<html> <head> <title>mt454_Bz_0ma</title> <style type="text/css"> <!-- p.journal, p.journal_noident { text-align:justify; font-size:10.0pt; line-height:11.0pt; margin-top:0pt; margin-bottom:0pt; } p.journal { text-indent:1cm; } pre.journal { font-size:9.0pt; margin-top:0pt; margin-bottom:0pt; } p.journal_h1{ font-size:13.0pt; font-weight:bold; margin-top:18pt; margin-bottom:6pt; } p.journal_h2{ font-size:10.0pt; font-weight:bold; margin-top:6pt; margin-bottom:3pt; } ol.journal_reference li{ font-size:10.0pt; } .container { margin: 0 auto; padding-top: 0px; padding-left: 10px; padding-right: 10px; padding-bottom: 50px; position: relative; width: 800px; background-color: #ffffff !important; } .outside { background-color: #efefef; } --> </style> <style type="text/css"> <!-- body { tab-interval:60.0pt; text-justify-trim:punctuation; } div.Content { width:800px; position:relative; left:0px; top:0px; } div.Section1 { width:100%; float:left; page:Section1; } div.Section2 { width:100%; float:left; page:Section2; } div.Section3 { width:100%; float:left; page:Section3; } h1 { } p.normal, li.normal, div.normal { font-size:11.0pt; font-family:"Times New Roman"; } p.cifTableHeadline { font-weight:bold; } span.replaceThisChar { color:red; font-weight:bold; } table.CifTable { page-break-before: always; mso-special-character:line-break; border-collapse:collapse; } table.CifTable td.data { white-space:nowrap; } table.CifTable td.leftcol { white-space:nowrap; } table.CifTable td.decimal { tab-stops:decimal 6pt; text-align:"."; text-align:right; font-size:11.0pt; font-family:"Courier"; width:6em; } table.CifTable td.decimalWide { tab-stops:decimal 10pt; text-align:"."; text-align:right; font-size:11.0pt; font-family:"Courier"; width:8em; } table.CifTable th { font-weight:bold; text-align:center; } table.CifTable caption { caption-side:top; font-weight:bold; text-align:left; } .cifTableFirst {font-weight:bold;} .cifTableFooter { boder-top:solid; font-size:8.0pt; } /* Page Definitions */ @page Section1 { size:595.3pt 841.9pt; margin:34.0pt 2.0cm 2.0cm 85.25pt; } div.Section1 { page:Section1; } @page Section2 { size:21cm 29.7cm; margin-top:2.54cm; margin-bottom:2.54cm; margin-left:3.17cm; margin-right:3.17cm; } div.Section2 { page:Section2; } @page Section3 { size:595.3pt 841.9pt; margin:34.0pt 2.0cm 2.0cm 79.4pt; } div.Section3 { page:Section3; } --> </style> </head> <body lang='EN-US' onpageshow="onShow();" onresize="onSize();"> <div class=Title> <h1>mt454_Bz_0ma </h1> <!--[if IE]><img width=500 src='screenshot.png'><![endif]--> <![if !IE]><img width=500 src=''><![endif]> </div> <p> <div class=Section2> <table class=CifTable> <caption> Table 1 Crystal data and structure refinement for mt454_Bz_0ma. </caption> <tr> <td class="leftcol"> Identification code </td> <td class="data"> mt454_Bz_0ma </td> </tr> <tr> <td class="leftcol"> Empirical formula </td> <td class="data"> C<sub>39</sub>H<sub>51</sub>EuN<sub>4</sub>Ni </td> </tr> <tr> <td class="leftcol"> Formula weight </td> <td class="data"> 786.51 </td> </tr> <tr> <td class="leftcol"> Temperature/K </td> <td class="data"> 150.0 </td> </tr> <tr> <td class="leftcol"> Crystal system </td> <td class="data"> monoclinic </td> </tr> <tr> <td class="leftcol"> Space group </td> <td class="data"> P2<sub>1</sub>/n </td> </tr> <tr> <td class="leftcol"> a/Å </td> <td class="data"> 10.1988(10) </td> </tr> <tr> <td class="leftcol"> b/Å </td> <td class="data"> 27.869(3) </td> </tr> <tr> <td class="leftcol"> c/Å </td> <td class="data"> 12.8361(12) </td> </tr> <tr> <td class="leftcol"> α/° </td> <td class="data"> 90 </td> </tr> <tr> <td class="leftcol"> β/° </td> <td class="data"> 98.045(3) </td> </tr> <tr> <td class="leftcol"> γ/° </td> <td class="data"> 90 </td> </tr> <tr> <td class="leftcol"> Volume/Å<sup>3</sup> </td> <td class="data"> 3612.5(6) </td> </tr> <tr> <td class="leftcol"> Z </td> <td class="data"> 4 </td> </tr> <tr> <td class="leftcol"> ρ<sub>calc</sub>g/cm<sup>3</sup> </td> <td class="data"> 1.446 </td> </tr> <tr> <td class="leftcol"> μ/mm<sup>‑1</sup> </td> <td class="data"> 2.273 </td> </tr> <tr> <td class="leftcol"> F(000) </td> <td class="data"> 1616.0 </td> </tr> <tr> <td class="leftcol"> Crystal size/mm<sup>3</sup> </td> <td class="data"> 0.16 × 0.08 × 0.04 </td> </tr> <tr> <td class="leftcol"> Radiation </td> <td class="data"> MoKα (λ = 0.71073) </td> </tr> <tr> <td class="leftcol"> 2Θ range for data collection/° </td> <td class="data"> 5.61 to 56.564 </td> </tr> <tr> <td class="leftcol"> Index ranges </td> <td class="data"> -13 ≤ h ≤ 13, -37 ≤ k ≤ 37, -17 ≤ l ≤ 17 </td> </tr> <tr> <td class="leftcol"> Reflections collected </td> <td class="data"> 70248 </td> </tr> <tr> <td class="leftcol"> Independent reflections </td> <td class="data"> 8958 [R<sub>int</sub> = 0.0811, R<sub>sigma</sub> = 0.0471] </td> </tr> <tr> <td class="leftcol"> Data/restraints/parameters </td> <td class="data"> 8958/72/476 </td> </tr> <tr> <td class="leftcol"> Goodness-of-fit on F<sup>2</sup> </td> <td class="data"> 1.015 </td> </tr> <tr> <td class="leftcol"> Final R indexes [I>=2σ (I)] </td> <td class="data"> R<sub>1</sub> = 0.0301, wR<sub>2</sub> = 0.0586 </td> </tr> <tr> <td class="leftcol"> Final R indexes [all data] </td> <td class="data"> R<sub>1</sub> = 0.0486, wR<sub>2</sub> = 0.0647 </td> </tr> <tr> <td class="leftcol"> Largest diff. peak/hole / e Å<sup>-3</sup> </td> <td class="data"> 0.42/-0.48 </td> </table> <br clear=all> </div> <p> </p> <table class=CifTable> <caption class=cifTableHeadline>Table 2 Fractional Atomic Coordinates (×10<SUP>4</SUP>) and Equivalent Isotropic Displacement Parameters (Å<SUP>2</SUP>×10<SUP>3</SUP>) for mt454_Bz_0ma. U<sub>eq</sub> is defined as 1/3 of of the trace of the orthogonalised U<sub>IJ</sub> tensor.</caption> <thead><tr><th >Atom</th><th ><i>x</i></th><th ><i>y</i></th><th ><i>z</i></th><th >U(eq)</th></tr></thead> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class=decimalWide>5251.6(2)</td><td class=decimalWide>6655.7(2)</td><td class=decimalWide>8128.1(2)</td><td class=decimal>22.25(4)</td></tr> <tr class=cifTableRow><td class='data'>Ni(1)</td><td class=decimalWide>7580.6(4)</td><td class=decimalWide>5917.7(2)</td><td class=decimalWide>4274.4(3)</td><td class=decimal>26.40(9)</td></tr> <tr class=cifTableRow><td class='data'>N(1)</td><td class=decimalWide>6205(2)</td><td class=decimalWide>6361.9(8)</td><td class=decimalWide>4603.8(18)</td><td class=decimal>25.0(5)</td></tr> <tr class=cifTableRow><td class='data'>N(2)</td><td class=decimalWide>7629(2)</td><td class=decimalWide>5755.0(8)</td><td class=decimalWide>5762.2(17)</td><td class=decimal>23.9(5)</td></tr> <tr class=cifTableRow><td class='data'>N(3)</td><td class=decimalWide>5031(2)</td><td class=decimalWide>6597.8(8)</td><td class=decimalWide>6015.7(18)</td><td class=decimal>24.7(5)</td></tr> <tr class=cifTableRow><td class='data'>N(4)</td><td class=decimalWide>6679(2)</td><td class=decimalWide>5977.9(8)</td><td class=decimalWide>7299.0(17)</td><td class=decimal>24.5(5)</td></tr> <tr class=cifTableRow><td class='data'>C(1)</td><td class=decimalWide>5958(3)</td><td class=decimalWide>6348.2(9)</td><td class=decimalWide>5608(2)</td><td class=decimal>21.0(6)</td></tr> <tr class=cifTableRow><td class='data'>C(2)</td><td class=decimalWide>6796(3)</td><td class=decimalWide>6009.7(9)</td><td class=decimalWide>6274(2)</td><td class=decimal>21.2(6)</td></tr> <tr class=cifTableRow><td class='data'>C(3)</td><td class=decimalWide>8425(3)</td><td class=decimalWide>5443.3(10)</td><td class=decimalWide>6359(2)</td><td class=decimal>29.9(7)</td></tr> <tr class=cifTableRow><td class='data'>C(4)</td><td class=decimalWide>8371(3)</td><td class=decimalWide>5386.6(10)</td><td class=decimalWide>7413(2)</td><td class=decimal>32.7(7)</td></tr> <tr class=cifTableRow><td class='data'>C(5)</td><td class=decimalWide>7475(3)</td><td class=decimalWide>5657.5(10)</td><td class=decimalWide>7859(2)</td><td class=decimal>31.4(7)</td></tr> <tr class=cifTableRow><td class='data'>C(6)</td><td class=decimalWide>4246(3)</td><td class=decimalWide>6877.6(10)</td><td class=decimalWide>5335(2)</td><td class=decimal>29.8(7)</td></tr> <tr class=cifTableRow><td class='data'>C(7)</td><td class=decimalWide>4380(3)</td><td class=decimalWide>6905.6(11)</td><td class=decimalWide>4286(2)</td><td class=decimal>32.5(7)</td></tr> <tr class=cifTableRow><td class='data'>C(8)</td><td class=decimalWide>5394(3)</td><td class=decimalWide>6645.7(11)</td><td class=decimalWide>3948(2)</td><td class=decimal>31.1(7)</td></tr> <tr class=cifTableRow><td class='data'>C(9)</td><td class=decimalWide>7608(4)</td><td class=decimalWide>6146.0(13)</td><td class=decimalWide>2867(2)</td><td class=decimal>46.0(9)</td></tr> <tr class=cifTableRow><td class='data'>C(10)</td><td class=decimalWide>8773(3)</td><td class=decimalWide>5415.3(12)</td><td class=decimalWide>4011(3)</td><td class=decimal>39.7(8)</td></tr> <tr class=cifTableRow><td class='data'>C(11)</td><td class=decimalWide>7539(3)</td><td class=decimalWide>7186.3(10)</td><td class=decimalWide>7888(2)</td><td class=decimal>25.7(6)</td></tr> <tr class=cifTableRow><td class='data'>C(12)</td><td class=decimalWide>7815(3)</td><td class=decimalWide>6983.7(11)</td><td class=decimalWide>8916(2)</td><td class=decimal>29.9(7)</td></tr> <tr class=cifTableRow><td class='data'>C(13)</td><td class=decimalWide>6985(3)</td><td class=decimalWide>7208.1(11)</td><td class=decimalWide>9566(2)</td><td class=decimal>30.7(7)</td></tr> <tr class=cifTableRow><td class='data'>C(14)</td><td class=decimalWide>6194(3)</td><td class=decimalWide>7545.2(10)</td><td class=decimalWide>8950(2)</td><td class=decimal>28.4(6)</td></tr> <tr class=cifTableRow><td class='data'>C(15)</td><td class=decimalWide>6525(3)</td><td class=decimalWide>7533.3(10)</td><td class=decimalWide>7918(2)</td><td class=decimal>24.5(6)</td></tr> <tr class=cifTableRow><td class='data'>C(16)</td><td class=decimalWide>8270(3)</td><td class=decimalWide>7086.7(11)</td><td class=decimalWide>6981(3)</td><td class=decimal>36.1(7)</td></tr> <tr class=cifTableRow><td class='data'>C(17)</td><td class=decimalWide>8858(3)</td><td class=decimalWide>6615.3(12)</td><td class=decimalWide>9292(3)</td><td class=decimal>44.3(9)</td></tr> <tr class=cifTableRow><td class='data'>C(18)</td><td class=decimalWide>7046(4)</td><td class=decimalWide>7116.2(13)</td><td class=decimalWide>10736(2)</td><td class=decimal>46.8(9)</td></tr> <tr class=cifTableRow><td class='data'>C(19)</td><td class=decimalWide>5236(3)</td><td class=decimalWide>7896.8(11)</td><td class=decimalWide>9340(3)</td><td class=decimal>40.5(8)</td></tr> <tr class=cifTableRow><td class='data'>C(20)</td><td class=decimalWide>5935(3)</td><td class=decimalWide>7845.4(11)</td><td class=decimalWide>7023(2)</td><td class=decimal>34.4(7)</td></tr> <tr class=cifTableRow><td class='data'>C(21)</td><td class=decimalWide>3408(3)</td><td class=decimalWide>5926.5(11)</td><td class=decimalWide>8289(2)</td><td class=decimal>35.6(8)</td></tr> <tr class=cifTableRow><td class='data'>C(22)</td><td class=decimalWide>4005(3)</td><td class=decimalWide>6019.5(10)</td><td class=decimalWide>9333(2)</td><td class=decimal>30.9(7)</td></tr> <tr class=cifTableRow><td class='data'>C(23)</td><td class=decimalWide>3575(3)</td><td class=decimalWide>6474.6(10)</td><td class=decimalWide>9623(2)</td><td class=decimal>29.5(7)</td></tr> <tr class=cifTableRow><td class='data'>C(24)</td><td class=decimalWide>2731(3)</td><td class=decimalWide>6666.9(12)</td><td class=decimalWide>8755(3)</td><td class=decimal>35.0(7)</td></tr> <tr class=cifTableRow><td class='data'>C(25)</td><td class=decimalWide>2624(3)</td><td class=decimalWide>6324.5(12)</td><td class=decimalWide>7935(3)</td><td class=decimal>37.9(8)</td></tr> <tr class=cifTableRow><td class='data'>C(26)</td><td class=decimalWide>3544(4)</td><td class=decimalWide>5467.6(13)</td><td class=decimalWide>7692(3)</td><td class=decimal>56.4(11)</td></tr> <tr class=cifTableRow><td class='data'>C(27)</td><td class=decimalWide>4910(4)</td><td class=decimalWide>5684.5(12)</td><td class=decimalWide>10017(3)</td><td class=decimal>49.8(10)</td></tr> <tr class=cifTableRow><td class='data'>C(28)</td><td class=decimalWide>3866(4)</td><td class=decimalWide>6701.2(12)</td><td class=decimalWide>10697(3)</td><td class=decimal>42.6(8)</td></tr> <tr class=cifTableRow><td class='data'>C(29)</td><td class=decimalWide>2040(3)</td><td class=decimalWide>7149.4(13)</td><td class=decimalWide>8738(3)</td><td class=decimal>51.8(10)</td></tr> <tr class=cifTableRow><td class='data'>C(30)</td><td class=decimalWide>1743(4)</td><td class=decimalWide>6368.0(17)</td><td class=decimalWide>6890(3)</td><td class=decimal>62.1(12)</td></tr> <tr class=cifTableRow><td class='data'>C(45)</td><td class=decimalWide>9230(20)</td><td class=decimalWide>4564(7)</td><td class=decimalWide>10048(15)</td><td class=decimal>31(5)</td></tr> <tr class=cifTableRow><td class='data'>C(43)</td><td class=decimalWide>9015(18)</td><td class=decimalWide>5007(9)</td><td class=decimalWide>10492(13)</td><td class=decimal>28(5)</td></tr> <tr class=cifTableRow><td class='data'>C(44)</td><td class=decimalWide>9850(20)</td><td class=decimalWide>5390(6)</td><td class=decimalWide>10367(15)</td><td class=decimal>29(5)</td></tr> <tr class=cifTableRow><td class='data'>C(46)</td><td class=decimalWide>10910(20)</td><td class=decimalWide>5329(7)</td><td class=decimalWide>9798(18)</td><td class=decimal>38(8)</td></tr> <tr class=cifTableRow><td class='data'>C(47)</td><td class=decimalWide>11120(20)</td><td class=decimalWide>4886(9)</td><td class=decimalWide>9354(15)</td><td class=decimal>34(6)</td></tr> <tr class=cifTableRow><td class='data'>C(48)</td><td class=decimalWide>10280(30)</td><td class=decimalWide>4503(6)</td><td class=decimalWide>9479(15)</td><td class=decimal>42(6)</td></tr> <tr class=cifTableRow><td class='data'>C(31)</td><td class=decimalWide>3505(5)</td><td class=decimalWide>5557.8(15)</td><td class=decimalWide>4529(3)</td><td class=decimal>57.8(11)</td></tr> <tr class=cifTableRow><td class='data'>C(32)</td><td class=decimalWide>2338(5)</td><td class=decimalWide>5781.4(15)</td><td class=decimalWide>4174(4)</td><td class=decimal>62.7(12)</td></tr> <tr class=cifTableRow><td class='data'>C(33)</td><td class=decimalWide>2012(4)</td><td class=decimalWide>5886.0(14)</td><td class=decimalWide>3121(4)</td><td class=decimal>67.8(13)</td></tr> <tr class=cifTableRow><td class='data'>C(34)</td><td class=decimalWide>2883(5)</td><td class=decimalWide>5762.8(14)</td><td class=decimalWide>2435(3)</td><td class=decimal>58.7(11)</td></tr> <tr class=cifTableRow><td class='data'>C(35)</td><td class=decimalWide>4048(4)</td><td class=decimalWide>5542.2(13)</td><td class=decimalWide>2800(3)</td><td class=decimal>49.3(9)</td></tr> <tr class=cifTableRow><td class='data'>C(36)</td><td class=decimalWide>4347(4)</td><td class=decimalWide>5437.0(13)</td><td class=decimalWide>3846(3)</td><td class=decimal>53.9(10)</td></tr> <tr class=cifTableRow><td class='data'>C(37)</td><td class=decimalWide>9000(20)</td><td class=decimalWide>4743(10)</td><td class=decimalWide>10260(20)</td><td class=decimal>30(9)</td></tr> <tr class=cifTableRow><td class='data'>C(38)</td><td class=decimalWide>9250(20)</td><td class=decimalWide>5226(10)</td><td class=decimalWide>10480(20)</td><td class=decimal>27(6)</td></tr> <tr class=cifTableRow><td class='data'>C(39)</td><td class=decimalWide>10330(30)</td><td class=decimalWide>5451(8)</td><td class=decimalWide>10140(20)</td><td class=decimal>46(11)</td></tr> <tr class=cifTableRow><td class='data'>C(40)</td><td class=decimalWide>11160(20)</td><td class=decimalWide>5192(11)</td><td class=decimalWide>9580(20)</td><td class=decimal>31(7)</td></tr> <tr class=cifTableRow><td class='data'>C(41)</td><td class=decimalWide>10920(20)</td><td class=decimalWide>4710(11)</td><td class=decimalWide>9359(17)</td><td class=decimal>30(6)</td></tr> <tr class=cifTableRow><td class='data'>C(42)</td><td class=decimalWide>9840(30)</td><td class=decimalWide>4485(7)</td><td class=decimalWide>9700(20)</td><td class=decimal>16(5)</td></tr> </table> <p> </p> <table class=CifTable> <caption class=cifTableHeadline>Table 3 Anisotropic Displacement Parameters (Å<SUP>2</SUP>×10<SUP>3</SUP>) for mt454_Bz_0ma. The Anisotropic displacement factor exponent takes the form: -2π<SUP>2</SUP>[h<SUP>2</SUP>a*<SUP>2</SUP>U<sub>11</sub>+2hka*b*U<sub>12</sub>+…].</caption> <thead><tr><th >Atom</th><th >U<sub>11</sub></th><th >U<sub>22</sub></th><th >U<sub>33</sub></th><th >U<sub>23</sub></th><th >U<sub>13</sub></th><th >U<sub>12</sub></th></tr></thead> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class=decimal>21.88(7)</td><td class=decimal>22.51(7)</td><td class=decimal>23.17(7)</td><td class=decimal>-1.65(6)</td><td class=decimal>6.03(5)</td><td class=decimal>-4.46(6)</td></tr> <tr class=cifTableRow><td class='data'>Ni(1)</td><td class=decimal>26.7(2)</td><td class=decimal>29.2(2)</td><td class=decimal>23.60(18)</td><td class=decimal>-0.95(15)</td><td class=decimal>4.51(15)</td><td class=decimal>2.30(16)</td></tr> <tr class=cifTableRow><td class='data'>N(1)</td><td class=decimal>27.5(13)</td><td class=decimal>23.5(12)</td><td class=decimal>23.3(12)</td><td class=decimal>2.8(10)</td><td class=decimal>1.2(10)</td><td class=decimal>0.9(10)</td></tr> <tr class=cifTableRow><td class='data'>N(2)</td><td class=decimal>19.5(12)</td><td class=decimal>26.0(12)</td><td class=decimal>25.5(12)</td><td class=decimal>-0.8(10)</td><td class=decimal>0.1(10)</td><td class=decimal>2.4(10)</td></tr> <tr class=cifTableRow><td class='data'>N(3)</td><td class=decimal>21.9(12)</td><td class=decimal>23.5(12)</td><td class=decimal>27.9(12)</td><td class=decimal>0.1(10)</td><td class=decimal>0.6(10)</td><td class=decimal>3.2(10)</td></tr> <tr class=cifTableRow><td class='data'>N(4)</td><td class=decimal>27.4(13)</td><td class=decimal>23.5(12)</td><td class=decimal>22.1(12)</td><td class=decimal>3.1(9)</td><td class=decimal>2.1(10)</td><td class=decimal>-1.0(10)</td></tr> <tr class=cifTableRow><td class='data'>C(1)</td><td class=decimal>21.2(14)</td><td class=decimal>18.4(13)</td><td class=decimal>22.7(13)</td><td class=decimal>0.2(10)</td><td class=decimal>-0.1(11)</td><td class=decimal>-1.1(11)</td></tr> <tr class=cifTableRow><td class='data'>C(2)</td><td class=decimal>20.6(14)</td><td class=decimal>20.8(14)</td><td class=decimal>21.6(13)</td><td class=decimal>-0.2(10)</td><td class=decimal>1.1(11)</td><td class=decimal>-2.2(11)</td></tr> <tr class=cifTableRow><td class='data'>C(3)</td><td class=decimal>26.1(16)</td><td class=decimal>25.5(15)</td><td class=decimal>36.5(17)</td><td class=decimal>-0.5(13)</td><td class=decimal>-0.8(13)</td><td class=decimal>3.5(12)</td></tr> <tr class=cifTableRow><td class='data'>C(4)</td><td class=decimal>31.2(17)</td><td class=decimal>26.4(16)</td><td class=decimal>37.4(17)</td><td class=decimal>6.5(13)</td><td class=decimal>-5.8(14)</td><td class=decimal>5.9(13)</td></tr> <tr class=cifTableRow><td class='data'>C(5)</td><td class=decimal>36.2(18)</td><td class=decimal>29.2(16)</td><td class=decimal>26.6(15)</td><td class=decimal>8.4(13)</td><td class=decimal>-3.5(13)</td><td class=decimal>-2.5(13)</td></tr> <tr class=cifTableRow><td class='data'>C(6)</td><td class=decimal>27.9(16)</td><td class=decimal>21.6(15)</td><td class=decimal>39.0(17)</td><td class=decimal>3.3(13)</td><td class=decimal>1.3(13)</td><td class=decimal>5.3(12)</td></tr> <tr class=cifTableRow><td class='data'>C(7)</td><td class=decimal>34.3(18)</td><td class=decimal>27.9(16)</td><td class=decimal>32.6(16)</td><td class=decimal>5.0(13)</td><td class=decimal>-4.5(14)</td><td class=decimal>6.7(13)</td></tr> <tr class=cifTableRow><td class='data'>C(8)</td><td class=decimal>37.5(17)</td><td class=decimal>30.6(16)</td><td class=decimal>23.8(14)</td><td class=decimal>7.4(13)</td><td class=decimal>-1.2(12)</td><td class=decimal>1.5(14)</td></tr> <tr class=cifTableRow><td class='data'>C(9)</td><td class=decimal>48(2)</td><td class=decimal>59(2)</td><td class=decimal>32.2(18)</td><td class=decimal>6.5(16)</td><td class=decimal>11.0(16)</td><td class=decimal>8.5(18)</td></tr> <tr class=cifTableRow><td class='data'>C(10)</td><td class=decimal>42(2)</td><td class=decimal>41.1(19)</td><td class=decimal>37.9(18)</td><td class=decimal>-2.7(15)</td><td class=decimal>11.7(15)</td><td class=decimal>10.8(15)</td></tr> <tr class=cifTableRow><td class='data'>C(11)</td><td class=decimal>20.8(14)</td><td class=decimal>22.8(14)</td><td class=decimal>33.2(16)</td><td class=decimal>-0.6(12)</td><td class=decimal>2.8(12)</td><td class=decimal>-8.1(11)</td></tr> <tr class=cifTableRow><td class='data'>C(12)</td><td class=decimal>24.4(15)</td><td class=decimal>28.6(16)</td><td class=decimal>34.5(16)</td><td class=decimal>4.9(13)</td><td class=decimal>-3.3(13)</td><td class=decimal>-5.9(12)</td></tr> <tr class=cifTableRow><td class='data'>C(13)</td><td class=decimal>31.6(17)</td><td class=decimal>31.5(16)</td><td class=decimal>27.0(15)</td><td class=decimal>2.5(12)</td><td class=decimal>-2.5(13)</td><td class=decimal>-11.4(13)</td></tr> <tr class=cifTableRow><td class='data'>C(14)</td><td class=decimal>28.1(16)</td><td class=decimal>25.2(15)</td><td class=decimal>31.3(15)</td><td class=decimal>-1.8(12)</td><td class=decimal>2.3(13)</td><td class=decimal>-8.4(12)</td></tr> <tr class=cifTableRow><td class='data'>C(15)</td><td class=decimal>24.4(15)</td><td class=decimal>21.1(14)</td><td class=decimal>27.1(14)</td><td class=decimal>2.5(11)</td><td class=decimal>0.4(12)</td><td class=decimal>-5.1(11)</td></tr> <tr class=cifTableRow><td class='data'>C(16)</td><td class=decimal>30.5(17)</td><td class=decimal>35.3(18)</td><td class=decimal>44.5(19)</td><td class=decimal>-0.5(14)</td><td class=decimal>12.7(15)</td><td class=decimal>-9.3(14)</td></tr> <tr class=cifTableRow><td class='data'>C(17)</td><td class=decimal>31.3(18)</td><td class=decimal>38.0(19)</td><td class=decimal>60(2)</td><td class=decimal>8.6(17)</td><td class=decimal>-7.3(16)</td><td class=decimal>-3.2(15)</td></tr> <tr class=cifTableRow><td class='data'>C(18)</td><td class=decimal>54(2)</td><td class=decimal>54(2)</td><td class=decimal>29.8(17)</td><td class=decimal>9.8(16)</td><td class=decimal>-2.4(16)</td><td class=decimal>-18.3(18)</td></tr> <tr class=cifTableRow><td class='data'>C(19)</td><td class=decimal>42(2)</td><td class=decimal>35.2(18)</td><td class=decimal>45.2(19)</td><td class=decimal>-7.3(15)</td><td class=decimal>9.9(16)</td><td class=decimal>-4.0(15)</td></tr> <tr class=cifTableRow><td class='data'>C(20)</td><td class=decimal>36.7(18)</td><td class=decimal>31.1(17)</td><td class=decimal>35.3(17)</td><td class=decimal>7.8(13)</td><td class=decimal>4.7(14)</td><td class=decimal>-4.2(14)</td></tr> <tr class=cifTableRow><td class='data'>C(21)</td><td class=decimal>41.2(19)</td><td class=decimal>34.5(18)</td><td class=decimal>34.6(17)</td><td class=decimal>-8.5(14)</td><td class=decimal>17.2(15)</td><td class=decimal>-18.0(15)</td></tr> <tr class=cifTableRow><td class='data'>C(22)</td><td class=decimal>39.9(18)</td><td class=decimal>24.9(15)</td><td class=decimal>31.6(16)</td><td class=decimal>0.2(12)</td><td class=decimal>17.9(14)</td><td class=decimal>-6.4(13)</td></tr> <tr class=cifTableRow><td class='data'>C(23)</td><td class=decimal>33.8(17)</td><td class=decimal>24.9(15)</td><td class=decimal>33.8(16)</td><td class=decimal>-2.1(12)</td><td class=decimal>18.9(14)</td><td class=decimal>-7.1(13)</td></tr> <tr class=cifTableRow><td class='data'>C(24)</td><td class=decimal>24.0(15)</td><td class=decimal>39.9(18)</td><td class=decimal>44.0(18)</td><td class=decimal>4.2(15)</td><td class=decimal>14.6(14)</td><td class=decimal>-2.7(14)</td></tr> <tr class=cifTableRow><td class='data'>C(25)</td><td class=decimal>24.9(16)</td><td class=decimal>52(2)</td><td class=decimal>37.5(18)</td><td class=decimal>-0.8(16)</td><td class=decimal>7.6(14)</td><td class=decimal>-14.4(15)</td></tr> <tr class=cifTableRow><td class='data'>C(26)</td><td class=decimal>71(3)</td><td class=decimal>47(2)</td><td class=decimal>58(2)</td><td class=decimal>-24.3(18)</td><td class=decimal>31(2)</td><td class=decimal>-30(2)</td></tr> <tr class=cifTableRow><td class='data'>C(27)</td><td class=decimal>72(3)</td><td class=decimal>36.2(19)</td><td class=decimal>46(2)</td><td class=decimal>10.5(16)</td><td class=decimal>25.6(19)</td><td class=decimal>8.7(18)</td></tr> <tr class=cifTableRow><td class='data'>C(28)</td><td class=decimal>54(2)</td><td class=decimal>38.9(19)</td><td class=decimal>39.6(18)</td><td class=decimal>-7.0(15)</td><td class=decimal>23.2(17)</td><td class=decimal>-5.5(16)</td></tr> <tr class=cifTableRow><td class='data'>C(29)</td><td class=decimal>34(2)</td><td class=decimal>53(2)</td><td class=decimal>72(3)</td><td class=decimal>13(2)</td><td class=decimal>18.8(19)</td><td class=decimal>9.9(17)</td></tr> <tr class=cifTableRow><td class='data'>C(30)</td><td class=decimal>37(2)</td><td class=decimal>102(4)</td><td class=decimal>47(2)</td><td class=decimal>-5(2)</td><td class=decimal>3.6(18)</td><td class=decimal>-20(2)</td></tr> <tr class=cifTableRow><td class='data'>C(45)</td><td class=decimal>37(8)</td><td class=decimal>33(8)</td><td class=decimal>23(7)</td><td class=decimal>5(6)</td><td class=decimal>1(6)</td><td class=decimal>5(6)</td></tr> <tr class=cifTableRow><td class='data'>C(43)</td><td class=decimal>27(8)</td><td class=decimal>32(9)</td><td class=decimal>23(7)</td><td class=decimal>-1(7)</td><td class=decimal>-1(6)</td><td class=decimal>10(7)</td></tr> <tr class=cifTableRow><td class='data'>C(44)</td><td class=decimal>31(8)</td><td class=decimal>21(8)</td><td class=decimal>33(7)</td><td class=decimal>6(6)</td><td class=decimal>-2(6)</td><td class=decimal>2(7)</td></tr> <tr class=cifTableRow><td class='data'>C(46)</td><td class=decimal>50(11)</td><td class=decimal>35(10)</td><td class=decimal>29(10)</td><td class=decimal>-2(7)</td><td class=decimal>5(7)</td><td class=decimal>9(8)</td></tr> <tr class=cifTableRow><td class='data'>C(47)</td><td class=decimal>37(8)</td><td class=decimal>35(9)</td><td class=decimal>33(8)</td><td class=decimal>6(7)</td><td class=decimal>8(6)</td><td class=decimal>3(7)</td></tr> <tr class=cifTableRow><td class='data'>C(48)</td><td class=decimal>42(9)</td><td class=decimal>39(9)</td><td class=decimal>45(8)</td><td class=decimal>10(7)</td><td class=decimal>6(7)</td><td class=decimal>17(7)</td></tr> <tr class=cifTableRow><td class='data'>C(31)</td><td class=decimal>76(3)</td><td class=decimal>58(3)</td><td class=decimal>38(2)</td><td class=decimal>-0.8(18)</td><td class=decimal>2(2)</td><td class=decimal>-31(2)</td></tr> <tr class=cifTableRow><td class='data'>C(32)</td><td class=decimal>71(3)</td><td class=decimal>48(2)</td><td class=decimal>76(3)</td><td class=decimal>-24(2)</td><td class=decimal>35(3)</td><td class=decimal>-24(2)</td></tr> <tr class=cifTableRow><td class='data'>C(33)</td><td class=decimal>51(3)</td><td class=decimal>33(2)</td><td class=decimal>114(4)</td><td class=decimal>4(2)</td><td class=decimal>-9(3)</td><td class=decimal>-2.7(19)</td></tr> <tr class=cifTableRow><td class='data'>C(34)</td><td class=decimal>78(3)</td><td class=decimal>48(2)</td><td class=decimal>45(2)</td><td class=decimal>15.5(18)</td><td class=decimal>-9(2)</td><td class=decimal>-24(2)</td></tr> <tr class=cifTableRow><td class='data'>C(35)</td><td class=decimal>58(3)</td><td class=decimal>44(2)</td><td class=decimal>49(2)</td><td class=decimal>-5.6(17)</td><td class=decimal>19(2)</td><td class=decimal>-14.6(19)</td></tr> <tr class=cifTableRow><td class='data'>C(36)</td><td class=decimal>52(2)</td><td class=decimal>43(2)</td><td class=decimal>63(3)</td><td class=decimal>6.1(19)</td><td class=decimal>-4(2)</td><td class=decimal>-11.8(18)</td></tr> <tr class=cifTableRow><td class='data'>C(37)</td><td class=decimal>31(11)</td><td class=decimal>33(12)</td><td class=decimal>27(12)</td><td class=decimal>-3(8)</td><td class=decimal>10(8)</td><td class=decimal>9(8)</td></tr> <tr class=cifTableRow><td class='data'>C(38)</td><td class=decimal>22(9)</td><td class=decimal>31(10)</td><td class=decimal>29(9)</td><td class=decimal>-8(8)</td><td class=decimal>11(7)</td><td class=decimal>0(8)</td></tr> <tr class=cifTableRow><td class='data'>C(39)</td><td class=decimal>44(13)</td><td class=decimal>46(14)</td><td class=decimal>46(13)</td><td class=decimal>0(8)</td><td class=decimal>2(9)</td><td class=decimal>9(9)</td></tr> <tr class=cifTableRow><td class='data'>C(40)</td><td class=decimal>27(9)</td><td class=decimal>30(11)</td><td class=decimal>34(9)</td><td class=decimal>1(8)</td><td class=decimal>2(7)</td><td class=decimal>2(8)</td></tr> <tr class=cifTableRow><td class='data'>C(41)</td><td class=decimal>28(9)</td><td class=decimal>32(10)</td><td class=decimal>29(9)</td><td class=decimal>-4(7)</td><td class=decimal>1(7)</td><td class=decimal>3(8)</td></tr> <tr class=cifTableRow><td class='data'>C(42)</td><td class=decimal>15(8)</td><td class=decimal>9(8)</td><td class=decimal>24(8)</td><td class=decimal>3(6)</td><td class=decimal>5(7)</td><td class=decimal>-2(6)</td></tr> </table> <p> </p> <table class=CifTable> <caption class=cifTableHeadline>Table 4 Bond Lengths for mt454_Bz_0ma.</caption> <thead><tr><th >Atom</th><th >Atom</th><th >Length/Å</th><td width="100px"> </td><th >Atom</th><th >Atom</th><th >Length/Å</th></tr></thead> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>N(3)</td><td class=decimal>2.694(2)</td><td width="100px"> </td><td class='data'>C(13)</td><td class='data'>C(14)</td><td class=decimal>1.407(4)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>N(4)</td><td class=decimal>2.693(2)</td><td width="100px"> </td><td class='data'>C(13)</td><td class='data'>C(18)</td><td class=decimal>1.516(4)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>C(11)</td><td class=decimal>2.815(3)</td><td width="100px"> </td><td class='data'>C(14)</td><td class='data'>C(15)</td><td class=decimal>1.413(4)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>C(12)</td><td class=decimal>2.821(3)</td><td width="100px"> </td><td class='data'>C(14)</td><td class='data'>C(19)</td><td class=decimal>1.517(4)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>C(13)</td><td class=decimal>2.826(3)</td><td width="100px"> </td><td class='data'>C(15)</td><td class='data'>C(20)</td><td class=decimal>1.499(4)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>C(14)</td><td class=decimal>2.811(3)</td><td width="100px"> </td><td class='data'>C(21)</td><td class='data'>C(22)</td><td class=decimal>1.416(4)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>C(15)</td><td class=decimal>2.800(3)</td><td width="100px"> </td><td class='data'>C(21)</td><td class='data'>C(25)</td><td class=decimal>1.405(5)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>C(21)</td><td class=decimal>2.796(3)</td><td width="100px"> </td><td class='data'>C(21)</td><td class='data'>C(26)</td><td class=decimal>1.507(4)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>C(22)</td><td class=decimal>2.775(3)</td><td width="100px"> </td><td class='data'>C(22)</td><td class='data'>C(23)</td><td class=decimal>1.409(4)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>C(23)</td><td class=decimal>2.789(3)</td><td width="100px"> </td><td class='data'>C(22)</td><td class='data'>C(27)</td><td class=decimal>1.505(5)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>C(24)</td><td class=decimal>2.799(3)</td><td width="100px"> </td><td class='data'>C(23)</td><td class='data'>C(24)</td><td class=decimal>1.415(4)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>C(25)</td><td class=decimal>2.812(3)</td><td width="100px"> </td><td class='data'>C(23)</td><td class='data'>C(28)</td><td class=decimal>1.507(4)</td></tr> <tr class=cifTableRow><td class='data'>Ni(1)</td><td class='data'>N(1)</td><td class=decimal>1.961(2)</td><td width="100px"> </td><td class='data'>C(24)</td><td class='data'>C(25)</td><td class=decimal>1.413(4)</td></tr> <tr class=cifTableRow><td class='data'>Ni(1)</td><td class='data'>N(2)</td><td class=decimal>1.957(2)</td><td width="100px"> </td><td class='data'>C(24)</td><td class='data'>C(29)</td><td class=decimal>1.517(5)</td></tr> <tr class=cifTableRow><td class='data'>Ni(1)</td><td class='data'>C(9)</td><td class=decimal>1.919(3)</td><td width="100px"> </td><td class='data'>C(25)</td><td class='data'>C(30)</td><td class=decimal>1.511(5)</td></tr> <tr class=cifTableRow><td class='data'>Ni(1)</td><td class='data'>C(10)</td><td class=decimal>1.915(3)</td><td width="100px"> </td><td class='data'>C(45)</td><td class='data'>C(43)</td><td class=decimal>1.3900</td></tr> <tr class=cifTableRow><td class='data'>N(1)</td><td class='data'>C(1)</td><td class=decimal>1.348(3)</td><td width="100px"> </td><td class='data'>C(45)</td><td class='data'>C(48)</td><td class=decimal>1.3900</td></tr> <tr class=cifTableRow><td class='data'>N(1)</td><td class='data'>C(8)</td><td class=decimal>1.351(3)</td><td width="100px"> </td><td class='data'>C(43)</td><td class='data'>C(44)</td><td class=decimal>1.3900</td></tr> <tr class=cifTableRow><td class='data'>N(2)</td><td class='data'>C(2)</td><td class=decimal>1.346(3)</td><td width="100px"> </td><td class='data'>C(44)</td><td class='data'>C(46)</td><td class=decimal>1.3900</td></tr> <tr class=cifTableRow><td class='data'>N(2)</td><td class='data'>C(3)</td><td class=decimal>1.351(4)</td><td width="100px"> </td><td class='data'>C(46)</td><td class='data'>C(47)</td><td class=decimal>1.3900</td></tr> <tr class=cifTableRow><td class='data'>N(3)</td><td class='data'>C(1)</td><td class=decimal>1.338(3)</td><td width="100px"> </td><td class='data'>C(47)</td><td class='data'>C(48)</td><td class=decimal>1.3900</td></tr> <tr class=cifTableRow><td class='data'>N(3)</td><td class='data'>C(6)</td><td class=decimal>1.348(4)</td><td width="100px"> </td><td class='data'>C(31)</td><td class='data'>C(32)</td><td class=decimal>1.364(6)</td></tr> <tr class=cifTableRow><td class='data'>N(4)</td><td class='data'>C(2)</td><td class=decimal>1.341(3)</td><td width="100px"> </td><td class='data'>C(31)</td><td class='data'>C(36)</td><td class=decimal>1.352(6)</td></tr> <tr class=cifTableRow><td class='data'>N(4)</td><td class='data'>C(5)</td><td class=decimal>1.346(4)</td><td width="100px"> </td><td class='data'>C(32)</td><td class='data'>C(33)</td><td class=decimal>1.377(6)</td></tr> <tr class=cifTableRow><td class='data'>C(1)</td><td class='data'>C(2)</td><td class=decimal>1.466(4)</td><td width="100px"> </td><td class='data'>C(33)</td><td class='data'>C(34)</td><td class=decimal>1.379(6)</td></tr> <tr class=cifTableRow><td class='data'>C(3)</td><td class='data'>C(4)</td><td class=decimal>1.371(4)</td><td width="100px"> </td><td class='data'>C(34)</td><td class='data'>C(35)</td><td class=decimal>1.361(6)</td></tr> <tr class=cifTableRow><td class='data'>C(4)</td><td class='data'>C(5)</td><td class=decimal>1.371(4)</td><td width="100px"> </td><td class='data'>C(35)</td><td class='data'>C(36)</td><td class=decimal>1.367(5)</td></tr> <tr class=cifTableRow><td class='data'>C(6)</td><td class='data'>C(7)</td><td class=decimal>1.375(4)</td><td width="100px"> </td><td class='data'>C(37)</td><td class='data'>C(38)</td><td class=decimal>1.3890</td></tr> <tr class=cifTableRow><td class='data'>C(7)</td><td class='data'>C(8)</td><td class=decimal>1.381(4)</td><td width="100px"> </td><td class='data'>C(37)</td><td class='data'>C(42)</td><td class=decimal>1.3900</td></tr> <tr class=cifTableRow><td class='data'>C(11)</td><td class='data'>C(12)</td><td class=decimal>1.427(4)</td><td width="100px"> </td><td class='data'>C(38)</td><td class='data'>C(39)</td><td class=decimal>1.3904</td></tr> <tr class=cifTableRow><td class='data'>C(11)</td><td class='data'>C(15)</td><td class=decimal>1.420(4)</td><td width="100px"> </td><td class='data'>C(39)</td><td class='data'>C(40)</td><td class=decimal>1.3903</td></tr> <tr class=cifTableRow><td class='data'>C(11)</td><td class='data'>C(16)</td><td class=decimal>1.493(4)</td><td width="100px"> </td><td class='data'>C(40)</td><td class='data'>C(41)</td><td class=decimal>1.3890</td></tr> <tr class=cifTableRow><td class='data'>C(12)</td><td class='data'>C(13)</td><td class=decimal>1.414(4)</td><td width="100px"> </td><td class='data'>C(41)</td><td class='data'>C(42)</td><td class=decimal>1.3899</td></tr> <tr class=cifTableRow><td class='data'>C(12)</td><td class='data'>C(17)</td><td class=decimal>1.508(4)</td><td width="100px"> </td><td class='data'> </td><td class='data'> </td><td class=decimal> </td></tr> </table> <p> </p> <table class=CifTable> <caption class=cifTableHeadline>Table 5 Bond Angles for mt454_Bz_0ma.</caption> <thead><tr><th >Atom</th><th >Atom</th><th >Atom</th><th >Angle/˚</th><td width="50px"> </td><th >Atom</th><th >Atom</th><th >Atom</th><th >Angle/˚</th></tr></thead> <tr class=cifTableRow><td class='data'>N(3)</td><td class='data'>Eu(1)</td><td class='data'>C(11)</td><td class=decimalWide>82.82(8)</td><td width="50px"> </td><td class='data'>N(2)</td><td class='data'>C(2)</td><td class='data'>C(1)</td><td class=decimalWide>114.3(2)</td></tr> <tr class=cifTableRow><td class='data'>N(3)</td><td class='data'>Eu(1)</td><td class='data'>C(12)</td><td class=decimalWide>108.86(8)</td><td width="50px"> </td><td class='data'>N(4)</td><td class='data'>C(2)</td><td class='data'>N(2)</td><td class=decimalWide>126.4(2)</td></tr> <tr class=cifTableRow><td class='data'>N(3)</td><td class='data'>Eu(1)</td><td class='data'>C(13)</td><td class=decimalWide>130.26(8)</td><td width="50px"> </td><td class='data'>N(4)</td><td class='data'>C(2)</td><td class='data'>C(1)</td><td class=decimalWide>119.4(2)</td></tr> <tr class=cifTableRow><td class='data'>N(3)</td><td class='data'>Eu(1)</td><td class='data'>C(14)</td><td class=decimalWide>114.01(8)</td><td width="50px"> </td><td class='data'>N(2)</td><td class='data'>C(3)</td><td class='data'>C(4)</td><td class=decimalWide>122.0(3)</td></tr> <tr class=cifTableRow><td class='data'>N(3)</td><td class='data'>Eu(1)</td><td class='data'>C(15)</td><td class=decimalWide>85.99(7)</td><td width="50px"> </td><td class='data'>C(3)</td><td class='data'>C(4)</td><td class='data'>C(5)</td><td class=decimalWide>118.0(3)</td></tr> <tr class=cifTableRow><td class='data'>N(3)</td><td class='data'>Eu(1)</td><td class='data'>C(21)</td><td class=decimalWide>93.92(8)</td><td width="50px"> </td><td class='data'>N(4)</td><td class='data'>C(5)</td><td class='data'>C(4)</td><td class=decimalWide>122.0(3)</td></tr> <tr class=cifTableRow><td class='data'>N(3)</td><td class='data'>Eu(1)</td><td class='data'>C(22)</td><td class=decimalWide>122.84(8)</td><td width="50px"> </td><td class='data'>N(3)</td><td class='data'>C(6)</td><td class='data'>C(7)</td><td class=decimalWide>122.4(3)</td></tr> <tr class=cifTableRow><td class='data'>N(3)</td><td class='data'>Eu(1)</td><td class='data'>C(23)</td><td class=decimalWide>135.12(8)</td><td width="50px"> </td><td class='data'>C(6)</td><td class='data'>C(7)</td><td class='data'>C(8)</td><td class=decimalWide>117.4(3)</td></tr> <tr class=cifTableRow><td class='data'>N(3)</td><td class='data'>Eu(1)</td><td class='data'>C(24)</td><td class=decimalWide>109.82(9)</td><td width="50px"> </td><td class='data'>N(1)</td><td class='data'>C(8)</td><td class='data'>C(7)</td><td class=decimalWide>122.1(3)</td></tr> <tr class=cifTableRow><td class='data'>N(3)</td><td class='data'>Eu(1)</td><td class='data'>C(25)</td><td class=decimalWide>86.97(8)</td><td width="50px"> </td><td class='data'>C(12)</td><td class='data'>C(11)</td><td class='data'>Eu(1)</td><td class=decimalWide>75.54(16)</td></tr> <tr class=cifTableRow><td class='data'>N(4)</td><td class='data'>Eu(1)</td><td class='data'>N(3)</td><td class=decimalWide>62.23(7)</td><td width="50px"> </td><td class='data'>C(12)</td><td class='data'>C(11)</td><td class='data'>C(16)</td><td class=decimalWide>126.3(3)</td></tr> <tr class=cifTableRow><td class='data'>N(4)</td><td class='data'>Eu(1)</td><td class='data'>C(11)</td><td class=decimalWide>79.80(8)</td><td width="50px"> </td><td class='data'>C(15)</td><td class='data'>C(11)</td><td class='data'>Eu(1)</td><td class=decimalWide>74.76(15)</td></tr> <tr class=cifTableRow><td class='data'>N(4)</td><td class='data'>Eu(1)</td><td class='data'>C(12)</td><td class=decimalWide>81.01(8)</td><td width="50px"> </td><td class='data'>C(15)</td><td class='data'>C(11)</td><td class='data'>C(12)</td><td class=decimalWide>107.1(3)</td></tr> <tr class=cifTableRow><td class='data'>N(4)</td><td class='data'>Eu(1)</td><td class='data'>C(13)</td><td class=decimalWide>108.45(8)</td><td width="50px"> </td><td class='data'>C(15)</td><td class='data'>C(11)</td><td class='data'>C(16)</td><td class=decimalWide>126.4(3)</td></tr> <tr class=cifTableRow><td class='data'>N(4)</td><td class='data'>Eu(1)</td><td class='data'>C(14)</td><td class=decimalWide>126.27(8)</td><td width="50px"> </td><td class='data'>C(16)</td><td class='data'>C(11)</td><td class='data'>Eu(1)</td><td class=decimalWide>119.98(19)</td></tr> <tr class=cifTableRow><td class='data'>N(4)</td><td class='data'>Eu(1)</td><td class='data'>C(15)</td><td class=decimalWide>106.91(8)</td><td width="50px"> </td><td class='data'>C(11)</td><td class='data'>C(12)</td><td class='data'>Eu(1)</td><td class=decimalWide>75.11(16)</td></tr> <tr class=cifTableRow><td class='data'>N(4)</td><td class='data'>Eu(1)</td><td class='data'>C(21)</td><td class=decimalWide>85.74(8)</td><td width="50px"> </td><td class='data'>C(11)</td><td class='data'>C(12)</td><td class='data'>C(17)</td><td class=decimalWide>127.1(3)</td></tr> <tr class=cifTableRow><td class='data'>N(4)</td><td class='data'>Eu(1)</td><td class='data'>C(22)</td><td class=decimalWide>95.00(8)</td><td width="50px"> </td><td class='data'>C(13)</td><td class='data'>C(12)</td><td class='data'>Eu(1)</td><td class=decimalWide>75.72(17)</td></tr> <tr class=cifTableRow><td class='data'>N(4)</td><td class='data'>Eu(1)</td><td class='data'>C(23)</td><td class=decimalWide>124.22(8)</td><td width="50px"> </td><td class='data'>C(13)</td><td class='data'>C(12)</td><td class='data'>C(11)</td><td class=decimalWide>108.3(3)</td></tr> <tr class=cifTableRow><td class='data'>N(4)</td><td class='data'>Eu(1)</td><td class='data'>C(24)</td><td class=decimalWide>133.66(8)</td><td width="50px"> </td><td class='data'>C(13)</td><td class='data'>C(12)</td><td class='data'>C(17)</td><td class=decimalWide>124.5(3)</td></tr> <tr class=cifTableRow><td class='data'>N(4)</td><td class='data'>Eu(1)</td><td class='data'>C(25)</td><td class=decimalWide>107.22(9)</td><td width="50px"> </td><td class='data'>C(17)</td><td class='data'>C(12)</td><td class='data'>Eu(1)</td><td class=decimalWide>118.09(19)</td></tr> <tr class=cifTableRow><td class='data'>C(11)</td><td class='data'>Eu(1)</td><td class='data'>C(12)</td><td class=decimalWide>29.34(8)</td><td width="50px"> </td><td class='data'>C(12)</td><td class='data'>C(13)</td><td class='data'>Eu(1)</td><td class=decimalWide>75.27(17)</td></tr> <tr class=cifTableRow><td class='data'>C(11)</td><td class='data'>Eu(1)</td><td class='data'>C(13)</td><td class=decimalWide>48.18(8)</td><td width="50px"> </td><td class='data'>C(12)</td><td class='data'>C(13)</td><td class='data'>C(18)</td><td class=decimalWide>124.4(3)</td></tr> <tr class=cifTableRow><td class='data'>C(12)</td><td class='data'>Eu(1)</td><td class='data'>C(13)</td><td class=decimalWide>29.00(9)</td><td width="50px"> </td><td class='data'>C(14)</td><td class='data'>C(13)</td><td class='data'>Eu(1)</td><td class=decimalWide>74.92(16)</td></tr> <tr class=cifTableRow><td class='data'>C(14)</td><td class='data'>Eu(1)</td><td class='data'>C(11)</td><td class=decimalWide>48.15(8)</td><td width="50px"> </td><td class='data'>C(14)</td><td class='data'>C(13)</td><td class='data'>C(12)</td><td class=decimalWide>107.9(3)</td></tr> <tr class=cifTableRow><td class='data'>C(14)</td><td class='data'>Eu(1)</td><td class='data'>C(12)</td><td class=decimalWide>47.80(9)</td><td width="50px"> </td><td class='data'>C(14)</td><td class='data'>C(13)</td><td class='data'>C(18)</td><td class=decimalWide>127.5(3)</td></tr> <tr class=cifTableRow><td class='data'>C(14)</td><td class='data'>Eu(1)</td><td class='data'>C(13)</td><td class=decimalWide>28.90(8)</td><td width="50px"> </td><td class='data'>C(18)</td><td class='data'>C(13)</td><td class='data'>Eu(1)</td><td class=decimalWide>119.3(2)</td></tr> <tr class=cifTableRow><td class='data'>C(14)</td><td class='data'>Eu(1)</td><td class='data'>C(25)</td><td class=decimalWide>126.46(9)</td><td width="50px"> </td><td class='data'>C(13)</td><td class='data'>C(14)</td><td class='data'>Eu(1)</td><td class=decimalWide>76.17(16)</td></tr> <tr class=cifTableRow><td class='data'>C(15)</td><td class='data'>Eu(1)</td><td class='data'>C(11)</td><td class=decimalWide>29.30(8)</td><td width="50px"> </td><td class='data'>C(13)</td><td class='data'>C(14)</td><td class='data'>C(15)</td><td class=decimalWide>108.5(3)</td></tr> <tr class=cifTableRow><td class='data'>C(15)</td><td class='data'>Eu(1)</td><td class='data'>C(12)</td><td class=decimalWide>48.10(8)</td><td width="50px"> </td><td class='data'>C(13)</td><td class='data'>C(14)</td><td class='data'>C(19)</td><td class=decimalWide>126.2(3)</td></tr> <tr class=cifTableRow><td class='data'>C(15)</td><td class='data'>Eu(1)</td><td class='data'>C(13)</td><td class=decimalWide>47.99(8)</td><td width="50px"> </td><td class='data'>C(15)</td><td class='data'>C(14)</td><td class='data'>Eu(1)</td><td class=decimalWide>75.00(16)</td></tr> <tr class=cifTableRow><td class='data'>C(15)</td><td class='data'>Eu(1)</td><td class='data'>C(14)</td><td class=decimalWide>29.17(8)</td><td width="50px"> </td><td class='data'>C(15)</td><td class='data'>C(14)</td><td class='data'>C(19)</td><td class=decimalWide>125.0(3)</td></tr> <tr class=cifTableRow><td class='data'>C(15)</td><td class='data'>Eu(1)</td><td class='data'>C(25)</td><td class=decimalWide>136.68(9)</td><td width="50px"> </td><td class='data'>C(19)</td><td class='data'>C(14)</td><td class='data'>Eu(1)</td><td class=decimalWide>119.43(19)</td></tr> <tr class=cifTableRow><td class='data'>C(21)</td><td class='data'>Eu(1)</td><td class='data'>C(11)</td><td class=decimalWide>165.03(9)</td><td width="50px"> </td><td class='data'>C(11)</td><td class='data'>C(15)</td><td class='data'>Eu(1)</td><td class=decimalWide>75.94(15)</td></tr> <tr class=cifTableRow><td class='data'>C(21)</td><td class='data'>Eu(1)</td><td class='data'>C(12)</td><td class=decimalWide>143.94(9)</td><td width="50px"> </td><td class='data'>C(11)</td><td class='data'>C(15)</td><td class='data'>C(20)</td><td class=decimalWide>126.2(3)</td></tr> <tr class=cifTableRow><td class='data'>C(21)</td><td class='data'>Eu(1)</td><td class='data'>C(13)</td><td class=decimalWide>135.52(9)</td><td width="50px"> </td><td class='data'>C(14)</td><td class='data'>C(15)</td><td class='data'>Eu(1)</td><td class=decimalWide>75.83(16)</td></tr> <tr class=cifTableRow><td class='data'>C(21)</td><td class='data'>Eu(1)</td><td class='data'>C(14)</td><td class=decimalWide>144.25(9)</td><td width="50px"> </td><td class='data'>C(14)</td><td class='data'>C(15)</td><td class='data'>C(11)</td><td class=decimalWide>108.2(2)</td></tr> <tr class=cifTableRow><td class='data'>C(21)</td><td class='data'>Eu(1)</td><td class='data'>C(15)</td><td class=decimalWide>165.44(9)</td><td width="50px"> </td><td class='data'>C(14)</td><td class='data'>C(15)</td><td class='data'>C(20)</td><td class=decimalWide>125.6(3)</td></tr> <tr class=cifTableRow><td class='data'>C(21)</td><td class='data'>Eu(1)</td><td class='data'>C(24)</td><td class=decimalWide>48.14(10)</td><td width="50px"> </td><td class='data'>C(20)</td><td class='data'>C(15)</td><td class='data'>Eu(1)</td><td class=decimalWide>116.01(18)</td></tr> <tr class=cifTableRow><td class='data'>C(21)</td><td class='data'>Eu(1)</td><td class='data'>C(25)</td><td class=decimalWide>29.01(10)</td><td width="50px"> </td><td class='data'>C(22)</td><td class='data'>C(21)</td><td class='data'>Eu(1)</td><td class=decimalWide>74.46(16)</td></tr> <tr class=cifTableRow><td class='data'>C(22)</td><td class='data'>Eu(1)</td><td class='data'>C(11)</td><td class=decimalWide>147.98(9)</td><td width="50px"> </td><td class='data'>C(22)</td><td class='data'>C(21)</td><td class='data'>C(26)</td><td class=decimalWide>125.3(3)</td></tr> <tr class=cifTableRow><td class='data'>C(22)</td><td class='data'>Eu(1)</td><td class='data'>C(12)</td><td class=decimalWide>118.75(9)</td><td width="50px"> </td><td class='data'>C(25)</td><td class='data'>C(21)</td><td class='data'>Eu(1)</td><td class=decimalWide>76.13(17)</td></tr> <tr class=cifTableRow><td class='data'>C(22)</td><td class='data'>Eu(1)</td><td class='data'>C(13)</td><td class=decimalWide>106.12(9)</td><td width="50px"> </td><td class='data'>C(25)</td><td class='data'>C(21)</td><td class='data'>C(22)</td><td class=decimalWide>108.1(3)</td></tr> <tr class=cifTableRow><td class='data'>C(22)</td><td class='data'>Eu(1)</td><td class='data'>C(14)</td><td class=decimalWide>120.90(8)</td><td width="50px"> </td><td class='data'>C(25)</td><td class='data'>C(21)</td><td class='data'>C(26)</td><td class=decimalWide>126.5(3)</td></tr> <tr class=cifTableRow><td class='data'>C(22)</td><td class='data'>Eu(1)</td><td class='data'>C(15)</td><td class=decimalWide>150.06(8)</td><td width="50px"> </td><td class='data'>C(26)</td><td class='data'>C(21)</td><td class='data'>Eu(1)</td><td class=decimalWide>117.9(2)</td></tr> <tr class=cifTableRow><td class='data'>C(22)</td><td class='data'>Eu(1)</td><td class='data'>C(21)</td><td class=decimalWide>29.46(9)</td><td width="50px"> </td><td class='data'>C(21)</td><td class='data'>C(22)</td><td class='data'>Eu(1)</td><td class=decimalWide>76.08(17)</td></tr> <tr class=cifTableRow><td class='data'>C(22)</td><td class='data'>Eu(1)</td><td class='data'>C(23)</td><td class=decimalWide>29.34(8)</td><td width="50px"> </td><td class='data'>C(21)</td><td class='data'>C(22)</td><td class='data'>C(27)</td><td class=decimalWide>125.8(3)</td></tr> <tr class=cifTableRow><td class='data'>C(22)</td><td class='data'>Eu(1)</td><td class='data'>C(24)</td><td class=decimalWide>48.42(9)</td><td width="50px"> </td><td class='data'>C(23)</td><td class='data'>C(22)</td><td class='data'>Eu(1)</td><td class=decimalWide>75.88(16)</td></tr> <tr class=cifTableRow><td class='data'>C(22)</td><td class='data'>Eu(1)</td><td class='data'>C(25)</td><td class=decimalWide>48.26(10)</td><td width="50px"> </td><td class='data'>C(23)</td><td class='data'>C(22)</td><td class='data'>C(21)</td><td class=decimalWide>107.8(3)</td></tr> <tr class=cifTableRow><td class='data'>C(23)</td><td class='data'>Eu(1)</td><td class='data'>C(11)</td><td class=decimalWide>140.15(9)</td><td width="50px"> </td><td class='data'>C(23)</td><td class='data'>C(22)</td><td class='data'>C(27)</td><td class=decimalWide>126.3(3)</td></tr> <tr class=cifTableRow><td class='data'>C(23)</td><td class='data'>Eu(1)</td><td class='data'>C(12)</td><td class=decimalWide>116.02(9)</td><td width="50px"> </td><td class='data'>C(27)</td><td class='data'>C(22)</td><td class='data'>Eu(1)</td><td class=decimalWide>115.5(2)</td></tr> <tr class=cifTableRow><td class='data'>C(23)</td><td class='data'>Eu(1)</td><td class='data'>C(13)</td><td class=decimalWide>92.13(9)</td><td width="50px"> </td><td class='data'>C(22)</td><td class='data'>C(23)</td><td class='data'>Eu(1)</td><td class=decimalWide>74.78(16)</td></tr> <tr class=cifTableRow><td class='data'>C(23)</td><td class='data'>Eu(1)</td><td class='data'>C(14)</td><td class=decimalWide>96.41(8)</td><td width="50px"> </td><td class='data'>C(22)</td><td class='data'>C(23)</td><td class='data'>C(24)</td><td class=decimalWide>108.1(3)</td></tr> <tr class=cifTableRow><td class='data'>C(23)</td><td class='data'>Eu(1)</td><td class='data'>C(15)</td><td class=decimalWide>124.17(8)</td><td width="50px"> </td><td class='data'>C(22)</td><td class='data'>C(23)</td><td class='data'>C(28)</td><td class=decimalWide>126.1(3)</td></tr> <tr class=cifTableRow><td class='data'>C(23)</td><td class='data'>Eu(1)</td><td class='data'>C(21)</td><td class=decimalWide>48.26(9)</td><td width="50px"> </td><td class='data'>C(24)</td><td class='data'>C(23)</td><td class='data'>Eu(1)</td><td class=decimalWide>75.74(16)</td></tr> <tr class=cifTableRow><td class='data'>C(23)</td><td class='data'>Eu(1)</td><td class='data'>C(24)</td><td class=decimalWide>29.33(9)</td><td width="50px"> </td><td class='data'>C(24)</td><td class='data'>C(23)</td><td class='data'>C(28)</td><td class=decimalWide>125.6(3)</td></tr> <tr class=cifTableRow><td class='data'>C(23)</td><td class='data'>Eu(1)</td><td class='data'>C(25)</td><td class=decimalWide>48.15(9)</td><td width="50px"> </td><td class='data'>C(28)</td><td class='data'>C(23)</td><td class='data'>Eu(1)</td><td class=decimalWide>119.5(2)</td></tr> <tr class=cifTableRow><td class='data'>C(24)</td><td class='data'>Eu(1)</td><td class='data'>C(11)</td><td class=decimalWide>146.52(9)</td><td width="50px"> </td><td class='data'>C(23)</td><td class='data'>C(24)</td><td class='data'>Eu(1)</td><td class=decimalWide>74.93(16)</td></tr> <tr class=cifTableRow><td class='data'>C(24)</td><td class='data'>Eu(1)</td><td class='data'>C(12)</td><td class=decimalWide>137.38(9)</td><td width="50px"> </td><td class='data'>C(23)</td><td class='data'>C(24)</td><td class='data'>C(29)</td><td class=decimalWide>125.3(3)</td></tr> <tr class=cifTableRow><td class='data'>C(24)</td><td class='data'>Eu(1)</td><td class='data'>C(13)</td><td class=decimalWide>108.79(10)</td><td width="50px"> </td><td class='data'>C(25)</td><td class='data'>C(24)</td><td class='data'>Eu(1)</td><td class=decimalWide>75.90(17)</td></tr> <tr class=cifTableRow><td class='data'>C(24)</td><td class='data'>Eu(1)</td><td class='data'>C(14)</td><td class=decimalWide>99.31(9)</td><td width="50px"> </td><td class='data'>C(25)</td><td class='data'>C(24)</td><td class='data'>C(23)</td><td class=decimalWide>107.8(3)</td></tr> <tr class=cifTableRow><td class='data'>C(24)</td><td class='data'>Eu(1)</td><td class='data'>C(15)</td><td class=decimalWide>118.36(9)</td><td width="50px"> </td><td class='data'>C(25)</td><td class='data'>C(24)</td><td class='data'>C(29)</td><td class=decimalWide>126.9(3)</td></tr> <tr class=cifTableRow><td class='data'>C(24)</td><td class='data'>Eu(1)</td><td class='data'>C(25)</td><td class=decimalWide>29.18(9)</td><td width="50px"> </td><td class='data'>C(29)</td><td class='data'>C(24)</td><td class='data'>Eu(1)</td><td class=decimalWide>116.7(2)</td></tr> <tr class=cifTableRow><td class='data'>C(25)</td><td class='data'>Eu(1)</td><td class='data'>C(11)</td><td class=decimalWide>163.09(9)</td><td width="50px"> </td><td class='data'>C(21)</td><td class='data'>C(25)</td><td class='data'>Eu(1)</td><td class=decimalWide>74.86(18)</td></tr> <tr class=cifTableRow><td class='data'>C(25)</td><td class='data'>Eu(1)</td><td class='data'>C(12)</td><td class=decimalWide>164.17(9)</td><td width="50px"> </td><td class='data'>C(21)</td><td class='data'>C(25)</td><td class='data'>C(24)</td><td class=decimalWide>108.2(3)</td></tr> <tr class=cifTableRow><td class='data'>C(25)</td><td class='data'>Eu(1)</td><td class='data'>C(13)</td><td class=decimalWide>137.54(9)</td><td width="50px"> </td><td class='data'>C(21)</td><td class='data'>C(25)</td><td class='data'>C(30)</td><td class=decimalWide>126.2(3)</td></tr> <tr class=cifTableRow><td class='data'>N(2)</td><td class='data'>Ni(1)</td><td class='data'>N(1)</td><td class=decimalWide>81.78(9)</td><td width="50px"> </td><td class='data'>C(24)</td><td class='data'>C(25)</td><td class='data'>Eu(1)</td><td class=decimalWide>74.92(17)</td></tr> <tr class=cifTableRow><td class='data'>C(9)</td><td class='data'>Ni(1)</td><td class='data'>N(1)</td><td class=decimalWide>95.66(13)</td><td width="50px"> </td><td class='data'>C(24)</td><td class='data'>C(25)</td><td class='data'>C(30)</td><td class=decimalWide>125.5(3)</td></tr> <tr class=cifTableRow><td class='data'>C(9)</td><td class='data'>Ni(1)</td><td class='data'>N(2)</td><td class=decimalWide>173.62(13)</td><td width="50px"> </td><td class='data'>C(30)</td><td class='data'>C(25)</td><td class='data'>Eu(1)</td><td class=decimalWide>119.5(2)</td></tr> <tr class=cifTableRow><td class='data'>C(10)</td><td class='data'>Ni(1)</td><td class='data'>N(1)</td><td class=decimalWide>172.11(13)</td><td width="50px"> </td><td class='data'>C(43)</td><td class='data'>C(45)</td><td class='data'>C(48)</td><td class=decimalWide>120.0</td></tr> <tr class=cifTableRow><td class='data'>C(10)</td><td class='data'>Ni(1)</td><td class='data'>N(2)</td><td class=decimalWide>94.17(12)</td><td width="50px"> </td><td class='data'>C(45)</td><td class='data'>C(43)</td><td class='data'>C(44)</td><td class=decimalWide>120.0</td></tr> <tr class=cifTableRow><td class='data'>C(10)</td><td class='data'>Ni(1)</td><td class='data'>C(9)</td><td class=decimalWide>89.05(15)</td><td width="50px"> </td><td class='data'>C(46)</td><td class='data'>C(44)</td><td class='data'>C(43)</td><td class=decimalWide>120.0</td></tr> <tr class=cifTableRow><td class='data'>C(1)</td><td class='data'>N(1)</td><td class='data'>Ni(1)</td><td class=decimalWide>115.05(18)</td><td width="50px"> </td><td class='data'>C(44)</td><td class='data'>C(46)</td><td class='data'>C(47)</td><td class=decimalWide>120.0</td></tr> <tr class=cifTableRow><td class='data'>C(1)</td><td class='data'>N(1)</td><td class='data'>C(8)</td><td class=decimalWide>115.6(2)</td><td width="50px"> </td><td class='data'>C(48)</td><td class='data'>C(47)</td><td class='data'>C(46)</td><td class=decimalWide>120.0</td></tr> <tr class=cifTableRow><td class='data'>C(8)</td><td class='data'>N(1)</td><td class='data'>Ni(1)</td><td class=decimalWide>129.0(2)</td><td width="50px"> </td><td class='data'>C(47)</td><td class='data'>C(48)</td><td class='data'>C(45)</td><td class=decimalWide>120.0</td></tr> <tr class=cifTableRow><td class='data'>C(2)</td><td class='data'>N(2)</td><td class='data'>Ni(1)</td><td class=decimalWide>114.99(18)</td><td width="50px"> </td><td class='data'>C(36)</td><td class='data'>C(31)</td><td class='data'>C(32)</td><td class=decimalWide>120.0(4)</td></tr> <tr class=cifTableRow><td class='data'>C(2)</td><td class='data'>N(2)</td><td class='data'>C(3)</td><td class=decimalWide>115.6(2)</td><td width="50px"> </td><td class='data'>C(31)</td><td class='data'>C(32)</td><td class='data'>C(33)</td><td class=decimalWide>120.3(4)</td></tr> <tr class=cifTableRow><td class='data'>C(3)</td><td class='data'>N(2)</td><td class='data'>Ni(1)</td><td class=decimalWide>129.3(2)</td><td width="50px"> </td><td class='data'>C(32)</td><td class='data'>C(33)</td><td class='data'>C(34)</td><td class=decimalWide>119.0(4)</td></tr> <tr class=cifTableRow><td class='data'>C(1)</td><td class='data'>N(3)</td><td class='data'>Eu(1)</td><td class=decimalWide>117.45(17)</td><td width="50px"> </td><td class='data'>C(35)</td><td class='data'>C(34)</td><td class='data'>C(33)</td><td class=decimalWide>120.1(4)</td></tr> <tr class=cifTableRow><td class='data'>C(1)</td><td class='data'>N(3)</td><td class='data'>C(6)</td><td class=decimalWide>115.8(2)</td><td width="50px"> </td><td class='data'>C(34)</td><td class='data'>C(35)</td><td class='data'>C(36)</td><td class=decimalWide>119.9(4)</td></tr> <tr class=cifTableRow><td class='data'>C(6)</td><td class='data'>N(3)</td><td class='data'>Eu(1)</td><td class=decimalWide>125.17(19)</td><td width="50px"> </td><td class='data'>C(31)</td><td class='data'>C(36)</td><td class='data'>C(35)</td><td class=decimalWide>120.6(4)</td></tr> <tr class=cifTableRow><td class='data'>C(2)</td><td class='data'>N(4)</td><td class='data'>Eu(1)</td><td class=decimalWide>117.96(17)</td><td width="50px"> </td><td class='data'>C(38)</td><td class='data'>C(37)</td><td class='data'>C(42)</td><td class=decimalWide>120.0</td></tr> <tr class=cifTableRow><td class='data'>C(2)</td><td class='data'>N(4)</td><td class='data'>C(5)</td><td class=decimalWide>116.0(2)</td><td width="50px"> </td><td class='data'>C(37)</td><td class='data'>C(38)</td><td class='data'>C(39)</td><td class=decimalWide>120.0</td></tr> <tr class=cifTableRow><td class='data'>C(5)</td><td class='data'>N(4)</td><td class='data'>Eu(1)</td><td class=decimalWide>124.98(19)</td><td width="50px"> </td><td class='data'>C(40)</td><td class='data'>C(39)</td><td class='data'>C(38)</td><td class=decimalWide>120.0</td></tr> <tr class=cifTableRow><td class='data'>N(1)</td><td class='data'>C(1)</td><td class='data'>C(2)</td><td class=decimalWide>113.8(2)</td><td width="50px"> </td><td class='data'>C(41)</td><td class='data'>C(40)</td><td class='data'>C(39)</td><td class=decimalWide>120.0</td></tr> <tr class=cifTableRow><td class='data'>N(3)</td><td class='data'>C(1)</td><td class='data'>N(1)</td><td class=decimalWide>126.6(2)</td><td width="50px"> </td><td class='data'>C(40)</td><td class='data'>C(41)</td><td class='data'>C(42)</td><td class=decimalWide>120.0</td></tr> <tr class=cifTableRow><td class='data'>N(3)</td><td class='data'>C(1)</td><td class='data'>C(2)</td><td class=decimalWide>119.5(2)</td><td width="50px"> </td><td class='data'>C(41)</td><td class='data'>C(42)</td><td class='data'>C(37)</td><td class=decimalWide>120.0</td></tr> </table> <p> </p> <table class=CifTable> <caption class=cifTableHeadline>Table 6 Torsion Angles for mt454_Bz_0ma.</caption> <thead><tr><th >A</th><th >B</th><th >C</th><th >D</th><th >Angle/˚</th><td width="50px"> </td><th >A</th><th >B</th><th >C</th><th >D</th><th >Angle/˚</th></tr></thead> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>N(3)</td><td class='data'>C(1)</td><td class='data'>N(1)</td><td class=decimal>-164.1(2)</td><td width="50px"> </td><td class='data'>C(15)</td><td class='data'>C(11)</td><td class='data'>C(12)</td><td class='data'>C(13)</td><td class=decimal>-0.4(3)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>N(3)</td><td class='data'>C(1)</td><td class='data'>C(2)</td><td class=decimal>17.7(3)</td><td width="50px"> </td><td class='data'>C(15)</td><td class='data'>C(11)</td><td class='data'>C(12)</td><td class='data'>C(17)</td><td class=decimal>-177.1(3)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>N(3)</td><td class='data'>C(6)</td><td class='data'>C(7)</td><td class=decimal>165.5(2)</td><td width="50px"> </td><td class='data'>C(16)</td><td class='data'>C(11)</td><td class='data'>C(12)</td><td class='data'>Eu(1)</td><td class=decimal>-116.8(3)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>N(4)</td><td class='data'>C(2)</td><td class='data'>N(2)</td><td class=decimal>168.6(2)</td><td width="50px"> </td><td class='data'>C(16)</td><td class='data'>C(11)</td><td class='data'>C(12)</td><td class='data'>C(13)</td><td class=decimal>174.1(3)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>N(4)</td><td class='data'>C(2)</td><td class='data'>C(1)</td><td class=decimal>-11.5(3)</td><td width="50px"> </td><td class='data'>C(16)</td><td class='data'>C(11)</td><td class='data'>C(12)</td><td class='data'>C(17)</td><td class=decimal>-2.6(5)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>N(4)</td><td class='data'>C(5)</td><td class='data'>C(4)</td><td class=decimal>-166.7(2)</td><td width="50px"> </td><td class='data'>C(16)</td><td class='data'>C(11)</td><td class='data'>C(15)</td><td class='data'>Eu(1)</td><td class=decimal>116.3(3)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>C(11)</td><td class='data'>C(12)</td><td class='data'>C(13)</td><td class=decimal>-69.1(2)</td><td width="50px"> </td><td class='data'>C(16)</td><td class='data'>C(11)</td><td class='data'>C(15)</td><td class='data'>C(14)</td><td class=decimal>-174.1(3)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>C(11)</td><td class='data'>C(12)</td><td class='data'>C(17)</td><td class=decimal>114.2(3)</td><td width="50px"> </td><td class='data'>C(16)</td><td class='data'>C(11)</td><td class='data'>C(15)</td><td class='data'>C(20)</td><td class=decimal>4.1(5)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>C(11)</td><td class='data'>C(15)</td><td class='data'>C(14)</td><td class=decimal>69.64(19)</td><td width="50px"> </td><td class='data'>C(17)</td><td class='data'>C(12)</td><td class='data'>C(13)</td><td class='data'>Eu(1)</td><td class=decimal>-114.5(3)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>C(11)</td><td class='data'>C(15)</td><td class='data'>C(20)</td><td class=decimal>-112.1(3)</td><td width="50px"> </td><td class='data'>C(17)</td><td class='data'>C(12)</td><td class='data'>C(13)</td><td class='data'>C(14)</td><td class=decimal>177.1(3)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>C(12)</td><td class='data'>C(13)</td><td class='data'>C(14)</td><td class=decimal>-68.4(2)</td><td width="50px"> </td><td class='data'>C(17)</td><td class='data'>C(12)</td><td class='data'>C(13)</td><td class='data'>C(18)</td><td class=decimal>1.2(5)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>C(12)</td><td class='data'>C(13)</td><td class='data'>C(18)</td><td class=decimal>115.7(3)</td><td width="50px"> </td><td class='data'>C(18)</td><td class='data'>C(13)</td><td class='data'>C(14)</td><td class='data'>Eu(1)</td><td class=decimal>-115.6(3)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>C(13)</td><td class='data'>C(14)</td><td class='data'>C(15)</td><td class=decimal>-68.7(2)</td><td width="50px"> </td><td class='data'>C(18)</td><td class='data'>C(13)</td><td class='data'>C(14)</td><td class='data'>C(15)</td><td class=decimal>175.7(3)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>C(13)</td><td class='data'>C(14)</td><td class='data'>C(19)</td><td class=decimal>116.6(3)</td><td width="50px"> </td><td class='data'>C(18)</td><td class='data'>C(13)</td><td class='data'>C(14)</td><td class='data'>C(19)</td><td class=decimal>0.9(5)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>C(14)</td><td class='data'>C(15)</td><td class='data'>C(11)</td><td class=decimal>-69.71(19)</td><td width="50px"> </td><td class='data'>C(19)</td><td class='data'>C(14)</td><td class='data'>C(15)</td><td class='data'>Eu(1)</td><td class=decimal>-115.7(3)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>C(14)</td><td class='data'>C(15)</td><td class='data'>C(20)</td><td class=decimal>112.1(3)</td><td width="50px"> </td><td class='data'>C(19)</td><td class='data'>C(14)</td><td class='data'>C(15)</td><td class='data'>C(11)</td><td class=decimal>174.6(3)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>C(21)</td><td class='data'>C(22)</td><td class='data'>C(23)</td><td class=decimal>69.9(2)</td><td width="50px"> </td><td class='data'>C(19)</td><td class='data'>C(14)</td><td class='data'>C(15)</td><td class='data'>C(20)</td><td class=decimal>-3.6(5)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>C(21)</td><td class='data'>C(22)</td><td class='data'>C(27)</td><td class=decimal>-111.5(3)</td><td width="50px"> </td><td class='data'>C(21)</td><td class='data'>C(22)</td><td class='data'>C(23)</td><td class='data'>Eu(1)</td><td class=decimal>-70.0(2)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>C(21)</td><td class='data'>C(25)</td><td class='data'>C(24)</td><td class=decimal>-68.1(2)</td><td width="50px"> </td><td class='data'>C(21)</td><td class='data'>C(22)</td><td class='data'>C(23)</td><td class='data'>C(24)</td><td class=decimal>-1.0(3)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>C(21)</td><td class='data'>C(25)</td><td class='data'>C(30)</td><td class=decimal>115.8(3)</td><td width="50px"> </td><td class='data'>C(21)</td><td class='data'>C(22)</td><td class='data'>C(23)</td><td class='data'>C(28)</td><td class=decimal>174.3(3)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>C(22)</td><td class='data'>C(23)</td><td class='data'>C(24)</td><td class=decimal>69.1(2)</td><td width="50px"> </td><td class='data'>C(22)</td><td class='data'>C(21)</td><td class='data'>C(25)</td><td class='data'>Eu(1)</td><td class=decimal>68.2(2)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>C(22)</td><td class='data'>C(23)</td><td class='data'>C(28)</td><td class=decimal>-115.6(3)</td><td width="50px"> </td><td class='data'>C(22)</td><td class='data'>C(21)</td><td class='data'>C(25)</td><td class='data'>C(24)</td><td class=decimal>0.1(3)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>C(23)</td><td class='data'>C(24)</td><td class='data'>C(25)</td><td class=decimal>69.4(2)</td><td width="50px"> </td><td class='data'>C(22)</td><td class='data'>C(21)</td><td class='data'>C(25)</td><td class='data'>C(30)</td><td class=decimal>-176.0(3)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>C(23)</td><td class='data'>C(24)</td><td class='data'>C(29)</td><td class=decimal>-112.3(3)</td><td width="50px"> </td><td class='data'>C(22)</td><td class='data'>C(23)</td><td class='data'>C(24)</td><td class='data'>Eu(1)</td><td class=decimal>-68.4(2)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>C(24)</td><td class='data'>C(25)</td><td class='data'>C(21)</td><td class=decimal>68.1(2)</td><td width="50px"> </td><td class='data'>C(22)</td><td class='data'>C(23)</td><td class='data'>C(24)</td><td class='data'>C(25)</td><td class=decimal>1.0(3)</td></tr> <tr class=cifTableRow><td class='data'>Eu(1)</td><td class='data'>C(24)</td><td class='data'>C(25)</td><td class='data'>C(30)</td><td class=decimal>-115.8(3)</td><td width="50px"> </td><td class='data'>C(22)</td><td class='data'>C(23)</td><td class='data'>C(24)</td><td class='data'>C(29)</td><td class=decimal>179.3(3)</td></tr> <tr class=cifTableRow><td class='data'>Ni(1)</td><td class='data'>N(1)</td><td class='data'>C(1)</td><td class='data'>N(3)</td><td class=decimal>-176.7(2)</td><td width="50px"> </td><td class='data'>C(23)</td><td class='data'>C(24)</td><td class='data'>C(25)</td><td class='data'>Eu(1)</td><td class=decimal>-68.8(2)</td></tr> <tr class=cifTableRow><td class='data'>Ni(1)</td><td class='data'>N(1)</td><td class='data'>C(1)</td><td class='data'>C(2)</td><td class=decimal>1.5(3)</td><td width="50px"> </td><td class='data'>C(23)</td><td class='data'>C(24)</td><td class='data'>C(25)</td><td class='data'>C(21)</td><td class=decimal>-0.7(3)</td></tr> <tr class=cifTableRow><td class='data'>Ni(1)</td><td class='data'>N(1)</td><td class='data'>C(8)</td><td class='data'>C(7)</td><td class=decimal>173.4(2)</td><td width="50px"> </td><td class='data'>C(23)</td><td class='data'>C(24)</td><td class='data'>C(25)</td><td class='data'>C(30)</td><td class=decimal>175.4(3)</td></tr> <tr class=cifTableRow><td class='data'>Ni(1)</td><td class='data'>N(2)</td><td class='data'>C(2)</td><td class='data'>N(4)</td><td class=decimal>-177.4(2)</td><td width="50px"> </td><td class='data'>C(25)</td><td class='data'>C(21)</td><td class='data'>C(22)</td><td class='data'>Eu(1)</td><td class=decimal>-69.3(2)</td></tr> <tr class=cifTableRow><td class='data'>Ni(1)</td><td class='data'>N(2)</td><td class='data'>C(2)</td><td class='data'>C(1)</td><td class=decimal>2.7(3)</td><td width="50px"> </td><td class='data'>C(25)</td><td class='data'>C(21)</td><td class='data'>C(22)</td><td class='data'>C(23)</td><td class=decimal>0.6(3)</td></tr> <tr class=cifTableRow><td class='data'>Ni(1)</td><td class='data'>N(2)</td><td class='data'>C(3)</td><td class='data'>C(4)</td><td class=decimal>176.9(2)</td><td width="50px"> </td><td class='data'>C(25)</td><td class='data'>C(21)</td><td class='data'>C(22)</td><td class='data'>C(27)</td><td class=decimal>179.1(3)</td></tr> <tr class=cifTableRow><td class='data'>N(1)</td><td class='data'>C(1)</td><td class='data'>C(2)</td><td class='data'>N(2)</td><td class=decimal>-2.8(3)</td><td width="50px"> </td><td class='data'>C(26)</td><td class='data'>C(21)</td><td class='data'>C(22)</td><td class='data'>Eu(1)</td><td class=decimal>113.5(3)</td></tr> <tr class=cifTableRow><td class='data'>N(1)</td><td class='data'>C(1)</td><td class='data'>C(2)</td><td class='data'>N(4)</td><td class=decimal>177.4(2)</td><td width="50px"> </td><td class='data'>C(26)</td><td class='data'>C(21)</td><td class='data'>C(22)</td><td class='data'>C(23)</td><td class=decimal>-176.6(3)</td></tr> <tr class=cifTableRow><td class='data'>N(2)</td><td class='data'>C(3)</td><td class='data'>C(4)</td><td class='data'>C(5)</td><td class=decimal>0.1(5)</td><td width="50px"> </td><td class='data'>C(26)</td><td class='data'>C(21)</td><td class='data'>C(22)</td><td class='data'>C(27)</td><td class=decimal>2.0(5)</td></tr> <tr class=cifTableRow><td class='data'>N(3)</td><td class='data'>C(1)</td><td class='data'>C(2)</td><td class='data'>N(2)</td><td class=decimal>175.6(2)</td><td width="50px"> </td><td class='data'>C(26)</td><td class='data'>C(21)</td><td class='data'>C(25)</td><td class='data'>Eu(1)</td><td class=decimal>-114.7(3)</td></tr> <tr class=cifTableRow><td class='data'>N(3)</td><td class='data'>C(1)</td><td class='data'>C(2)</td><td class='data'>N(4)</td><td class=decimal>-4.3(4)</td><td width="50px"> </td><td class='data'>C(26)</td><td class='data'>C(21)</td><td class='data'>C(25)</td><td class='data'>C(24)</td><td class=decimal>177.2(3)</td></tr> <tr class=cifTableRow><td class='data'>N(3)</td><td class='data'>C(6)</td><td class='data'>C(7)</td><td class='data'>C(8)</td><td class=decimal>-2.2(5)</td><td width="50px"> </td><td class='data'>C(26)</td><td class='data'>C(21)</td><td class='data'>C(25)</td><td class='data'>C(30)</td><td class=decimal>1.1(5)</td></tr> <tr class=cifTableRow><td class='data'>C(1)</td><td class='data'>N(1)</td><td class='data'>C(8)</td><td class='data'>C(7)</td><td class=decimal>0.2(4)</td><td width="50px"> </td><td class='data'>C(27)</td><td class='data'>C(22)</td><td class='data'>C(23)</td><td class='data'>Eu(1)</td><td class=decimal>111.4(3)</td></tr> <tr class=cifTableRow><td class='data'>C(1)</td><td class='data'>N(3)</td><td class='data'>C(6)</td><td class='data'>C(7)</td><td class=decimal>0.2(4)</td><td width="50px"> </td><td class='data'>C(27)</td><td class='data'>C(22)</td><td class='data'>C(23)</td><td class='data'>C(24)</td><td class=decimal>-179.5(3)</td></tr> <tr class=cifTableRow><td class='data'>C(2)</td><td class='data'>N(2)</td><td class='data'>C(3)</td><td class='data'>C(4)</td><td class=decimal>0.9(4)</td><td width="50px"> </td><td class='data'>C(27)</td><td class='data'>C(22)</td><td class='data'>C(23)</td><td class='data'>C(28)</td><td class=decimal>-4.2(5)</td></tr> <tr class=cifTableRow><td class='data'>C(2)</td><td class='data'>N(4)</td><td class='data'>C(5)</td><td class='data'>C(4)</td><td class=decimal>1.3(4)</td><td width="50px"> </td><td class='data'>C(28)</td><td class='data'>C(23)</td><td class='data'>C(24)</td><td class='data'>Eu(1)</td><td class=decimal>116.2(3)</td></tr> <tr class=cifTableRow><td class='data'>C(3)</td><td class='data'>N(2)</td><td class='data'>C(2)</td><td class='data'>N(4)</td><td class=decimal>-0.8(4)</td><td width="50px"> </td><td class='data'>C(28)</td><td class='data'>C(23)</td><td class='data'>C(24)</td><td class='data'>C(25)</td><td class=decimal>-174.3(3)</td></tr> <tr class=cifTableRow><td class='data'>C(3)</td><td class='data'>N(2)</td><td class='data'>C(2)</td><td class='data'>C(1)</td><td class=decimal>179.3(2)</td><td width="50px"> </td><td class='data'>C(28)</td><td class='data'>C(23)</td><td class='data'>C(24)</td><td class='data'>C(29)</td><td class=decimal>4.0(5)</td></tr> <tr class=cifTableRow><td class='data'>C(3)</td><td class='data'>C(4)</td><td class='data'>C(5)</td><td class='data'>N(4)</td><td class=decimal>-1.2(5)</td><td width="50px"> </td><td class='data'>C(29)</td><td class='data'>C(24)</td><td class='data'>C(25)</td><td class='data'>Eu(1)</td><td class=decimal>113.0(3)</td></tr> <tr class=cifTableRow><td class='data'>C(5)</td><td class='data'>N(4)</td><td class='data'>C(2)</td><td class='data'>N(2)</td><td class=decimal>-0.2(4)</td><td width="50px"> </td><td class='data'>C(29)</td><td class='data'>C(24)</td><td class='data'>C(25)</td><td class='data'>C(21)</td><td class=decimal>-178.9(3)</td></tr> <tr class=cifTableRow><td class='data'>C(5)</td><td class='data'>N(4)</td><td class='data'>C(2)</td><td class='data'>C(1)</td><td class=decimal>179.6(2)</td><td width="50px"> </td><td class='data'>C(29)</td><td class='data'>C(24)</td><td class='data'>C(25)</td><td class='data'>C(30)</td><td class=decimal>-2.8(5)</td></tr> <tr class=cifTableRow><td class='data'>C(6)</td><td class='data'>N(3)</td><td class='data'>C(1)</td><td class='data'>N(1)</td><td class=decimal>2.3(4)</td><td width="50px"> </td><td class='data'>C(45)</td><td class='data'>C(43)</td><td class='data'>C(44)</td><td class='data'>C(46)</td><td class=decimal>0.0</td></tr> <tr class=cifTableRow><td class='data'>C(6)</td><td class='data'>N(3)</td><td class='data'>C(1)</td><td class='data'>C(2)</td><td class=decimal>-175.9(2)</td><td width="50px"> </td><td class='data'>C(43)</td><td class='data'>C(45)</td><td class='data'>C(48)</td><td class='data'>C(47)</td><td class=decimal>0.0</td></tr> <tr class=cifTableRow><td class='data'>C(6)</td><td class='data'>C(7)</td><td class='data'>C(8)</td><td class='data'>N(1)</td><td class=decimal>2.0(5)</td><td width="50px"> </td><td class='data'>C(43)</td><td class='data'>C(44)</td><td class='data'>C(46)</td><td class='data'>C(47)</td><td class=decimal>0.0</td></tr> <tr class=cifTableRow><td class='data'>C(8)</td><td class='data'>N(1)</td><td class='data'>C(1)</td><td class='data'>N(3)</td><td class=decimal>-2.5(4)</td><td width="50px"> </td><td class='data'>C(44)</td><td class='data'>C(46)</td><td class='data'>C(47)</td><td class='data'>C(48)</td><td class=decimal>0.0</td></tr> <tr class=cifTableRow><td class='data'>C(8)</td><td class='data'>N(1)</td><td class='data'>C(1)</td><td class='data'>C(2)</td><td class=decimal>175.8(2)</td><td width="50px"> </td><td class='data'>C(46)</td><td class='data'>C(47)</td><td class='data'>C(48)</td><td class='data'>C(45)</td><td class=decimal>0.0</td></tr> <tr class=cifTableRow><td class='data'>C(11)</td><td class='data'>C(12)</td><td class='data'>C(13)</td><td class='data'>Eu(1)</td><td class=decimal>68.7(2)</td><td width="50px"> </td><td class='data'>C(48)</td><td class='data'>C(45)</td><td class='data'>C(43)</td><td class='data'>C(44)</td><td class=decimal>0.0</td></tr> <tr class=cifTableRow><td class='data'>C(11)</td><td class='data'>C(12)</td><td class='data'>C(13)</td><td class='data'>C(14)</td><td class=decimal>0.3(3)</td><td width="50px"> </td><td class='data'>C(31)</td><td class='data'>C(32)</td><td class='data'>C(33)</td><td class='data'>C(34)</td><td class=decimal>-0.2(6)</td></tr> <tr class=cifTableRow><td class='data'>C(11)</td><td class='data'>C(12)</td><td class='data'>C(13)</td><td class='data'>C(18)</td><td class=decimal>-175.6(3)</td><td width="50px"> </td><td class='data'>C(32)</td><td class='data'>C(31)</td><td class='data'>C(36)</td><td class='data'>C(35)</td><td class=decimal>0.8(6)</td></tr> <tr class=cifTableRow><td class='data'>C(12)</td><td class='data'>C(11)</td><td class='data'>C(15)</td><td class='data'>Eu(1)</td><td class=decimal>-69.23(19)</td><td width="50px"> </td><td class='data'>C(32)</td><td class='data'>C(33)</td><td class='data'>C(34)</td><td class='data'>C(35)</td><td class=decimal>-0.1(6)</td></tr> <tr class=cifTableRow><td class='data'>C(12)</td><td class='data'>C(11)</td><td class='data'>C(15)</td><td class='data'>C(14)</td><td class=decimal>0.4(3)</td><td width="50px"> </td><td class='data'>C(33)</td><td class='data'>C(34)</td><td class='data'>C(35)</td><td class='data'>C(36)</td><td class=decimal>0.8(6)</td></tr> <tr class=cifTableRow><td class='data'>C(12)</td><td class='data'>C(11)</td><td class='data'>C(15)</td><td class='data'>C(20)</td><td class=decimal>178.6(3)</td><td width="50px"> </td><td class='data'>C(34)</td><td class='data'>C(35)</td><td class='data'>C(36)</td><td class='data'>C(31)</td><td class=decimal>-1.2(6)</td></tr> <tr class=cifTableRow><td class='data'>C(12)</td><td class='data'>C(13)</td><td class='data'>C(14)</td><td class='data'>Eu(1)</td><td class=decimal>68.7(2)</td><td width="50px"> </td><td class='data'>C(36)</td><td class='data'>C(31)</td><td class='data'>C(32)</td><td class='data'>C(33)</td><td class=decimal>-0.1(6)</td></tr> <tr class=cifTableRow><td class='data'>C(12)</td><td class='data'>C(13)</td><td class='data'>C(14)</td><td class='data'>C(15)</td><td class=decimal>0.0(3)</td><td width="50px"> </td><td class='data'>C(37)</td><td class='data'>C(38)</td><td class='data'>C(39)</td><td class='data'>C(40)</td><td class=decimal>0.0</td></tr> <tr class=cifTableRow><td class='data'>C(12)</td><td class='data'>C(13)</td><td class='data'>C(14)</td><td class='data'>C(19)</td><td class=decimal>-174.8(3)</td><td width="50px"> </td><td class='data'>C(38)</td><td class='data'>C(37)</td><td class='data'>C(42)</td><td class='data'>C(41)</td><td class=decimal>-0.1</td></tr> <tr class=cifTableRow><td class='data'>C(13)</td><td class='data'>C(14)</td><td class='data'>C(15)</td><td class='data'>Eu(1)</td><td class=decimal>69.5(2)</td><td width="50px"> </td><td class='data'>C(38)</td><td class='data'>C(39)</td><td class='data'>C(40)</td><td class='data'>C(41)</td><td class=decimal>0.1</td></tr> <tr class=cifTableRow><td class='data'>C(13)</td><td class='data'>C(14)</td><td class='data'>C(15)</td><td class='data'>C(11)</td><td class=decimal>-0.2(3)</td><td width="50px"> </td><td class='data'>C(39)</td><td class='data'>C(40)</td><td class='data'>C(41)</td><td class='data'>C(42)</td><td class=decimal>-0.1</td></tr> <tr class=cifTableRow><td class='data'>C(13)</td><td class='data'>C(14)</td><td class='data'>C(15)</td><td class='data'>C(20)</td><td class=decimal>-178.5(3)</td><td width="50px"> </td><td class='data'>C(40)</td><td class='data'>C(41)</td><td class='data'>C(42)</td><td class='data'>C(37)</td><td class=decimal>0.1</td></tr> <tr class=cifTableRow><td class='data'>C(15)</td><td class='data'>C(11)</td><td class='data'>C(12)</td><td class='data'>Eu(1)</td><td class=decimal>68.69(19)</td><td width="50px"> </td><td class='data'>C(42)</td><td class='data'>C(37)</td><td class='data'>C(38)</td><td class='data'>C(39)</td><td class=decimal>0.0</td></tr> </table> <p> </p> <table class=CifTable> <caption class=cifTableHeadline>Table 7 Hydrogen Atom Coordinates (Å×10<SUP>4</SUP>) and Isotropic Displacement Parameters (Å<SUP>2</SUP>×10<SUP>3</SUP>) for mt454_Bz_0ma.</caption> <thead><tr><th >Atom</th><th ><i>x</i></th><th ><i>y</i></th><th ><i>z</i></th><th >U(eq)</th></tr></thead> <tr class=cifTableRow><td class='data'>H(3)</td><td class=decimal>9040.14</td><td class=decimal>5257.91</td><td class=decimal>6037.96</td><td class=decimal>36</td></tr> <tr class=cifTableRow><td class='data'>H(4)</td><td class=decimal>8938.2</td><td class=decimal>5166.1</td><td class=decimal>7821.6</td><td class=decimal>39</td></tr> <tr class=cifTableRow><td class='data'>H(5)</td><td class=decimal>7414.69</td><td class=decimal>5617.75</td><td class=decimal>8586.08</td><td class=decimal>38</td></tr> <tr class=cifTableRow><td class='data'>H(6)</td><td class=decimal>3575.31</td><td class=decimal>7062.42</td><td class=decimal>5590.11</td><td class=decimal>36</td></tr> <tr class=cifTableRow><td class='data'>H(7)</td><td class=decimal>3797.95</td><td class=decimal>7096.03</td><td class=decimal>3812.27</td><td class=decimal>39</td></tr> <tr class=cifTableRow><td class='data'>H(8)</td><td class=decimal>5524.77</td><td class=decimal>6667.28</td><td class=decimal>3230.92</td><td class=decimal>37</td></tr> <tr class=cifTableRow><td class='data'>H(9A)</td><td class=decimal>7496.12</td><td class=decimal>6495.33</td><td class=decimal>2850.6</td><td class=decimal>69</td></tr> <tr class=cifTableRow><td class='data'>H(9B)</td><td class=decimal>6884.33</td><td class=decimal>5996.66</td><td class=decimal>2394.67</td><td class=decimal>69</td></tr> <tr class=cifTableRow><td class='data'>H(9C)</td><td class=decimal>8456.1</td><td class=decimal>6062.7</td><td class=decimal>2638.49</td><td class=decimal>69</td></tr> <tr class=cifTableRow><td class='data'>H(10A)</td><td class=decimal>9657.27</td><td class=decimal>5484.51</td><td class=decimal>4385.28</td><td class=decimal>59</td></tr> <tr class=cifTableRow><td class='data'>H(10B)</td><td class=decimal>8813.3</td><td class=decimal>5394.86</td><td class=decimal>3254.3</td><td class=decimal>59</td></tr> <tr class=cifTableRow><td class='data'>H(10C)</td><td class=decimal>8457.4</td><td class=decimal>5109.41</td><td class=decimal>4259.65</td><td class=decimal>59</td></tr> <tr class=cifTableRow><td class='data'>H(16A)</td><td class=decimal>8604.28</td><td class=decimal>6756.6</td><td class=decimal>7028.52</td><td class=decimal>54</td></tr> <tr class=cifTableRow><td class='data'>H(16B)</td><td class=decimal>9015</td><td class=decimal>7310.13</td><td class=decimal>6999.36</td><td class=decimal>54</td></tr> <tr class=cifTableRow><td class='data'>H(16C)</td><td class=decimal>7670.97</td><td class=decimal>7128.04</td><td class=decimal>6320.73</td><td class=decimal>54</td></tr> <tr class=cifTableRow><td class='data'>H(17A)</td><td class=decimal>8460.66</td><td class=decimal>6356.96</td><td class=decimal>9660.35</td><td class=decimal>66</td></tr> <tr class=cifTableRow><td class='data'>H(17B)</td><td class=decimal>9569.22</td><td class=decimal>6767.28</td><td class=decimal>9772.2</td><td class=decimal>66</td></tr> <tr class=cifTableRow><td class='data'>H(17C)</td><td class=decimal>9222.77</td><td class=decimal>6482.18</td><td class=decimal>8686.33</td><td class=decimal>66</td></tr> <tr class=cifTableRow><td class='data'>H(18A)</td><td class=decimal>6352.3</td><td class=decimal>7302.19</td><td class=decimal>11008.55</td><td class=decimal>70</td></tr> <tr class=cifTableRow><td class='data'>H(18B)</td><td class=decimal>7914.44</td><td class=decimal>7213.48</td><td class=decimal>11099.19</td><td class=decimal>70</td></tr> <tr class=cifTableRow><td class='data'>H(18C)</td><td class=decimal>6909.13</td><td class=decimal>6773.73</td><td class=decimal>10856.03</td><td class=decimal>70</td></tr> <tr class=cifTableRow><td class='data'>H(19A)</td><td class=decimal>4465.65</td><td class=decimal>7938.88</td><td class=decimal>8799.93</td><td class=decimal>61</td></tr> <tr class=cifTableRow><td class='data'>H(19B)</td><td class=decimal>5678.06</td><td class=decimal>8206.57</td><td class=decimal>9488.61</td><td class=decimal>61</td></tr> <tr class=cifTableRow><td class='data'>H(19C)</td><td class=decimal>4946.84</td><td class=decimal>7772.07</td><td class=decimal>9984.77</td><td class=decimal>61</td></tr> <tr class=cifTableRow><td class='data'>H(20A)</td><td class=decimal>5927.45</td><td class=decimal>7671.41</td><td class=decimal>6358.83</td><td class=decimal>52</td></tr> <tr class=cifTableRow><td class='data'>H(20B)</td><td class=decimal>6464.62</td><td class=decimal>8138.08</td><td class=decimal>7009.46</td><td class=decimal>52</td></tr> <tr class=cifTableRow><td class='data'>H(20C)</td><td class=decimal>5026.09</td><td class=decimal>7930.7</td><td class=decimal>7115.68</td><td class=decimal>52</td></tr> <tr class=cifTableRow><td class='data'>H(26A)</td><td class=decimal>4216.84</td><td class=decimal>5509.25</td><td class=decimal>7223.9</td><td class=decimal>85</td></tr> <tr class=cifTableRow><td class='data'>H(26B)</td><td class=decimal>2693.49</td><td class=decimal>5387.58</td><td class=decimal>7274.28</td><td class=decimal>85</td></tr> <tr class=cifTableRow><td class='data'>H(26C)</td><td class=decimal>3811.98</td><td class=decimal>5207.4</td><td class=decimal>8190.51</td><td class=decimal>85</td></tr> <tr class=cifTableRow><td class='data'>H(27A)</td><td class=decimal>5454.03</td><td class=decimal>5504.69</td><td class=decimal>9579.68</td><td class=decimal>75</td></tr> <tr class=cifTableRow><td class='data'>H(27B)</td><td class=decimal>4379.69</td><td class=decimal>5460.19</td><td class=decimal>10371.63</td><td class=decimal>75</td></tr> <tr class=cifTableRow><td class='data'>H(27C)</td><td class=decimal>5486.06</td><td class=decimal>5870.69</td><td class=decimal>10543.58</td><td class=decimal>75</td></tr> <tr class=cifTableRow><td class='data'>H(28A)</td><td class=decimal>4654.21</td><td class=decimal>6551.37</td><td class=decimal>11088.46</td><td class=decimal>64</td></tr> <tr class=cifTableRow><td class='data'>H(28B)</td><td class=decimal>3108.75</td><td class=decimal>6654.2</td><td class=decimal>11078.63</td><td class=decimal>64</td></tr> <tr class=cifTableRow><td class='data'>H(28C)</td><td class=decimal>4024.68</td><td class=decimal>7045.45</td><td class=decimal>10620.55</td><td class=decimal>64</td></tr> <tr class=cifTableRow><td class='data'>H(29A)</td><td class=decimal>2315.31</td><td class=decimal>7316.5</td><td class=decimal>9404.39</td><td class=decimal>78</td></tr> <tr class=cifTableRow><td class='data'>H(29B)</td><td class=decimal>1079.49</td><td class=decimal>7100.74</td><td class=decimal>8642.72</td><td class=decimal>78</td></tr> <tr class=cifTableRow><td class='data'>H(29C)</td><td class=decimal>2280.6</td><td class=decimal>7342.7</td><td class=decimal>8155.38</td><td class=decimal>78</td></tr> <tr class=cifTableRow><td class='data'>H(30A)</td><td class=decimal>1531.4</td><td class=decimal>6706.62</td><td class=decimal>6745.56</td><td class=decimal>93</td></tr> <tr class=cifTableRow><td class='data'>H(30B)</td><td class=decimal>922.7</td><td class=decimal>6187.94</td><td class=decimal>6916.24</td><td class=decimal>93</td></tr> <tr class=cifTableRow><td class='data'>H(30C)</td><td class=decimal>2202.79</td><td class=decimal>6237.68</td><td class=decimal>6331.59</td><td class=decimal>93</td></tr> <tr class=cifTableRow><td class='data'>H(45)</td><td class=decimal>8655.71</td><td class=decimal>4302.55</td><td class=decimal>10133.3</td><td class=decimal>38</td></tr> <tr class=cifTableRow><td class='data'>H(43)</td><td class=decimal>8296.58</td><td class=decimal>5048.53</td><td class=decimal>10880.89</td><td class=decimal>33</td></tr> <tr class=cifTableRow><td class='data'>H(44)</td><td class=decimal>9708</td><td class=decimal>5692.56</td><td class=decimal>10670.38</td><td class=decimal>35</td></tr> <tr class=cifTableRow><td class='data'>H(46)</td><td class=decimal>11478.57</td><td class=decimal>5590.62</td><td class=decimal>9712.3</td><td class=decimal>46</td></tr> <tr class=cifTableRow><td class='data'>H(47)</td><td class=decimal>11837.72</td><td class=decimal>4844.65</td><td class=decimal>8964.71</td><td class=decimal>41</td></tr> <tr class=cifTableRow><td class='data'>H(48)</td><td class=decimal>10426.31</td><td class=decimal>4200.61</td><td class=decimal>9175.19</td><td class=decimal>50</td></tr> <tr class=cifTableRow><td class='data'>H(31)</td><td class=decimal>3726.92</td><td class=decimal>5486.99</td><td class=decimal>5256</td><td class=decimal>69</td></tr> <tr class=cifTableRow><td class='data'>H(32)</td><td class=decimal>1748.35</td><td class=decimal>5865.26</td><td class=decimal>4654.82</td><td class=decimal>75</td></tr> <tr class=cifTableRow><td class='data'>H(33)</td><td class=decimal>1198.11</td><td class=decimal>6040.63</td><td class=decimal>2870.6</td><td class=decimal>81</td></tr> <tr class=cifTableRow><td class='data'>H(34)</td><td class=decimal>2670.32</td><td class=decimal>5832.06</td><td class=decimal>1705.93</td><td class=decimal>70</td></tr> <tr class=cifTableRow><td class='data'>H(35)</td><td class=decimal>4652.67</td><td class=decimal>5461.34</td><td class=decimal>2327.89</td><td class=decimal>59</td></tr> <tr class=cifTableRow><td class='data'>H(36)</td><td class=decimal>5153.34</td><td class=decimal>5277.65</td><td class=decimal>4096.14</td><td class=decimal>65</td></tr> <tr class=cifTableRow><td class='data'>H(37)</td><td class=decimal>8264.67</td><td class=decimal>4589.45</td><td class=decimal>10495.82</td><td class=decimal>35</td></tr> <tr class=cifTableRow><td class='data'>H(38)</td><td class=decimal>8675.44</td><td class=decimal>5401.8</td><td class=decimal>10864.5</td><td class=decimal>32</td></tr> <tr class=cifTableRow><td class='data'>H(39)</td><td class=decimal>10491.68</td><td class=decimal>5780.76</td><td class=decimal>10287.59</td><td class=decimal>55</td></tr> <tr class=cifTableRow><td class='data'>H(40)</td><td class=decimal>11898.16</td><td class=decimal>5345.95</td><td class=decimal>9344.33</td><td class=decimal>37</td></tr> <tr class=cifTableRow><td class='data'>H(41)</td><td class=decimal>11486.36</td><td class=decimal>4533.65</td><td class=decimal>8975.57</td><td class=decimal>36</td></tr> <tr class=cifTableRow><td class='data'>H(42)</td><td class=decimal>9670.96</td><td class=decimal>4154.82</td><td class=decimal>9552.71</td><td class=decimal>19</td></tr> </table> <p> </p> <table class=CifTable> <caption class=cifTableHeadline>Table 8 Atomic Occupancy for mt454_Bz_0ma.</caption> <thead><tr><th >Atom</th><th ><i>Occupancy</i></th><td width="15px"> </td><th >Atom</th><th ><i>Occupancy</i></th><td width="15px"> </td><th >Atom</th><th ><i>Occupancy</i></th></tr></thead> <tr class=cifTableRow><td class='data'>C(45)</td><td class=decimalWide>0.288(12)</td><td width="15px"> </td><td class='data'>H(45)</td><td class=decimalWide>0.288(12)</td><td width="15px"> </td><td class='data'>C(43)</td><td class=decimalWide>0.288(12)</td></tr> <tr class=cifTableRow><td class='data'>H(43)</td><td class=decimalWide>0.288(12)</td><td width="15px"> </td><td class='data'>C(44)</td><td class=decimalWide>0.288(12)</td><td width="15px"> </td><td class='data'>H(44)</td><td class=decimalWide>0.288(12)</td></tr> <tr class=cifTableRow><td class='data'>C(46)</td><td class=decimalWide>0.288(12)</td><td width="15px"> </td><td class='data'>H(46)</td><td class=decimalWide>0.288(12)</td><td width="15px"> </td><td class='data'>C(47)</td><td class=decimalWide>0.288(12)</td></tr> <tr class=cifTableRow><td class='data'>H(47)</td><td class=decimalWide>0.288(12)</td><td width="15px"> </td><td class='data'>C(48)</td><td class=decimalWide>0.288(12)</td><td width="15px"> </td><td class='data'>H(48)</td><td class=decimalWide>0.288(12)</td></tr> <tr class=cifTableRow><td class='data'>C(37)</td><td class=decimalWide>0.212(12)</td><td width="15px"> </td><td class='data'>H(37)</td><td class=decimalWide>0.212(12)</td><td width="15px"> </td><td class='data'>C(38)</td><td class=decimalWide>0.212(12)</td></tr> <tr class=cifTableRow><td class='data'>H(38)</td><td class=decimalWide>0.212(12)</td><td width="15px"> </td><td class='data'>C(39)</td><td class=decimalWide>0.212(12)</td><td width="15px"> </td><td class='data'>H(39)</td><td class=decimalWide>0.212(12)</td></tr> <tr class=cifTableRow><td class='data'>C(40)</td><td class=decimalWide>0.212(12)</td><td width="15px"> </td><td class='data'>H(40)</td><td class=decimalWide>0.212(12)</td><td width="15px"> </td><td class='data'>C(41)</td><td class=decimalWide>0.212(12)</td></tr> <tr class=cifTableRow><td class='data'>H(41)</td><td class=decimalWide>0.212(12)</td><td width="15px"> </td><td class='data'>C(42)</td><td class=decimalWide>0.212(12)</td><td width="15px"> </td><td class='data'>H(42)</td><td class=decimalWide>0.212(12)</td></tr> </table> <div class="Section2"> <p class="journal_h2"> Experimental </p> <p class="journal"> Single crystals of C<sub>39</sub>H<sub>51</sub>EuN<sub>4</sub>Ni <span class=replaceThisChar>[mt454_Bz_0ma]</span> were <span class=replaceThisChar>[]</span>. A suitable crystal was selected and <span class=replaceThisChar>[]</span> on a <span class=replaceThisChar>Kappa APEX II</span> diffractometer. The crystal was kept at 150.0 K during data collection. Using Olex2 [1], the structure was solved with the XT [2] structure solution program using Intrinsic Phasing and refined with the SHELXL [3] refinement package using Least Squares minimisation.</p> <ol class="journal_reference"> <li>Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.</li> <li>Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.</li> <li>Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.</li> </ol> <p class="journal_h2"> Crystal structure determination of <span class="replaceThisChar">[mt454_Bz_0ma]</span> </p> <p class="journal"> <b>Crystal Data</b> for C<sub>39</sub>H<sub>51</sub>EuN<sub>4</sub>Ni (<i>M </i>=786.51 g/mol): monoclinic, space group P2<sub>1</sub>/n (no. 14), <i>a</i> = 10.1988(10) Å, <i>b</i> = 27.869(3) Å, <i>c</i> = 12.8361(12) Å, <i>β</i> = 98.045(3)°, <i>V </i>= 3612.5(6) Å<sup>3</sup>, <i>Z</i> = 4, <i>T</i> = 150.0 K, μ(MoKα) = 2.273 mm<sup>-1</sup>, <i>Dcalc</i> = 1.446 g/cm<sup>3</sup>, 70248 reflections measured (5.61° ≤ 2Θ ≤ 56.564°), 8958 unique (<i>R</i><sub>int</sub> = 0.0811, R<sub>sigma</sub> = 0.0471) which were used in all calculations. The final <i>R</i><sub>1</sub> was 0.0301 (I > 2σ(I)) and <i>wR</i><sub>2</sub> was 0.0647 (all data). </p> <p> <p class="journal_h2"> Refinement model description </p> <p class="journal">Number of restraints - 72, number of constraints - unknown. </p> <p class="journal_noident">Details:</p> <pre class="journal">1. Fixed Uiso<br/> At 1.2 times of:<br/> All C(H) groups<br/> At 1.5 times of:<br/> All C(H,H,H) groups<br/>2. Uiso/Uaniso restraints and constraints<br/>Uanis(C45) ≈ Ueq, Uanis(C48) ≈ Ueq, Uanis(C47) ≈ Ueq, Uanis(C46)<br/>≈ Ueq, Uanis(C44) ≈ Ueq, Uanis(C43) ≈ Ueq: with sigma of 0.01 and<br/>sigma for terminal atoms of 0.02<br/>Uanis(C39) ≈ Ueq, Uanis(C40) ≈ Ueq, Uanis(C41) ≈ Ueq, Uanis(C42)<br/>≈ Ueq, Uanis(C37) ≈ Ueq, Uanis(C38) ≈ Ueq: with sigma of 0.01 and<br/>sigma for terminal atoms of 0.02<br/>3. Others<br/> Sof(C45)=Sof(H45)=Sof(C43)=Sof(H43)=Sof(C44)=Sof(H44)=Sof(C46)=Sof(H46)=<br/> Sof(C47)=Sof(H47)=Sof(C48)=Sof(H48)=0.5*(1-FVAR(2))<br/> Sof(C37)=Sof(H37)=Sof(C38)=Sof(H38)=Sof(C39)=Sof(H39)=Sof(C40)=Sof(H40)=<br/> Sof(C41)=Sof(H41)=Sof(C42)=Sof(H42)=0.5*FVAR(2)<br/>4.a Free rotating group:<br/> C37(C38,C39,C40,C41,C42)<br/>4.b Aromatic/amide H refined with riding coordinates:<br/> C3(H3), C4(H4), C5(H5), C6(H6), C7(H7), C8(H8), C45(H45), C43(H43), C44(H44),<br/> C46(H46), C47(H47), C48(H48), C31(H31), C32(H32), C33(H33), C34(H34), C35(H35),<br/> C36(H36), C37(H37), C38(H38), C39(H39), C40(H40), C41(H41), C42(H42)<br/>4.c Fitted hexagon refined as free rotating group:<br/> C45(C43,C44,C46,C47,C48)<br/>4.d Idealised Me refined as rotating group:<br/> C9(H9A,H9B,H9C), C10(H10A,H10B,H10C), C16(H16A,H16B,H16C), C17(H17A,H17B,<br/> H17C), C18(H18A,H18B,H18C), C19(H19A,H19B,H19C), C20(H20A,H20B,H20C), C26(H26A,<br/> H26B,H26C), C27(H27A,H27B,H27C), C28(H28A,H28B,H28C), C29(H29A,H29B,H29C),<br/> C30(H30A,H30B,H30C)</pre> <p> <font size=1>This report has been created with Olex2, compiled on 2020.11.12 svn.r5f609507 for OlexSys. Please <a href="mailto:support@olex2.org?subject=Olex2%20Report">let us know</a> if there are any errors or if you would like to have additional features. </font></p> </div> </body> </html>