
Birk Weiberg, «Against Programming: On the
Development of Cultures of Coding in Art and
Design», in: Nummer, no. 11, Update Available:
Transforming Education in Design, Film and Fine
Arts, eds. Orlando Budelacci, Jacqueline Holzer
and Birk Weiberg, Luzern 2023, pp. 52 – 55.
doi:10.5281/zenodo.7418207

Entire issue: doi:10.5281/zenodo.7417851

CC BY-NC-ND 4.0

https://doi.org/10.5281/zenodo.7418207
https://doi.org/10.5281/zenodo.7417851
https://doi.org/10.5281/zenodo.7417851
https://creativecommons.org/licenses/by-nc-nd/4.0/

The newly developed interdisciplinary curriculum
of the Lucerne School of Art and Design is organ-
ised around seven competences, which have been
identified as relevant for the future across all spe-
cialised Bachelor’s programmes. Digitality is one
of them and, as with any transdisciplinary com-
petence, the question is how to adapt it to the
specific context in which it is expected to become
productive. The following thoughts sketch one way
to do so but do not claim universality.

In academia, digitality, or «being digital», as Nich-
olas Negroponte audaciously called our condition
in contemporary technoculture,1 has first and
foremost been the domain of computer sci-
ence. This is also the case for the prima-
ry practice of digital authorship: pro-
gramming. Of course, other forms of
digital authorship (by means of
non-textual interfaces) exist, but they
would not do so without programming.
From this perspective, the predomi-
nant cultural technique of digitality for
art and design seems to belong to another
discipline, and thus requires strategies of appro-
priation. One form of symbiotic relationship be-
tween the disciplines is that developers program
smart tools which enable artists and designers to
create equally smart things. But in recent years,
computer science has lost its monopoly on teach-

ing people how to write software, so that more
and more initiatives not only address additional

groups but also develop independent
approaches to writing code.2 As
Annette Vee observed in her book
Coding Literacy, «programming is

too useful to too many professions»3
to be left to a single disciple alone

and its understanding of what pro-
gramming actually is. This is all the more

important as since the late 1950s computer sci-
ence has successfully framed programming as

a form of engineering, a practice that aims to solve
a specific problem or task efficiently and reliably.
This instrumental conception of algorithms makes
perfect sense when thousands of programmers
write millions of lines of code that make planes fly
or cars drive autonomously. But it has little to do
with what individual artists and designers might
want to achieve when they waive much more in-
tuitive user interfaces in favour of structured text.

Parallel to the history of computers in science and
engineering there have, of course, been parallel
trajectories in art and design that often go back to
the same period in the 1950s but lack the success-
ful institutionalisation of computer science. Com-
puter art, to give these parallel developments a
single comprehensive name, has been much more
fragile, emerging locally with changing focal points

Against
 Programming

On the Development of Cultures of Coding in Art and Design
Birk Weiberg

… the predominant
cultural technique of

digitality for art and design
seems to belong to another

discipline, and thus requires
strategies of appropria

tion.

… computer sci
ence has lost its

monopoly on teaching
people how to write

software …

…an approach
that today goes by
the name creative

coding.

or cultures, which often sailed in the slipstream
of computer science, e.g. by using its infrastruc-
tures for rendering graphics during night shifts.4
A broader academic institutionalisation of com-
puter art started some twenty years ago not as art
but as design, an approach that today goes by the
name creative coding. This development began
with John Maeda’s software (and book) Design by
 Numbers and his eponymous book Creative Code,
where he argues that designers should embrace
algorithms as a new tool.5 And the development
has probably come to a conclusion with the recent
Code as Creative Medium, edited by Golan Levi and
Tega Brain, in which a dozen successful educators
in the field of creative coding reflect on their teach-
ing practices.6

Though the frequent use if the noun ‹code› in this
context suggests a specific approach or autonomy,
the verbs ‹coding› and ‹programming› are usually
used synonymously. Likewise, I am not aware of
any discussion on the questions of whether it
makes sense to distinguish practices in computer
science from those in art and design more clearly
by giving them different names.7 But this is what I
want to suggest to better understand how prac-
tices of digital authorship in art and design differ
from those in computer science and how they can
be developed further specifically in educational
contexts. From that point of view, the objective of

programming is the production of a
coherent, functional piece of soft-
ware, a program, a little (or not so
little) machine that is hopefully neat-
ly constructed to do a specific thing.
Coding, on the other hand, can be
seen as a much more profane de-
nomination of the practice of writing
code, a piece of machine-readable
text that usually does something but

does not need to fulfil the same stand-
ards as a program. Coding uses (or mis-

uses) machines but does not necessarily con-
struct them. And lest this sounds as if coding is
simply an underdeveloped form of programming,
the humbleness that comes with my reading of
the term also has the advantage of reminding us
that the act of formalising language is at the core
of human- machine relations and a chance to re-
flect upon them.8

The crux of successful practices like creative cod-
ing is that the development of tools and frame-
works can lead to restrained applications and aes-
thetics (e.g., the typical complex hairlines of ear-
ly processing). When increased freedom of use is
put forward as an argument for working with code
rather than with GUI tools, which are based on the
separation of complicated, functional code from
creative usage, this distinction is potentially

Coding uses
(or misuses)

machines but does
not necessarily con

struct them.

When machines
start to learn, the old
paradigm of automa
tion, which is closely
linked to engineer

ing, reaches (or
maybe crosses) its

limits due to its
foundation on mind

body dualism.

52 ⁄ 53

blurred as creative coding tools become ever eas-
ier to handle. The better and more professional
such tools become, the more one should be open
to alternative approaches that cultivate transdis-
ciplinarity as a site of critique. One reference
comes from Philip E. Agre, who was trained and
worked in AI in the 1970s and 1980s before turning
to humanities to better understand the blind spots
of his disciplines: «A critical technical practice will,
at least for the foreseeable future, require a split
identity – one foot planted in the craft work of de-
sign and the other foot planted in the reflexive
work of critique.»9 While Agre uses the term de-
sign here to mean the purposeful approach he
found in AI programming, we might take it as
a placeholder for any distinctly applied prac-
tice that may have to limit its critical potential
to remain functional. The limits of intradisci-
plinary critique are something Agre encoun-
tered, and AI is a good example of the need for
a space to think about the future of co-creation
between humans and machines. When machines
start to learn, the old paradigm of automation,
which is closely linked to engineering, reaches (or
maybe crosses) its limits due to its foundation on
mind-body dualism.

A field in the humanities that developed in parallel
with creative coding in design is software studies,
also called critical code studies.10 What started as

a critical look, first at applications and then at in-
terfaces of New Media, has led at least some
scholars to code itself. Perhaps surprisingly, the
research subject of code studies is usually not
pre-existing code, which is often inaccessible and
simply too extensive, but pieces of one’s own code
that can interact with that of others. Coding here
occupies an interesting ambiguous space be-
tween humanities’ genuine medium, text, and
something that is directly actionable and poten-

tially expressive and creative. The blurring of
the distinction between traditional text

and computer code is further support-
ed by references to J. L. Austin’s

speech act theory, which is an as-
cription for the first but description
of the latter. Thus, the insight that
code is an actionable language
that connects humans and ma-

chines can be seen as ground zero
for any critical approaches to code.11

These inquiries by humanities scholars
have paved the way for new hybrid forms of

teaching coding without losing a critical distance
to its applications. An excellent example here is
Aesthetic Programming by Winnie Soon and Geoff
Cox, which combines an introduction to the pop-
ular coding framework p5.js with critical theories.12
Similar to more conventional introductions to

↑ Fig. 1 Joana
Chicau and Renick
Bell, Círculo e Meio
| Circle & Half, live
coding perfor-
mance, 2018,
Spektrum Berlin,
photographed by
Henrique Palazzo

Perhaps surprising
ly, the research subject

of code studies is usually
not preexisting code, which

is often inaccessible and sim
ply too extensive, but pieces
of one’s own code that can

interact with that of
others.

programming, the individual chapters dive into
specific features of JavaScript and the p5.js frame-
work, but do so in connection with theoretical con-
cepts and art pieces. So, the chapter «Vocable
Code», named after an installation/performance
by the authors, does explain how to load data from
a JSON file, how conditional structures work and
how to animate text in a browser window. But it
also demonstrates how «code mirrors the insta-
bility inherent in human language in terms of how
it expresses itself, and is interpreted.»13 With its
practice-based approach, the book here makes
intelligible what Soon elsewhere described as
«constrained writing»,14 i.e., our sensation of writ-
ing code according to the rules of the machines
but which echoes societal functions of language.

A critical coding practice is also central to the work
of Joana Chicau and Renick Bell in their artistic
research project «Choreographies of the Cir-
cle & Other Geometries», where they explore al-
ternative conceptions of the web browser space
by means of live coding. The project makes the
framework developed by the artists available as
an instrument for others and provides instructions
on how to use it in the form of a recipe.15 The on-
tological shifts that come with this practice, which
does not categorically distinguish between mate-
rial, tool, notation and art piece, are characteristic
for more than functional usages of code.

These examples are far from being normative, but
they stand for a diversification of coding and pro-
gramming practices that must be seen as vital for
the formation of the digital technoculture we live
in. With its new curriculum, the Lucerne School
of Art and Design is attempting to develop trans-
disciplinary modules and transfer a long-standing
tradition of combining theory and praxis to digital
environments. To position coding in art and design

schools against programming as it is taught
in computer science does not put one
above the other, but rather argues for
an independent and self-assured claim

on digital technoculture by art educa-
tion, one that explores the situated-
ness and contingencies of technolo-

gies, and sees them as a means not only
to employability but also to critical in-
quiry and public participation.

1 Nicholas Negroponte, Being
Digital, New York 1995.

2 One exemplary grassroots
initiative, which develops
workshops for various disci
plines to empower them when
it comes to dealing with code
and data, is The Carpentries,
https://carpentries.org. Other
initiatives address specific,
marginalised groups that are
underrepresented in computer
science without considering
specific disciplines at all.

3 Annette Vee, Coding Literacy.
How Computer Programming Is
Changing Writing, Cambridge,
MA 2017, p. 12.

4 Cf. Grant D. Taylor, When the
Machine Made Art. The Troubled
History of Computer Art,
New York 2014.

5 John Maeda, Creative Code,
New York 2004.

6 Golan Levin and Tega Brain,
Code as Creative Medium.
A Handbook for Computational
Art and Design, Cambridge,
MA 2021.

7 The composite ‹creative coding›
aims to do this, of course,
but misses the opportunity to
position coding as a counter
practice to programming for
the sake of a simple alliteration.
Likewise, the attribution of
creativity to the usage of code
in art and design is taken as
easy prey and without much
contemplation. For an indepth
analysis of the concept of
creativity, see the contribution
by Orlando Budelacci in this
issue, pp. 56 – 59, doi:10.5281/
zenodo.7418222.

8 One might also think here of
code in relation to semiotics –
a connection that is beyond the
scope of this article.

9 Philip E. Agre, «Toward a Critical
Technical Practice. Lessons
Learned in Trying to Reform AI»,
in: Social Science, Technical
Systems, and Cooperative Work.
Beyond the Great Divide,
eds. Geoffrey C. Bowker et al.,
New York 1997, pp. 131 – 157,
here p. 155.

10 Software Studies. A Lexicon,
ed. Matthew Fuller, Cambridge,
MA 2008; Mark C. Marino,
Critical Code Studies, Cambridge,
MA 2020.

11 Cf. Inke Arns, «Read_me, run_
me, execute_me. Code as
Executable Text: Software Art
and Its Focus on Program
Code as Performative Text»,
in: Media Art Net (2004), http://
www.medienkunstnetz.de/
themes/generativetools/read_
me/scroll/ (retrieved 1 Sept
2022).

12 Winnie Soon and Geoff Cox,
Aesthetic Programming.
A Handbook of Software Studies,
London 2020, https://www.
aestheticprogramming.net
(retrieved 1 Sept 2022).

13 Ibid., 167.

14 Winnie Soon, «Vocable Code»,
in: MAI (10 Nov 2018), https://
maifeminism.com/vocable
code/ (retrieved 1 Sept 2022).

15 https://www.geometries.xyz;
Joana Chicau and Renick
Bell, «Choreographies of the
Circle & Other Geometries»,
in: Critical Coding Cookbook.
Intersectional Feminist Ap-
proaches to Teaching and Learn-
ing (2022), https://criticalcode.
recipes/contributions/
choreographiesofthecircle
othergeometries (retrieved 1
Sept 2022).

To position coding
in art and

design schools
against program-

ming as it is
taught in com

puter science does
not put one

above the other…

The ontological shifts
that come with this

practice, which does not
categorically distinguish

between material,
tool, notation and art piece,
are characteristic for more

than functional
usages of code.

54 ⁄ 55

