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Abstract
Cancer is a genetic disease induced by mutations in DNA, in particular point mutations in important driver genes that lead to 
protein malfunctioning and ultimately to tumorigenesis. Screening for the most common DNA point mutations, especially in 
such genes as TP53, BRCA1 and BRCA2, EGFR, KRAS, or BRAF, is crucial to determine predisposition risk for cancer or to 
predict response to therapy. In this review, we briefly depict how these genes are involved in cancer, followed by a description 
of the most common techniques routinely applied for their analysis, including high-throughput next-generation sequencing 
technology and less expensive low-throughput options, such as real-time PCR, restriction fragment length polymorphism, or 
high resolution melting analysis. We then introduce benefits of electrochemical biosensors as interesting alternatives to the 
standard methods in terms of cost, speed, and simplicity. We describe most common strategies involved in electrochemical 
biosensing of point mutations, relying mostly on PCR or isothermal amplification techniques, and critically discuss major 
challenges and obstacles that, until now, prevented their more widespread application in clinical settings.

Keywords Cancer diagnostics · Biomarker · DNA point mutation · Single nucleotide variation · Electrochemical biosensor · 
Isothermal amplification

Introduction

DNA point mutation, sometimes referred to as single nucleo-
tide variation (SNV), is a substitution of a single nucleotide 
for another, arising either from spontaneous DNA replica-
tion errors or from exogenous mutagen sources (radiation, 
chemicals, etc.). Depending on the position, point muta-
tions can be “neutral” (if the mutation is in a non-coding 
DNA region), “silent” (mutation does not change the amino 

acid sequence, usually located at the third position of the 
codon), “missense” (resulting in a codon coding for different 
amino acid), and “nonsense” (resulting in a premature stop 
codon and thus truncated protein). Even the single mutation 
event may cause the resulting protein to lose its function 
(loss-of-function) or to acquire a new function or ability 
(gain-of-function). Therefore, a number of point mutations 
are closely associated with the onset of various diseases, 
especially cancer, as well as with individual response to the 
therapy [1]. In the next section “DNA point mutations in 
cancer biology”, we will give an overview of the most fre-
quent DNA point mutations and their association with the 
carcinogenesis process.

Although their effects can be deleterious, point mutations 
represent very subtle changes in the DNA structure, making 
their analysis quite challenging. Nowadays, the next-gener-
ation sequencing (NGS) is a widely used tool for complex 
genomic profiling of tumor samples, including high-through-
put screening of a large panel of chosen point mutations as 
well as discovery of new SNVs in human genome [2]. How-
ever, NGS assays are still expensive and time-consuming, 
and their complexity and huge amount of provided data are 
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not easily implemented into routine clinical practice. There 
are also numerous low-throughput methods targeting indi-
vidual point mutations, such as amplification-refractory 
mutation system PCR (ARMS-PCR), denaturing gradi-
ent gel electrophoresis (DGGE), high-resolution melting 
(HRM) analysis, or restriction fragment length polymor-
phism (RFLP), which principles are explained in the section 
“Standard methods of detection and commercial kits.” These 
techniques are faster and cheaper than NGS, but they still 
require relatively large instrumentation and skilled personnel 
to perform the analysis. Novel analytical tools that would 
meet demands of personalized medicine at the point-of-
care are thus needed. In this context, electrochemical (EC) 
biosensors featuring inexpensive and simple miniaturized 
instrumentation, rapid measurement times, or low consump-
tion can be attractive alternatives to current methods [3–6], 
as detailed in the last section “Electrochemical biosensors: 
advantages and challenges.” In that section, we searched for 
recent publications on various platforms, such as Web of 
Science, PubMed, or Google Scholar, with multiple search 
terms, including “DNA point mutation,” “single nucleotide 
variation,” “biosensor,” “electrochem*,” and their combi-
nations. The list, however, is not meant to be exhaustive, 
and certain papers could have been unintentionally omitted. 
Despite this, we believe that our selection is a reliable repre-
sentation of current trends in the field of EC biosensors for 
DNA point mutation detection.

DNA point mutations in cancer biology

DNA point mutations are commonly divided into hereditary 
(germline) or somatic, based on a type of cell where the 
mutation occurs. If the mutation occurs in germinal haploid 
cells (gametes), it is called hereditary and can be passed 
to an offspring who then carries the point mutation in all 
cells. Somatic mutations, on the other hand, are found in 
diploid non-germline body cells (i.e., somatic cells) and are 
not passed to an offspring.

Hereditary mutations

Germline mutation in a specific gene may result in a 
hereditary cancer syndrome that poses an elevated risk 
of cancer that runs in the family. Only 5–10% of all can-
cers are hereditary; the rest are due to mutations in genes 
of somatic cells [7]. There are hundreds of susceptibility 
genes described so far, but mutations in most of them 
are very rare [8]. Perhaps the most frequently mutated 
gene in germinal cells that is associated with cancer (and 
perhaps most frequently targeted in biosensors) is TP53 
gene. Other frequently mutated genes include BRCA1, 
BRCA2, PTEN, APC, CDKN2A, and KIT.

The TP53 gene encodes a phosphoprotein nicknamed as 
the “guardian of the genome” [9]. The p53 protein acts in 
cells as a transcription factor by binding to a p53 response 
element in promoter regions to regulate expression of its tar-
get genes. By this way, p53 protein influences expression of 
approximately 400 different genes [10] that participate mainly 
in cell cycle arrest, DNA repair, apoptosis, and inhibition of 
angiogenesis [11]. Germline mutations in TP53 gene create 
molecular background of a cancer predisposition disorder 
called Li-Fraumeni syndrome [12] that negatively influences 
risk of developing certain tumors, such as breast carcinomas, 
soft tissues sarcomas, brain tumors, adrenal gland tumors, and 
bones sarcomas [13–15]. A lifetime cancer risk of individuals 
with germline mutations in TP53 gene increases for breast 
cancer from 12 to 28%, soft tissues sarcoma from less than 1 
to 14%, brain tumors from less than 1 to 13%, adrenal gland 
cancer from 3 to 11%, and bones sarcomas from less than 1 
to 8% compared to a lifetime cancer risk of general popula-
tion [16]. Based on data from the COSMIC v96 catalogue 
[17, 18], the mutations in TP53 gene were detected in approx. 
33% of almost thirty thousand cancer samples that were tested 
across many independent studies. The most frequent type of 
mutation is a missense substitution that leads to the change of 
corresponding amino acid [9]. The six most frequent and well-
characterized mutations occur in amino acids R175, Y220, 
G245, R248, R273, and R282 [19].

BRCA1 and BRCA2 genes are tumor suppressor genes 
that code multi-domain proteins of same names. Both par-
ticipate in maintenance of DNA integrity [20]. Pathogenic 
germline mutations in BRCA1 and BRCA2 genes contribute 
to the development of familial/hereditary breast and ovar-
ian cancer [21–23]. A lifetime cancer risk of individuals 
with germline mutations in BRCA1 (as compared to general 
population) increases for breast cancer from 12% to 70–80%, 
while in case of BRCA2 mutations up to 50–60%. Regarding 
ovarian cancer, this risk increases from 1.37 to 50% in case 
of BRCA1 mutations and to 30% in case of BRCA2 muta-
tions [20]. Based on data from the COSMIC v96 catalogue 
[17, 18], mutations in BRCA1 gene were detected in almost 
7% of samples, predominantly comprising point mutations 
(approx. 75%), and BRCA2 mutations in 1.75% of tested sam-
ples, again comprising mostly point mutations (approx. 80%).

Somatic mutations

The most common cause of a cancer is the presence of 
somatic mutation, giving rise to so-called sporadic cancer. 
Mutations appear quite frequently, and the most common 
well-known factors include smoking, exposition to ultravio-
let radiation, oncoviral infections, and age. More than one 
hundred genes have been identified that may promote or con-
trol carcinogenicity when altered by intragenic mutations. 
Most tumors contain from two to eight of these “driver” 
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mutations. The first mutation that gives a normal epithe-
lial cell a growth advantage is called “gatekeeping.” For 
instance, in colon tumors, this is usually a mutation in the 
APC gene [24], followed by mutations that allow cell pro-
liferation, such as in the KRAS gene [25], and by a clonal 
expansion of cells and other mutations in genes such as 
TP53, PIK3CA, or SMAD4, which lead to malignant trans-
formation of the tumor and its metastasis [26].

In addition to “driver” mutations, there are also pas-
senger mutations which usually do not give cells any 
selective advantage, and their number often correlates 
with age [27]. It was reported that most somatic muta-
tions are single base substitutions (95%), of which 90.7% 
lead to missense changes, 7.6% to nonsense changes, and 
1.7% affect splice sites or untranslated regions around 
the start or stop codon [28]. In general, the genes most 
frequently involved in the development of cancer fall into 

three broad areas: tumor suppressor genes (e.g., TP53, 
BRCA2, APC, PTEN), oncogenes (e.g., Ras family, EGFR 
family, myc family, PIK3CA) and DNA repair genes (e.g., 
BRCA1, BRCA 2, MMR genes). According to Vogelstein 
et al., all known driver genes can be classified into sign-
aling pathways that are involved in three main biological 
processes: cell survival, cell fate, and genome mainte-
nance; their examples are shown in Fig. 1 [28].

APC is a tumor suppressor gene that can be deregulated 
in both germinal and somatic cells. The APC gene encodes 
a 310 kDa protein APC (adenomatous polyposis coli), a 
negative regulator of Wnt/β-catenin signaling, that controls 
β-catenin concentrations and interacts with E-cadherin [29]. 
APC germline mutations are associated with familial adeno-
matous polyposis (FAP), which often leads to the develop-
ment of colorectal cancer [30], and somatic mutations of 
APC are present in up to 80% of sporadic colorectal cancers 

Fig. 1  Simplified signaling pathways where point mutations in associated 
driver genes are often connected to carcinogenesis. (Left) Point mutations 
in TP53 lead to malfunctioning p53 protein, disrupting G2/M, and G1 cell 
cycle checkpoints or DNA repair processes. (Middle) Point mutations in 
KRAS or BRAF genes may lead to constant activation of Ras or Raf onco-

proteins, promoting cell growth or migration. (Right) Point mutations in 
APC gene block its tumor suppressor role in β-catenin destruction, allow-
ing cell proliferation or metastasis. Created with BioRe nder. com
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[31]. APC mutations, most of which are concentrated in exon 
15, generally do not cause loss of the entire protein, but up 
to 90% of mutations generate premature stop codons and 
result in stable truncated gene products that can lose original 
functions and gain new ones [32].

KRAS gene is one of the most studied oncogenes. It 
encodes the KRAS protein that belongs to the Ras family 
of small GTPases and is one of the most frequently mutated 
oncogenes in human tumors (20–30%), occurring in up to 
90% of pancreatic cancers [33] and 45% of colorectal can-
cers [31]. Oncogenic mutations lead to constant activation 
of the KRAS protein and thus affect cell proliferation and 
viability, autophagy, or tumor stroma (by activating fibro-
blasts and recruiting various inflammatory cells) and also 
initiate epithelial-mesenchymal transition, thus supporting 
migration and invasion of tumor cells [33]. Most activating 
mutations are found in codons 12 and 13 of exon 2 (80% 
are G12D, G12V, G12A, G12C, and G13D in amino acid 
notation or G35A, G35T, G35C, G34T, and G38A in nucleo-
tide notation, respectively) [34]. Clinical data indicate that 
mutations in KRAS codon 12 or 13 are the main predictive 
biomarkers of resistance to anti-EGFR therapy in patients 
with metastatic colorectal cancer [35].

EGFR gene encodes a 170 kDa transmembrane glyco-
protein that belongs to the ErbB family of transmembrane 
receptor tyrosine kinases. Ligand binding to the cell sur-
face induces EGFR dimerization, which results in EGFR 
tyrosine kinase activation and trans/autophosphorylation of 
the receptor. Activated EGFR receptors (homodimers and 
heterodimers) form signaling complexes with many proteins 
and initiate the activation of various signaling pathways, 
including Ras/ERK, PI3K/Akt, PLC-γ1, Src, and STAT 
[36]. Deregulation of the EGFR signaling cascade, either 
due to overexpression or constitutively activating mutations, 
occurs in many types of cancer (breast, lung, colorectal 
and esophageal cancer, head and neck cancer, glioma and 
glioblastoma) [37]. Alterations of the EGFR gene are very 
diverse and include amplifications, deletions, insertions, sin-
gle nucleotide polymorphisms, methylations or copy num-
ber variations [38]. For example, EGFR plays an important 
role in the pathogenesis of lung cancer, and EGFR kinase 
domain mutations occur in 10–40% of samples. The most 
common EGFR activating mutations in non-small cell lung 
cancer include deletions in exon 19 (amino acids 747–750, 
comprising 45% of all EGFR mutations), exon 21 L858R 
point mutations (40%), and in-frame insertions in exon 20 
(5–10%).

BRAF gene encodes a serine/tyrosine kinase belonging to 
the Raf protein family, where B-Raf (v-RAF murine sarcoma 
viral oncogene homolog B; B-type RAF kinase) is the most 
efficient activator of MEK and is also the most frequently 
mutated [39]. More than 90% of activating BRAF mutations 
constitute only a single V600E substitution mutation where 

thymine is substituted by adenine at the position 1799. This 
alteration has been identified in up to 7% of human cancers, 
mainly in melanoma (50%), metastatic colorectal cancer 
(10%), thyroid papillary cancer (50%), and non-small cell 
lung cancer (3%) [40]. The V600E substitution leads to a 
constitutive activation of MAPK signaling pathway. BRAF 
mutations are associated with a poor prognosis in metastatic 
colorectal tumors, and mortality is almost threefold com-
pared to patients without BRAF mutation [41]. Since both 
BRAF and KRAS act in the EGFR signaling pathway, dual 
mutations of both proteins are rarely seen in tumors [42].

Standard methods of detection 
and commercial kits

Due to an importance of SNVs both in physiological and 
pathological processes, many techniques were developed for 
their analysis. Below, we describe their basic principles and 
list main advantages and disadvantages.

Next‑generation sequencing

As we mentioned in the “Introduction”, NGS as a method 
of choice is a highly precise, high-throughput screening 
tool for parallel analysis of hundreds of SNVs. Advantages 
include cheap design, high sensitivity, large amount of gen-
erated data, and possibility to discover novel variants. Its 
disadvantage over Sanger’s sequencing is a time-consuming 
and less effective analysis of low number of targets and 
requirement for large data storage. Commonly used NGS 
platform for genomic profiling that includes also point 
mutation analysis is Illumina sequencing, using sequence 
coverage of 30–40 × [43]. This platform uses sequencing-
by-synthesis approach and bridge amplification. The DNA 
fragments are modified with adapters at their terminal 
ends. During the bridge PCR, DNA strand hybridizes to 
the adapters and forms a bridge at the bottom of the reac-
tion chamber. Then, a complementary strand is synthesized. 
This process is repeated until several thousand copies of the 
DNA fragments are made [44]. The SNV analysis is per-
formed after Illumina sequencing using different software 
programs, for example, MiSeq Reporter Software (Illumina) 
[45] or SeqNext Software (JSI Medical Systems). The dis-
advantage of this technology is the inability to distinguish 
repeating regions in the genome, such as trinucleotide 
repeats, which are found in many disorders. Other NGS 
platforms include Ion Torrent (Thermo Fisher), which gen-
erates thousands of reads detecting a release of hydrogen 
ion during sequencing, and  4th generation sequencing plat-
forms, such as PacBio Sequencing and/or Oxford Nanopore 
Sequencing, which both provide high amount of long reads.
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Protein‑assisted methods

PCR products can be characterized by different banding 
patterns in a technique called restriction fragment length 
polymorphism (RFLP). This method involves specific 
enzymatic restriction and staining of the amplicons with 
dye. Then, the digested amplicons are separated by size 
with gel electrophoresis. RFLP is relatively simple but 
there is a possibility of some sequences to go undetected. 
The reason for this is a limited number of restriction sites 
that are available. There is also a limitation when several 
SNPs are targeted at the same time, which can be solved 
by using two different restriction enzymes in one reaction 
[46, 47]. When combined with PCR, it can be a valuable 
technique for genotyping analyses, species identification, 
and determination of intraspecies variation [47, 48].

MutS proteins are increasingly used for the detection 
of SNVs because of their ability to discriminate mismatch 
base pairs in DNA repair processes. These proteins recog-
nize the damaged DNA and initiate repair process. They can 
be found both in prokaryotes and eukaryotes and recognize 
the base–base mismatch or small loops in base pairs. For 
example, MutSα was shown to recognize single-base mis-
matches and is mainly responsible for their reparation. Spe-
cific domains of this protein encircle the mismatched DNA 
while inducing conformational changes [49]. The binding 
occurs due to a higher affinity for mismatched base pairs. 
This binding can be detected by using fluorescent MutS 
(labeled with fluorescent dye) or biotinylated tag [50].

Methods based on melting differences

DNA separation can be achieved by many techniques. The 
golden standard for many laboratories is denaturing gradi-
ent gel electrophoresis (DGGE), separating DNA fragments 
of the same size and different melting points. The principle 
lies in the detection of mutations based on the separation 
of homoduplexes (fully complementary strands) and het-
eroduplexes (harboring a mismatch) in gradient gel. Het-
eroduplexes due to their incomplete pairing and sequence 
mismatches have reduced stability when exposed to denatur-
ation. Denaturation reduces mobility, resulting in an effec-
tive separation of homo/heteroduplexes, which can be seen 
as different peaks in electrophoretograms [51]. The down-
side of this technology is poorer mutation detection in GC 
rich segments; therefore, usefulness depends on the DNA 
fragment sequence [52]. Connecting DGGE with capillaries 
or microchips would increase the sensitivity and specificity 
of the analysis, making it a low-cost and simple-executed 
detection method.

HRM (high-resolution melting) is a powerful technique 
suitable to differentiate SNVs by making use of the anneal-
ing and melting properties of DNA. DNA sequences are 

analyzed by monitoring the change in fluorescence of the 
DNA binding dye. When increasing the temperature to the 
melting point, dsDNA separates into single strands, i.e., is 
melted. HRM can detect small sequence variations, such as 
single base pair differences, due to the change in melting 
profiles of the analyzed sequences [53]. When combined 
with PCR methods, the dye is added prior or post to the 
amplification reaction, and the products are then exposed to 
rapid melting analysis [50, 54].

The advantages of HRM in contrast to other melting tech-
niques are a fast analysis of large amounts of PCR products, 
as well as simplicity. This undoubtedly proved its usefulness 
in clinical laboratory applications [55]. On the other hand, 
this method appears to have a low ability to discriminate 
between sequences that show only a subtle variation in their 
melting profiles. This could be a challenge in neutral base-
pair differences (genomic alterations that do not change the 
final amount of genetic material, i.e., when the GC con-
tent remains the same) because of the slight changes in  Tm 
(≤ 0.4 °C) [50].

Methods based on PCR

PCR is one of the most widely used techniques in molecular 
biology and as such has many variations suited for certain 
needs, including SNV detection. In that case, however, SNV 
detection requires modified protocols and the use of specific 
primers or probes that are fully complementary to the target 
DNA (either wild-type or mutated).

Real-time PCR provides accurate detection of PCR ampli-
fication and is commonly used in most laboratories. Real-
time PCR monitors the point in the reaction cycle where the 
target DNA amplification is detected. This happens by using 
different fluorescent reporter molecules, such as fluorescent 
dyes (e.g., SYBR Green), a fluorescein-labeled oligonu-
cleotides, or a fluorescent TaqMan probes. If the probe, for 
example, is bound to the desired DNA sequence and then 
degraded, fluorescence signal is emitted [56, 57]. Compared 
to the end-point PCR, quantification steps in real-time PCR 
are simplified into a continuous measurement of the fluo-
rescence intensity of the PCR product after each cycle [57].

ARMS-PCR (amplification refractory multiplication 
system PCR) is an alteration of PCR with high accuracy, 
widely used in genetic diagnostic analyses. It has higher 
efficiency due to precisely designed allele-specific prim-
ers, which are complementary to a target DNA but with 
added mismatch base at the 3′ end. This modification 
results in a match of one primer to a wild-type allele and 
the other to the mutant allele, hence allowing a preferen-
tial amplification and detection of SNV sequences [50, 
58]. The main benefit of ARMS-PCR is a fast detection 
of mutations or SNVs. Furthermore, it can be used for 
analyzing mutations where the restriction enzyme is 
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not available and thus cannot be detected by RFLP. The 
shortcoming of this method is the efficiency of ampli-
fication of desired sequences because of various reac-
tion conditions that may differ for each fragment. The 
risk of primer-dimer formation is also very high. All this 
combined, with the limitation in multiplexing capability, 
the cost of instruments (e.g., thermal cyclers), and the 
complicated design of suitable primers, makes its use in 
point-of-care applications rather limited. Nowadays, other 
techniques offer a solution for some of ARMS-PCR dis-
advantages [58, 59], one of them being isothermal ampli-
fication techniques (IATs) that are described in greater 
detail in a subsection “IAT-based EC biosensors”.

Digital PCR (dPCR) enables direct clonal amplifi-
cation and subsequent quantification of nucleic acids 
and can be used, e.g., for SNVs detection, either as a 
chip-based (cdPCR) or droplet-based systems (ddPCR). 
cdPCR is based on microfluidics, and this proprietary 
technology enables consistent and automated compart-
mentalization of a sample into microchambers, where 
an absolute quantification takes place. On the other 
hand, ddPCR is based on water and oil emulsion droplet 
technology. The amplification takes place within each 
droplet, discriminating droplets containing at least one 
target copy (positive) that show increased fluorescence 
in contrast to the negative ones. The probes are labeled 
with fluorescent dye, one binding to the wild-type allele 
and the other to the mutant allele. If the DNA target 
sequence is present in the droplet, amplification occurs, 
and the reporter emits a fluorescent signal. As a result, 
absolute quantification of the target DNA is obtained. 
By improved separation of droplet populations due to the 
changes in amplicon length, Miotke et al. were able to 
detect SNVs in BRAF gene from cell lines and patients 
with colorectal cancer. Authors used single-color ddPCR 
that involves single fluorescent dye, giving rise to posi-
tive and negative populations based on the mutation sta-
tus [60]. The limitations in ddPCR are the cost as well as 
limited range for detection. Higher concentrations lead to 
loss of linearity [61]. Despite this, the advantage of abso-
lute quantification makes this method useful in detecting 
mutations of numerous genes.

LNA/PNA probes

To improve mismatch recognition, synthetic DNA analogs 
have been developed that possess altered backbone structure 
but same base pairing abilities. Most common are locked 
nucleic acids (LNA) and peptide nucleic acids (PNA), both 
having remarkably high binding affinities towards com-
plementary DNA sequences and thus improved mismatch 
recognition abilities, making them ideal candidates when 
analyzing DNA point mutations, especially in techniques 
relying on melting temperature differences (such as HRM), 
as well as in PCR (Fig. 2). 

LNA is a modified RNA nucleotide where 2′-O and 4′-C 
atoms of the ribose are connected by a methylene bridge. This 
is the reason for less flexible ring which results in enhanced 
hybridization stability. If some of the nucleotides in DNA oli-
gomers are replaced by these locked forms,  Tm may increase 
by 3–5 °C [50]. The short probes can distinguish mismatch 
target sequences because of the difference in match and mis-
match complementary sequences when it comes to the ther-
mal stability. This is crucial for SNV detection, where these 
highly specific probes are mostly used. However, these probes 
are quite expensive and often form secondary structures, mak-
ing the design of LNA probes a challenging task [50]. PNA 
consists of a polyamide (poly-N-(2-aminoethyl)glycine) back-
bone, resembling negatively charged phosphate backbone of 
regular nucleic acids, with an exception of being uncharged. 
The neutral PNA increases thermal stability in PNA-DNA 
base pairs. They are more single-base specific, making them 
ideal for SNVs targeting.  Tm can be lowered by 8–20 °C if a 
single-base mismatch is present near the PNA-DNA or PNA-
RNA duplex [50, 62]. For example, Sun et al. showed that 
16-nt long wild-type PNA probe had  Tm around 70 °C in a 
complex with fully complementary wild-type RNA, while in a 
complex with mismatched RNA, the  Tm was around 10–20 °C 
lower [63]. PNAs are often used in a process called PNA 
clamping where amplification of wild-type DNA sequences 
is greatly reduced during PCR. This leads to a lower noise 
and better sensitivity when detecting mutated DNA sequence. 
A drawback of PNA clamping is a possible amplification of 
PNA probes themselves, which can be solved by using high-
fidelity DNA polymerases [50].

Fig. 2  Molecular structures of 
LNA and PNA. Structures of 
DNA and RNA are shown for 
comparison. Reprinted with 
permission from [50]. Copy-
right (2019) American Chemi-
cal Society
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Commercial kits

There are many commercial kits available, mostly based 
on NGS or PCR using different strategies with different 
performance. Some studies provided kit comparisons, for 
instance, Morrison et al. who compared single-gene tests 
[64] or Zhao et al. who compared diagnostic tests for 
BRAF mutation [65]. They allow for a simple and effec-
tive way to analyze SNVs and to detect many mutations 
in parallel. Examples of such kits are given in Table 1.

Electrochemical biosensors: advantages 
and challenges

Despite a huge progress in above-mentioned meth-
ods in recent years, a gap remains in achieving rapid, 
inexpensive, and easy-to-use diagnostic tools fulfilling 
a needs of personalized medicine at the point-of-care. 
As we mentioned in the Introduction, EC methods are 
capable of achieving these goals, and many authors 
have already developed interesting EC-based schemes 
targeting most frequent DNA point mutations (listed in 
Table 2). These schemes usually involve either PCR or 
isothermal amplification techniques (IATs), which rap-
idly amplify DNA at constant temperature without a need 
for thermal cycler [103, 104]. Moreover, some assays 
introduced enzyme-free strategies whereby high sensitiv-
ity was achieved in a different way than by amplifying 
DNA using polymerases.

PCR‑based EC biosensors

Usually, PCR is a first choice when analyzing point mutations 
in DNA. EC assays often involve PCR amplification of the 
DNA fragment where the mutation site is present, followed 
by a specific capture of the amplicons by a mutation-specific 
probe. This was shown, for instance, for point mutations in 
TP53 [75], KRAS [74], EGFR [69, 70, 105], or BRCA1 genes 
[68]. For example, Xu et al. reported EC biosensor that analyzes 
in-frame deletions in exon 19 of an EGFR gene [69]. Authors 
employed λ-exonuclease to digest PCR products in order to 
generate single-stranded targets for improved hybridization 
efficiency. They showed feasibility of the assay by testing four 
patient samples with non-small cell lung carcinoma, and the 
results were in concordance with direct sequencing method. 
For its potential application in clinical settings, larger cohort of 
patients along with healthy individuals would need to be tested.

Pingarron’s group developed an assay using disposable 
screen-printed carbon electrodes to distinguish R175H TP53 
mutation from a wild type (wt) [79]. The electrodes were func-
tionalized with reduced graphene oxide-carboxymethylcel-
lulose hybrid nanomaterial and hairpin capture probes com-
plementary to the wt sequence; hence, mutated sequence did 
not hybridize to the probe, yielding signals similar to blank. 
Authors analyzed endogenous TP53 status in MCF-10A, MCF-
7, and SK-BR-3 breast cancer cell lines by targeting cDNA 
obtained from total RNA after cDNA synthesis, albeit with-
out further PCR amplification of the cDNA. This interesting 
approach gives a rapid YES/NO information whether the gene 
has a wt sequence or not, and it would be interesting to see 
whether other mutations are distinguishable as well.

Table 1  List of some commercially available kits and assays for SNV analysis

Commercial kit Mutations detected Instrumentation

THxIDTM- BRAF1 (bioMérieux, Inc.) V600E, V600K Real-time PCR, ABI7500 FastDx
therascreen BRAF Pyro Kit5 (QIAGEN) Codon 600: V600A, V600E, V600G, V600M, 

Codons 464–469: G464E, G464V, G466E, 
G466V, G469A, G469E, G469V

Pyrosequencing, Pyromark Q24 System

INFINITI BRAF Assay (AutoGenomics, Inc.) BRAF V600A, V600D, V600E, V600KRM Multiplex PCR
ddPCR™ KRAS G12/G13 Screening Kit 

(BioRad)
G12A, G12C, G12D, G12R, G12S, G12V, 

G13D
ddPCR

ddPCR BRAF V600 Screening Kit (BioRad) V600E, V600K, V600R ddPCR
cobas® EGFR Mutation Test v2 (Roche) 42 mutations in exons 18, 19, 20 and 21 of the 

EGFR gene including the T790M mutation
PCR

BRAF 600/601 StripAssay® (BioVendor LM) V600A, V600D, V600E, V600E, V600G, 
V600K, V600M, V600R, V601E

PCR, reverse-hybridization

Oncomine BRCA Research Assay (Thermo 
Fisher Scientific)

SNVs, InDels, large exon/gene deletions/
duplications

Ion Torrent next generation sequencing system

TruSight Oncology 500 and TruSight Oncol-
ogy 500 High-Throughput (Illumina)

BRAF, BRCA1, BRCA2, PTEN, EGFR, 
PIK3CA, TP53 and many others

NextSeq 500, NextSeq 550, or NextSeq 550Dx 
(research mode) Systems
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Not all assays utilized mutation-specific probes. For 
instance, an interesting approach was developed by Hora-
kova et al. for analysis of TP53 mutations [76]. Instead of 
DNA, they targeted TP53 mRNAs in cell lines harboring 
R273H, R273C or G245S hot spot mutations. They reversely 
transcribed RNA into cDNA and amplified it with PCR; 
PCR amplicons then served as templates for primer exten-
sion reaction, whereby the polymerase incorporated bioti-
nylated dCTPs only when the primer hybridized with a wt 
sequence (carrying G in a mutation site). If a mismatch was 
present, tagged nucleotides were not attached, yielding low 
voltammetric signals (Fig. 3). It would be interesting to see, 
however, how this approach works in clinical settings. Later, 
Situ et al. used ARMS-PCR, where one of the primers was 
complementary to mutated sequence, leading to preferential 
amplification of mutant alleles which carried biotin tags, 
detectable via streptavidin/alkaline phosphatase reporter sys-
tem [66]. The assay was applied to colorectal cancer cells to 
analyze V600E BRAF mutation, detecting as low as 0.8% of 
mutant alleles in excess of the wt background.

IAT‑based EC biosensors

IATs are highly sensitive and rapid enzymatic techniques 
that amplify both DNA and RNA at constant temperatures 
(usually from room temperature up to 65 °C). In contrast 
to PCR, they may be performed in a thermoblock (or even 
at the benchtop) and often tolerate various PCR inhibitors. 
On the other hand, similarly to PCR a nonspecific ampli-
fication from contaminated sample remains an issue, and 
great precautions must be taken when handling DNA or 
RNA samples. Most common IATs include rolling circle 
amplification (RCA), loop-mediated isothermal amplifica-
tion (LAMP), recombinase polymerase amplification (RPA), 
or strand displacement amplification (SDA) [103, 104].

RCA  is a common IAT choice when dealing with point 
mutations. During RCA, target DNA or RNA hybridizes to 
both ends of a specially designed padlock probe carrying 
a phosphate modification at its 5′-end. Upon hybridization, 
adjacent ends of the padlock probe are covalently joined 
in a process of ligation, yielding circular DNA that serves 
as a template for subsequent RCA. The first generation of 
RCA was a linear type utilizing special DNA polymerase 
(Phi29, Bst, or Vent exo-DNA) or RNA polymerase (T7 
RNA polymerase) and a single primer [106, 107]. Later on, 
hyperbranched RCA was developed by introducing second 
primer to produce hyperbranched amplicons [106, 108]. 
Further modifications include nicked RCA that produces 
ultra-high forest like amplicons [108] or circle-to-circle 
RCA, all of which led to great improvement in sensitivity 
[109]. Since RCA is especially useful for short targets, it 
is commonly applied for ultrasensitive detection of micro-
RNAs [110–112]. For point mutations, it is advisable to 

design the padlock probe in such a way that its 3′-terminal 
base faces the mismatched base in the target, preventing 
ligation to occur [86, 113]. Some RCA-based EC assays 
targeting point mutations are listed in Table 2. For instance, 
Wang et al. [89] developed a dual amplified electrochemical 
assay to detect mutant TP53 gene. Authors employed a sig-
nal enhancement strategy using the nicking endonuclease-
assisted target recycling and RCA to produce G-quadruplex/
hemin complexes measurable at gold electrode. The assay 
was able to detect spiked mutant TP53 gene sequence in 
10x diluted human serum, which makes it potentially use-
ful for clinical applications, but it first needs to be tested on 

Fig. 3  A Incorporation of biotinylated nucleotides  (dCbioTP/dUbioTP) 
into DNA using primer extension based on the first free nucleotide in 
the target template following the primer sequence. B Enzyme-linked 
electrochemical assay with magnetic beads (MB) coupled to a conju-
gate of streptavidin with alkaline phosphatase (ALP). The substrate, 
1-naphthyl phosphate, was enzymatically converted into an electro-
active indicator 1-naphthol that was detected by voltammetry at a car-
bon electrode. Reprinted from [76] with permission from Wiley–VCH
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real tumor samples with mutated TP53 to prove its useful-
ness. In another assay, authors combined RCA with MutS 
protein to improve mismatch recognition and with atomic 
transfer radical polymerization (ATRP) reaction to increase 
sensitivity of detecting KRAS point mutation [84]. MutS 
protein bound to the mismatch and interfered with the liga-
tion and subsequent RCA; on the other hand, fully comple-
mentary DNA was ligated, followed by a combined RCA/
ATRP amplification that led to around 1000-fold sensitiv-
ity improvement over conventional RCA (Fig. 4). Again, 
authors only spiked the synthetic oligo into a human serum, 
and thus, it is difficult to evaluate assay feasibility in clini-
cal samples from patients. Actually, the behavior in clinical 
samples can be very different, especially taking into account 
that the long genomic DNA containing analyzed mutation 
would probably need to be digested into shorter fragments 
for more efficient RCA [114–116].

LAMP is an enzymatic IAT that is most effective in a 
temperature range between 55 and 70 °C. It requires 4–6 
primers which makes the reaction highly sequence-specific 
and generates products of variable lengths, ranging from 
hundreds to few thousand bp. LAMP is widely used for path-
ogen analysis not only in a fluorescent or colorimetric for-
mat [117–120], but also in electrochemical assays to detect 
viruses, such as human papillomavirus (HPV) [121–124] 
and hepatitis virus B [125], and bacteria (E. coli, Salmo-
nella, etc.) [126, 127]. Primer design is more complicated 
as compared to PCR, including SNP analysis (Fig. 5), and 
thus not many EC assays used LAMP for point mutation 
detection (Table 2). In fact, most assays were fluorimetric 
or colorimetric, targeting, e.g., mutations in TP53, KRAS, 
BRAF, or EGFR genes [129, 130]. An exception is a work 

by Wang et al. that used a glucometer for analysis of V600E 
BRAF mutation, where the V600E mutation was localized 
within the F loop [80]. LAMP products were discriminated 
using mutation-specific probes immobilized on magnetic 
beads surface that were originally hybridized to invertase-
labeled antisense strands. Since the mutation was designed 
to bind to the toehold domain of the probe, only upon the 
combination of V600E LAMP products and invertase/
probe/magnetic beads conjugates, the toehold initiated 
strand exchange reaction, liberating invertase-tagged strand 
for glucose monitoring. Unfortunately, the assay was tested 
only by spiking into 10% human serum. This step seems 
to be quite common replacement of patient samples, but it 
is not sufficient enough. We highly encourage using either 
clinical samples, or if not available, at least cancer cell lines 
with defined point mutations.

RPA is an IAT quite similar to PCR, as it often employs 
identical forward and reverse primers, but instead of a Taq 
polymerase, it uses combination of three enzymes: recom-
binase, single-stranded DNA-binding protein, and strand-
displacing polymerase. RPA is performed under constant 
temperature, usually between 37 and 42 °C, but it may func-
tion also at the room temperature. An interesting RPA-based 
approach for SNP detection in Myosin Heavy Chain 7 gene 
[131] used solid-phase primer elongation, ferrocene-labeled 
nucleotides, and square wave voltammetry detection from 
fingerprick blood samples. Blood samples were diluted 
in EDTA solution, shortly heated and introduced directly 
into RPA reaction without a need for DNA isolation. This 
assay showed a tremendous potential of RPA coupled to 
electrochemistry for SNP diagnostics from a single drop of 
blood, although it was not focused on cancer. SDA is an IAT 

Fig. 4  Working protocol of a 
modified RCA process using 
MutS proteins for mismatch 
recognition and atomic transfer 
radical polymerization (ATRP) 
for sensitivity enhancement. 
Reprinted from [84] with per-
mission from Elsevier
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combining principles of PCR and RPA. Similarly to RPA, 
SDA is performed under temperature close to 37 °C, but 
there is a need of initial denaturation step (same as in PCR) 
followed by polymerase addition. This technique has been 
used for identification of SNPs in combination with NsbI 
restrictase and coupled to EC measurement. Wang et al. 
developed target-triggered SDA for detection of PIK3CA 
gene mutation with immobilization on surface of gold elec-
trode and sensitive EC measurement of methylene blue 
oxidation, but similarly to many other papers, only spiked 
human serum was used to demonstrate feasibility in clinical 
settings [85]. Entropy-driven strand displacement reaction 
(ESDR) is an enzyme-free reaction based on principles of 
DNAzyme digestion and entropy-driven strand displace-
ment [132]. Innovative strategy used by Chen et al. for 
recognition of EGFR mutation in circulating tumor DNA 
biomarker was presented (Fig. 6), where authors combined 
ESDR with CRISPR/Cas9 guided cleaving system, 3D metal 
nanoflower, and differential pulse voltammetry measurement 
to detect EGFR exon 19 deletion [81].

EC biosensors without enzymatic amplification

Although most papers describe some form of enzymatic 
amplification, several innovative enzyme-free electrochemi-
cal assays, where the amplification occurred in a different 
way, were reported [94, 96, 99]. These papers focused on 
mutations in circulating tumor DNA (ctDNA), which are 
DNA fragments shed from a tumor tissue into a bloodstream, 
enabling non-invasive sampling. In this case, enzyme-free 

amplification assays have attracted attention due to their 
rapid response times and simple reporter systems [133]. For 
instance, Huang et al. developed nest hybridization chain 
reaction for the detection of E545K mutation in PIK3CA 
gene in ctDNA [99]. In that assay, authors introduced three 
different dumbbell-shaped DNA probes that formed a com-
plex DNA nanostructure, which could hybridize to the target 
DNA on the gold electrode surface. Signal was generated via 
biotin-avidin system with the 3 pM limit of detection. Most 
importantly, the assay was directly applied to 72 clinical sam-
ples, including 25 pleural effusion samples from hepatocellu-
lar carcinoma patients, 23 serum samples from breast cancer 
patients, and 24 serums of healthy individuals, showing a 
great potential for ctDNA detection and cancer diagnosis.

We mentioned in a previous subsection that PNA block-
ing can be used to block amplification of a wild-type DNA, 
thus favoring mutated gene sequences to be preferentially 
amplified. Interestingly, PNA clamping can be also used 
without PCR or IAT. In an excellent paper by Das et al., 
authors applied this idea of PNA clamping to develop a 
rapid electrochemical assay that discriminates mutations in 
serum ctDNA, targeting seven most frequent mutations in 
KRAS gene and V600E mutation in BRAF gene [96]. In this 
assay, the authors designed multiple PNA clamps (one for 
each mutation), which served as sequence-selective clamps 
that hybridized to the wild type and other mutations (thus 
blocking them), and allowed only the chosen target mutated 
DNA sequence to remain unhybridized for subsequent 
hybridization with the PNA probe. The assay was tested 
on fourteen serum samples from lung cancer patients (to 

Fig. 5  Scheme of a LAMP-based assay for SNPs analysis. Reprinted from [128] with permission from Elsevier
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screen for KRAS mutation) and on seven serum samples 
from melanoma patients (for BRAF mutation). It could be 
used with unprocessed banked serum from cancer patients 
and produced results that were consistent with the PCR as 
a gold-standard method. With an ultralow detection limit of 
1 fg/µL and 15 min diagnostics time, this assay is a perfect 
demonstration that electrochemistry can be coupled with 
clinical samples in sensitive and rapid format. Later on, 
the same research group introduced combinatorial probes 
for the detection of EGFR and KRAS gene mutations in 
patient serum [94]. Seven combinatorial probes were able 
to detect all of the 40 somatic mutations in the EGFR gene. 

The application of PNA clamping was used to improve the 
specificity by blocking the wild-type sequences in the solu-
tion. The hybridization of mutated sequences to the probe 
on the gold nanostructured microelectrode was detected 
by an ultrasensitive non-enzymatic electrocatalytic sys-
tem composed of [Ru(NH3)6]3+ and [Fe(CN)6]3− (Fig. 7). 
Such approach allowed for a straightforward assay work-
flow, with minimized sample loss, and enabled the analysis 
of small samples. A possible downside of PNA clamping 
remains a limited number of companies that offer PNA 
synthesis, which inevitably leads to a high cost of PNA 
oligos.

Fig. 6  The principle of the 
CRISPR/Cas9-triggered 
entropy-driven strand displace-
ment reaction (ESDR) based 
on a 3D graphene/AuPtPd 
nanoflower biosensor. (HDPC, 
hexadecylpyridinium chloride 
monohydrate; AA, L-ascorbic 
acid; CP, capture probe; GCE, 
glassy carbon electrode). 
Reprinted from [81] with per-
mission from Elsevier
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Various types of nanostructures are becoming popular 
tools when designing EC biosensors. For instance, a work 
by Wang et al. presented EC biosensor whereby intertwined 
three-dimensional DNA nanosheets were created by a cova-
lent ligation of a triggering probe to the thiol-modified cap-
ture probe in a presence of wt sequence of TP53, followed by 
a hybridization chain reaction between two palindromic hair-
pin probes mediated by the triggering probe [100]. Although 
the assay was tested against single mismatches, it was not 
clearly specified which TP53 mutation it targets. In addi-
tion to a commonly used recovery test in a spiked medium, 
authors also detected endogenous TP53 gene extracted 
from breast cancer cell line MCF-7 after asymmetric PCR 
amplification, but no distinction between wt and mutated 
sequence was done in this case. In another work, Liu et al. 
developed an assay to search for a mutation in TP53 gene by 
utilizing DNA-functionalized cadmium-doped metal organic 
framework (Cd-MOF-74) to initiate cascade amplification 
and target gene detection [101]. The detection limit of this 
assay was in a femtomolar range under enzyme-free condi-
tions, but again, only recovery test in spiked human serum 
was conducted.

CRISPR/Cas system is an attractive technique that is 
increasingly used in nucleic acid detection, including highly 
specific sequence recognition with the ability to distinguish 
single-point mutations [134, 135]. The recognized sequence 
is usually cleaved which offers the possibility to use 
reporter-quencher technology with consequent fluorescence 

measurement [136]. CRISPR/Cas system is often used for 
microRNA detection [137] or is coupled to various amplifi-
cation technique such as PCR [71, 72], RPA [82], or ESDR 
(described above) [81]. Compared to optical techniques, EC 
methods are less frequently combined with the CRISPR/
Cas, but this combination has a huge potential that should 
be undoubtedly exploited. For example, Liu et al. prepared a 
method (see Fig. 8) based on CRISPR/Cas12a for detecting 
EGFR L858R mutation (g.2573 T → G) in patients with non-
small cell lung carcinoma (NSCLC) in ctDNA from plasma. 
They used RPA amplification of a mutated target sequence, 
followed by a Cas12a cleaving of the mutated strand. Unmu-
tated (wild-type) amplicons remained uncleaved and were 
bound to a capture probe immobilized on the gold electrode 
surface. In the presence of an uncleaved amplicon, second 
capture probe was introduced that was immobilized on cova-
lent organic frameworks covered with PdAu nanosheets and 
methylene blue to produce EC signal [82]. A very interesting 
study has been reported by Balderston et al. who discrimi-
nated single-point mutations in unamplified genomic DNA 
via CRISPR-associated protein Cas9 immobilized on a gra-
phene field-effect transistor [138]. Although not focused on 
a cancer diagnosis, proposed biosensor could discriminate 
between homozygous and heterozygous unamplified DNA 
samples from patients with sickle cell disease by targeting 
HBB gene. The principle utilized in this work is of great 
interest due to its high specificity; it was shown before 
that within the first few nucleotides in the so-called seed 

Fig. 7  Scheme of an EC assay for SNPs analysis of EGFR gene. Reprinted from [94] with permission from Wiley–VCH
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sequence, the Cas9 is most severely affected by mismatches 
which often results in the dissociation of Cas9 from DNA 
altogether [138]. Moreover, it could be easily extended also 
for DNA point mutations associated with cancer.

Outlook and conclusion

DNA point mutations in driver genes are closely linked to 
a carcinogenesis process. Therefore, their analysis became 
a vital part not only of a genetic screening to assess predis-
position risks, but also of a successful cancer therapy where 
the information on the mutation may serve as a predictive 
biomarker. Many diverse analytical methods were developed 
for SNV detection, each having advantages and disadvan-
tages that we discussed in separate section. Due to common 
drawbacks that these methods possess, especially costly 
instrumentation, long protocols, or need for a skilled person-
nel, biosensors as novel analytical tools have emerged that 
try to address these drawbacks. Electrochemical biosensors 
became a popular choice since they are inexpensive, simple, 
rapid, and easy to miniaturize and as such were successfully 
applied for detection of various cancer-related nucleic acid 
biomarkers [139, 140].

EC assays are considered as highly sensitive, but most 
of them still rely on an enzymatic amplification of DNA 
using either PCR or some isothermal alternative. Hence, 
disadvantages associated with amplification reactions, 

especially high risk of contamination, are common for both 
standard methods and biosensors, and can be avoided only 
in amplification-free format (possibly leading to lower sen-
sitivities). This should be taken into account when designing 
such biosensor. Although most EC biosensors now focus on 
achieving ultralow detection limits, we believe that when 
designing biosensors analyzing DNA point mutations, the 
limit of detection does not have to be as low as possible, 
but enough to detect DNA levels in clinical samples. It is 
more important to focus on reaching very good selectivity 
enabling reliable discrimination of a given point mutation.

A great obstacle for EC biosensors seems to be clini-
cal sample analysis. Indeed, majority of studies do not 
demonstrate biosensor feasibility in samples from cancer 
patients (or at least in cancer cell lines). Instead, spiking of 
a human serum or other well-controlled media with short 
synthetic oligos to mimic real settings is a preferred option. 
Its usefulness is, however, questionable, since behavior 
of endogenous DNA molecules (either genomic DNA or 
ctDNA) may greatly differ to that of stable, short, puri-
fied DNA oligos. A reason for spiking is perhaps a lack 
of access to high-quality biospecimen successfully pass-
ing pre-analytical procedures such as those used in sam-
ple collection, processing, storage, and shipping that can 
significantly influence nucleic acid integrity. On the other 
hand, there are a number of academic and/or commercial 
biobanks either independent or associated into various 
organizations focused on biobanking such as a European 

Fig. 8  Principle of electrochem-
ical biosensor for detection of 
EGFR L858R in ctDNA based 
on CRISPR/Cas12a system. 
Reprinted from [82] with per-
mission from Elsevier

1079Electrochemical biosensors for analysis of DNA point mutations in cancer research



1 3

research infrastructure for biobanking (BBMRI-ERIC), 
International Society for Biological and Environmen-
tal Repositories (ISBER), or European, Middle Eastern, 
or African Society for Biopreservation and Biobanking 
(ESBB) offering human samples and associated data in 
standardized quality for research purposes. For example, 
the Directory (https:// direc tory. bbmri- eric. eu/) provides 
a central listing of biobanks and their collections in the 
BBMRI-ERIC member states, and for researchers, it offers 
a means of finding samples and data they can subsequently 
request. Indeed, the access to human clinical samples does 
not represent an insurmountable obstacle, as demonstrated 
by EC works that successfully employed their assays into 
patient samples with satisfactory results [69, 70, 73, 75, 
78, 141]. It would be highly beneficial if some EC strategy 
is applied to a larger cohort of patients (tens or even hun-
dreds) and compared with a standard method of detection 
with rigorous statistics; this feature of EC assays is cur-
rently in its infancy [99, 124, 142], but would increase an 
impact of electrochemistry in clinical diagnostics.

Furthermore, most papers report analysis of only a single 
point mutation that is very frequently mutated (KRAS, BRAF, 
TP53, etc.). In some cases, this is sufficient and reasonable; on 
the other hand, a panel of SNVs where mutations (including 
rare ones) are analyzed in parallel could have much stronger 
value, and electrode chips and arrays with multiple electrodes 
could be easily adjusted for this purpose [143, 144].

Taken together, EC biosensors represent potentially 
useful alternatives in DNA point mutation analysis, and 
many of them have already shown impressive limits of 
detection or selectivity towards particular SNVs. We 
believe that if they are increasingly tested in real clinical 
samples and strictly compared to golden standards, they 
could eventually outcompete more expensive and labori-
ous alternatives and become a reasonable choice for decen-
tralized medicine at the point-of-care.
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