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1  |   INTRODUCTION

Banana (Musa spp.) including plantain is one of the major 
staple food crops grown in over 140 countries in the sub-
tropics and tropics with annual production worldwide of 

around 148 million metric, feeding about 500 million people 
(FAOSTAT, 2016). It is a valuable food security and cash crop 
as it can be cultivated in diverse environments and produces 
fruits throughout the year in these favorable weather condi-
tions (Jones, 2000). Smallholder farmers mainly cultivate 
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Abstract
Banana is a major staple food crop feeding more than 500 million people in tropical 
and subtropical countries. Its production is largely constrained by diseases and pests 
in addition to other factors such as declining soil fertility, narrow genetic diversity in 
germplasm, and inadequate availability of clean planting material. The impact of 
climate change, particularly a rise in temperature and drought, is predicted to affect 
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adapt to climate change by resisting biotic and abiotic stresses. CRISPR/Cas9-based 
genome editing has been lately established for banana, paving the way for functional 
genomics allowing identification of genes associated with stress-tolerant traits, 
which could be used for the improvement of banana for adaptation to a changing 
climate. This article presents an overview of recent advancements and prospective on 
the application of genetic modification and genome editing for developing climate-
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banana for domestic consumption and local or regional mar-
kets; only about 15% of production enters international mar-
kets. Africa contributes one-third of the world's production 
with East Africa being the biggest banana-growing region 
accounting for about 40% of total production in Africa. East 
African countries such as Burundi, Rwanda, and Uganda an-
nually consume the highest amount of banana at 220–460 kg 
per person annually (Kilimo Trust, 2012). Based on food se-
curity data, banana provides 30%–60% of the daily per cap-
ita calorie intake in these countries (Abele & Pillay, 2007). 
Bananas are full of minerals, vitamins, and carbohydrate and 
are considered one of the main sources of energy for millions 
of people in East Africa.

Hundreds of cultivars of bananas are grown and con-
sumed worldwide, but large-scale farmers mainly grow the 
Cavendish type of dessert bananas for commercialization in 
local and international markets. However, plantain is grown 
largely in Central and West Africa, and East African Highland 
banana (EAHB) is cultivated in East Africa. Other dessert ba-
nana varieties such as Sukali Ndiizi and Gros Michel are also 
grown at minor level in Africa.

Banana production is seriously affected by several factors, 
specifically biotic and abiotic stresses, declining soil fertil-
ity, narrow genetic diversity in germplasm, and inadequate 
availability of clean planting material among smallholder 
farmers. Diseases and pests are one of the major factors lim-
iting yields worldwide. The production is mainly reduced 
by many bacterial, fungal, and viral pathogens, mainly 
Xanthomonas campestris pv. musacearum (Xcm) causing 
banana Xanthomonas wilt (BXW), Ralstonia solanacearum 
causing moko and bugtok disease, Ralstonia syzygii subsp. 
celebesensis causing blood disease, Pseudocercospora fijien-
sis, P. musae, and P. eumusae causing black Sigatoka, yel-
low Sigatoka, and leaf spot disease, respectively, Fusarium 
oxysporum f. sp. cubense causing fusarium wilt (commonly 
known as panama disease), and viruses such as banana 
bunchy top virus (BBTV) and banana streak virus (BSV), 
and pests such as nematodes and weevils (Jones, 2000; 
Ploetz, 2015; Tripathi, Tripathi, & Kubiriba, 2016; Tripathi 
et al., 2009; Tushemereirwe, Kangire, & Ssekiwoko, 2004). 
There is a huge yield gap in banana production in the areas 
where several of these pathogens and pests are present to-
gether. Some of these diseases are wiping out banana from 
the infected fields.

In addition, changes in climate and weather are also hav-
ing a significant impact on banana yields, particularly in the 
regions where the crop is grown with minimal or no irriga-
tion. For example, banana yields were reported to be affected 
by variation in temperature and rainfall in Uganda (Sabiiti 
et al., 2016), which is the largest producer and consumer of 
banana. Drought is a major factor for yield losses, mainly 
in rain-fed fields in Uganda (Sabiiti et al., 2016; Van Asten, 
Fermont, & Taulya, 2010). The effects of climatic extremes 

on banana yields depend on the stage of the crop at the time, 
as well as the frequency and duration of exposure of the crop 
to the extreme climate (Van Asten et al., 2010). Strategies 
need to be developed for banana production to adapt to ex-
treme changes in climate, particularly rainfall and tempera-
ture in the banana-growing areas.

Extreme climate is predicted to have harmful influ-
ences not only on plant agronomic traits but also on the 
soil fertility, and pathogens and pests, which affect crop 
productivity (Dhanker & Foyer, 2018). The human popu-
lation of the world is projected to reach 9.8 billion in 2050 
and 11.2 billion by 2100 (United Nations, Department of 
Economic and Social Affairs, Population Division, 2015). 
There is a pressing need to close the yield gap in staple 
crops and enhance food production in order to feed the 
world. As banana is one of the main staple food crops for 
Africa, emphasis should be on banana rather than on cere-
als, which is the situation in many other parts of the world. 
Investment in banana improvement holds great potential 
for improving food security as these crops feed more peo-
ple per unit area of production than other staple crops 
(West et al., 2014).

To fulfill the increasing demand for food with the same or 
limited resources, better and more efficient ways to produce 
food are required. One option is to utilize modern breeding 
tools such as genetic modification and genome editing for 
crop improvement. Currently, intensive efforts are underway 
to increase yields of banana through developing improved va-
rieties with resistance/tolerance to biotic and abiotic stresses. 
This article presents an overview of recent progresses and 
prospective on the application of genetic modification and 
genome editing for developing climate-resilient banana.

2  |   IMPROVEMENT OF BANANA 
FOR CLIMATE-RESILIENT TRAITS

Climate change including extreme temperature and drought 
is not only having negative impact on the agronomic con-
ditions of banana plants but also expected to impact soil 
nutrients, pathogens, and pests. Therefore, there is need to 
develop climate-resilient varieties with broad spectrum and 
durable resistance to both biotic and abiotic stresses.

3  |   GENETIC MODIFICATION 
AND GENOME EDITING

Developing improved varieties of banana using conventional 
breeding is challenging because of the low genetic variability 
in Musa germplasm, polyploidy, lengthy production cycle, 
and sterility of majority of the cultivars commonly grown 
by farmers (Silva et al., 2001). Genetic engineering is a very 
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effective tool, which allows the transfer of useful traits from 
different species or across the same species, bypassing natu-
ral bottlenecks of breeding, thus making it applicable for the 
improvement of banana.

It provides a further option for the development of im-
proved varieties resistant to diseases, particularly when no 
host plant resistance is available among banana germplasm. 
Although no genetically modified (GM) banana and plantain 
have yet been released for commercial purposes, their pro-
duction should be encouraged and supported through scien-
tific knowledge and risk assessment studies.

Precise genome editing is the new genetic engineering 
tool for crop improvement. Several techniques such as zinc 

finger nucleases (ZFNs) (Maeder et al., 2008; Sander et al., 
2011), TAL effector proteins (TALENs) (Christian et al., 
2010; Li et al., 2011; Miller et al., 2011), RNA-guided 
nucleases (RGENs), and CRISPR (clustered regularly 
interspaced short palindromic repeats)/Cas9 (CRISPR-
associated protein 9) (Cong et al., 2013; Jinek et al., 2012; 
Mali et al., 2013) have been developed for targeted genome 
editing in plants. All these methods are based on the forma-
tion of double-stranded breaks at specific loci and in trig-
gering DNA repair mechanism (Weinthal & Gürel, 2016). 
CRISPR/Cas9 has emerged as a potent genome editing tool 
that can be used efficiently to induce targeted mutations in 
the genomes of plant species to produce improved varieties. 

F I G U R E   1   Genetic transformation and regeneration of banana. (a) Embryogenic cells of banana used as explant for transformation, (b) 
Agrobacterium-infected embryogenic cells, (c) transformed embryogenic cells on selective regeneration medium, (d) embryos germinating on 
selective regeneration medium, (e) complete plantlet of transgenic banana regenerated on selective medium, (f) genome-edited plant with mutations 
in phytoene desaturase (PDS) showing albino phenotype, and (g–h) transgenic plant showing expression of green florescent protein in leaf and root 
under UV-light source

(a)

(e) (f) (g)

(h)

(b) (d)(c)
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This technology has been successfully applied in many or-
ganisms including several plant species (Scheben, Wolter, 
Batley, Puchta, & Edwards, 2017). It has not only been es-
tablished for model plants such as Arabidosis thaliana and 
Nicotiana benthamiana but also been established for com-
plex crops such as rice, wheat, maize, sorghum, tomato, 
soybean, apple, citrus, poplar, and coffee (Breitler et al., 
2018; Song et al., 2016). Most of the genome editing is re-
ported in the seed crops; however, the CRISPR/Cas9-based 
genome editing has recently also been reported in vegeta-
tively propagated crops including potato, cassava, and ba-
nana with mutations in phytoene desaturase (PDS) (Butler, 
Baltes, Voytas, & Douches, 2016; Kaur et al., 2017; Naim 
et al., 2018; Odipio et al., 2017).

Kaur et al. (2017) demonstrated genome editing of ba-
nana cultivar “Rasthali” (AAB) by creating mutations in 
the PDS gene, a key enzyme in the carotene biosynthesis 
pathway, leading to an albino phenotype. They used a sin-
gle gRNA and obtained mutation efficiency of 59%. Later, 
higher editing efficiency (100%) of the PDS gene was re-
ported in “Cavendish Williams” (AAA) using polycistronic 
gRNAs (Naim et al., 2018). Similarly, high mutation effi-
ciency was also obtained in our laboratory using multiple 
gRNAs targeting the PDS gene (Figure 1). Establishment 
of CRISPR/Cas9 system has paved the way for the appli-
cation of genome editing for the improvement of banana. 
Multiplexing of CRISPR/Cas9 system can result in editing 
two or more genes at the same time; so far, a maximum of 
eight genes have been edited simultaneously in rice (Xie, 
Minkenberg, & Yang, 2015).

4  |   DELIVERY OF PLASMID 
CONSTRUCTS AND CRISPR 
REAGENTS TO PLANT CELLS

Developing genetically modified and genome-edited banana 
requires a highly efficient system for transformation and 
regeneration (Tripathi, Oduor, & Tripathi, 2015; Tripathi, 
Babirye et al., 2015). The biggest challenge in the application 
of CRISPR/Cas9 technology in several crops is the regenera-
tion and genetic transformation of complete plants from trans-
formed cells (Altpeter et al., 2016). Banana has been modified 
mainly using either Agrobacterium-mediated transformation 
or microprojectile bombardment. Agrobacterium-mediated 
transformation protocols have also been established for many 
cultivars of banana and plantains (Ganapathi et al., 2001; 
Khanna, Becker, Kleidon, & Dale, 2004; Tripathi, Mwaka, 
Tripathi, & Tushemereirwe, 2010; Tripathi, Muwonge, & 
Tripathi, 2012; Tripathi, Oduor, & Tripathi, 2015). Protocols 
for microprojectile bombardment technique are available for 
modifying banana and plantain (Becker, Dugdale, Smith, 
Harding, & Dale, 2000; Sagi et al., 1995).

Embryogenic cells are the preferred starting material for 
genetic transformation of banana. However, the generation 
of embryogenic cells is cultivar-dependent, time-consuming, 
and laborious (Tripathi, Oduor, & Tripathi, 2015). Many lab-
oratories have tried to develop embryogenic cells from vari-
ous cultivars of banana using different types of explants such 
as leaf sheaths, rhizome, shoot tips, zygotic embryos, male 
flowers, and multiple buds (Becker et al., 2000; Cote et al., 
1996; Dheda, Dumortier, Panis, Vuylsteke, & De Langhe, 

F I G U R E   2   Schematic diagram showing generation of DNA-free genome-edited banana by delivering preassembled Cas9 protein-gRNA 
ribonucleoproteins (RNPs) directly into embryogenic cells or protoplasts and regeneration into complete plants
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1991; Escalant, Teisson, & Cote, 1994; Ganapathi et al., 2001; 
Navarro, Escobedo, & Mayo, 1997; Novak et al., 1989). Our 
group has developed embryogenic cells for many cultivars 
of banana and plantain using either multiple buds (scalps) or 
male flowers, depending upon the cultivars (Tripathi et al., 
2012; Tripathi, Oduor, & Tripathi, 2015).

IITA-Kenya has established a robust genetic transforma-
tion platform for banana and plantain using an Agrobacterium-
mediated system (Tripathi et al., 2012; Tripathi, Oduor, & 
Tripathi, 2015). Our laboratory has capacity to transform 
many cultivars of plantains such as Gonja Manjaya, Agbagba, 
Orishele, and Obino l'Ewai and dessert bananas such as 
Sukali Ndiizi, Gros Michel, and Cavendish. This platform is 
routinely used for the generation of genetically modified and 
genome-edited banana and plantain (Figure 1). Currently, 
Agrobacterium-mediated transformation is the most common 
method for delivering CRISPR/Cas9 reagents in banana cells 
and regenerating complete plants (Kaur et al., 2017; Naim 
et al., 2018; Tripathi et al., 2019).

5  |   DNA-FREE GENOME-EDITED 
BANANA

Genome-edited banana mediated by plasmid delivery may 
be considered GM at least in the initial stages of develop-
ment. The plasmids usually contain selection marker genes 
and are delivered by Agrobacterium into the plant cells. The 
foreign DNA from the plasmid construct integrates into the 
plant genome, which is later on removed by backcrossing 
and selection of transgene(s) free events. However, removal 
of these plasmid-derived DNA sequences through breeding 
is not feasible for several cultivars of banana particularly 
the triploids which are sterile; hence, the mutated plants will 
be considered as GM. Furthermore, transgenes Cas9 and the 
selectable marker along with gRNA from the CRISPR/Cas9 
plasmid will integrate into the plant genome, which might 
lead to chimeric mutations owing to the continuous action 
of editing machinery, gene disruptions, and off-target muta-
tions. These transgenes can even integrate into the targeted 
sites and decrease the gene editing efficiency. To tackle 
these concerns, considerable attempts have been made to 
deliver preassembled Cas9 protein-gRNA ribonucleopro-
teins (RNPs) directly into plant cells (Liang et al., 2017; 
Malnoy et al., 2016; Svitashev, Schwartz, Lenderts, Young, 
& Mark Cigan, 2016; Woo et al., 2015). These RNPs di-
rectly edit the target sites immediately after delivery and 
then are rapidly degraded by endogenous proteases in cells, 
thus reducing off-target effects and leaving no traces of for-
eign DNA elements (Kanchiswamy, Malnoy, Velasco, Kim, 
& Viola, 2017; Woo et al., 2015). The RNPs can be directly 
delivered into plant cells by particle bombardment, elec-
troporation, cell-penetrating peptides, mesoporous silica 

nanoparticles, or through polyethylene glycol (PEG) into 
protoplast.

In banana, preassembled RNPs targeting different traits 
(abiotic and biotic stresses) for adaptation to different climatic 
conditions could be coated on the gold particles and delivered 
to embryogenic cells of banana by particle bombardment or 
can be delivered to protoplasts through PEG (Figure 2). The 
embryogenic cells or protoplasts can then be regenerated to 
full plants. The edited banana plants would withstand environ-
mental stress and bypass GM legislation, as the Cas9 protein-
guide RNA complexes will rapidly degrade in the regenerating 
cell cultures and regenerated plants will be transgene-free.

6  |   HOST PLANT RESISTANCE TO 
PATHOGENS AND PESTS

Changes in climate are predicted to have an impact on patho-
gen population, survival, life cycle, distribution, host speci-
ficity, and susceptibility of host plants (Elad & Pertot, 2014). 
The pathogens might become more aggressive resulting in 
an increase in disease incidences and severity on crops. As 
the effects of climate change will depend on pathosystems 
and geographical regions, it is necessary that effect of climate 
change on banana pathogens and their interaction with the 
host plant should be investigated. No information is available 
for banana pathosystems except for black Sigatoka disease. 
It has been reported that P. fijiensis could become more ag-
gressive with an increase in temperatures as the growth of the 
germination tube of spores accelerates with higher tempera-
ture (Calberto, Staver, & Siles, 2015). As extreme climate 
has effects on both banana and pathogens, it is predicted to 
change disease severity, its distribution, and the economic 
importance of particular diseases in a given location, and 
even the number of pathogens challenging banana planta-
tions in the same location. In this scenario, the current disease 
management system used by farmers for the banana cropping 
system might not be effective.

Climate change also affects pests and their interaction with 
host plants (Castex, Beniston, Calanca, Fleury, & Moreau, 
2018). Warmer temperature could lead to an increase in pest 
population and change their distributions (Stange & Ayres, 
2010). Therefore, there is urgent need to develop improved 
varieties with broad spectrum and durable resistance to vari-
ous diseases and pests. Modern plant biotechnology provides 
new tools for the development of disease and pest-resistant 
transgenic banana plants through either overexpression of 
genes associated with defense or the editing of genes respon-
sible for susceptibility or the negative regulator of the defense 
pathway. Table 1 lists some of the advances made in develop-
ing banana varieties resistant to diseases and pests.

BXW is the biggest challenge for banana production in 
East and Central Africa (Blomme et al., 2014; Tripathi et al., 
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2009). The disease affects production of all types of banana 
including EAHB, plantains, dessert, and juice-producing va-
rieties (Ssekiwoko, Taligoola, & Tushemereirwe, 2006). The 
impacts of BXW are both severe and fast, unlike those of 
other diseases which gradually increase losses over years. The 
economic impact of BXW is because of the complete loss of 
yields and death of the mother plant that would otherwise 
contribute to the sucker plant production cycles (Tripathi 
et al., 2009). Overall, economic losses from BXW were es-
timated at US$ 2–8 billion over a decade, arising from price 
increases and significant reduction in production (Abele & 
Pillay, 2007).

The bacterial pathogen, Xcm, is mainly transmitted 
through insect vectors, infected planting material, and con-
taminated farming tools (Tripathi et al., 2009). Currently, 
the insect-mediated transmission is rare at higher altitudes 
(>1,600 masl) because of the lower insect population at low 
temperature, which is co-related with fewer incidents of 
BXW disease in those regions. With an increase in tempera-
ture, the insect population might also bloom in the regions 
of high altitude, causing greater impact of BXW disease on 
banana production.

There is no known source of resistance to BXW within 
the Musa except for wild-type diploid banana “Musa bal-
bisiana” (Ssekiwoko et al., 2006). Current control relies 
upon improved phytosanitary practices and cultural control 
measures to reduce losses and limit the spread of the dis-
ease. Recently, transgenic banana expressing hypersensitive 
response-assisting protein (Hrap) and plant ferredoxin-like 
protein (Pflp) genes from sweet pepper (Capsicum annuum) 
was developed (Namukwaya et al., 2012; Tripathi et al., 
2010). These transgenic bananas demonstrated a high level of 
resistance to BXW disease under field conditions in Uganda 
(Tripathi, Tripathi et al., 2014). The Pflp and Hrap genes 
enhance the hypersensitive response (HR) upon pathogen 
attack and have shown to provide resistance to various bac-
terial pathogens such as Erwinia, Pseudomonas, Ralstonia, 
and Xanthomonas in plants including tobacco, tomato, broc-
coli, rice, orchids, and potato (Huang et al., 2004; Liau et al., 
2003; Tang et al., 2001). As single gene-based resistance can 
breakdown easily, transgenic bananas were also developed 
by pyramiding Hrap and Pflp genes (Muwonge, Tripathi, 
Kunert, & Tripathi, 2016). These transgenic plants need to be 
tested under different agroecological regions with different 
temperature gradients and relative humidity for trait durabil-
ity under climate change.

We have also tested additional resistance genes, which can 
be used for gene stacking or pyramiding strategies in order to 
develop enhanced and durable resistance against BXW dis-
ease. The constitutive expression of the rice pattern recog-
nition receptor (PRR), Xa21, in transgenic banana resulted 
in enhanced resistance to BXW disease (Tripathi, Lorenzen, 
Bahar, Ronald, & Tripathi, 2014).C
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Fusarium wilt is the most damaging fungal disease en-
dangering banana production globally (Jones, 2000; Ploetz, 
2015). It is responsible for severe infection, resulting in the 
complete wilting of plants and destruction of whole banana 
field. In 19th century, Fusarium oxysporum f. sp. cubense 
(Foc) race 1 wiped out “Gros Michel”, the most commonly 
grown commercial banana variety at that time (Ploetz, 2015). 
“Gros Michel” was replaced by “Cavendish Williams”, which 
is resistant to race 1. But now, the Foc tropical race 4 (TR4) is 
spreading fast and threatening the production of Cavendish as 
well as other varieties resistant to race 1 (Dale et al., 2017).

In the past, various transgenes have been used to develop 
genetically engineered banana and many conferred signifi-
cant levels of resistance to fungal pathogens. Transgenic ba-
nana with rice thaumatin-like protein (TLP) or PR-5 gene has 
shown significant resistance against Foc race 1 (Mahdavi, 
Sariah, & Maziah, 2012). Resistance against Foc race 1 has 
also been demonstrated in transgenic banana using either the 
anti-apoptosis-related gene or through RNAi silencing of 
vital genes of Foc (Ghag, Shekhawat, & Ganapathi, 2014; 
Magambo et al., 2016; Paul et al., 2011). Recently, overex-
pression of RGA2 or Ced9 gene in transgenic Cavendish ba-
nana showed significant resistance against Foc under field 
conditions in Australia (Dale et al., 2017).

Black Sigatoka is another important fungal disease af-
fecting banana production worldwide. Commercial grow-
ers apply fungicides to control the black Sigatoka infection, 
but smallholder farmers in Africa cannot afford to do this. 
Transgenic banana expressing rice chitinase or endochitinase 
gene (ThEn-42) from Trichoderma harzianum stacked with 
grape stilbene synthase (StSy) has shown resistance to this 
disease (Kovács et al., 2013; Vishnevetsky et al., 2011).

So far, no work has been published on the use of genome 
editing in banana for resistance to bacterial and fungal dis-
eases. However, some advances on other crops have been re-
ported for the development of different levels of immunity to 
biotic stresses using genome editing (Table 2). Susceptibility 
genes (S-genes) have been successfully edited to confer re-
sistance to pathogens. For example, simultaneous mutations 
in three homeoalleles of mildew resistance locus O (MLO), 
TaMLO-A1, TaMLO-B1, and TaMLO-D1, in bread wheat by 
TALEN and CRISPR/Cas9 technologies, were shown to con-
fer resistance to powdery mildew disease (Wang et al., 2014). 
Similarly, mutations in SlMLO1 gene in tomato and TaEDR1 
in wheat enhanced resistance to powdery mildew disease 
(Nekrasov et al., 2017; Zhang et al., 2017). Mutation of the 
susceptibility gene for citrus canker, LATERAL ORGAN 
BOUNDARIES (CsLOB1), and promoter of CsLOB1 by 
CRISPR/Cas9 conferred high degree of resistance against 
citrus canker caused by Xanthomonas citri subsp. citri (Jia 
et al., 2017; Peng et al., 2017). Downy mildew resistance 6 
(DMR6), which belongs to the superfamily of 2-oxoglutarate 
Fe (II), is specifically upregulated during pathogen infections. 

Mutation of tomato DMR6 (SlDMR6-1) gene by CRISPR/
Cas9 produced plants, which showed disease resistance 
against different pathogens, including Pseudomonas syrin-
gae, Phytophthora capsici, and Xanthomonas spp. (de Toledo 
Thomazella, Brail, Dahlbeck, & Staskawicz, 2016).

Genes in the metabolic pathway that regulate hormonal 
balance, sugar transport, and stomata opening have also been 
edited to confer plant immunity. Ethylene-responsive factor 
(ERF) in the ethylene pathway belongs to the transcription 
factor family APETALA2/ERF. ERF regulates molecular 
response to pathogen attack by binding to sequences con-
taining AGCCGCC motifs (the GCC box), a cis-acting el-
ement. Using CRISPR/Cas9, the rice ethylene-responsive 
(OsERF922) gene was edited and the resulting plants con-
ferred increased resistance to Magnaporthe oryzae (Wang 
et al., 2016). The disruption of the gene involved in sugar 
transport, OsSWEET14, through mutation in the promoter 
conferred enhanced resistance to bacterial blight disease in 
rice (Li, Liu, Spalding, Weeks, & Yang, 2012). Similarly, 
rice mutants generated using CRISPR/Cas9 tool to knock-
out OsSWEET13 in rice showed enhanced resistance against 
Xanthomonas oryzae pv. oryzae, causing bacterial blight 
(Zhou et al., 2015). Tomato with regulated opening of sto-
mata through the editing of SlJAZ2 showed resistance against 
Pseudomonas syringae pv. tomato (Pto) causing bacterial 
speck disease (Ortigosa, Gimenez-Ibanez, Leonhardt, & 
Solano, 2019).

Genome editing of transcription factors such as MYB and 
WRKY showed protection against pathogens. Cotton plants 
with mutations in GhMYB25 and Gh14-3-3d genes showed 
resistance to the fungal disease Verticillium wilt (Li, Unver, 
& Zhang, 2017; Zhang et al., 2018). Similarly, genome-
edited grapevine with mutations in the VvWRKY52 tran-
scription factor demonstrated enhanced resistance to Botrytis 
cinerea (Wang et al., 2018). Recently, disease resistance to 
Phytophthora tropicalis has been demonstrated in cacao 
through CRISPR/Cas9 based editing of the nonexpressor 
of pathogenesis-related 3 (NPR3) gene, a suppressor of the 
immune system (Fister, Landherr, Maximova, & Guiltinan, 
2018).

Banana genomes can be edited in a way similar to other 
crops in a targeted manner to produce new varieties with in-
creased tolerance to biotic stress. Similar strategies of edit-
ing the susceptible genes such as MLO and DMR6 or their 
promoters can be applied in banana for developing resistance 
to bacterial and fungal diseases. Also, other components of 
immunity pathways such as pathogen recognition receptors, 
sugar transporters such as SWEET gene family, or transcrip-
tion factors such as ERF, WRKY, and MYB genes can be 
mutated in banana to enhance resistance against bacterial and 
fungal pathogens.

Banana bunchy top disease (BBTD) is another major bi-
otic stress globally widespread (Stainton et al., 2015). BBTV 
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is transmitted by aphids (Pentalonia nigronervosa), and 
aphids have been reported to spread virus much more effi-
ciently at higher temperature (Anhalt & Almeida, 2008). 
Resistance against BBTV has been developed in banana 
using RNAi to silence the essential viral genes (Elayabalan 
et al., 2013; Shekhawat, Ganapathi, & Hadapad, 2012). RNAi 
does not lead every time to the complete silencing of genes; 
hence, CRISPR/Cas9 can be used to knockout the target 
genes. Genome editing, specifically CRISPR/Cas9, has been 
applied to introduce resistance to geminivirus, circular single-
stranded DNA (ssDNA) viruses that replicate within the 
nuclei of plant cells, causing serious damage to many dicoty-
ledonous crop. This system has been applied to develop resis-
tance to tomato yellow leaf curl virus (TYLCV) in Nicotiana 
benthamiana (Ali et al., 2015), and beet severe curly top 
virus in Arabidopsis thaliana and N. benthamiana (Ji, Zhang, 
Zhang, Wang, & Gao, 2015). The eukaryotic translation ini-
tiation factor (eIF) gene family, including eIF4E and its pa-
ralogue eIF(iso)4E, which have been identified as recessive 
resistance alleles against various potyviruses, has also been 
edited to confer resistance to several viruses. CRISPR/Cas9 
genome editing of eIF(iso)4E gene in cucumber showed re-
sistance to cucumber vein yellowing virus (CVYV), zucchini 
yellow mosaic virus (ZYMV), and papaya ringspot virus-type 
W (PRSV-W) (Chandrasekaran et al., 2016). Using a similar 
approach, Pyott, Sheehan, and Molnar (2016) showed that 
mutation of eIF(iso)4E locus in Arabidopsis successfully en-
gineered complete resistance to turnip mosaic virus (TuMV). 
The editing of eIF gene family in banana can provide resis-
tance to BBTV, which is an ssDNA babuvirus.

CRISPR/Cas9 technology was also applied in plants for 
developing resistance to single-stranded RNA (ssRNA) vi-
ruses such as rice tungro spherical virus and cassava brown 
streak virus. Disease resistance has been developed against 
rice tungro spherical virus by editing of eIF4G alleles in rice 
plants (Macovei et al., 2018). Recently, it has been reported 
that cassava plants with editing of eIF4E isoforms nCBP‐1 
and nCBP‐2 demonstrated a reduction in symptom severity 
and incidence of cassava brown streak disease (Gomez et al., 
2019).

Banana streak virus is also one of the major constraints 
for banana production. It is dsDNA virus belonging to bad-
naviruses, which integrates in the host plant genome (Harper, 
Osuji, Heslop-Harrison, & Hull, 1999). Under the stress 
conditions such as temperature, drought, crossing, and mi-
cropropagation, the integrated viral sequences get activated 
and produce the infectious episomal form of BSV and plants 
develop symptoms. Climate change particularly extreme 
temperature and drought can make BSV worse in plantations. 
CRISPR/Cas9 system has been applied to knockout the in-
tegrated virus sequences from the host genome eliminating 
the chances of their activation to infectious viral particles 
(Tripathi et al., 2019).

Nematodes and weevils are serious pests of banana caus-
ing losses up to 40%–50% (Gold, Pena, & Karamura, 2001; 
Jones, 2009). Several nematode species such as Radopholus 
similis, Pratylenchus goodeyi, P. coffeae, Helicotylenchus 
multicinctus, and Meloidogyne spp. are present either alone 
or in combination in banana plantations (Coyne, Omowumi, 
Rotifa, & Afolami, 2013). Commercial farmers apply pesti-
cides to control nematodes, but this is environmentally unsafe 
and not affordable for smallholder farmers. Transgenic ba-
nana cultivar “Cavendish Williams” harboring rice cystatin 
showed resistance against R. similis under glasshouse condi-
tions (Atkinson, Grimwood, Johnston, & Green, 2004). Later, 
transgenic plantain cultivar “Gonja Manjaya” expressing an-
tifeedant cysteine proteinase inhibitor from maize and an an-
tiroot invasion peptide either singly or stacked demonstrated a 
high level of resistance against R. similis and H. multicinctus 
under glasshouse and field conditions (Roderick et al., 2012; 
Tripathi, Babirye et al., 2015). These transgenic plantains can 
also provide resistance to other species of nematodes for in-
stance P. goodeyi, P. coffeae, and Meloidogyne spp.

Cysteine proteinase inhibitors can also provide resistance 
to banana weevils (Cosmopolites sordidus). Kiggundu et al. 
(2010) have demonstrated the deleterious effect of cysteine 
proteinases from rice and papaya on banana weevils.

So far, there are no reports of the genome editing of crops 
for developing resistance to nematodes and weevils. Genome 
editing has been established in the free-living nematode, 
Caenorhabditis elegans, which will allow the identification 
of essential genes involved in the different physiological pro-
cesses of nematodes (Dickinson & Goldstein, 2016; Paix, 
Folkmann, & Seydoux, 2017).

Extreme temperature could affect plant–pathogen inter-
actions and disease resistance. It is reported that the resis-
tance (R) gene-mediated disease resistance against bacterial 
and viral pathogens has been reported to be suppressed by 
a rise in temperature (Wang, Bao, Zhu, & Hua, 2009). The 
banana and plantain varieties developed for diseases and pest 
resistance should be tested for durability of the traits under 
different temperatures and should be coupled with tolerance 
to abiotic stresses such as drought and high temperature.

7  |   DROUGHT AND 
TEMPERATURE TOLERANCE

The most serious abiotic stresses for banana production are 
drought and heat due to irregular rainfall and increase in 
temperature. Annual rainfall of 2,000–2,500 mm all year is 
necessary for banana growth. Van Asten et al. (2010) es-
timated yield losses of about 65% from drought stress in 
rain-fed banana production. The majority of the banana va-
rieties with AAA are susceptible to drought, but varieties 
with AAB or ABB genome constitution are drought-tolerant 
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(Vanhove, Vermaelen, Panis, & Swennen, 2012). The com-
parative transcriptome profile of drought-sensitive banana 
cultivar “Grand Naine” (AAA) and drought-tolerant ba-
nana cultivar “Saba” (ABB) under drought stress and con-
trol condition identified several differentially expressed 
genes associated with drought tolerance (Muthusamy, Uma, 
Backiyarani, Saraswathi, & Chandrasekar, 2016). This in-
formation can be used for developing drought-tolerant va-
rieties of banana.

Information available from other crop species can also be 
transferred to banana using genetic engineering. Drought-
tolerant maize was developed by expressing MAPK gene, 
which induces the oxidative signaling pathway (Shou, Bordallo, 
& Wang, 2004). Overexpression of WRKY transcription fac-
tor from rice (OsWRKY11) and barley (Hv-WRKY38) demon-
strated their role in conferring tolerance to drought and extreme 
temperatures (Mare et al., 2004; Wu, Shiroto, & Kishitani, 
2009). Similarly, co-expression of bZIP transcription factor 
(OsbZIP46CA1) along with protein kinase (SAPK6) involved 
in the ABA signaling pathway showed improved tolerance 
to heat and cold stresses in rice (Chang et al., 2017). Also, 
transgenic rice overexpressing C4 phosphoenolpyruvate car-
boxylase (PEC) photosynthesis enzymes conferred drought 
tolerance (Gu, Qiu, & Yang, 2013). Furthermore, Yu et al. 
(2017) have demonstrated that overexpression of poplar genes 
PtPYRL1 and PtPYRL5 enhances tolerance to drought and cold 
stresses by activating the ABA signaling pathway. The cap-
binding protein 80 (CBP80, also known as abscisic acid hy-
persensitive 1 gene) in A. thaliana has been reported to play an 
important role in drought tolerance. The inactivation of CBP80 
in A. thaliana resulted in ABA-hypersensitive stomatal closing 
and reduced wilting during drought (Hugouvieux, Kwak, & 
Schroeder, 2001; Kmieciak, Simpson, Lewandowska, Brown, 
& Jarmolowski, 2002). Loss of function of the Arabidopsis 
CBP20 resulted in hypersensitivity to ABA during germina-
tion and increased tolerance to water deficiency during drought 
stress (Papp, Mur, Dalmadi, Dulai, & Koncz, 2004). Later, 
silencing of CBP80 in potato showed enhanced tolerance to 
drought (Pieczynski et al., 2013).

Manipulating transcription factors or signaling path-
ways associated with abiotic stresses can generate drought-
tolerant varieties of banana. Genome editing can be a 
valuable weapon in generating abiotic stress tolerance in 
crops, although not so much has been done in this area. So 
far, the only work using CRISPR/Cas9 genome editing to 
confer abiotic stress tolerance was demonstrated in maize 
and wheat (Kim, Alptekin, & Budak, 2018; Shi et al., 
2017). The maize lines carrying ARGOS8 variants showed 
tolerance to drought and increased yield (Shi et al., 2017). 
Recently, wheat has been edited for abiotic stress toler-
ance using CRISPR/Cas9 system targeting dehydration-
responsive element-binding protein 2 (TaDREB2) and 
ethylene-responsive factor 3 (TaERF3) (Kim et al., 2018).

8  |   CONCLUSIONS AND 
PERSPECTIVES

Climate changes are predicted to have effects on banana 
production similar to those in other crops. Modern breeding 
tools especially genetic modification and genome editing can 
be used in complementation with conventional breeding for 
developing climate-smart varieties of banana. Availability of 
banana genome sequences and the robust genetic transfor-
mation system allows researchers to apply genetic modifi-
cation and genome editing for improvement of banana. In 
comparison with genetic modification using foreign genes, 
gene editing is more precise and cost-effective. Improved 
varieties developed through genetic modification require 
regulatory approval; however, gene-edited products having 
only a simple deletion, base pair swap, or insertion from re-
productively compatible relatives are not regulated in several 
countries. The ability to generate transgene-free gene-edited 
varieties provides new opportunities for crop improvement.

Genome editing can also be applied for functional genomics 
allowing identification of genes associated with climate-related 
agronomic traits, and these could be used for the improvement of 
banana in adaptation to the changing climate. As there are pre-
dictions that climate change, particularly a rise in temperature, 
will increase chances of the emergence of highly aggressive and 
invasive strains of pathogens and also bloom population of pests, 
the development of improved banana varieties is critical to deal 
with new strains of pathogens and increased populations of pests.

In order to broaden the availability of the gene pool for the 
improvement of banana, genes from wild-type progenitors of 
banana may need to be complemented with the use of novel 
transgenes from other species. Wild-type banana progenitor 
Musa balbisiana is known to have resistance to several dis-
eases such as BXW and black Sigatoka, but breeders do not 
use this in their breeding programs due to issue of integrated 
endogenous BSV sequences. With the availability of the ge-
nomic sequence of M. balbisiana, new breeding tools such as 
genome editing can use the information to improve cultivated 
banana for disease resistance.

Extreme weather might suppress the immunity of ba-
nana against pathogens; therefore, evaluation of the avail-
able disease-resistant varieties of banana under conditions 
of higher temperature is needed to identify sustainable resis-
tance allowing plants to cope with epidemics under elevated 
temperature. Improved banana varieties need to be developed 
which can resist combinations of abiotic–biotic stresses.
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