Melbourne Genomics

Health Alliance

Variant interpretation: from the clinic to the lab... and back again

Australian BioCommons webinar 7 December 2022

Variant interpretation in a diagnostic setting

Naomi Baker Medical Scientist Victorian Clinical Genetics Services

Variant interpretation in a research setting

Joep Vissers
Curation Team Leader,
University of Melbourne
Centre for Cancer Research

Variant interpretation training

Amy NisselleGenomics Workforce Lead
Melbourne Genomics

Melbourne Genomics

Health Alliance

Poll

How much experience do you have with variant interpretation?


- Never heard of it!
- I know the term but that's about it
- I've dabbled but don't know much about the underlying concepts or processes
- I've been doing it for a while in a research setting
- I've been doing it for a while in a clinical setting
- I supervise others to do it

Variant interpretation in a diagnostic setting

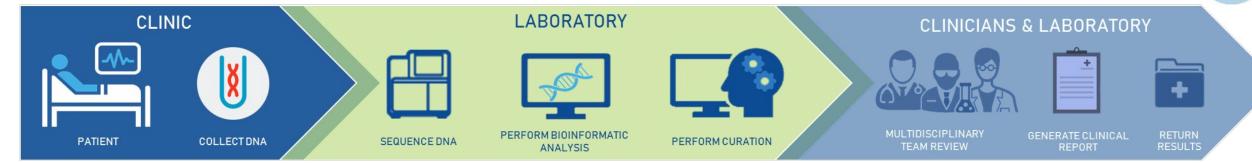
Dr. Naomi Baker Medical Scientist, Clinical Genomics, VCGS

Victorian Clinical Genetics Services Murdoch Children's Research Institute

The genomic testing process

Our lab's role

My role

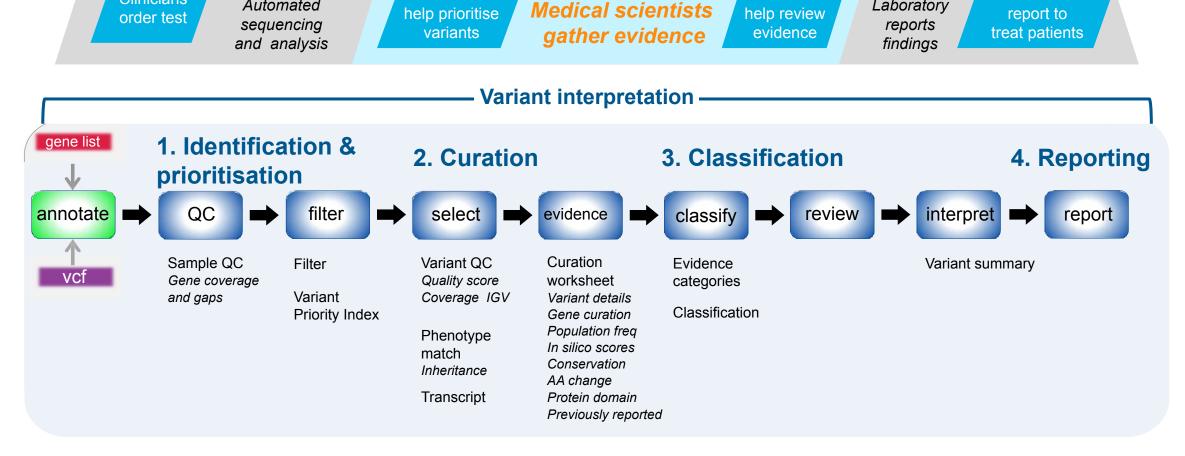

Victorian Clinical Genetics Services
Murdoch Children's Research Institute

Genomic Testing processes, pipelines and people

Primary Care / Hospital

Genomic Diagnostics

Genomic Diagnostics


Victorian Clinical Genetics Services
Murdoch Children's Research Institute

Variant interpretation is clinically integrated

Automated

Clinicians

Clinicians

Clinicians

Laboratory

Clinicians use

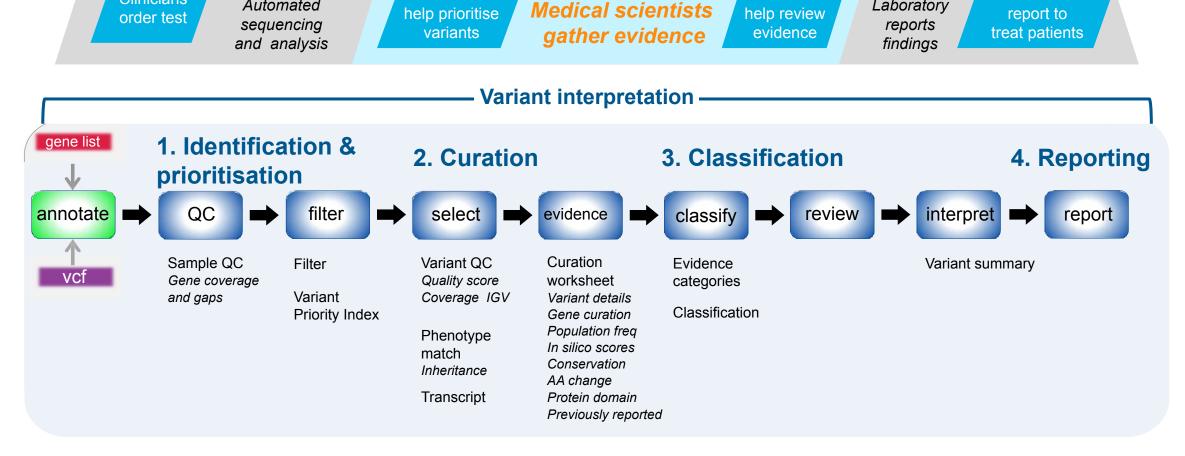
PMID: 26217397; Sadedin, S. et al. (2015) Genome Med. 7(1):68. "Cpipe: a shared variant detection pipeline designed for diagnostic settings."

PanelApp Australia

Victorian Clinical Genetics Services Murdoch Children's Research Institute

Malignant Hyperthermia Susceptibility (Version 1.6)

Green	CACNA1S	1 review Add review 1 green	MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted	Sources Expert list Expert Review Green Phenotypes {Malignant hyperthermia susceptibility 5} MIM#601887 Tags
Green	RYR1	1 review Add review	MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted	Sources
Green	STAC3	1 review Add review	BIALLELIC, autosomal or pseudoautosomal	Sources
Amber	ASPH	1 review Add review	MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown	Sources Expert Review Amber Literature Phenotypes Exertional heat illness malignant hyperthermia susceptibility, MONDO:0018493, ASPH-relate Tags
Amber	ATP2A1	1 review Add review	BIALLELIC, autosomal or pseudoautosomal	Sources
Amber	TRPV1	2 reviews Add review 1 red	MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted	Sources
Red	CACNB1	2 reviews Add review	Unknown	Sources Expert list Expert Review Red Other Royal Melbourne Hospital Phenotypes Malignant hyperthermia susceptibility



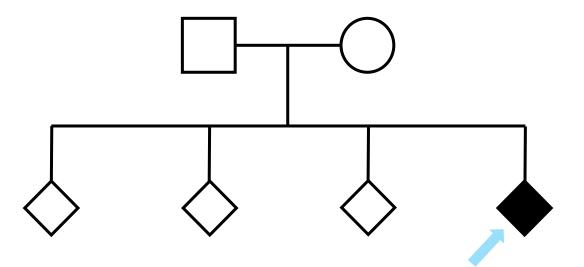
Variant interpretation is clinically integrated

Automated

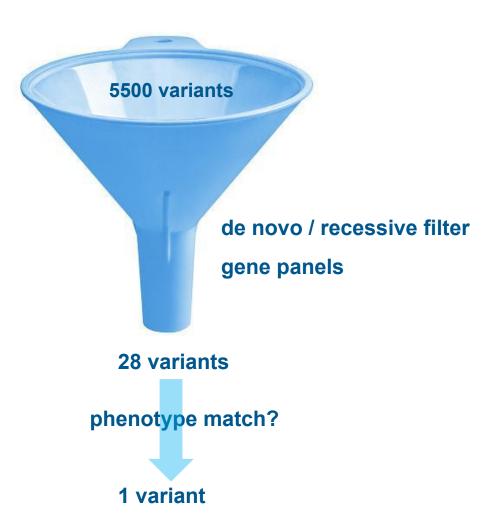
Clinicians

Clinicians

Clinicians


Laboratory

Clinicians use


PMID: 26217397; Sadedin, S. et al. (2015) Genome Med. 7(1):68. "Cpipe: a shared variant detection pipeline designed for diagnostic settings."

Case Study

- Paediatrician referral
- 2 yo with severe global developmental delay and hypotonia
- Trio WES analysis
 - Intellectual disability syndromic and non-syndromic
 - Autism
 - Mendeliome

Victorian Clinical Genetics Services
Murdoch Children's Research Institute

TCF4 nonsense variant

pathogenic

diagnosis of Pitt-Hopkins syndrome

MUSCLE, SOFT TISSUES

- Hypotonia

NEUROLOGIC

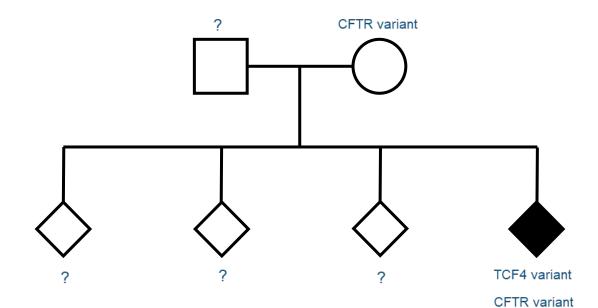
Central Nervous System

- Mental retardation, severe
- Poor or absent speech development
- Delayed motor development
- Limited walking abilities
- Unstable, ataxic gait
- Incoordination
- Seizures
- Bulging of the caudate nuclei
- Ventricular asymmetry
- Agenesis or hypoplasia of the corpus callosum
- Atrophy of the frontal and parietal cortex
- Hypotonia

Behavioral Psychiatric Manifestations

- Happy personality
- Aggression
- Stereotypic movements

CFTR variant


pathogenic

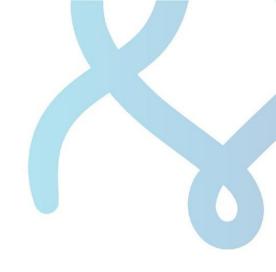
incidental carrier finding



Case Study

- Paediatrician referral; Genetic counsellor provided additional support
 - Contact details for support groups, referral pathways, counselling tips
- CF panel testing for father
 - Clarify reproductive risk
 - Risk for siblings
- Referral for formal genetic counselling
- May eventually provide testing for extended family

Variant interpretation in a diagnostic setting


- Provide answers for patients and families
- Interaction with clinicians (Clinical Geneticists, Genetic Counsellors, other referrers) and scientists
- Team effort
- Use and continuous development of scientific knowledge

Acknowledgments

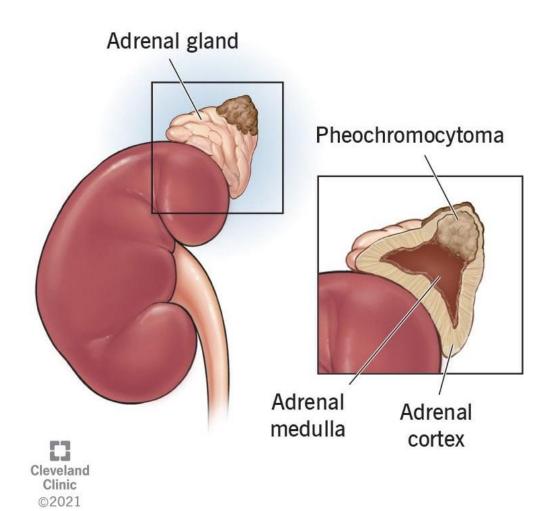
- Genetics and Genomics Division
 - Sebastian Lunke (Head)
- Clinical Genomics Clinical Geneticists
 - Zornitza Stark
 - Alison Yeung
- Clinical Genomics Genetic Counsellors
 - Manny Jacobs
 - Sam Ayres

- Clinical Genomics Scientists
 - Belinda Chong (Head)
 - Dean Phelan
 - Sarah-Jane Pantaleo
 - Ain Roesley
 - Anna Ritchie
 - Sze Chern Lim
 - Daniel Flanagan
 - Ee Ming Wong
 - Elena Savva
 - Hazel Phillimore
 - Karina Sandoval
 - Lucy Spencer
 - Michelle da Cunha Torres
 - Paul De Fazio
 - · Shannon Cowie
 - Suliman Khan
 - Teresa Zhao

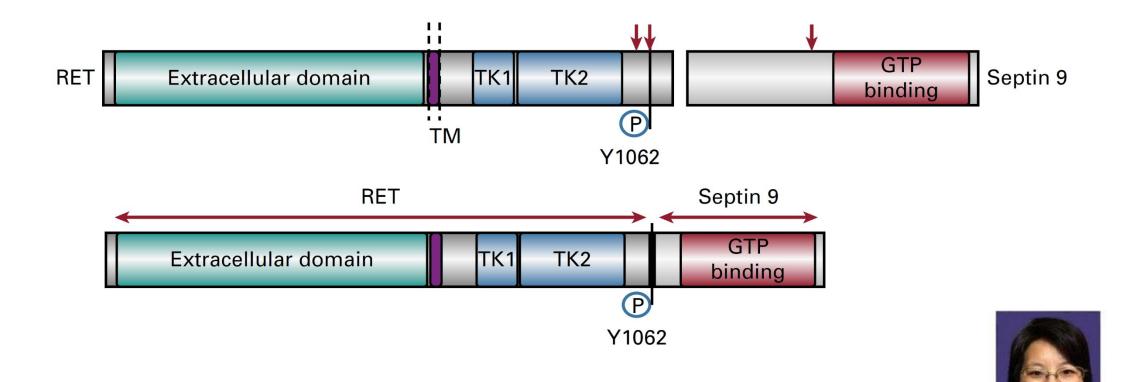
Variant interpretation in a research setting

Joep Vissers
Curation Team Leader,
University of Melbourne
Centre for Cancer Research

Curation in the Research setting


Joep Vissers

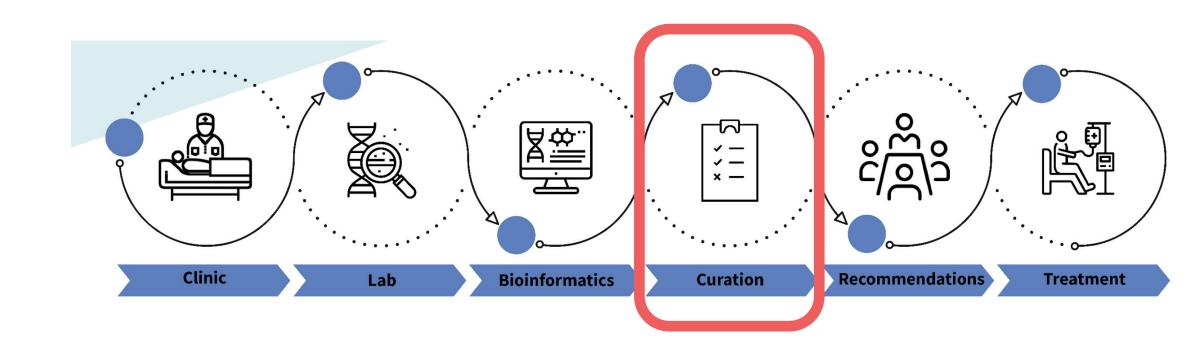
University of Melbourne Centre for Cancer Research (UMCCR)



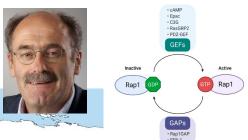
Pheochromocytoma

RET::SEPTIN9 fusion gene

Huiling Xu, Peter Mac

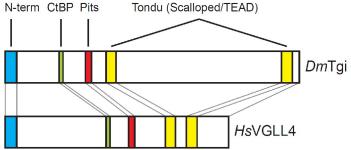


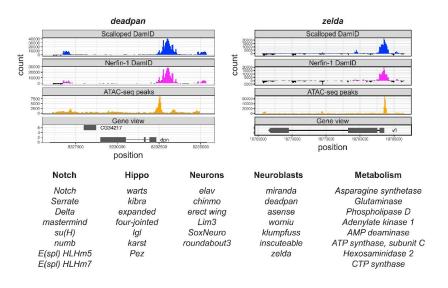
University of Melbourne Centre for Cancer Research



Precision oncology at UMCCR

A Drosophila RNAi library modulates Hippo pathway-dependent tissue growth Joseph H.A. Vissers^{1,2}, Samuel A. Manning^{1,3}, Aishwarya Kulkami¹ S. Kieran F. Harvey^{1,2,3}

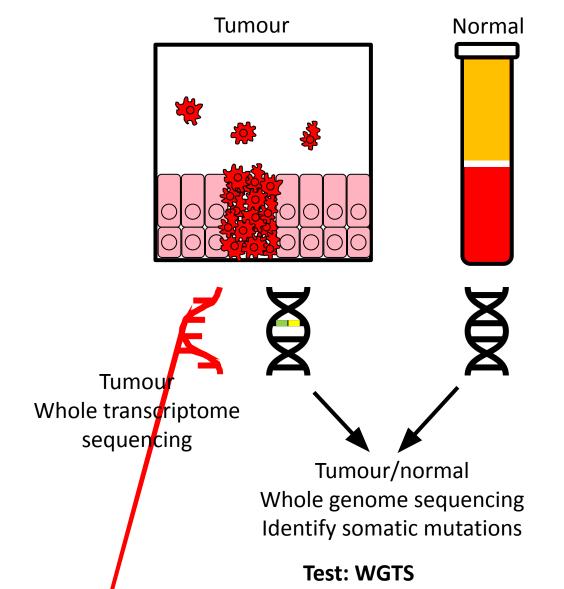




Skills and expertise

1	1 UNIPROT	Q8IQJ9 D	13144	41114	308	296	33	33	152.38 SubName: Full=CG10741, isoform B; SubName: Full=RE45537p; - OS=Drosophila melanogaster (Fruit fly).
1	2 UNIPROT	B4H6V1_C	1889	43089	53	51	11	11	2.26 SubName: Full=GL22083; - OS=Drosophila persimilis (Fruit fly).
2	1 UNIPROT	A4V2S3_D	11958	42738	421	356	29	28	34.69 SubName: Full=C-terminal binding protein, isoform B; EC=1.1.1; SubName: Full=C-terminal binding protein, isoform C; EC=1.:
2	2 UNIPROT	B3P196_D	10585	51043	375	311	27	26	14.67 SubName: Full=GG19357; - OS=Drosophila erecta (Fruit fly).
2	3 UNIPROT	E8NH65_C	3819	20954	120	100	12	11	15.8 SubName: Full=LD15041p; Flags: Fragment; - OS=Drosophila melanogaster (Fruit fly).
3	1 UNIPROT	Q7JR58_D	8972	31961	301	286	22	22	84.53 SubName: Full=CG6543, isoform A; EC=4.2.1.17; SubName: Full=CG6543, isoform B; EC=4.2.1.17; SubName: Full=LD24265p; - C
3	2 UNIPROT	B4P459_D	7457	31802	241	229	19	19	51.87 SubName: Full=GE13337; - OS=Drosophila yakuba (Fruit fly).
3	3 UNIPROT	B3NRG4_E	6595	31758	215	198	15	15	31.58 SubName: Full=GG22466; - OS=Drosophila erecta (Fruit fly).
3	4 UNIPROT	B4N5T9_D	4620	32190	185	152	16	13	7.67 SubName: Full=GK17937; - OS=Drosophila willistoni (Fruit fly).
4	1 UNIPROT	B4L1X2_D	2800	72387	93	86	32	32	4.4 SubName: Full=GI14717; - OS=Drosophila mojavensis (Fruit fly).
4	2 UNIPROT	B3P0S6_D	2324	71286	77	75	25	24	2.86 SubName: Full=GG16900; - OS=Drosophila erecta (Fruit fly).
4	3 UNIPROT	Q6XIY7_D	494	24172	31	26	9	9	2.21 SubName: Full=Similar to Drosophila melanogaster Hsc70-3; Flags: Fragment; - OS=Drosophila yakuba (Fruit fly).
5	1 UNIPROT	B3MGF8_I	1425	50571	36	36	17	17	2.32 SubName: Full=GF12605; - OS=Drosophila ananassae (Fruit fly).
6	1 UNIPROT	B7Z143_D	984	62298	29	28	12	12	1.28 SubName: Full=CG11138, isoform D; - OS=Drosophila melanogaster (Fruit fly).
7	1 UNIPROT	B4I2C6_DI	900	43292	36	34	13	13	2.49 SubName: Full=GM18275; - OS=Drosophila sechellia (Fruit fly).
8	1 UNIPROT	M9MSL3_	785	92473	32	23	17	13	0.69 SubName: Full=Hsc70Cb, isoform G; SubName: Full=Hsc70Cb, isoform H; - OS=Drosophila melanogaster (Fruit fly).
9	1 UNIPROT	B3NR68_C	567	74257	16	16	11	11	0.61 SubName: Full=GG22433; - OS=Drosophila erecta (Fruit fly).
10	1 UNIPROT	B3LYC5_D	544	50561	16	15	10	10	0.88 SubName: Full=GF17649; - OS=Drosophila ananassae (Fruit fly).
11	1 UNIPROT	Q9VRJ4_D	401	33825	15	12	11	9	1.32 SubName: Full=CG10672; EC=1.1; SubName: Full=SD02021p; - OS=Drosophila melanogaster (Fruit fly).
12	1 UNIPROT	Q9V9T5_C	385	76752	11	10	10	9	0.46 SubName: Full=CG2118, isoform A; EC=6.4.1.4; SubName: Full=GM14617p; - OS=Drosophila melanogaster (Fruit fly).
13	1 UNIPROT	Q9VL68_D	313	31145	9	9	7	7	1.03 SubName: Full=CG4598, isoform A; EC=5.3.3.8; SubName: Full=CG4598, isoform B; EC=5.3.3.8; SubName: Full=RH73277p; SubI
14	1 UNIPROT	E1JJ99_DF	290	49408	7	7	5	5	0.38 SubName: Full=Fi18101p1; SubName: Full=Scalloped, isoform H; SubName: Full=Scalloped, isoform I; SubName: Full=Scalloped
15	1 UNIPROT	B3NF19_D	281	26930	9	9	5	5	1.26 SubName: Full=GG14898; - OS=Drosophila erecta (Fruit fly).
16	1 UNIPROT	B3NSB3_D	270	50561	17	14	6	5	0.37 RecName: Full=Elongation factor 1-alpha; - OS=Drosophila erecta (Fruit fly).
17	1 UNIPROT	B7Z0X1_D	258	51295	11	9	9	7	0.55 RecName: Full=Serine hydroxymethyltransferase; EC=2.1.2.1; - OS=Drosophila melanogaster (Fruit fly).
18	1 UNIPROT	B3MRI2_C	254	16312	5	5	2	2	0.46 SubName: Full=GF21290; - OS=Drosophila ananassae (Fruit fly).
19	1 UNIPROT	Q8IMF5_E	253	127049	5	4	4	3	0.08 SubName: Full=Microtubule-associated protein 205, isoform B; - OS=Drosophila melanogaster (Fruit fly).
20	1 UNIPROT	Q7K1U0_E	239	29087	7	7	5	5	0.72 SubName: Full=Arc1; SubName: Full=LD41905p; - OS=Drosophila melanogaster (Fruit fly).
21	1 UNIPROT	B3P0Z6_D	226	16242	8	7	5	4	1.14 RecName: Full=Single-stranded DNA-binding protein; - OS=Drosophila erecta (Fruit fly).
22	1 UNIPROT	B3MLU8_[205	15005	12	8	4	4	1.27 SubName: Full=GF15052; - OS=Drosophila ananassae (Fruit fly).
23	1 UNIPROT	B4QJM4_[199	34125	8	7	6	5	0.59 RecName: Full=Eukaryotic translation initiation factor 3 subunit H; Short=elF3h; - OS=Drosophila simulans (Fruit fly).
24	1 UNIPROT	B4I8U9 D	193	51041	7	6	6	5	0.37 SubName; Full=GM15500; - OS=Drosophila sechellia (Fruit fly).

Conserved regions

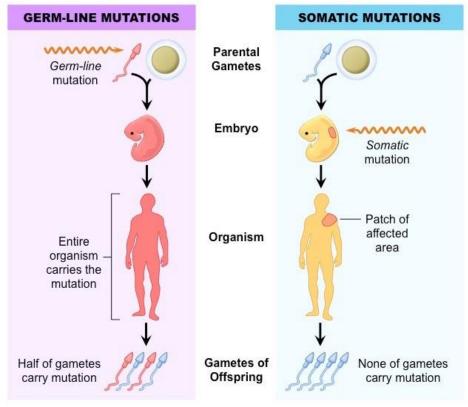


Collaborate with bio-informaticians

Vissers et al, Genetics 2020 Vissers, Froldi et al, Cell Rep 2018

UMCCR genomic testing

Cell free DNA


Circulating

tumour DNA

Test: ctTSO500 panel

Germline and somatic DNA variants

From: ib.bioninja.com.au

The Advanced Genomics Collaboration

The Cancer Of Low sUrvival and unMet Need (COLUMN) initiative

Support thorough genomic investigation of challenging patients:

- (i) Rare cancers (incidence <6/100,000)
- (ii) Recalcitrant cancers (cancers that have poorest survival (<20% 5 year)
- (iii) Relapsed cancers (cancers that have exhausted standard of care)
- (iv) Enigmatic diagnoses (cancers with an ambiguous diagnosis or prognosis)

Variant classification based on Clinical Significance

SPECIAL ARTICLE

Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer

A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists

Marilyn M. Li,*† Michael Datto,*‡ Eric J. Duncavage,*§ Shashikant Kulkarni,*¶ Neal I. Lindeman,*¶ Somak Roy,*,**

Apostolia M. Tsimberidou,*†† Cindy L. Vnencak-Jones,*‡‡ Daynna J. Wolff,*§§ Anas Younes,*¶¶ and Marina N. Nikiforova*,**

Variant classification based on Clinical Significance

Tier I: Variants of Strong Clinical Significance

Therapeutic, prognostic & diagnostic

Level A Evidence

FDA-approved therapy Included in professional guidelines

Level B Evidence

Well-powered studies with consensus from experts in the field

Tier II: Variants of Potential Clinical Significance

Therapeutic, prognostic & diagnostic

Level C Evidence

FDA-approved therapies for different tumor types or investigational therapies

Multiple small published studies with some consensus

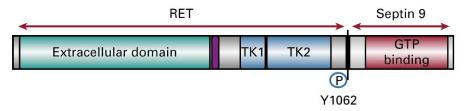
Level D Evidence

Preclinical trials or a few case reports without consensus

Tier III: Variants of Unknown Clinical Significance

Not observed at a significant allele frequency in the general or specific subpopulation databases, or pan-cancer or tumor-specific variant databases

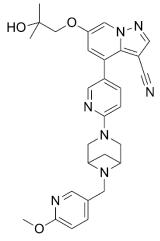
No convincing published evidence of cancer association


Tier IV: Benign or Likely Benign Variants

Observed at significant allele frequency in the general or specific subpopulation databases

No existing published evidence of cancer association

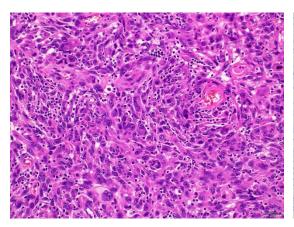
Clinical significance - Therapeutic

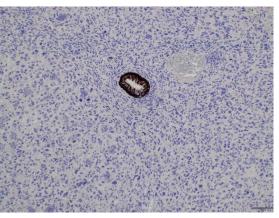


Before treatment

12 weeks treatment

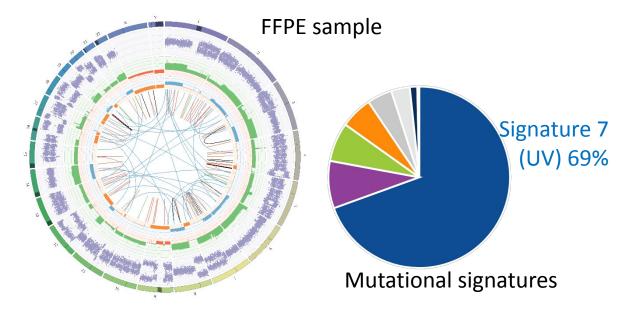
RET kinase inhibitor: Selpercatinib




Mweempwa et al, JCO Precis Oncol 2021

Clinical significance - Diagnostic

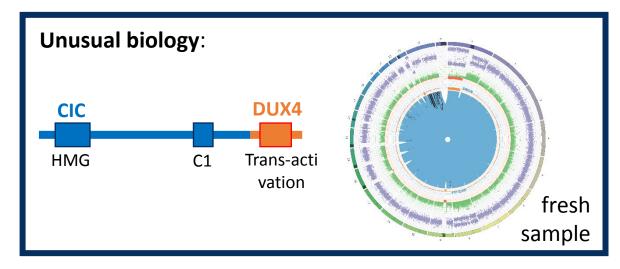
H&E

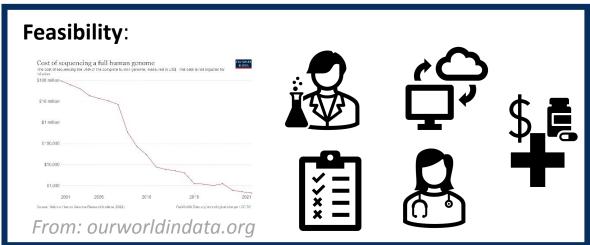


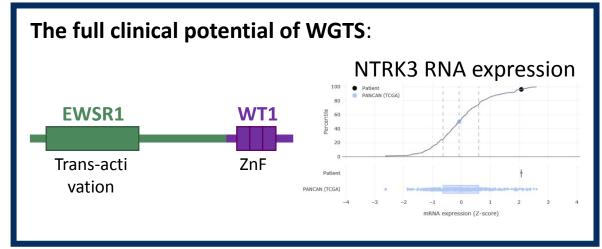
High molecular weight Cytokeratin (negative)

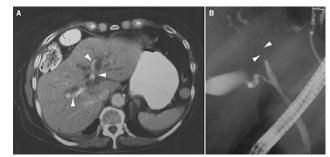
Lung lesion, Pleomorphic spindle cell morphology.

Pre-WGTS diagnostic differentials: Carcinoma, sarcoma, melanoma or mesothelioma




WGTS findings:


Tumour Mutational Burden: 88.85 mutations / Mb (HIGH)


Research

From: www.hopkinsmedicine.org

Cholangiocarcinoma

Tissue biopsy: no tumour

Liquid biopsy:

Microsatellite instability

Acknowledgements

TAGC Genomics Platform:

Sean Grimmond

Michael Christie Michael Lee Neeha Rajan

Curation Team:

Camilla Mitchell Layla Zhu Leila Varghese Shannon Nicolson Wing-Yee Lo Luke Tork

Sequencing team: Kym Pham

Karey Cheong Leakhena Leas Voula Dimitriadis Wei Wen Lim Hooman Riahi

TAGC Bioinformatics Platform:

Oliver Hofmann

Alexis Lucattini
Andrew Patterson

Florian Reisinger

Helen Mitchell

Peter Diakumis

Roman Valls

Sehrish Kanwal

Stephen Watts

Victor San Kho Lin

William Putra Intan

Mesogenome research program

Tom John

VCCC Precision Oncology

Stephen Luen
Jayesh Desai
Variant meeting faculty

Peter Mac Pathology:

Stephen Fox

Owen Prall

Catherine Mitchell

Andrew Fellowes Huiling Xu

Christopher McEvoy Rajini Sreenivasan

Shiva Balachander

Georgie Ryland Alison Trainer

<u>RMH</u>

Bryony Thompson

Stafford Fox Rare Cancer Research

Program:

Clare Scott

Briony Milesi

Holly Barker

Ratana Lim

Damien Kee

Olga Kondrashova

Tony Papenfuss

SUPER NEXT

Richard Tothill Linda Mileshkin

SUPER-NEXT team

Variant interpretation training

Amy NisselleGenomics Workforce Lead
Melbourne Genomics

Variant interpretation education programs

Scientists

Scientists working in genetics

Variant curators

Awareness-raising webinars

Genomics for medical/data scientists, careers in genomics

Self-directed online courses

Theory + practicals + cases

Introductory course

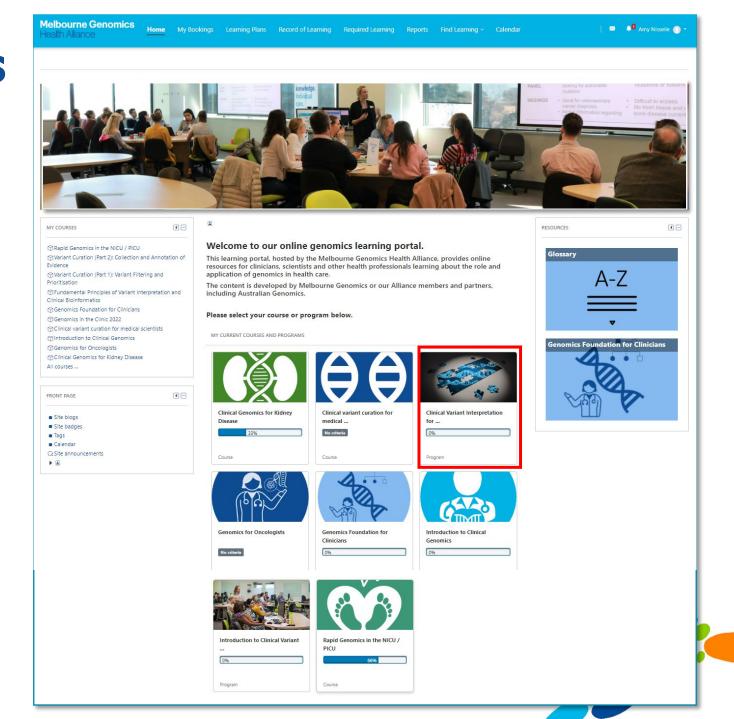
In-person workshops

Review online modules
Practice with tools
Review simple cases with experts

Advanced course

In-person workshops

Work through complex cases with experts



https://melbournegenomics.org.au/genomics-education education@melbournegenomics.org.au

Melbourne Genomics Health Alliance

Melbourne Genomics learning management system

Home / Find Programs / Melbourne Genomics / Clinical Variant Interpretation for Medical Scientists (self-directed)

Clinical Variant Interpretation for Medical Scientists (selfdirected)

You are required to complete this program under the following criteria:

Member of audience 'Clinical Variant Interpretation for Medical Scientists (Self-directed 2022)'.

Date assigned: 08 August 2022

Due date: No due date set

This self-directed online program provides an understanding of the principles and processes of variant interpretation pertinent to medical scientists specialising in genomic testing for rare germline disorders. To help us improve our education program, please complete this SHORT SURVEY before you begin.

What will I learn?

- The processes and limitations of germline variant interpretation
- How a clinical context is integrated into the variant interpretation process
- How to collect evidence to curate variants
- How to use evidence to classify variants
- How variant interpretation is integral to the generation of genomic test reports

How will I learn?

The program includes:

- Theory modules with learning content, knowledge checks and quizzes
- Practical modules with examples of software and tools, plus exercises to work through to consolidate understanding
- Clinical case modules with solutions, allowing you to put what you learn into practice.
- Learning outcomes and quizzes throughout for you to reflect and test your understanding as you go. The results can be included on a certificate of completion if needed to claim continuing professional development points

Variant Interpretation Short Courses All courses in this set must be completed (unless this is an optional set). Course name Actions Fundamental Principles of Variant Interpretation and Clinical Bioinformatics Launch course Variant Curation (Part 1): Variant Filtering and Prioritisation Launch course Variant Curation (Part 2): Collection and Annotation of Evidence Launch course Variant Classification and Reporting Launch course

Theory, pracs, exercises

Module 1: Genetics Theory for Clinical Variant Interpretation [v1.0]

33% COMPLETE

☐ Learning Outcomes☐ Getting started

The Human Genome

Gene Structure and Expression

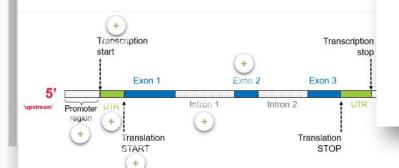
Variation in the human genome

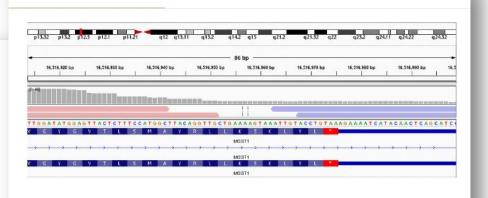
Single nucleotide and small variants

Application of genetics to the interpretation of variants

Inheritance

Quiz and Self-Reflection


Lesson 4 of 9


Gene Structure and Expression

Gene structure

The need to regulate gene expression is reflected in the structure Genes contain coding regions (also referred to as 'structural' region encode polypeptides, as well as regulatory areas which control generation.

A gene sequence can be on either strand of the DNA; the sequenter in the 5' to 3' direction. This will become very import when trying to interpret variants that are on either the forwareverse strand.

In the following 3 videos we take a deeper look at the various panels and functions of IGV that are used to explore genomic datasets and quality check variants.

You will learn how to:

- install IGV
- navigate around the program
- · inspect the mRNA transcript(s) of a gene of interest
- · distinguish true variants from artefacts

Introduction to variant QC using IGV (part 2.1): Progration and navigation

Melbourne Genomics

Introduction to variant QC using IGV (part 2.1)

Program installation and navigation

Natalle Thorne PhD

Natalle Thorne PhD

106:53 Clinical Genomics

Lesson 9 of 24

Exercises

Amino acid physiochemical properties and conservation

Compare the physiochemical properties of the amino acids in each of the substitutions below. How do they differ?

Next, inspect the conservation of the two amino acid positions. Using the 'UCSC button' in Genomizer, link out to UCSC Genome Browser. The display should automatically be within a 21 bp window centred on the amino acid of interest. Select all species using the 'conservation' button, and then zoom out using the 3X and/or 1.5X button until you can see ~70-150bp. Make sure you check for homology in the region before you assess the level of conservation.

When you are ready to check your answer, click on the accordions below.

Genomizer links:

NM 005249.4(FOXG1):c.543G>T, p.(Lys181Asn)

NM 000249 3(MLH1) c 632C>A n Ser211Tvi

Summaries, knowledge checks, quizzes

Lesson 8 of 24

Summary

Take-home points

In this section we looked at three pieces of evidence that variant curators use to address the effect of missense variants on protein function:

1) Comparison of the physiochemical properties of the amino acid pair of interest

- · amino acids vary in many ways, including their hydrophobicity, polarity, charge, and size
- generally, the greater the difference in the above physiochemical properties between an amino acid pair, the more likely the substitution is to impact protein function

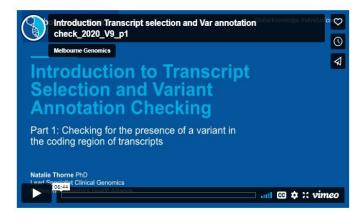
2) Grantham distance

- the Grantham distance/score reflects the effect of substitutions between amino acids based on three measures - polarity, size, and side-chain composition
- the greater the score, the greater the aggregate change in the three measures
- the Grantham distance is classified as minor (0-65), moderate (65-100), or major (>100)
- 3) Conservation of the amino acid position of interest over evolutionary time
- variants at highly conserved positions are more likely to be pathogenic. Conversely, variants at poorly conserved positions are less likely to be pathogenic
- In silico predictions of conservation can be unreliable owing to technical limitations including
 poor alignments (incorporation of non-homologous sequences) and unstable methods,
 where subtle changes to specific parameters used changes the outcome.

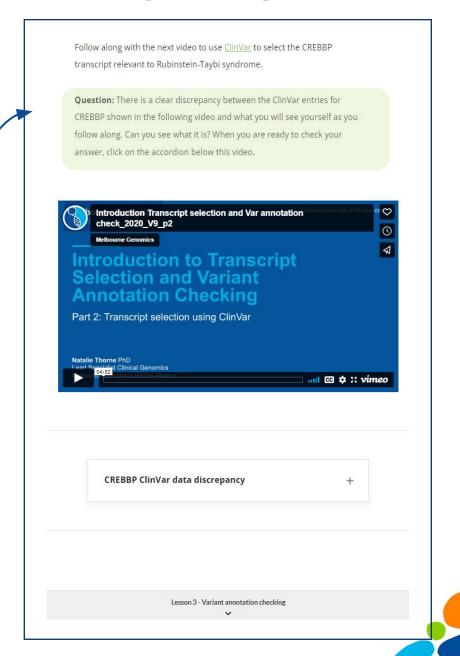
Knowledge check Which of the below statements is false? Most variants that alter the amino acid sequence are missense The Grantham distance/score reflects the effect of substitutions between amino acids based on three measures - charge, size and The Grantham scores are classified as minor (0-65), moderate (60-100), Many in silico predictions of conservation are automatic and do not provide any sampling and sequence context

Transcript selection

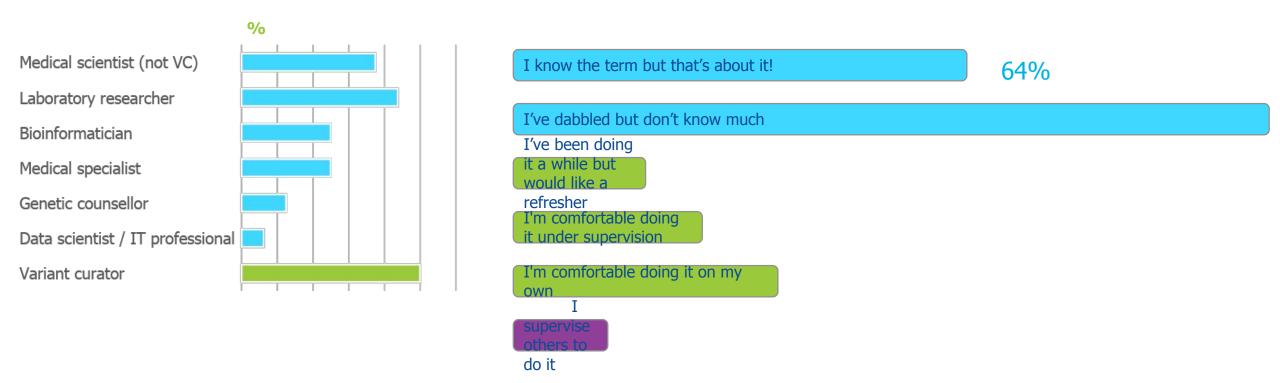
Recall that most genes are alternatively spliced, leading to the production of multiple mRNA transcripts. As such, you need to choose which transcript is relevant to the patient's phenotype. That is, you need to select the **condition-relevant transcript**. The process of transcript selection is introduced in the two videos below.


It's important to note that mRNA transcript reference sequences are periodically reviewed and updated. In turn, the relevant transcript for a condition will change occasionally. As such, every time you curate a variant the condition-relevant transcript must be checked, even if it's a condition you have work on before.

Following on from previous modules, we will continue with the CREBBP case. To work along with the below video you will need to open the bam files for the CREBBP V2 and V5 variant in IGV (links below). Remember, you'll need to have IGV open for the links to work.

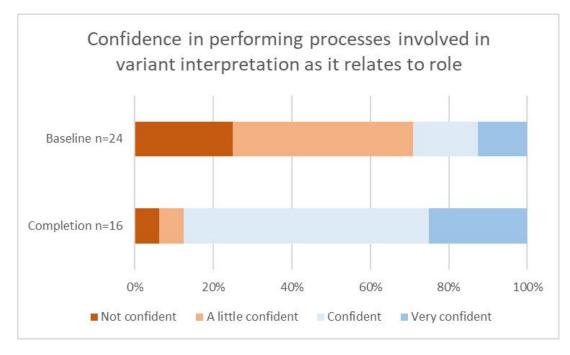

CREBBP variant bam files:

CREBBP V5 g.3808917G>A


CREBBP V2 g.3900336 C>1

Active learning throughout

Who typically completes our programs


Foundations

Upskill in variant interpretation

Possibly move into the role

Improves understanding & confidence

Good structure and **comprehensive** modules. Also enjoyed having **case studies** to apply the knowledge.

PhD student (somatic)

In-depth explanations and exercises for learning how to **navigate all the databases** used for variant interpretation.

Medical scientist (not VC)

In-person workshops

with experts + multidisciplinary peer groups (in Melbourne)

Introductory

- Review online modules
- Work through pracs + simple case

Advanced

- Learn advanced topics
- Work through complex cases

www.melbournegenomics.org.au/genomics-education

Melbourne Genomics

Health Alliance

Acknowledgements

VGCS

Dean Phelan

Ivan Macciocca

Lyndon Gallacher

Miriam Fanjul Fernandez

Naomi Baker

Sebastian Lunke

Tiong Tan

Zornitza Stark

RMH

Bryony Thompson Paul James

PMCC

Ain Roesley

Andrew Fellowes

Ella Thompson

Victoria Bashay

Melbourne Genomics

Amy Nisselle

Clara Gaff

Donna Halton

Douglas Liddicoat

Melissa Martyn

Nat Thorne

Melbourne Genomics

Health Alliance

Melbourne Genomics education www.melbournegenomics.org.au/genomics-education

University of Melbourne Centre for Cancer Research https://mdhs.unimelb.edu.au/centre-for-cancer-research

The Advanced Genomics Collaboration

https://www.tagcaustralia.com/

Victorian Clinical Genetics Services www.vcgs.org.au/tests/genomics

Slide deck identification

Intended Audience

Name	Title
Australian BioCommons audience	

Purpose

Introduce Australian BioCommons audience to variant interpretation/clinical genomics applications of big data concepts and processes

Contributing Authors

Name	Date
Amy Nisselle, MGx	Nov 2022
Naomi Baker, VCGS	Nov 2022
Joep Vissers, UoM	Nov 2022

Reviewers

Name	Date

