
Scriptless Testing for Extended Reality Systems

Fernando Pastor Ricós[0000−0002−5790−193X]

Universitat Politècnica de València, Spain fpastor@pros.upv.es

Abstract. Extended Reality (XR) systems are complex applications
that have emerged in a wide variety of domains, such as computer games
and medical practice. Testing XR software is mainly done manually by
human testers, which implies a high cost in terms of time and money.
Current automated testing approaches for XR systems consist of rudi-
mentary capture and replay of scripts. However, this approach only works
for simple test scenarios. Moreover, it is well-known that the scripts break
easily each time the XR system is changed. There are research projects
aimed at using autonomous agents that will follow scripted instructions
to test XR functionalities. Nonetheless, using only scripted testing tech-
niques, it is difficult and expensive to tackle the challenges of testing XR
systems. This thesis is focus on the use of automated scriptless testing
for XR systems. This way we help to reduce part of the manual testing
effort and complement the scripted techniques.

Keywords: Scriptless testing, State model inference, Extended Reality

1 Introduction

XR systems have been on the rise in recent years to allow users to interact
with simulated environments. XR software systems have emerged in different
domains, ranging from medicine, for marketing purposes, to computer games
[19]. The latter sector accounts for about 50% of the Virtual Reality (VR) soft-
ware market. The complexity of the navigation and interaction in 3D spaces, the
increasing importance of user experience, the existence of randomness and non-
determinism in VR games, together with the agile development requirements of
the market [9], makes XR testing a challenging and critical task [10].

Nowadays, XR testing practice is mainly done manually. This implies high
costs in terms of time and money. The sector lacks automation processes, frame-
works, and tools [13]. Even though automated software testing has been signifi-
cantly researched to reduce the problems of manual testing (time, cost, etc.), for
instance, as shown for testing through the Graphical User Interface (GUI) [16],
the existing testing tools do not consider the complexity of testing XR systems.

Automated scripted testing is based on scripts that are manually crafted,
generated from models, or recorded with a tool to replay them later [15]. These
scripts contain the interactions that the automated tool must execute to vali-
date some functional requirements. However, the current automated testing ap-
proaches for XR systems are often based on the rudimentary capture and replay
of scripts, which only works for simple test scenarios. Furthermore, the scripts
break easily when the XR system is changed.



2 F. Pastor Ricós

In order to tackle the problems of applying automated scripted testing to
XR systems, the Intelligent Verification/Validation for Extended Reality Based
Systems (iv4XR, 2019-2022) project is developing a framework to allow the
observation of XR entities and the use of autonomous Functional Test Agents
(FTAs) to achieve testing goals [14]. These FTAs follow scripted tactics and
imply the need to manually create and maintain scripts.

Manually defining and maintaining scripts to cover all possible functional
System Under Test (SUT) dependencies would mean investing a lot of money
and time. Therefore, using only scripted techniques, it is difficult and expensive
to tackle the challenges of testing XR systems. To reduce the effort related to
test scripts, additional and complementary testing approaches are required.

Scriptless testing is an outstanding approach intended to automatically in-
teract and validate the software without the use of scripts. These tools automati-
cally explore and generate test sequences by selecting and executing the available
actions in the discovered states. The use of scriptless testing tools has proven
to be complementary to scripted tools for covering different parts of the SUT
and for detecting unexpected software failures [11]. Moreover, scriptless testing
can be beneficial to check offline oracles [7], to visualize model transitions and
changes between different versions of the same software [2], to automatically
generate test cases from the model [1], or to automatically apply regression test-
ing to detect changes [8]. Despite all these benefits, there is a lack of research to
apply the scriptless approach for XR environments.

The goal of this research is to evaluate the benefits of using scriptless testing
for two VR software systems. To do that, we select the scriptless open source
tool TESTAR [22]. TESTAR is an actively maintained tool that tests desktop,
web and mobile applications through the GUI. In this research, TESTAR must
be evolved to be an intelligent exploratory agent that tests XR environments.
Thus, we advocate that scriptless testing can help developers and testers at XR
companies by reducing manual effort and complementing scripted techniques.

The rest of this paper is structured as follows. Section 2 presents the related
work. Section 3 introduces the the main characteristics of TESTAR. Section 4
exposes research challenges for XR systems. Section 5 presents the completion
plan for this thesis research, including the validation plan. Section 6 concludes.

2 Related Work

Testing XR systems is difficult. The development of XR systems differs from
traditional systems due to less clear requirements, high level of interactivity and
increased realism, entities behavior dependent on the context, among others;
making testing a challenging work [17]. Testing XR systems is mainly performed
manually, because it is needed to deal with interfaces in 3D spaces, human be-
havior is difficult to reproduce, and entities are highly dependent on the context.

Little research has been performed on automated testing of XR systems.
In [12], the difference in the evolution of the requirements between traditional
desktop, web or mobile software, and XR video game open source projects is
presented. This study shows that, as a XR video game project evolves, the de-
velopment effort is reduced from code functionality and focuses more on the



Scriptless Testing for Extended Reality Systems 3

multimedia features. It also shows that testing objectives of XR systems evolve
differently than those of traditional software, and that malfunctions of XR sys-
tems are more related to the interface than the programming errors.

In [4], a script based approach for automated functional testing of XR sys-
tems is proposed. It offers a semi-formal language to describe the requirements
specification and then automates the generation of test cases using scene graph
concepts to represent the virtual environment. Although this proposal can be a
useful scripted approach, the effort to maintain the scripts is problematic.

The iv4XR project uses autonomous agents that follow declarative tactics
to test XR systems [14]. Artificial Intelligent (AI) techniques are applied to
have robustness tactic-based tests and reduce the maintenance effort [18]. MBT
is used to generate tactic-based test cases automatically [5]. However, manual
effort is still required if the XR testing needs to cover a high amount of system
paths, either to create tactic tests or to craft a model of an existing level.

The scriptless approach and the use of AI agents has not been thoroughly in-
vestigated in terms of test effectiveness, efficiency and usefulness. Consequently,
the motivation of this work is to research the benefits of using the scriptless tool
TESTAR as an exploratory agent within the iv4XR project.

3 TESTAR Tool

TESTAR is a scriptless tool that, while testing, infers a state model that is
stored in an OrientDB graph database. TESTAR connects and interacts with
the SUT using an API to obtain the current state and execute actions. Windows
Automation and Java access bridge can be used for desktop applications, Sele-
nium WebDriver for web pages, and Appium for mobile applications. To be able
to connect and interact with XR systems, we use the open source iv4XR Java
software plugin that allows TESTAR to interact with two iv4XR use cases:
LabRecruits 1 and Space Engineers (SE) 2. LabRecruits is a VR open source
demo game and SE is an industrial VR game with millions of players.

The logical flow of TESTAR together with the integration of the iv4XR
plugin is shown in Figure 1. The World Object Model (WOM) interface allows
TESTAR to observe the information of the virtual entities through a set of
properties such as the entity type, the position and the size. Thus, the XR state
consists on the set of entities that exist in the observation range. Because the
type of entities and their properties are different depending on the virtual SUT,
TESTAR needs to define the XR state differently for LabRecruits and SE. For
example, SE entities contain properties that indicate the actual integrity and 3D
position of blocks, which is something that does not exist for LabRecruits game.

XR actions are the available interactions that TESTAR can execute in each
XR state. We derive two types of XR actions: basic commands and compound
tactics. A basic command action is the most basic event that TESTAR can
execute, e.g. move or rotate one step, equip a tool and start or stop using a tool.
However, due to the essence of XR systems, most of the time it is necessary to

1 https://github.com/iv4xr-project/labrecruits
2 https://github.com/iv4xr-project/iv4xr-se-plugin



4 F. Pastor Ricós

execute a compound tactical action that contains several basic commands. For
example, to interact with a SE block entity TESTAR needs to rotate to aim
the block, move to reach the block, equip a tool and start using this tool.

Based on the available actions in a state s, TESTAR selects and executes
an action a and obtains a new state s′. The transition (s, a, s‘) is then stored
into the state model and TESTAR continues with state s‘. It generates test
sequences until the STOP condition is met. Thus, the state model is a knowledge
graph that contains information about the elements in the states, as well as the
executed and non-executed actions.

Fig. 1. TESTAR operational flow

During the integration of the iv4XR plugin, TESTAR was able to discover
two failures. In LabRecruits, we detected a hang exception when interacting with
a non-interactive entity. In SE, we discovered a plugin exception when TESTAR
took off his helmet and died while exploring SE system. For this reason, we expect
to use possible failures found by TESTAR as a measure of test effectiveness.

4 XR Research Challenges

To evaluate scriptless testing for XR systems, we work to solve four challenges
that are described in this section.

When TESTAR interacts with desktop, web or mobile SUTs, most of the
GUI actions are based on mouse movements in the 2D screen followed by click,
drag or type events. However, for XR systems there is greater complexity when
executing actions. An XR action may require move and orientate TESTAR in
3D environments and deal with obstructive objects to reach the entities. There-
fore we have to research: 1. How to develop an action derivation mechanism to
perceive the environment and realize smart interaction movements.

TESTAR maintains two types of states in its model: concrete and abstract
states. Concrete states are created using all the properties of all the entities.
Abstract states creation can be customized by selecting which properties are used
for state abstraction. A suitable level of abstraction allows TESTAR to select
non-dynamic properties to create a traceable model avoiding a state explosion.
However, for XR systems, some properties, such as the position of the agent, are
important but too concrete to determine theXR state. Thus, we need to analyze:
2. How to define a suitable approach to abstract the area of the TESTAR agent.



Scriptless Testing for Extended Reality Systems 5

For GUI applications, when TESTAR obtains the GUI state, the tool detects
the available widgets to interact with. However, for XR systems, the observation
about the reachable entities is restricted to the observation range and obstructive
objects. A basic movement can modify the observed entities and discover that
new entities can be reached by navigating to certain positions. Since TESTAR
does not contain such a complex navigation feature, we need to investigate: 3.
How to implement a feature that allows TESTAR to navigate the XR space and
remember how to reach the existing entities.

For XR systems we need a new definition of test oracles. Crash and hang
failures are generic oracles that, in principle, can be used for most XR systems.
However, other oracles intended to check the functionality of the XR interac-
tions or the correct visualization of virtual entities, can be specific and different
between XR systems. Thus, we need to analyze the test requirements for each
SUT and study: 4. How to adapt TESTAR oracles for XR systems.

5 Completion Plan

This thesis aims to improve four functionalities of TESTAR to tackle the chal-
lenges presented above. It is the first time presented in a doctoral consortium.

5.1 Smart Interaction Movements

TESTAR needs to be able to observe the environment, select an entity to in-
teract with, and perceive which virtual objects obstruct the movement to the
entity. For LabRecruits, TESTAR can use tactical actions, together with the
automatic NavMesh [21] map created by Unity to follow the NavMesh positions
to reach the desired entity. However, in other XR systems such as SE VR game,
this NavMesh map does not exist by default. We are working on creating a 2D as
well as 3D pathfinding (with jetpack) algorithm for SE. This constructs a sparse
grid on-the-fly as the agent moves around and avoids obstacles.

5.2 XR State Abstraction

Current abstraction mechanisms are not feasible for some XR systems. In SE,
TESTAR movements change the observation range and, therefore, the SE blocks
of the XR state. This implies the constant creation of new abstract states in the
model. A possible solution for SE is to use the location area ofTESTAR together
with the SE grid entities. One grid is a group of blocks that generally represents
a structure such as a spatial base. The exploration movements along these grids
will modify the observed blocks but not the grid structure.

5.3 Navigable State Model Layer

In XR systems, especially in virtual games, the user has the possibility to move
around the virtual world or a navigable area, in order to reach the interactive en-
tities. To determine which are the reachable entities, TESTAR needs to explore
the navigable areas and store the position of the discovered entities.

A navigable state has been implemented in the TESTAR state model. Figure
2 shows an example of this feature with LabRecruits. TESTAR prioritizes the
exploratory movements to discover the reachable entities of the navigable state.
After fully exploring the navigable state, TESTAR selects an interactive action
not executed previously. Then, TESTAR starts a new exploration to be able to
map which interactive actions of the SUT connects the existing navigable states.



6 F. Pastor Ricós

Fig. 2. TESTAR navigable state transition

5.4 XR Test Oracles

Although there are generic oracles that can be applied to most systems to detect
crashes, hangs or exception messages, the definition of what a failure is and the
oracles to detect it, depends on each system. In the development of XR systems,
a lot of effort is dedicated to the visualization of virtual objects. Thus, the oracles
aiming to verify the correct visualization of these objects are of great interest in
the development processes of virtual systems.

iv4XR project has a trained model that helps to verify the correct visu-
alization of SE blocks according to their integrity values. TESTAR is able to
detect the type and the integrity of the blocks using the iv4XR plugin and take
screenshots of the SE system using the Windows Accessibility API. Thus, we
aim to research the integration of the model in TESTAR to be used as a visual
oracle while TESTAR explores the virtual environment.

5.5 Validation Plan

LabRecruits and SE partners are interested in conducting this research and pub-
lishing the validation results. We will evaluate TESTAR effectiveness, efficiency,
and the usefulness of the test results. Let us look into each of these separately.

– RQ1: How does TESTAR improve test effectiveness of XR systems?

On non-XR systems, TESTAR test effectiveness can be measured by the
usual code coverage, GUI coverage and failures found. Although these are still
desired (two interesting system failures were already found during the TESTAR
integration), the usual metrics are not enough. This is because, for XR systems,
test effectiveness also depends on game-specific properties like the entities, the
interactions, the reality, the high level game objectives, the levels and the players.

Therefore, to answer RQ1, first we need to discuss with the product owners to
determine what they consider to be effective for their particular system. Then,
we need to execute a series of experiments to obtain and evaluate these metrics.

For LabRecruits, it is considered effective to test the transition coverage of
the buttons and doors at different levels. Also, because this system is developed
with Unity, it is possible to obtain code coverage metrics [20]. For SE, it is
considered effective to test the integrity and the visualization of the blocks when
using a tool to interact with it, or the correct use of materials to build blocks.



Scriptless Testing for Extended Reality Systems 7

In this first PhD year, we expect to execute a series of experiments with
LabRecruits to measure how effective is TESTAR in terms of transition and
code coverage. Since LabRecruits can have different types of levels, and because
TESTAR always contains a certain level of randomness, we need to make sure
we obtain significant evidence. For this we will realize an empirical evaluation
and use for example the Bayesian statistical analysis [6]. Furthermore, for SE,
we need to research and determine which metrics to use to measure effectiveness.

For the second PhD year, we plan to conduct an industrial experiment with
SE. We expect to use TESTAR to explore SE and interact with different blocks
to validate properties such as integrity, and research the use of an image recogni-
tion model as an oracle to validate blocks visualization. Then, realize an empirical
evaluation by using the effectiveness metrics defined during this PhD year.

– RQ2: How useful are the test results of TESTAR?

TESTAR creates logs, HTML reports with screenshots, and the state model,
as test result artifacts. Logs and HTML reports are useful to visualize how a test
sequence was executed, especially if a failure has been found. The state model
is an artifact that can be useful for more purposes, as was stated in Section 1.

One of the research topics of the iv4XR project is the use of a MBT tool
to generate button-interaction test cases. To use the MBT tool with an existing
LabRecruits level, it is necessary to manually craft the finite interaction model
before being able to generate test cases [5]. TESTAR navigable state model
contains the necessary information that the MBT tool needs to automatically
generate these test cases. For this reason, we expect to analyze the useful com-
plementarity of TESTAR and the MBT tool before the end of this PhD year.

– RQ3: How efficient is the TESTAR exploration process on XR systems?

Besides investigating effectiveness and usefulness of the TESTAR results,
we still need to research the third important property of testing: efficiency [3].

Because TESTAR does not test a specific set of actions but explores the
existing amount of available actions, it needs more time than scripted approaches
to reach significant effectiveness. For the third PhD year, we expect to research
the integration of a distributed framework that allows the execution of multiple
TESTAR instances that use the state model as a central knowledge database.

6 Conclusion

In this doctoral consortium paper we have presented the challenges for testing
XR systems, the research performed so far, the goal of our research, and the
completion activities and validation plan that will be carried on during the PhD.

Acknowledgements

This work has been funded by iv4XR (H2020, 856716) project.

References

1. Aho, P., Alégroth, E., Oliveira, R., Vos, T.: Evolution of automated regression
testing of software systems through the graphical user interface. In: 1st ACCS. pp.
16–21 (2016)



8 F. Pastor Ricós

2. Aho, P., Suarez, M., Kanstrén, T., Memon, A.M.: Murphy tools: Utilizing extracted
gui models for industrial software testing. In: ICSTW. pp. 343–348 (2014)

3. Böhme, M., Paul, S.: A probabilistic analysis of the efficiency of automated software
testing. IEEE Transactions on Software Engineering 42(4), 345–360 (2015)

4. Correa Souza, A.C., Nunes, F.L., Delamaro, M.E.: An automated functional testing
approach for virtual reality applications. STVR 28(8), e1690 (2018)

5. Ferdous, R., Kifetew, F., Prandi, D., Prasetya, I., Shirzadehhajimahmood, S., Susi,
A.: Search-based automated play testing of computer games: A model-based ap-
proach. In: 13th SSBSE. pp. 56–71. Springer (2021)

6. Furia, C., Feldt, R., Torkar, R.: Bayesian data analysis in empirical software engi-
neering research. IEEE TSE 47(9), 1786–1810 (2021)

7. de Gier, F., Kager, D., de Gouw, S., Vos, T.E.J.: Offline oracles for accessibility
evaluation with the testar tool. In: 13th RCIS. pp. 1–12. IEEE (2019)

8. Grilo, A.M., Paiva, A.C., Faria, J.P.: Reverse engineering of gui models for testing.
In: 5th Iberian Conf. on Information Systems and Tech. pp. 1–6. IEEE (2010)

9. Kropp, M., Meier, A., Anslow, C., Biddle, R.: Satisfaction, practices, and influences
in agile software development. In: 22nd EASE. pp. 112–121 (2018)

10. Lin, D., Bezemer, C.P., Hassan, A.E.: Studying the urgent updates of popular
games on the steam platform. Empirical Software Eng. 22(4), 2095–2126 (2017)

11. Machiry, A., Tahiliani, R., Naik, M.: Dynodroid: An input generation system for
android apps. In: 9th FSE. pp. 224–234 (2013)

12. Pascarella, L., Palomba, F., Di Penta, M., Bacchelli, A.: How is video game devel-
opment different from software development in open source? In: 2018 IEEE/ACM
15th MSR. pp. 392–402 (2018)

13. Politowski, C., Petrillo, F., Guéhéneuc, Y.G.: A survey of video game testing. arXiv
preprint arXiv:2103.06431 (2021)

14. Prasetya, I., Dastani, M., Prada, R., Vos, T.E.J., Dignum, F., Kifetew, F.: Aplib:
Tactical agents for testing computer games. In: 8th EMAS. pp. 21–41 (2020)

15. Rafi, D.M., Moses, K.R.K., Petersen, K., Mäntylä, M.V.: Benefits and limitations
of automated software testing: Systematic literature review and practitioner survey.
In: 7th Int. W. on Automation of Software Test (AST). pp. 36–42. IEEE (2012)

16. Rodŕıguez-Valdés, O., Vos, T., Aho, P., Maŕın, B.: 30 years of automated gui
testing: A bibliometric analysis. In: 14th QUATIC. pp. 473–488. Springer (2021)

17. Santos, R., Magalhães, C., Capretz, L., Correia-Neto, J., da Silva, F., Saher, A.:
Computer games are serious business and so is their quality: particularities of
software testing in game development from the perspective of practitioners. In:
12th ESEM. pp. 1–10 (2018)

18. Shirzadehhajimahmood, S., Prasetya, I., Dignum, F., Dastani, M., Keller, G.: Using
an agent-based approach for robust automated testing of computer games. In: 12th
A-TEST. pp. 1–8 (2021)

19. Stanney, K., Nye, H., Haddad, S., Hale, K., Padron, C., Cohn, J.: extended reality
(xr) environments. Handbook of human factors and ergonomics pp. 782–815 (2021)

20. Unity: Code coverage (2019), https://docs.unity3d.com/Packages/
com.unity.testtools.codecoverage@1.0, last accessed: 18 Feb 2022

21. Unity: Navigation system in unity (2021), https://docs.unity3d.com/Manual/nav-
NavigationSystem.html, last accessed: 18 Feb 2022

22. Vos, T., Aho, P., Pastor Ricos, F., Rodriguez-Valdes, O., Mulders, A.: testar–
scriptless testing through graphical user interface. STVR 31(3), e1771 (2021)


