to be offering REST APIs – are we coupling the services using API endpoints
then? Would not a queue be a better fit here? At least for the runtime components.

IaC Executor Manager (IEM)

Functional Description: its purpose is to plan, prepare, and provision the infrastructure and the
corresponding software elements needed in the deployment. This work entails the following
activities: i) creation of the underlying infrastructure, ii) sort out the software dependencies and
configuration, iii) deployment of the applications, iiii) un-deploying applications/cleaning.

Input: API or CLI call takes as input the IaC code, generated by the ICG.

Output: a code stating the deployment status.

Programming Languages/Tools: Python, IaC Tools.

Dependencies:

▪ ICG – the Infrastructural Code Generator will provide the input through the PIACERE

Runtime Controller

Critical Factors:

▪ The received IaC scripts may contain errors.
▪ Connectivity issues with the different components (e.g., Cloud providers, devices,

Container Orchestrators).
▪ Security concerns during the communication.
▪ Authentication and authorization issues during the deployment.

Infrastructure Advisor (IA)

Infrastructure Advisor holds four main sub-components:

IaC Optimizer Platform (IOP)

Functional Description: The optimization problem formulated in PIACERE and solved by the IOP
consists on having a service to be deployed and a catalogue of infrastructural elements, with the
principal challenge of finding an optimized deployment configuration of the IaC on the
appropriate infrastructural elements that best meet the predefined constraints (e.g., types of
infrastructural elements, NFRs, and so on). In this context, it is the IOP component which is the
responsible for finding the best possible infrastructure given the input data received. This input
data is provided in DOML format and will include the optimization objectives (such as the cost,
performance, or availability), optimization requirements and previous deployments (in case it is
necessary). Then, the IOP performs the matchmaking for the infrastructure by the execution of
optimization intelligent techniques using the information taken as input against the available
infrastructure and historical data, available from the catalogue of Infrastructural elements

Input: The input of the IOP can be divided into two aspects:

▪ DOML (which consists of the FR, TR, The infrastructure model (i.e., VMs, K8S, etc), the
configuration (e.g., application specific YAML, Docker, etc. definitions))

▪ Information (static + dynamic) from the Infrastructural elements catalogue.
Output: IOP will provide its result (the selected optimized infrastructural elements) in DOML
(PSM level).

Programming Languages/Tools: Java.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 84 of 88

www.piacere-project.eu

Dependencies: Run time monitoring system. This component has access to DOML.

Critical factors:

▪ The IOP must be “fast” – the IOP will search through a potentially large solution space –
the complexity of the NFR/TR influences the choice of optimisation algorithm.

▪ The IOP should work on two different scenarios: first deployment, and as result of an
action raised by the SelfHealing. In the first of the cases, the IOP should return several
solutions optimizing all the objectives considered. In the second case, the IOP should
return a working solution in a fast time, which amends the problem detected.

▪ The optimization problem to solve is a multi-objective one.

Monitoring Controller

Functional Description: This component concentrates the infrastructure resource monitoring
activation and deactivation activities throughout all the monitoring components: performance
monitoring, security monitoring, PerformanceSelfLearning and SecuritySelfLearning.

Input: Data provided by the PIACERE Runtime Controller, specifically the id of the application

from which we must monitor their resources.

Output: An acknowledge that the request has been received and it is being processed towards
the monitoring and SelfLearning components.

Programming languages/tools: Python

Dependencies: PIACERE Runtime Controller.

Critical factors:

▪ We require that the monitoring agents label their metrics with the application id.
▪ The usage of the application id label may constrain the usage of the same infrastructure

resource to provide or support components from different applications.
Open questions:

▪ How to manage the situation of several applications running in the same infrastructure
resource.

Monitoring

Under monitoring we currently cover two non-functional aspects: performance and security.

Performance Monitoring
Functional Description: This component concentrates the infrastructure resource monitoring
activation and deactivation activities throughout all the monitoring components: performance
monitoring, security monitoring, PerformanceSelfLearning and SecuritySelfLearning.

Input: Data provided by the PIACERE Runtime Controller, specifically the id of the application

from which we must monitor their resources.

Output: An acknowledge that the request has been received and it is being processed towards
the monitoring and SelfLearning components.

Programming languages/tools: Python

Dependencies: PIACERE Runtime Controller.

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 85 of 88

www.piacere-project.eu

Critical factors:

▪ We require that the monitoring agents label their metrics with the application id.
▪ The usage of the application id label may constrain the usage of the same infrastructure

resource to provide or support components from different applications.
Open questions:

▪ How to manage the situation of several applications running in the same infrastructure
resource.

Security monitoring
Functional Description: The Security monitoring system consists of subsystems (Wazuh
deployment – manager and agents - with specific components for data transformation)
collecting data in order to provide values for security metrics. As an additional option it can
provide the deployment of Vulnerability Assessment Tool (VAT) that is capable of monitoring
API end-points of the specific Web Application.

Input: Metrics defined by the NFRs and TRs from the DOML. Additional to the NFR and TR
monitoring, we are monitoring security metrics: e.g., Security of the configuration – metrics are
not defined right now – but could be the check of the component versions; mapping between
CVEs and components; configuration changes, not prescribed by the IaC – potential action to
enforce redeployment.

 Output:

▪ The classified events are sent to SelfHealing component to be further inspected.
▪ The data collected is used by SecuritySelfLearning component to analyse/classify events

(detect anomalies)

Programming languages/tools:

▪ Wazuh, VAT: Python, C++, JavaScript

Dependencies:

▪ Wazuh deployment, Ansible
▪ Vulnerability Assessment Tool deployment (VAT)

Critical factors:

▪ “The price” for running complete monitoring stack might be of high impact
▪ Configuration of the deployment of Wazuh and the Vulnerability Assessment Tool

Open questions:

▪ Dynamic configuration step of the monitoring components.

Self-Learning

Under monitoring we currently cover two non-functional aspects: performance and security.

PerformanceSelfLearning
Functional Description: This component predicts malfunctioning (TRs degradation) and detects
the concept drift phenomenon and/or anomalies in data provided by the Runtime monitoring
system, and then it warns the SelfHealing component to be triggered. Any event threatening the
QoS of an IaC deployment should be detected. Therefore, this component might have two

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 86 of 88

www.piacere-project.eu

different modules: one module to detect the concept drift phenomenon and another one to
detect anomalies.

Input: Data provided by the Runtime monitoring system, which may suffer from concept drift

and/or anomalies.

Output: A response for the SelfHealing component, which may be an alert of the potential
failure in one/several considered variables, e.g., infrastructural element, potential failure (which
TR, even the metric), etc.

Programming languages/tools: Python

Dependencies: Run time monitoring system. This component has access to DOML.

Critical factors:

▪ Is this component trained in a real-time mode or with historical data every concrete
period of time? Or even is it trained only once with historical data at the beginning of
the IaC life? According to DoA: “... The self-learning mechanisms will manage their own
training phase based on historical information from the runtime infrastructure (i.e., past
failures) ...”, but in other sentences DoA uses the terms ”real-time”, “incremental
learning” and “run time”. We must deal with this issue at this stage of the project. From
my perspective, a real-time learning makes more sense.

▪ Data provided by the Run time monitoring system has to show evidences of concept
drift or anomalies, otherwise this component wouldn’t make sense, and therefore the
SelfHealing component wouldn’t be triggered.

• We are currently unsure on the type of data but can assume it is time-series (TS)
data, that indicates the status of the platform. In case of being TS, the streaming
and the concept drift approach should address the temporal dependence issue.

Open questions:

▪ Not sure how the data will look like (time-series/ status/ version number), even the
characteristics of attributes (how many, types, meaning of each attribute, will they be
enough for our detection purposes?)

▪ Expected state of the infrastructural elements compared to the actual state (GT is
DOML)

SecuritySelfLearning
Functional Description: The SecuritySelfLearning component receives data from the
SecurityMonitoring component. As a first necessary step, a specified subset of the data has to
be used to train a behavioural model. This subset of data, along with the necessary configuration
files, is provided to the ModelTraining component, which eventually stores every trained model
in the ModelRepository. Once a model is trained, this step is repeated only if requested to do
so. A trained model is loaded from the ModelRepository to carry out anomaly detection of the
data received from the SecurityMonitoring component. Under previously specified conditions,
e.g., high number of anomalies in a short time period, the SecuritySelfLearning component will
notify the SelfHealing component.

Input:

Data stemming from the Security Monitoring component.

Programming languages/tools:

Python

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 87 of 88

www.piacere-project.eu

Dependencies:

▪ Grafana dashboard (deployment).

Critical factors:

▪ Building the model for the anomaly detection.
Open questions:

▪ The process of building the model is still open – it needs to be run either in parallel on a
different deployment of the application or needs to be already built beforehand if it is
used for the anomaly detection.

Self-Healing

Functional Description: The Self-Healing component gets input from the Monitoring and
SelfLearning components both performance and security and will assess what should be
changed within the infrastructural elements (if needed), to correct the (potential or actual) error
or failure. It receives the input, classifies the event and launches the corresponding mitigation
actions.

Based on the type of alert received from the monitoring components SelfHealing strategies will
be sent to the PIACERE runtime controller that will perform some actions that will have to be
identified as part of the strategy. Examples are:

▪ Launch the IOP
▪ Reboot machines
▪ Scale up the infrastructure
▪ Trigger the orchestration execution through the runtime orchestrator

Input: It will be launched by the SelfLearning or the runtime/security monitoring and as input it

will receive information about the event originating the failure.

Output: As output it will generate a set of actions to be performed (call the IOP, etc) by the
orchestrator.

Programming languages/tools: Java

Dependencies: Monitoring components: PerformanceMonitoring, SecurityMonitoring,
PerformanceSelfHealing and SecuritySelfHealing.

Open Questions:

▪ We need to understand what we can request the PIACERE runtime controller (PRC), as
the strategies in principle are going to be workflows that we intend for the PRC to run.
However, there are some aspects such as the required information that we should check
per each strategy.

Addenda

This section includes expanded information on some of the topics

IaaS and Cloud Computing Models

IaaS provides the highest level of flexibility and management control over IT resources, in
contrast with the Platform as a Service Cloud Computing Model (PaaS), which removes the need
for an organization to manages the underlying infrastructure. Therefore, IaaS is a Managed

DRAFT

http://www.medina-project.eu/

D2.2 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy-v2 Version 1.0 – Date: 01.12.2022

© PIACERE Consortium Contract No. GA 101000162 Page 88 of 88

www.piacere-project.eu

Infrastructure C. C. model, which provides surgical configuration control over infrastructural
resources, while removing an abstraction layer.

Some examples of tools used in PaaS models are Terraform (an open-source infrastructure as
code software tool that provides a consistent CLI workflow to manage hundreds of cloud
services, by codifying cloud APIs into declarative configuration files), and Docker (which uses
Operating System-level virtualization to deliver software in packages called containers),
although both of these tools also include IaaS features.

The third Cloud Computing model: Software as a Service (SaaS) is designed with the highest
level of abstraction as seen by the end user, since the Platforms management tasks are also
abstracted and supplied by a SaaS vendor. A common example of a SaaS application is web-
based email.

Schematically, as ordered by decreasing abstraction level, and increasing control over resources:

𝐒𝐚𝐚𝐒 >> 𝐏𝐚𝐚𝐒 >> 𝐈𝐚𝐚𝐒

Consequently, IaaS models interact intensively with Infrastructure as Code (IaC), commonly
described within templates. These templates do detail all aspects of the underlying
infrastructural elements that are to be managed, an activity which may involve tasks such as
deployment, configuration, and release/deallocation of resources.

Since Infrastructure as Code (IaC) is the practice of managing infrastructure in a file or files,
rather than manually configuring it via a user interface, infrastructure resource types managed
with IaC can include virtual machines, security groups, network interfaces, and many others.

According to H-Cloud’s presentation of the consultations held for the Strategic Report on Cloud
Adoption (https://www.h-cloud.eu/), SaaS is by far the most popularly adopted Cloud
Computing model among respondents from the EU, the UK, and the USA (v. chart), though in
the EU, and in the UK, IaaS models are significantly larger than they are in the USA (which is by
far the largest market in volume as a percentage of GDP).

Consequently, there seems to exist an opportunity for Europe to leverage their proportionally
higher IaaS Cloud Computing Models adoption rate, on international markets. But also, to
increase their proportional adoption rates across all of the cloud servicing spectrum.

Figure 29: Status of cloud computing models (source: H-cloud)

DRAFT

http://www.medina-project.eu/
https://www.h-cloud.eu/

