
Available

FM
Evaluation
Artifact

FM
Evaluation
Artifact

Reproducible

Can we Communicate?
Using Dynamic Logic to Verify Team Automata

(Extended Version)

Maurice H. ter Beek1(�) , Guillermina Cledou2 , Rolf Hennicker3, and
José Proença4(�)

1 ISTI–CNR, Pisa, Italy, maurice.terbeek@isti.cnr.it
2 INESC TEC & Univ. Minho, Portugal, mgc@inesctec.pt

3 Ludwig-Maximilians-Universität München, Germany
4 Polytechnic Institute of Porto, Portugal, pro@isep.ipp.pt

Abstract. Team automata describe networks of automata with input
and output actions, extended with synchronisation policies guiding how
many interacting components can synchronise on a shared input/output
action. Given such a team automaton, we can reason over communication
properties such as receptiveness (sent messages must be received) and re-
sponsiveness (pending receives must be satisfied). Previous work focused
on how to identify these communication properties. However, automati-
cally verifying these properties is non-trivial, as it may involve traversing
networks of interacting automata with large state spaces. This paper in-
vestigates (1) how to characterise communication properties for team
automata (and subsumed models) using test-free propositional dynamic
logic, and (2) how to use this characterisation to verify communication
properties by model checking. A prototype tool supports the theory, us-
ing a transformation to interact with the mCRL2 tool for model checking.

1 Introduction

In automata-based models of Systems of Systems (SoS) that communicate via
shared actions, it is of paramount importance to guarantee safe communication,
i.e. absence of failures such as message loss (typically of output not received as
input, thus violating so called receptiveness) or indefinite waiting (typically for
input that never arrives, thus violating so called responsiveness). This requires
knowledge of the adopted communication policy that defines when and which
actions are executed (synchronously) and by how many system components.
Team automata, originally introduced as an extension of I/O automata [14,
38] in the context of computer supported cooperative work (CSCW) to model
groupware systems [29], were formalised as a theoretical framework for studying
synchronisation policies in system models [11, 13]. They proved useful also for
capturing access control and other security protocols [10,16]. Their distinguishing
feature is the variety of synchronisation policies which, in principle, allow any
number of interacting (component) automata to participate in the synchronised
execution of a shared communicating action, either as a sender or as a receiver.

https://doi.org/10.5281/zenodo.7338440
http://orcid.org/0000-0002-2930-6367
http://orcid.org/0000-0003-0006-6440
http://orcid.org/0000-0003-0971-8919

0 2

1start? run

finish!

(a) AR1

0 2

1start? run

finish!

(b) AR2

0 1

2

start !

finish?finish?

(c) ACtrl

Fig. 1: The three component automata constituting the Race system

Emblematic synchronisation types were defined to systematise the synchroni-
sation policies realisable in team automata [8] (e.g. multi-cast, broadcast, master-
worker) in terms of explicit intervals for the number of sending and receiving
components that can participate in a synchronisation. In extended team au-
tomata (ETA) [12], synchronisation type specifications (STS) separately assign
a synchronisation type to each communicating action. STS uniquely determine
a team and induce communication requirements that the team should satisfy.
Generic procedures to derive requirements for receptiveness and responsiveness
for each synchronisation type were developed, and communication-safety of ETA
was defined in terms of compliance with such requirements. A team automaton
is called compliant with a set of communication requirements if in each of its
reachable states, the requirements are met (i.e. communication is safe); if the re-
quired communication cannot occur immediately, but only after some arbitrary
other actions have been executed, the team automaton is called weakly compliant
(akin to weak compatibility [7, 33] or agreement of lazy request actions [5]).

Motivating Example We illustrate the state-of-the-art as schematised in the
upper row of Fig. 2. Consider a system (S), called Race, to model competitions of
two runner components R1 and R2 under the control of a third component Ctrl.
The behaviour of the components is modelled by the component automata (CA)
AR1,AR2, and ACtrl in Fig. 1. Both runners have the same behaviour: AR1=AR2.
Each runner starts in the initial state 0, indicated by), in which she is able to
receive a start signal (input?). Upon reception, she performs the (internal) action
run and when she reaches the finish line she sends the finish signal (output!),
after which she is ready for another competition. The controller’s task is to start
the runners and receive their finish signals. We want to combine these CA in
a team such that the controller starts both runners at once, but each runner
separately sends her finish signal to the controller upon reaching the finish line.

To this aim, ETA use synchronisation type specifications (st) to determine the
number of senders and receivers allowed to participate in a communication, thus
restricting the behaviour of system Race (given by a labelled transition system
lts(S) which contains arbitrary synchronisations of shared actions of the three
CA). We specify ([1, 1], [2, 2]) for action start and ([1, 1], [1, 1]) for finish such
that start occurs only as a synchronisation involving exactly one component for
which it is an output action and exactly two for which it is an input action,
while finish occurs in a one-to-one fashion.

In the team’s initial state (0, 0, 0), the controller is in its local state 0 where it
can only make progress if its start signal is received by a runner. This induces a
receptiveness requirement. The ETA eta(S, st) generated over S by the STS st is

2

§2 §3

§4

CA
A

Sys
S=(An)n∈N

ETA
eta(S, st) ⊆ lts(S)

Com. Props.:
Semantically

Process
ε(A)

Parallel Processes
P=allow(sync, ε(A1)∥ . . . ∥ε(An))

Logic formula
ε(cpFrm)

|=mCRL2

Com. Props. Logically

compose st:STS

sync:

MultiActs

ε εε

Thm. 1,2

ε

Fig. 2: Overview of this paper; the top row concerns previous work [8, 12]

compliant with this requirement if other team component(s) synchronise by re-
ceiving start as input in accordance with the synchronisation type of start , which
is the case. There are other receptiveness and also responsiveness requirements.
Requirements and compliance of ETA are called weak if the other component(s)
may perform intermediate actions before the requirement is satisfied.

Related Work and Challenges Communication safety (mainly receptiveness)
and related notions of compatibility have been widely studied to (semantically)
characterise communication properties [2, 8, 9, 12, 19, 20, 22–25, 27, 28, 34–37], in
particular for automata-based system models, but typically limited to pairs of
automata or networks with binary, peer-to-peer communication [6,22,27,34–37].
An extension to multi-component communications was first investigated in [23]
and then in [8, 9, 12], where the notion of responsiveness was introduced. Only
a few approaches come with tool support [1, 3, 7, 9, 17, 26], based on algorithms
following the semantic compatibility definitions. The purely semantic nature of
communication properties is a serious burden in practice, making it challenging
to prove properties in concrete cases: one has to go through all reachable states
of a team automaton and check compliance for all requirements at each state.

Contribution In this paper, we pursue a different approach by providing a logi-
cal characterisation of communication properties, which we believe is interesting
by itself, and which has the advantage that it can be checked using available
model-checking tools. Our results complete Fig. 2 with three main contributions.

First, after presenting the necessary background on team automata and dy-
namic logic in Sect. 2, we demonstrate in Sect. 3 that (weak) receptiveness
and (weak) responsiveness can be characterised (logically) by dynamic logic for-
mulas (w)rcpFrm and (w)rspFrm, resp., summarised as cpFrm. These results,
formulated in Theorems 1 and 2, pave the way for automatically checking these
communication properties with tooling available for dynamic logic.

Second, in Sect. 4, we present a transformation (ε) of component automata,
systems and ETA into mCRL2 [21] processes and of the characterising dynamic
logic formulas cpFrm into µ-calculus formulas. The latter is straightforward,
whereas the former makes use of mCRL2’s allow operator to suitably restrict the
number of multi-action synchronisations such that the semantics of systems of
component automata is preserved (up to renaming).

3

Third, Sect. 4 introduces the open-source prototype tool we developed to
perform the transformation into mCRL2 processes and to automatically check
communication properties with the model-checking facilities offered by mCRL2,
which outputs the result of the formula as well as a witness or counterexample.

To the best of our knowledge, we are the first to provide a logical character-
isation of the communication properties of receptiveness and responsiveness.

2 Background on Team Automata and Dynamic Logic

This section summarises the basic notions of (extended) team automata (ETA)
following [12], but additionally considering internal actions, and of dynamic logic.

2.1 Component Automata and Systems

A labelled transition system (LTS) is a tuple L=(Q, q0, Σ,E) such that Q is a
finite set of states, q0 ∈ Q is the initial state, Σ is a finite set of labels, and
E ⊆ Q×Σ ×Q is a transition relation.

Notation. Given an LTS L, we write q a−→L q′, or shortly q
a−→ q′, to denote

(q, a, q′) ∈ E. Similarly, we write q a−→L to denote that a is enabled in L at state q,
i.e. there exists q′ ∈ Q such that q a−→ q′. For Γ ⊆ Σ, we write q Γ−→∗ q′ if there
exist q a1−→ q1

a2−→ · · · an−−→ q′ for some n ≥ 0 and a1, . . . , an ∈ Γ . A state q ∈ Q is
reachable by Γ if q0

Γ−→∗ q, it is reachable if q0
Σ−→∗ q. The set of reachable states

of L is denoted by R(L).
A component automaton (CA) is an LTS A=(Q, q0, Σ,E) such that Σ =

Σ?⊎Σ!⊎Στ is a set of action labels split into disjoint sets Σ? of input actions, Σ!

of output actions, and Στ of internal actions. For easier readability, in graphical
representations input actions will be shown with suffix “?”, output actions with
suffix “ !”, and internal actions just by their name.

Example 1. Examples of component automata are shown in Fig. 1 of Sect. 1. For
i = 1, 2, the action labels of ARi are ΣRi = Σ?

Ri ⊎Σ!
Ri ⊎Στ

Ri, where Σ?
Ri = {start},

Σ!
Ri = {finish}, Στ

Ri = {run}. The action labels of ACtrl are ΣCtrl = Σ?
Ctrl⊎Σ!

Ctrl⊎
Στ

Ctrl where Σ?
Ctrl = {finish}, Σ!

Ctrl = {start}, Στ
Ctrl = ∅. ▷

A system is a pair S=(N , (An)n∈N), with N a finite, nonempty set of com-
ponent names and (An)n∈N an N -indexed family of CA An =(Qn , q0,n , Σn , En).

Example 2. The race system of Sect. 1 is Race = (NRace, (An)n∈NRace
), with

NRace = {R1,R2,Ctrl} and the CA AR1,AR2, and ACtrl from Example 1. ▷

Any system S = (N , (An)n∈N) induces an LTS defined by lts(S) = (Q, q0, Λ(S),
E(S)), where Q =

∏
n∈N Qn is the set of system states, q0 = (q0,n)n∈N is the

initial system state, Λ(S) is the set of system labels, and E(S) is the set of system
transitions. Each system state q ∈ Q is an N -indexed family (qn)n∈N of local

4

component states qn ∈ Qn . The definitions of Λ(S) and E(S) follow below, after
the intermediate notion of system action.

System actions Σ. The set of system actions Σ =
⋃

n∈N Σn determines ac-
tions that will be part of system labels. Within Σ we identify Σ• =

⋃
n∈N Σ?

n ∩⋃
n∈N Σ!

n as the set of communicating actions. Hence, an action a ∈ Σ is com-
municating if it occurs in (at least) one set Σn of action labels as an input action
and in (at least) one set Σm of action labels as an output action. The system
is closed if all non-communicating actions are internal component actions. For
ease of presentation, we assume in this paper that systems are closed.

Example 3. The system actions of the race system areΣRace = {start ,finish, run}
and its communicating actions are Σ•

Race = {start ,finish}. ▷

System labels Λ(S). We use system labels to indicate which components
participate (simultaneously) in the execution of a system action. There are two
kinds of system labels. In a system label of the form (out, a, in), out represents
the set of senders of outputs and in the set of receivers of inputs that synchronise
on the action a ∈ Σ•. Either out or in can be empty, but not both. A system
label of the form (n, a) indicates that component n executes an internal action
a ∈ Στ

n . Formally, the set Λ(S) of system labels of S is defined as follows:

Λ(S) = { (out, a, in) | ∅ ̸= (out ∪ in) ⊆ N , ∀n∈out · a ∈ Σ!
n , ∀n∈in · a ∈ Σ?

n }
∪ { (n, a) | n ∈ N , a ∈ Στ

n }

Note that Λ(S) depends only on N and the sets Σn of action labels for each
n ∈ N . As a notational convention, if out = {n} is a singleton, we write (n, a, in)
instead of ({n}, a, in), and similarly for singleton sets in.

Example 4. The set of system labels of the race system is given by

Λ(Race) = {(out, start , in) | ∅ ̸= (out ∪ in), out ⊆ {Ctrl}, in ⊆ {R1,R2}},
∪ {(out,finish, in) | ∅ ̸= (out ∪ in), out ⊆ {R1,R2}, in ⊆ {Ctrl}},
∪ {(R1, run), (R2, run)}. ▷

System transitions E(S). System labels provide an appropriate means to
describe which components in a system execute, possibly together, a computation
step, i.e. a system transition. Formally, a system transition t ∈ E(S) has the form
(qn)n∈N

λ−→lts(S) (q
′
n)n∈N such that λ ∈ Λ(S) and

– either λ = (out, a, in) and:
• qn

a−→An
q′n for all n ∈ out ∪ in and

• qm = q′m for all m ∈ N\(out ∪ in);
– or λ = (n, a), a ∈ Στ

n is an internal action of some component n ∈ N , and:
• qn

a−→An
q′n and

• qm = q′m for all m ∈ N\{n}.

5

We write Λ and E instead of Λ(S) and E(S), resp., if S is clear from the context.
Surely, at most those components that are in a local state in which action a is
locally enabled can participate in a system transition for a. Since, by definition
of system labels, (out ∪ in) ̸= ∅, at least one component participates in any
system transition. Given a system transition t = q

λ−→lts(S) q
′, we write t.λ for λ.

Example 5. Examples of system transitions of the race system are

(0, 0, 0)
(Ctrl,start,∅)−−−−−−−−→ (0, 0, 1), (0, 0, 0)

(Ctrl,start,{R1,R2})−−−−−−−−−−−−→ (1, 1, 1),

(2, 2, 1)
({R1,R2},finish,Ctrl)−−−−−−−−−−−−−→ (0, 0, 2), (2, 2, 1)

(R1,finish,Ctrl)−−−−−−−−−→ (0, 2, 2), and

(1, 1, 1)
(R1,run)−−−−−→ (2, 1, 1).

The LTS of the race system, denoted by lts(Race), contains all possible system
transitions. It can be computed by our tool as shown in Sect. 4.

Note that not all system transitions are really meaningful. For instance, the
first transition should not happen, since the controller is supposed to start both
runners simultaneously. We also want to reject the third transition, since in our
application runners should finish individually. These transitions will be discarded
based on synchronisation restrictions for teams considered in the following. ▷

2.2 Team Automata

Synchronisation types specify which synchronisations between components are
admissible in a particular system S. A synchronisation type (O , I)∈ Intv×Intv is
a pair of intervals O and I which determine the number of outputs and inputs
that can participate in a communication. Each interval has the form [min,max]
with min ∈ N and max ∈ N ∪ {∗} where ∗ denotes 0 or more participants. We
write x ∈ [min,max] if min≤x ≤max and x ∈ [min, ∗] if x ≥ min.

A synchronisation type specification (STS) over S is a function st : Σ• →
Intv×Intv that assigns to any communicating action a an individual synchroni-
sation type st(a). We say that a system label λ = (out, a, in) satisfies st(a) =
(O , I), written λ |= st(a), if |out| ∈ O ∧|in| ∈ I . Each synchronisation type spec-
ification st generates the following subsets Λ(S, st) of system labels and E(S, st)
of corresponding system transitions.

Λ(S, st) = {λ ∈ Λ | λ = (out, a, in) ⇒ λ |= st(a) }
E(S, st) = { t ∈ E | t.λ ∈ Λ(S, st) }

Thus, for communicating actions, the set of system transitions is restricted to
those transitions whose labels respect the synchronisation type of their commu-
nicating action. For internal actions no restriction is applied, since an internal
action of a component can always be executed when it is locally enabled.

Components interacting in accordance with an STS st over a system S are
seen as a team whose behaviour is represented by the (extended) team automaton
(ETA) eta(S, st) generated over S by st and defined by the LTS

eta(S, st) = (Q, q0, Λ(S, st), E(S, st)).

6

We write Λ(st) and E(st) instead of Λ(S, st) and E(S, st), resp., if S is clear
from the context, and assume Λ(st) ̸= ∅. Labels in Λ(st) are called team labels
and transitions in E(st) are called team transitions.

Example 6. Recall the race system and its system labels and transitions. We
require both runners to start simultaneously and to finish individually by us-
ing the STS stRace defined by start 7→ ([1, 1], [2, 2]) and finish 7→ ([1, 1], [1, 1]).
Then the team labels of the ETA eta(Race, stRace) are given by Λ(stRace) =
{ (Ctrl, start , {R1,R2}), (R1,finish,Ctrl), (R2,finish,Ctrl), (R1, run), (R2, run) }.
Example transitions are

(0, 0, 0)
(Ctrl,start,{R1,R2})−−−−−−−−−−−−→ (1, 1, 1)

(R1,run)−−−−−→ (2, 1, 1)
(R1,finish,Ctrl)−−−−−−−−−→ (0, 1, 2).

The full team automaton is computed by our tool, cf. Appendix A. ▷

2.3 Dynamic Logic

We use a (test-free) propositional dynamic logic over a finite set A ̸= ∅ of atomic
actions [31]. The set Act(A) of structured actions over A is given by the grammar

α := a | α;α | α+ α | α∗ (actions)

with a∈A, sequential composition ;, nondeterministic choice +, and iteration ∗.

Abbreviations If A = {a1, . . . , an}, we write some for the structured ac-
tion a1 + · · · + an. Given a nonempty subset of A denoted by B with elements
{b1, . . . , bm}, we write B for the structured action b1 + · · ·+ bm.

The set Frm(A) of formulas over A is defined by the grammar

φ := true | ¬φ | φ ∨ φ | ⟨α⟩φ (formulas)

where α ∈ Act(A). Formula ⟨α⟩φ expresses that at the current state it is possible
to execute α such that φ holds in the next state. The difference to Hennessy–
Milner logic [32] is that actions used as modalities in modal operators can be
structured actions, including iteration. This additional power will be crucial to
express our communication requirements later on in terms of logic formulas.

Abbreviations We use the usual abbreviations like false, φ ∧ φ′, φ → φ′,
and the modal box operator [α]φ which stands for ¬ ⟨α⟩ ¬φ and expresses that
whenever in the current state α is executed, then φ holds afterwards. For a finite
index set I, we write

∨
i∈I to denote the generalised ‘∨’, where

∨
i∈∅ ψi = false

(likewise
∧

i∈∅ ψi = true).
Given a set A of atomic actions, we use LTS over A for the semantic in-

terpretation of formulas. Let L=(Q, q0,A, E) be an LTS. First we extend the
transition relation of L to structured actions in Act(A) defined inductively by:

q
α1+α2−−−−→L q

′ if q α1−→L q
′ or q α2−→L q

′,
q

α1;α2−−−−→L q
′ if there exists q̂ ∈ Q such that q α1−→L q̂ and q̂ α2−→L q

′,

7

q
α∗

−−→L q
′ if q = q′ or there exists q̂ ∈ Q such that q α−→L q̂ and q̂ α∗

−−→L q
′.

We write q α−→L if there exists q′ such that q α−→L q
′.

The satisfaction of a formula φ ∈ Frm(A) by an LTS L=(Q, q0,A, E) at a
state q ∈ Q, written L, q |= φ, is inductively defined as follows:

L, q |= true,
L, q |= ¬φ if not L, q |= φ,
L, q |= φ1 ∨ φ2 if L, q |= φ1 or L, q |= φ2,
L, q |= ⟨α⟩φ if there exists q′ ∈ Q such that q α−→L q

′ and L, q′ |= φ.

For instance, enabledness q α−→L is expressed by L, q |= ⟨α⟩ true.
L satisfies a formula φ ∈ Frm(A), written L |= φ, if L, q0 |= φ. Hence, for

the satisfaction of a formula by an LTS the non-reachable states are irrelevant.
We deviate from the classical semantics [31], since we use LTS with initial

states as models to interpret satisfaction of formulas. This is because we are
interested in the formulation of properties of (concurrently running) components,
i.e. of process structures. In particular, we can express safety properties (e.g.
[some∗]φ) and some kinds of liveness properties (e.g. [some∗] ⟨some∗; a⟩φ).

3 Logical Characterisations of Communication Properties

In this section, we first focus on the property of receptiveness for team automata,
which has been studied before for other automata formalisms mainly in the con-
text of peer-to-peer communication; cf. Introduction. In Sect. 3.1, we summarise
the concepts of receptiveness and weak receptiveness and in Sect. 3.2 we show
that both notions can be characterised by dynamic logic formulas. Then we turn
to (weak) responsiveness, summarising the underlying ideas in Sect. 3.3 and
providing logical characterisations in Sect. 3.4. The results form the theoretical
basis for automatic checks of communication properties in Sect. 4.

We assume a given system S=(N , (An)n∈N) of CA with lts(S)=(Q, q0, Λ,E),
an STS st, and the generated ETA eta(S, st) = (Q, q0, Λ(S, st), E(S, st)).

3.1 Team Receptiveness

The idea of receptiveness for eta(S, st) is as follows. Whenever, in a reachable
state q of eta(S, st), a group {An | n ∈ out} of CA with ∅ ̸= out ⊆ N is (locally)
enabled to perform an output action a, i.e. ∀n∈out · a ∈ Σ!

n and qn
a−→An , so that

(1) the number of CA in out fits the number of allowed senders according to
the synchronisation type st(a) = (O , I), i.e. |out| ∈O , and (2) the CA need at
least one receiver to join the communication, i.e. 0 /∈ I , we get a receptiveness
requirement, denoted by rcp(out, a)@q. If out = {n}, we write rcp(n, a)@q for
rcp({n}, a)@q.

Example 7. In the initial state (0, 0, 0) of the race team, there is a receptiveness
requirement of the controller who wants to start the competition, expressed by

8

rcp(Ctrl, start)@(0, 0, 0). Later on, when the first runner is in state 2, it wants
to send finish which leads to three receptiveness requirements:

rcp(R1,finish)@(2, 1, 1), rcp(R1,finish)@(2, 2, 1), rcp(R1,finish)@(2, 0, 2).
Similarly, when the second runner is in state 2, we get:

rcp(R2,finish)@(1, 2, 1), rcp(R2,finish)@(2, 2, 1), rcp(R2,finish)@(0, 2, 2). ▷

ETA eta(S, st) is compliant with a receptiveness requirement rcp(out, a)@q
if the group of components (with names in out) can find partners in the team
which synchronise with the group by taking (receiving) a as input. If reception
is immediate, we talk about receptiveness; if the other components may still
perform some intermediate actions before accepting a, we talk about weak re-
ceptiveness. Formally, (weak) compliance and (weak) receptiveness are defined
as follows: The ETA eta(S, st) is compliant with rcp(out, a)@q if

∃in · q
(out,a,in)−−−−−→eta(S,st)

The ETA eta(S, st) is weakly compliant with rcp(out, a)@q if

∃in · q
(Λ(st)\out)∗ ; (out,a,in)
−−−−−−−−−−−−−−→eta(S,st)

where Λ(st)\out denotes the set of team labels in which no component of out
participates. Formally, Λ(st)\out={(out′, a, in)∈Λ(st) | (out′ ∪ in) ∩ out = ∅} ∪
{(n, a) ∈ Λ(st) | n /∈ out}. Obviously, compliance implies weak compliance.

Definition 1 ((weak) receptiveness). The ETA eta(S, st) is (weakly) recep-
tive if for all reachable states q ∈ R(eta(S, st)), the ETA eta(S, st) is (weakly)
compliant with all receptiveness requirements rcp(out, a)@q established for q.

3.2 Logical Characterisations of Receptiveness

Receptiveness notions are of purely semantic nature. To prove receptiveness in
concrete cases may be rather cumbersome since one has to go through all reach-
able states q of a team automaton and check compliance for all receptiveness
requirements at q. Therefore we are interested in a syntactic, logical characteri-
sation of receptiveness such that checks can be automated. It turns out that our
version of dynamic logic is well suited to express receptiveness.

Example 8. Recall the receptiveness requirement rcp(Ctrl, start)@(0, 0, 0) from
Example 7. Being a receptiveness requirement implies that the output action
start is enabled at the local state 0 of the controller, i.e. 0 start−−−→ACtrl

. This is equiv-
alent to the fact that in lts(Race) (cf. Example 5) the system label (Ctrl, start ,∅)

is enabled at system state (0, 0, 0), i.e. (0, 0, 0)
start−−−→lts(Race). Logically, this is

equivalent to lts(Race), (0, 0, 0) |= ⟨(Ctrl, start ,∅)⟩ true. Under this condition, we
must prove there is a team transition in the ETA eta(Race, stRace) of the form

(0, 0, 0)
(Ctrl,start,in)−−−−−−−−→eta(Race,stRace) q

′. This means there is an in so that (Ctrl, start , in)
is a team label and eta(Race, stRace), (0, 0, 0) |= ⟨(Ctrl, start , in)⟩ true. The latter

9

is equivalent to lts(Race), (0, 0, 0) |= ⟨(Ctrl, start , in)⟩ true since, for team labels,
system transitions and team transitions coincide. To check that eta(Race, stRace)
satisfies the (only) receptiveness requirement at state (0, 0, 0) it thus suffices
(and it is also necessary) to show that there is an in with (Ctrl, start , in) being
a team label such that the following holds (which is true for in = {R1,R2}):
lts(Race), (0, 0, 0) |= ⟨(Ctrl, start ,∅)⟩ true → ⟨(Ctrl, start , in)⟩ true. ▷

This example illustrates a key insight in our approach: we cannot capture
requests for communication on team level but must consider system transitions
with system labels which are not team labels, e.g. (Ctrl, start ,∅).

Our general approach to characterise receptiveness properties is as follows.
Given system labels Λ(S) and synchronisation type specification st the “recep-
tiveness formula” rcpFrm ∈ Frm(Λ) defined below expresses that all receptive-
ness requirements are fulfilled in any reachable state of the team eta(S, st):

rcpReq = {(out, a,∅) ∈ Λ | |out| ∈ O , 0 /∈ I for st(a) = (O , I)}
InCom(out, a) = {in ⊆ N | (out, a, in) ∈ Λ(st)}

rcpFrm = [Λ(st)∗]
∧

(out,a,∅)∈rcpReq(
⟨(out, a,∅)⟩ true →

∨
in∈InCom(out,a) ⟨(out, a, in)⟩ true

)
Here rcpReq is the set of system labels which correspond to receptiveness re-
quirements (when enabled in a reachable state of the ETA, cf. Lemma 1); and
InCom(out, a) is the set of subsets in ⊆ N of component names which comple-
ment a given out ⊆ N and a ∈ Σ• to a team label in Λ(st) (for potential commu-
nication). Observe that (1) rcpReq∩Λ(st) = ∅ since 0 /∈ I for any st(a) = (O , I);
(2) [Λ(st)∗] ranges over all reachable states of the team eta(S, st), since Λ(st)
is the finite set of team labels that denote the non-deterministic choice of these
actions; and (3) the implication in rcpFrm is in Frm(Λ) and not in Frm(Λ(st))
since rcpReq ∩ Λ(st) = ∅ and (out, a,∅) ∈ rcpReq .

Similarly, a “weak receptiveness formula” wrcpFrm ∈ Frm(Λ) is defined as:

wrcpFrm = [Λ(st)∗]
∧

(out,a,∅)∈rcpReq(
⟨(out, a,∅)⟩ true →

∨
in∈InCom(out,a)

〈
(Λ(st)\out)∗; (out, a, in)

〉
true

)
Example 9.ForRace, rcpReq = {(Ctrl, start ,∅),(R1,finish,∅),(R2,finish,∅)}, In-
Com(Ctrl, start) = {{R1,R2}}, InCom(Ri,finish) = {{Ctrl}}, for i = 1, 2, and
rcpFrm=[Λ(stRace)∗]

(
⟨(Ctrl, start ,∅)⟩ true → ⟨(Ctrl, start , {R1,R2})⟩ true

∧ ⟨(R1,finish,∅)⟩ true → ⟨(R1,finish,Ctrl)⟩ true
∧ ⟨(R2,finish,∅)⟩ true → ⟨(R2,finish,Ctrl)⟩ true

)
.

This receptiveness formula is satisfied by the LTS of the Race system. For
the check we use the tool described in Sect. 4. Together with Theorem 1 below
this implies that the ETA eta(Race, stRace) is receptive. ▷

The next lemma provides a characterisation of receptiveness requirements in
terms of the set rcpReq and logical satisfaction (used for the proof of Thm. 1).

10

Lemma 1. For all q ∈ R(eta(S, st)) it holds: rcp(out, a)@q is a receptiveness
requirement iff (out, a,∅) ∈ rcpReq and lts(S), q |= ⟨(out, a,∅)⟩ true.

Proof. “⇒”: Let q ∈ R(eta(S, st)) and rcp(out, a)@q be a receptiveness require-
ment. Then, for all n ∈ out, we have a ∈ Σ!

n , and, for st(a) = (O , I), it holds
|out| ∈ O , 0 /∈ I . Hence, (out, a,∅) ∈ Λ and, in particular, (out, a,∅) ∈ rcpReq .

Moreover, we know that for all n ∈ out, qn
a−→An

. Therefore q
(out,a,∅)−−−−−−→lts(S)

holds and thus lts(S), q |= ⟨(out, a,∅)⟩ true.
“⇐”: Conversely, let q ∈ R(eta(S, st)) and (out, a,∅) ∈ rcpReq . Then we

have (out, a,∅) ∈ Λ and thus a ∈ Σ!
n for all n ∈ out. Moreover, we know that

|out| ∈ O , 0 /∈ I for st(a) = (O , I). For rcp(out, a)@q to be a receptiveness
requirement it remains to show that qn

a−→An holds for all n ∈ out. The latter

is equivalent to q
(out,a,∅)−−−−−−→lts(S) which is in turn equivalent to the assumption

lts(S), q |= ⟨(out, a,∅)⟩ true. ⊓⊔

The proof of Theorem 1 uses also the facts stated in the following two lemmas.

Lemma 2. For all φ ∈ Frm(Λ):{
lts(S) |= [Λ(st)∗]φ

}
iff

{
lts(S), q |= φ for all q ∈ R(eta(S, st))

}
.

Lemma 3. For all q∈R(eta(S, st)) and α∈Act(Λ(st)) : q α−→lts(S) iff q
α−→eta(S,st).5

Theorem 1. (1) eta(S, st) is receptive iff lts(S) |= rcpFrm and
(2) eta(S, st) is weakly receptive iff lts(S) |= wrcpFrm.

Proof. We only prove (1). The proof of (2) is a straightforward extension.
“⇐”: Let q ∈ R(eta(S, st)). If there is no receptiveness requirement at q

there is nothing to prove. Now let rcp(out′, a′)@q be a receptiveness requirement
established for q. By Lemma 1 (“⇒”), (out′, a′,∅) ∈ rcpReq and lts(S), q |=
⟨(out′, a′,∅)⟩ true. By assumption lts(S) |= rcpFrm. Hence, by Lemma 2 (“⇒”),

lts(S), q |=
∧

(out,a,∅)∈rcpReq(
⟨(out, a,∅)⟩ true →

∨
in∈InCom(out,a) ⟨(out, a, in)⟩ true

)
.

Since (out′, a′,∅) ∈ rcpReq this implies

lts(S), q |= ⟨(out′, a ′,∅)⟩ true →
∨

in∈InCom(out′,a′) ⟨(out′, a ′, in)⟩ true.

As a consequence, since lts(S), q |= ⟨(out′, a′,∅)⟩ true, we get

lts(S), q |=
∨

in∈InCom(out′,a′) ⟨(out′, a ′, in)⟩ true.

Hence, there exists in ∈ InCom(out′, a′) such that lts(S), q |= ⟨(out′, a ′, in)⟩ true
and therefore, by definition of InCom(out′, a′), we have (out′, a′, in) ∈ st(Λ) and

q
(out′,a′,in)−−−−−−→lts(S). So, by Lemma 3, ∃in · q (out′,a′,in)−−−−−−→eta(S,st). Hence, eta(S, st)

5 This follows because for team labels system transitions and team transitions coincide.

11

is compliant with rcp(out′, a′)@q. Since rcp(out′, a′)@q was chosen arbitrarily,
eta(S, st) is receptive.

“⇒”: The proof is by contradiction. Assume lts(S) ̸|= rcpFrm. By definition,
rcpFrm has the form [Λ(st)∗]φ with φ ∈ Frm(Λ). Hence, by Lemma 2 (“⇐”),
there exists a state q ∈ R(eta(S, st)) such that lts(S), q ̸|= φ. Hence, φ cannot
be true and then, again by definition of rcpFrm, there exists (out, a,∅) ∈ rcpReq
such that lts(S), q ̸|= ⟨(out, a,∅)⟩true →

∨
in∈InCom(out,a)⟨(out, a, in)⟩true. Thus,

lts(S), q |= ⟨(out, a,∅)⟩ true and lts(S), q ̸|=
∨

in∈InCom(out,a) ⟨(out, a, in)⟩ true.
According to Lemma 1 (“⇐”) the first part, together with (out, a,∅) ∈ rcpReq ,
implies that rcp(out, a)@q is a receptiveness requirement. The second part im-
plies that there is no in ∈ InCom(out, a) such that lts(S), q |= ⟨(out, a, in)⟩ true,
which would mean q

(out,a,in)−−−−−→lts(S). Hence, by Lemma 3, there is no team label

(out, a, in) such that q
(out,a,in)−−−−−→eta(S,st). Therefore, eta(S, st) is not compliant

with rcp(out, a)@q and thus eta(S, st) is not receptive. ⊓⊔

Remark 1. Checks of lts(S) |= rcpFrm (wrcpFrm, resp.) can be optimised if
we use instead of the full LTS of S the usually much smaller sub-LTS lts(S)opt ⊆
lts(S) constructed as follows: the set of transitions of lts(S)opt consists of the

transitions of eta(S, st) to which we add all transitions q
(out,a,∅)−−−−−−→lts(S) q

′ with
(out, a,∅) ∈ rcpReq . These transitions, which do not belong to eta(S, st), are
needed to capture receptiveness requirements. ▷

3.3 Team Responsiveness

For input actions, one can formulate responsiveness requirements with the in-
tuition that enabled inputs should be served by appropriate outputs. The ex-
pression rsp(in, a)@q is a responsiveness requirement if q ∈ R(eta(S, st)), for all
n ∈ in we have a ∈ Σ?

n and qn
a−→An

, and |in| ∈ I , 0 /∈ O for st(a) = (O , I).

The ETA eta(S, st) is compliant with rsp(in, a)@q if ∃out · q
(out,a,in)−−−−−→eta(S,st) . It

is weakly compliant with rsp(in, a)@q if ∃out · q
(Λ(st)\in)∗ ; (out,a,in)
−−−−−−−−−−−−−→eta(S,st), where

st(Λ)\in = {(out, a, in′) ∈ st(Λ) | (out ∪ in′) ∩ in = ∅} ∪ {(n, a) ∈ st(Λ) | n /∈ in}
denotes the set of team labels in which no component of in participates.

Unlike output actions, the selection of an input action of a component is not
controlled by the component but by the environment, i.e. there is an external
choice. If, for a choice of enabled inputs {a1, . . . , an}, only one of them can
be supplied with a corresponding output of the environment this suffices to
guarantee progress of components waiting for input.

Definition 2 ((weak) responsiveness). The ETA eta(S, st) is (weakly) re-
sponsive if for all reachable states q ∈ R(eta(S, st)), either there is no respon-
siveness requirement at q or there is a responsiveness requirement rsp(in, a)@q
established for q such that the ETA eta(S, st) is (weakly) compliant with it.

12

Example 10. In the initial state (0, 0, 0) of the race team, there is a respon-
siveness requirement of the two runners who want to be started, expressed by
rsp({R1,R2}, start)@(0, 0, 0). The ETA eta(Race, stRace) is compliant with this
requirement. When the controller is in state 1, there are responsiveness require-
ments rsp(Ctrl,finish)@(q1,q2,1) for any q1, q2 ∈ {1, 2}. Only in state (2, 2, 1)
this requirement is immediately fulfilled; in all other cases, at least one run must
happen before a finish is sent. Then eta(Race, stRace) is weakly compliant. There
are four more responsiveness requirements when the controller is in state 2. ▷

3.4 Logical Characterisations of Responsiveness

We now define a logical characterisation of responsiveness by the “responsiveness
formula” rspFrm ∈ Frm(Λ) below, for a given Λ(S) and STS st as above.

rspReq = {(∅, a, in) ∈ Λ | |in| ∈ I , 0 /∈ O for st(a) = (O , I)}
OutCom(a, in) = {out ⊆ N | (out, a, in) ∈ Λ(st)}

rspFrm = [Λ(st)∗]
((∨

(∅,a,in)∈rspReq ⟨(∅, a, in)⟩ true
)
→(∨

(∅,a,in)∈rspReq

∨
out∈OutCom(a,in) ⟨(out, a, in)⟩ true

))
where rspReq is the set of system labels which correspond to responsiveness
requirements (when enabled in a reachable state of the ETA eta(S, st)); and
OutCom(a, in) is the set of subsets out ⊆ N of component names which com-
plement a given in ⊆ N and a ∈ Σ• to a team label in Λ(st) (for potential
communication). Note that the left side of the implication in rspFrm is true iff
there is a responsiveness requirement for a, in at the current state q. Otherwise
rspFrm holds anyway at q in accordance with the notion of responsiveness.

Similarly, a “weak responsiveness formula” wrspFrm ∈ Frm(Λ) is defined as:

wrspFrm = [Λ(st)∗]
((∨

(∅,a,in)∈rspReq ⟨(∅, a, in)⟩ true
)
→(∨

(∅,a,in)∈rspReq

∨
out∈OutCom(a,in)

〈
st(Λ)\in)∗; (out, a, in)

〉
true

))
Example 11. For Race, rspReq = {(∅, start , {R1,R2}), (∅,finish,Ctrl)}, Out-
Com(start , {R1,R2}) = {{Ctrl}}, OutCom(finish,Ctrl) = {{R1}, {R2}}, and
wrspFrm = [Λ(stRace)∗]

(
⟨(∅, start , {R1,R2})⟩ true ∨ ⟨(∅,finish,Ctrl)⟩ true

)
→(

⟨(Ctrl, start , {R1,R2})⟩ true ∨
⟨((R1, run) + (R2, run))∗; (R1,finish,Ctrl)⟩ true ∨
⟨((R1, run) + (R2, run))∗; (R2,finish,Ctrl)⟩ true

)
Note that Λ(stRace)\{R1,R2}=∅ and Λ(stRace)\Ctrl={(R1, run), (R2, run)}.

The weak responsiveness formula is satisfied by the LTS of the Race system.
For the check we use the tool described in Sect. 4. Together with Theorem 2,
this implies that the eta(Race, stRace) is weakly responsive. ▷

13

Lemma 4. For all q ∈ R(eta(S, st)) it holds: rsp(in, a)@q is a responsiveness
requirement iff (∅, a, in) ∈ rspReq and lts(S), q |= ⟨(∅, a, in)⟩ true.

Proof. The proof is analogous to the proof of Lemma 1. ⊓⊔

Theorem 2. (1) eta(S, st) is responsive iff lts(S) |= rspFrm and
(2) eta(S, st) is weakly responsive iff lts(S) |= wrspFrm.

Proof. We only prove (1). The proof of (2) is a straightforward extension.

“⇐”: Let q ∈ R(eta(S, st)). If there is no responsiveness requirement at q
there is nothing to prove. Otherwise, according to Lemma 4, there is at least one
element (∅, a, in) ∈ rspReq such that lts(S), q |= ⟨(∅, a, in)⟩ true. Hence,

lts(S), q |=
∨

(∅,a,in)∈rspReq ⟨(∅, a, in)⟩ true.

By assumption lts(S) |= rspFrm. Hence, by Lemma 2 (“⇒”),

lts(S), q |=
∨

(∅,a,in)∈rspReq

∨
out∈OutCom(a,in) ⟨(out, a, in)⟩ true.

Therefore there exists (∅, a′, in′) ∈ rspReq and out′ ∈ OutCom(a′, in′) such that

lts(S), q |=
〈
(out′, a ′, in′)

〉
true.

Hence q
(out′,a′,in′)−−−−−−−→lts(S) and, according to the defintion of OutCom(a′, in′),

we have that (out′, a ′, in′) ∈ Λ(st) is a team label. Therefore, by Lemma 3,

q
(out′,a′,in′)−−−−−−−→eta(S,st). Consequently, also q

(∅,a′,in′)−−−−−−→lts(S) holds and therefore
lts(S), q |=

〈
(∅, a ′, in′)

〉
true. Then, by Lemma 4, rsp(in′, a′)@q is a responsive-

ness requirement at q and eta(S, st) is compliant with it. Since q ∈ R(eta(S, st))
was chosen arbitrarily, eta(S, st) is responsive.

“⇒”: The proof is by contradiction. Assume lts(S) ̸|= rspFrm. By definition,
rspFrm has the form [st(Λ)∗]φ with φ ∈ Frm(Λ). So, by Lemma 2, there exists
a state q ∈ R(eta(S, st)) such that lts(S), q ̸|= φ. Then, by definition of rcpFrm,

lts(S), q |=
∨

(∅,a,in)∈rspReq ⟨(∅, a, in)⟩ true, and
lts(S), q ̸|=

∨
(∅,a,in)∈rspReq

∨
out∈OutCom(a,in) ⟨(out, a, in)⟩ true.

The first part shows that rspReq ̸= ∅ and that, by Lemma 4, there exists a
responsiveness requirement established for q. To be responsive, eta(S, st) must
be compliant with at least one of them. The second part shows that for all
(∅, a, in)∈ rspReq and all out∈OutCom(a, in), lts(S), q ̸|= ⟨(out, a, in)⟩ true. So,
for all responsiveness requirements rsp(in, a), there does not exist a team label

(out, a, in) with q
(out,a,In)−−−−−−→lts(S) and so, by Lemma 3, there does not exist a team

label (out, a, in) with q
(out,a,in)−−−−−−→eta(S,st). Hence, eta(S, st) is not responsive. ⊓⊔

14

4 Model Checking Communication Properties

In this section we show, underpinned by our running example, how to transform
CA, systems and ETA into mCRL2 processes as well as dynamic logic formu-
las, characterising communication properties, into µ-calculus formulas. We also
justify briefly the correctness of these transformations and the soundness and
completeness of our verification approach. Then we present the tool support
that we developed (1) to perform the transformations and (2) to automatically
check communication properties through the model-checking facilities offered by
the mCRL2 toolset (https://www.mcrl2.org/) [21], similarly to how mCRL2 was
used earlier to verify automata composed hierarchically [39].

An mCRL2 model is expressed in an elementary process language, where
actions (and possibly data types) as well as processes are defined, and (for our
purpose) the initial process is given in the following standard concurrent form:

allow({ a, a_1|...|a_n, ... }, proc_1 || ... || proc_n);

This is a parallel composition of sequential processes proc_i , with interleaving
and multi-party synchronisation specified explicitly by allow . This restriction
operator forbids some actions, to constrain interaction and prune the state space,
by listing those allowed to occur in allow : so action a is interleaved and, similar
to synchronisation of actions a and ā yielding τ in CCS, actions a_i are syn-
chronised, resulting in a multi-action a_1|...|a_n ; all other actions are blocked.

To explain our transformation, along the lines of Fig. 2, we assume given a
system S=(N , (An)n∈N) and a synchronisation type specification st.

Transformation of CA First, we transform each CA An into an mCRL2
process ϵ(An), cf. Fig. 1(a). The transformation is defined and implemented
in a straightforward way based on the idea that an LTS L can be represented
by a process expression P, i.e. the LTS semantics of P is L. In our context, the
representation of the An is a bit more involved since we want to represent shared
actions of different CA by different actions of their mCRL2 processes (later
to be synchronised by multi-actions). Therefore we apply a renaming ρ which
renames each action a of each An to the mCRL2 action n_a of ϵ(An). Then the
LTS semantics of mCRL2 processes (defined by SOS rules in [30, Def. 15.2.10])
applied to ϵ(An) provides an LTS lts(ϵ(An)). (We ignore aspects of data and time
included in mCRL2). Next we note that lts(ϵ(An)) is a reachable LTS which is,
up to renaming w.r.t. ρ, isomorphic to the reachable part of An, i.e. to the LTS
obtained by restricting the state space of An to reachable states. For instance, the
CA AR1 from Fig. 1(a) is transformed into the mCRL2 process proc R1(s:Int)

below. Its actions are R1_start , R1_run , and R1_finish , a parameter s (an
integer) holds the state, summation (+) represents non-deterministic choice,
and R1(0) is its initial state. The actions are renamed as explained above.

15

https://www.mcrl2.org/

act R1_start, R1_run, R1_finish;

proc R1(s:Int) =

(s == 0)→ (R1_start . R1(1)) +

(s == 1)→ (R1_run . R1(2)) +

(s == 2)→ (R1_finish . R1(0));

init R1(0);

Transformation of System S System S is transformed into an mCRL2 pro-
cess ϵ(S) as follows. Any system label (out, a, in) is represented by the multi-
action which synchronises all mCRL2 actions o_a with o∈out with all mCRL2
actions i_a with i∈ in. Any system label (n, a) for internal actions is represented
by n_a . Then we construct the parallel composition of all mCRL2 processes
ϵ(An) restricted to (multi-)actions that represent system labels. The restriction
is realised by mCRL2’s allow operator. By this construction the LTS semantics
lts(ϵ(S)) is, up to the renaming of system labels, isomorphic to the reachable
part of lts(S). As non-reachable states are irrelevant for the satisfaction of for-
mulas, this provides the basis for verifying our communication properties with
mCRL2. For instance, the Race system is represented by this mCRL2 process:

act R1_start, R2_start, Ctrl_start, R1_run, R2_run, Ctrl_run, ...;

proc R1(s:Int) = ...;

R2(s:Int) = ...;

Ctrl(s:Int) = ...;

init allow ({R1_start, R1_finish, R1_run, R2_start, R2_finish, R2_run

Ctrl_start, Ctrl_finish, Ctrl_start|R1_start, Ctrl_start|R2_start,

R1_start|R2_start, Ctrl_start|R1_start|R2_start, ...},

R1(0) || R2(0) || Ctrl(0)).

Thus we block multi-actions, like R1_start|Ctrl_finish and R1_run|R2_run, which
do not correspond to system labels, by using the allow operator. In total there
are 16 allowed multi-actions. The system’s LTS can be computed by our tool.

We can also represent the ETA generated by the STS st over S if we further
restrict the allowed actions to those whose corresponding system labels satisfy
st. In our example, this would mean that we allow only the mCRL2 actions
Ctrl_start|R1_start|R2_start , R1_finish|Ctrl_finish , R2_finish|Ctrl_finish ,
R1_run , and R2_run . Note that the representation of ETA is not used for veri-
fication of communication properties (see below). It is, however, useful for the
graphical animation of ETA.

Transformation of Communication Formulas We characterised (weak) re-
ceptiveness and (weak) responsiveness in Sects. 3.2 and 3.4 by formulas
(w)rcpFrm and (w)rspFrm, resp. To automatically verify these formulas, we
transform them into mCRL2’s µ-calculus by the renaming of system labels ex-
plained above and by syntactic conversion of operators, e.g. ∧ to && , ∨ to || , and
some to true . We write <a+b+c>ψ instead of <a>ψ||ψ||<c>ψ for compactness.
The receptiveness formula rcpFrm of our example is transformed into:

16

1 2

4 5

3

Fig. 3: Screenshot of some of the widgets in the ETA tools available online

[(Ctrl_start|R1_start|R2_start + R1_finish|Ctrl_finish +

R2_finish|Ctrl_finish + R2_run + R1_run)*]

(((<R1_finish> true) => (<R1_finish|Ctrl_finish> true)) &&

((<R2_finish> true) => (<R2_finish|Ctrl_finish> true)) &&

((<Ctrl_start> true) => (<Ctrl_start|R1_start|R2_start> true)))

Note that for the transformation of communication properties the given STS
st is crucial. Indeed, the structured action used in the modal box operator refers
exactly to those actions which correspond to the system labels satisfying the
synchronisation type and hence to the team labels.

Verifying Communication Properties in mCRL2 As shown in Theorems 1
and 2 the validity of the logic formulas cpFrm characterising communication
properties must be checked over the LTS of system S. According to our semantics
preserving transformation of system S into the process ϵ(S), checking validity
of cpFrm in lts(S) is equivalent to checking the transformed version ϵ(cpFrm)
over lts(ϵ(S)). But the latter is exactly how satisfaction of formulas is defined for
mCRL2 processes and therefore our verification approach is sound and complete.

Implementation An open-source prototype was implemented, which can be
executed online at https://github.com/arcalab/team-a. It is written in Scala,
compiled into JavaScript via Scala.js, and uses Scala and JavaScript libraries and
external tools like the mCRL2 model checker. Most final code is in JavaScript
running in an Internet browser (client-side), while the external tools are executed
remotely (server-side). It is also possible to compile and run the server locally.

The screenshot in Fig. 3 depicts some of the available widgets, using our
running Race example. More complete screenshots can be found in Appendix A.
The input team automaton is specified in widget 1 , where S defines the system
composed of 2 runners and 1 controller, and STS specifies the synchronisation
types. The remaining widgets provide analysis of the ETA: 3 outputs the en-
coded mCRL2 model and formulas being evaluated; 2 outputs both the result
of the formula and a counterexample or a witness — in this case stating that this

17

https://github.com/arcalab/team-a

ETA is not responsive with a counterexample; and 4 and 5 depict the com-
posed ETA and the individual component automata, resp. Note that widget 2

also reports that Race is weakly responsive, as described in Sect. 3.4, producing
a witness that matches the ETA diagram (cf. Fig. 5 in Appendix A).

A Note on Optimisation Our approach can be further optimised to reduce the
model’s size. For example, as mentioned in Remark 1, the mCRL2 process repre-
senting system S can be replaced by one that allows a smaller set of multi-actions
corresponding to team labels from the ETA (eta(S, st)) only, but enriched with
(out, a,∅) labels (when proving (weak) receptiveness) or with (∅, a, in) (when
proving (weak) responsiveness). Furthermore, all internal actions could be re-
placed by a single non-synchronising action (e.g. τ), which may, however, lead
to less readable counterexamples. Using these optimisations, one could check for
receptiveness or responsiveness of our Race example using a model that allows
only 7 multi-actions instead of 16. In general, this reduction depends on (1) the
number of shared actions, (2) the degree of flexibility of the synchronisation
policies, and (3) the number of internal actions.

5 Conclusions and Future Work

We provide the first logical characterisation of communication properties of team
automata in the form of (weak) receptiveness and (weak) responsiveness. I.e., we
logically characterise whether all messages that can be sent can also be received,
and that components waiting to receive some input message will get one. This
provides the basis for an automated verification approach of communication
properties of team automata. A prototype tool, available at https://github.com/
arcalab/team-a, realises this automated verification, performed by mCRL2 [21].

Our results also apply to related automata-based models that interact through
shared input and output actions, since many such models are subsumed by team
automata, like I/O automata [14] but also a special type of Petri nets [15].
Moreover, we believe that our results can be adjusted to capture variants of
compatibility like the “optimistic” approach proposed for interface automata [37].

Future work concerns generalising our logical characterisation and the tool to
deal with variability and family-based compatibility checking for featured team
automata [9], as well as a more comprehensive validation of our tool with larger
case studies, to better identify limitations and optimisations of our approach.
Furthermore, it could be interesting to adapt the framework from [4] to study
the relation between a specification given as team automata and its implemen-
tation. Finally, an orthogonal approach is presented [18], where correct protocol
composition is defined in terms of so-called ‘assertions’ akin to pre- and post-
conditions instead of synchronisation on common actions. Apparently not all
resulting compositions are characterisable as team automata synchronisations
(and vice versa), but the precise difference in synchronising behaviour between
the two approaches remains to be studied.

18

https://github.com/arcalab/team-a
https://github.com/arcalab/team-a

Acknowledgments. Ter Beek received funding from the MIUR PRIN 2017FTXR7S
project IT MaTTerS (Methods and Tools for Trustworthy Smart Systems) and PRIN
2020TL3X8X project T-LADIES (Typeful Language Adaptation for Dynamic, Inter-
acting and Evolving Systems). Proença was partially supported by National Funds
through FCT/MCTES (Portuguese Foundation for Science and Technology), within
the CISTER Unit (UIDP/UIDB/04234/2020) and the IBEX project (PTDC/CCI-
COM/4280/2021); also by national funds through FCT and European funds through
EU ECSEL JU, within project VALU3S (ECSEL/0016/2019 - JU grant nr. 876852) –
The JU receives support from the EU’s Horizon 2020 research and innovation pro-
gramme and Austria, Czech Republic, Germany, Ireland, Italy, Portugal, Spain, Swe-
den, Turkey. Disclaimer: This document reflects only the authors’ view and the Com-
mission is not responsible for any use that may be made of the information it contains.

References

1. Adler, B.T., de Alfaro, L., da Silva, L.D., Faella, M., Legay, A., Raman, V.,
Roy, P.: Ticc: A Tool for Interface Compatibility and Composition. In: Ball,
T., Jones, R.B. (eds.) CAV. LNCS, vol. 4144, pp. 59–62. Springer (2006).
https://doi.org/10.1007/11817963_8

2. Bartoletti, M., Cimoli, T., Zunino, R.: Compliance in Behavioural Contracts: A
Brief Survey. In: Bodei, C., Ferrari, G.L., Priami, C. (eds.) Programming Lan-
guages with Applications to Biology and Security. LNCS, vol. 9465, pp. 103–121.
Springer (2015). https://doi.org/10.1007/978-3-319-25527-9_9

3. Basile, D., ter Beek, M.H.: Contract Automata Library. Sci. Comput. Program.
221 (2022). https://doi.org/10.1016/j.scico.2022.102841

4. Basile, D., ter Beek, M.H.: A Runtime Environment for Contract Automata. In:
Chechik, M., Katoen, J.P., Leucker, M. (eds.) FM. LNCS, Springer (2023), in this
volume

5. Basile, D., ter Beek, M.H., Degano, P., Legay, A., Ferrari, G.L., Gnesi, S., Di
Giandomenico, F.: Controller synthesis of service contracts with variability. Sci.
Comput. Program. 187 (2020). https://doi.org/10.1016/j.scico.2019.102344

6. Basile, D., Degano, P., Ferrari, G.L.: Automata for Specifying and Or-
chestrating Service Contracts. Log. Meth. Comp. Sci. 12(4:6), 1–51 (2016).
https://doi.org/10.2168/LMCS-12(4:6)2016

7. Bauer, S.S., Mayer, P., Schroeder, A., Hennicker, R.: On Weak Modal Com-
patibility, Refinement, and the MIO Workbench. In: Esparza, J., Majum-
dar, R. (eds.) TACAS. LNCS, vol. 6015, pp. 175–189. Springer (2010).
https://doi.org/10.1007/978-3-642-12002-2_15

8. ter Beek, M.H., Carmona, J., Hennicker, R., Kleijn, J.: Communica-
tion Requirements for Team Automata. In: Jacquet, J.M., Massink, M.
(eds.) COORDINATION. LNCS, vol. 10319, pp. 256–277. Springer (2017).
https://doi.org/10.1007/978-3-319-59746-1_14

9. ter Beek, M.H., Cledou, G., Hennicker, R., Proença, J.: Featured Team Automata.
In: Huisman, M., Pasareanu, C.S., Zhan, N. (eds.) FM. LNCS, vol. 13047, pp.
483–502. Springer (2021). https://doi.org/10.1007/978-3-030-90870-6_26

10. ter Beek, M.H., Ellis, C.A., Kleijn, J., Rozenberg, G.: Team Automata for Spa-
tial Access Control. In: Prinz, W., Jarke, M., Rogers, Y., Schmidt, K., Wulf, V.

19

https://doi.org/10.1007/11817963_8
https://doi.org/10.1007/978-3-319-25527-9_9
https://doi.org/10.1016/j.scico.2022.102841
https://doi.org/10.1016/j.scico.2019.102344
https://doi.org/10.2168/LMCS-12(4:6)2016
https://doi.org/10.1007/978-3-642-12002-2_15
https://doi.org/10.1007/978-3-319-59746-1_14
https://doi.org/10.1007/978-3-030-90870-6_26

(eds.) Proceedings of the 7th European Conference on Computer Supported Coop-
erative Work (ECSCW’01). pp. 59–78. Kluwer (2001). https://doi.org/10.1007/0-
306-48019-0_4

11. ter Beek, M.H., Ellis, C.A., Kleijn, J., Rozenberg, G.: Synchronizations in Team
Automata for Groupware Systems. Comput. Sup. Coop. Work 12(1), 21–69 (2003).
https://doi.org/10.1023/A:1022407907596

12. ter Beek, M.H., Hennicker, R., Kleijn, J.: Compositionality of Safe Communication
in Systems of Team Automata. In: Pun, V.K.I., Simão, A., Stolz, V. (eds.) ICTAC.
LNCS, vol. 12545, pp. 200–220. Springer (2020). https://doi.org/10.1007/978-3-
030-64276-1_11

13. ter Beek, M.H., Kleijn, J.: Team Automata Satisfying Compositionality. In: Araki,
K., Gnesi, S., Mandrioli, D. (eds.) FME. LNCS, vol. 2805, pp. 381–400. Springer
(2003). https://doi.org/10.1007/978-3-540-45236-2_22

14. ter Beek, M.H., Kleijn, J.: Modularity for teams of I/O automata. Inf. Process.
Lett. 95(5), 487–495 (2005). https://doi.org/10.1016/j.ipl.2005.05.012

15. ter Beek, M.H., Kleijn, J.: Vector Team Automata. Theor. Comput. Sci. 429, 21–29
(2012). https://doi.org/10.1016/j.tcs.2011.12.020

16. ter Beek, M.H., Lenzini, G., Petrocchi, M.: Team Automata for Security:
A Survey. Electron. Notes Theor. Comput. Sci. 128(5), 105–119 (2005).
https://doi.org/10.1016/j.entcs.2004.11.044

17. Beyer, D., Chakrabarti, A., Chatterjee, K., de Alfaro, L., Henzinger, T.A., Ju-
rdzinski, M., Mang, F.Y.C., Song, C.: CHIC: Checking Interface Compatibility
(December 2007), https://ptolemy.berkeley.edu/projects/embedded/research/chic

18. Bocchi, L., Orchard, D., Voinea, A.L.: A Theory of Composing Protocols. Art
Sci. Eng. Program. 7(2), 6:1–6:76 (2023). https://doi.org/10.22152/programming-
journal.org/2023/7/6

19. Bordeaux, L., Salaün, G., Berardi, D., Mecella, M.: When are Two Web Services
Compatible? In: Shan, M.C., Dayal, U., Hsu, M. (eds.) TES. LNCS, vol. 3324, pp.
15–28. Springer (2005). https://doi.org/10.1007/978-3-540-31811-8_2

20. Brand, D., Zafiropulo, P.: On Communicating Finite-State Machines. J. ACM
30(2), 323–342 (1983). https://doi.org/10.1145/322374.322380

21. Bunte, O., Groote, J.F., Keiren, J.J.A., Laveaux, M., Neele, T., de Vink, E.P.,
Wesselink, W., Wijs, A., Willemse, T.A.C.: The mCRL2 Toolset for Analysing
Concurrent Systems. In: Vojnar, T., Zhang, L. (eds.) TACAS. LNCS, vol. 11428,
pp. 21–39. Springer (2019). https://doi.org/10.1007/978-3-030-17465-1_2

22. Carmona, J., Cortadella, J.: Input/Output Compatibility of Reactive Systems.
In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD. LNCS, vol. 2517, pp. 360–377.
Springer (2002). https://doi.org/10.1007/3-540-36126-X_22

23. Carmona, J., Kleijn, J.: Compatibility in a multi-component environment. Theor.
Comput. Sci. 484, 1–15 (2013). https://doi.org/10.1016/j.tcs.2013.03.006

24. Carrez, C., Fantechi, A., Najm, E.: Behavioural Contracts for a Sound Assembly of
Components. In: König, H., Heiner, M., Wolisz, A. (eds.) FORTE. LNCS, vol. 2767,
pp. 111–126. Springer (2003). https://doi.org/10.1007/978-3-540-39979-7_8

25. Castagna, G., Gesbert, N., Padovani, L.: A Theory of Contracts for
Web Services. ACM Trans. Program. Lang. Syst. 31(5), 19:1–19:61 (2009).
https://doi.org/10.1145/1538917.1538920

26. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Jurdzinski, M., Mang, F.Y.C.:
Interface Compatibility Checking for Software Modules. In: Brinksma, E.,
Larsen, K.G. (eds.) CAV. LNCS, vol. 2404, pp. 428–441. Springer (2002).
https://doi.org/10.1007/3-540-45657-0_35

20

https://doi.org/10.1007/0-306-48019-0_4
https://doi.org/10.1007/0-306-48019-0_4
https://doi.org/10.1023/A:1022407907596
https://doi.org/10.1007/978-3-030-64276-1_11
https://doi.org/10.1007/978-3-030-64276-1_11
https://doi.org/10.1007/978-3-540-45236-2_22
https://doi.org/10.1016/j.ipl.2005.05.012
https://doi.org/10.1016/j.tcs.2011.12.020
https://doi.org/10.1016/j.entcs.2004.11.044
https://ptolemy.berkeley.edu/projects/embedded/research/chic
https://doi.org/10.22152/programming-journal.org/2023/7/6
https://doi.org/10.22152/programming-journal.org/2023/7/6
https://doi.org/10.1007/978-3-540-31811-8_2
https://doi.org/10.1145/322374.322380
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/3-540-36126-X_22
https://doi.org/10.1016/j.tcs.2013.03.006
https://doi.org/10.1007/978-3-540-39979-7_8
https://doi.org/10.1145/1538917.1538920
https://doi.org/10.1007/3-540-45657-0_35

27. de Alfaro, L., Henzinger, T.A.: Interface Automata. In: Proceedings of the 8th
European Software Engineering Conference held jointly with 9th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (ESEC/FSE).
pp. 109–120. ACM (2001). https://doi.org/10.1145/503209.503226

28. Durán, F., Ouederni, M., Salaün, G.: A generic framework for n-protocol
compatibility checking. Sci. Comput. Program. 77(7-8), 870–886 (2012).
https://doi.org/10.1016/j.scico.2011.03.009

29. Ellis, C.A.: Team Automata for Groupware Systems. In: Proceedings of the 1st In-
ternational ACM SIGGROUP Conference on Supporting Group Work (GROUP).
pp. 415–424. ACM (1997). https://doi.org/10.1145/266838.267363

30. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
MIT Press (2014)

31. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. Foundations of Computing, MIT
Press (2000). https://doi.org/10.7551/mitpress/2516.001.0001

32. Hennessy, M., Milner, R.: On Observing Nondeterminism and Concurrency. In:
de Bakker, J.W., van Leeuwen, J. (eds.) ICALP. LNCS, vol. 85, pp. 299–309.
Springer (1980). https://doi.org/10.1007/3-540-10003-2_79

33. Hennicker, R., Bidoit, M.: Compatibility Properties of Synchronously and Asyn-
chronously Communicating Components. Log. Meth. Comp. Sci. 14(1), 1–31
(2018). https://doi.org/10.23638/LMCS-14(1:1)2018

34. Hennicker, R., Bidoit, M., Dang, T.: On Synchronous and Asynchronous Com-
patibility of Communicating Components. In: Lluch Lafuente, A., Proença,
J. (eds.) COORDINATION. LNCS, vol. 9686, pp. 138–156. Springer (2016).
https://doi.org/10.1007/978-3-319-39519-7_9

35. Hennicker, R., Knapp, A.: Moving from interface theories to assembly theories.
Acta Inf. 52(2-3), 235–268 (2015). https://doi.org/10.1007/s00236-015-0220-7

36. Larsen, K.G., Nyman, U., Wąsowski, A.: Modal I/O Automata for Interface and
Product Line Theories. In: De Nicola, R. (ed.) ESOP. LNCS, vol. 4421, pp. 64–79.
Springer (2007). https://doi.org/10.1007/978-3-540-71316-6_6

37. Lüttgen, G., Vogler, W., Fendrich, S.: Richer interface automata with op-
timistic and pessimistic compatibility. Acta Inf. 52(4-5), 305–336 (2015).
https://doi.org/10.1007/s00236-014-0211-0

38. Lynch, N.A., Tuttle, M.R.: An Introduction to Input/Output Automata. CWI Q.
2(3), 219–246 (1989), https://ir.cwi.nl/pub/18164

39. Proença, J., Madeira, A.: Taming Hierarchical Connectors. In: Hojjat, H.,
Massink, M. (eds.) FSEN. LNCS, vol. 11761, pp. 186–193. Springer (2019).
https://doi.org/10.1007/978-3-030-31517-7_13

21

https://doi.org/10.1145/503209.503226
https://doi.org/10.1016/j.scico.2011.03.009
https://doi.org/10.1145/266838.267363
https://doi.org/10.7551/mitpress/2516.001.0001
https://doi.org/10.1007/3-540-10003-2_79
https://doi.org/10.23638/LMCS-14(1:1)2018
https://doi.org/10.1007/978-3-319-39519-7_9
https://doi.org/10.1007/s00236-015-0220-7
https://doi.org/10.1007/978-3-540-71316-6_6
https://doi.org/10.1007/s00236-014-0211-0
https://ir.cwi.nl/pub/18164
https://doi.org/10.1007/978-3-030-31517-7_13

A Screenshots of the Tool

Our approach to synthesise characterising formulas for communication properties
of team automata was implemented in Scala and JavaScript. In the body of the
paper, we only included a short overview of the implementation in Sect. 4, and
provide here more complete screenshots in Figs. 4 and 5. These are screenshots
from the content of the Web browser, which interacts with a server that runs
the mCRL2 model checker [21]. We briefly explain each widget below.

– ETA Specification is the input text box, where the user can specify the
component automata (CA), the system (S), and the synchronisation type
specifications (STS).

– ETA Examples is a collection of examples of ETA specifications — these
screenshots illustrate the Race system, and clicking any of the other examples
will replace the ETA specification by a different example.

– ETA diagram is the visual representation of the composed ETA, in this
case produced by composing 2 runners and 1 controller, and restricting com-
munication to the given synchronisation type.

– System diagram is the visual representation of the composed system, with-
out imposing the synchronisation type.

– Communication Properties’ Characterisation in mCRL2 displays
the transformation of the four communication properties into mCRL2 for-
mulas and the transformation of the system into parallel mCRL2 processes.
These transformations are internal representations that do not need to be
exposed to the user to reason over communication properties, but can help
to provide more insight and thus opens the possibility of verifying other
communication properties in mCRL2.

– Verification in mCRL2 outputs the result by mCRL2 from verifying the
communication property formulas against the mCRL2 processes. In this case,
only the responsiveness property failed.

– View mCRL2 evidence extends the verification outputs with evidences
provided by mCRL2, after renaming the labels to match their original no-
tation. In this case, it produced three equal witnesses for the satisfied for-
mulas, which match the ETA, and a counterexample for the failed formula.
This counterexample depicts a trace to a state where the controller should
be able to receive a finish but cannot.

– CA is the visual representation of each of the individual components defined
in the ETA specification widget.

22

Fig. 4: Overall screenshot of the browser, with the 5 lower widgets minimised

23

Fig. 5: Screenshot of the expanded widgets that were minimised in Fig. 4

24

	Can we Communicate? Using Dynamic Logic to Verify Team Automata(Extended Version)

