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Abstract: Plants are regularly exposed to biotic and abiotic stresses that adversely affect agricultural
production. Omics has gained momentum in the last two decades, fueled by statistical methodologies,
computational capabilities, mass spectrometry, nucleic-acid sequencing, and peptide-sequencing
platforms. Functional genomics—especially metabolomics, transcriptomics, and proteomics—have
contributed substantially to plant molecular responses to stress. Recent progress in reverse and
forward genetics approaches have mediated high-throughput techniques for identifying stress-
related genes. Furthermore, web-based genetic databases have mediated bioinformatics techniques
for detecting families of stress-tolerant genes. Gene ontology (GO) databases provide information on
the gene product’s functional features and help with the computational estimation of gene function.
Functional omics data from multiple platforms are useful for positional cloning. Stress-tolerant
plants have been engineered using stress response genes, regulatory networks, and pathways. The
genome-editing tool, CRISPR-Cas9, reveals the functional features of several parts of the plant
genome. Current developments in CRISPR, such as de novo meristem induction genome-engineering
in dicots and temperature-tolerant LbCas12a/CRISPR, enable greater DNA insertion precision. This
review discusses functional omics for molecular insight and CRISPR-Cas9-based validation of gene
function in crop plants. Omics and CRISPR-Cas9 are expected to garner knowledge on molecular
systems and gene function and stress-tolerant crop production.
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1. Introduction

Abiotic stresses, such as drought, salinity, temperature extremes, and climate change,
are major considerations for scientists. The development of high-yielding varieties exposed
to stress depends on direct selection for yield stability in multiple locations. Germplasm
development with tolerance to biotic and abiotic factors is important for sustainable crop
production [1,2]. The molecular term “omics” suggests a comprehensive assessment of
numerous molecules [3]. Omics approaches offer a holistic view of the molecules that make
up a cell or organism to identify genes (genomics), metabolites (metabolomics), mRNA
(transcriptomics), and proteins (proteomics) in a non-biased biological context. Globally,
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web-based databases are an important resource for plant genomics, specifically detecting
stress-reactive genes [4]. Functional genomics has helped to detect stress-related genes
in crops [5,6]. Accessibility to the whole genome sequence of numerous plant species
and recent developments in genomic approaches promise to deliver methods for locating
stress-responsive genes at the genome-wide level. For complex trait loci, genome-wide
association studies have identified stress-responsive genes and their favorable alleles.
The advancement of genetic databases has enabled bioinformatics tools to identify stress-
resistant gene families in various plant species using synteny and homology.

For targeted genome editing, three methods are currently available: transcription-
activator-like effector nucleases (TALEN), clustered regularly interspaced short palindromic
repeats (CRISPR), and zinc finger nuclease (ZFN). In cells, CRISPR-Cas9 is a cheap, easy,
fast, and effective system for gene knockout [7]. For effective genome engineering, CRISPR-
Cas9 has been used in animals, plants, and bacteria [8–11]. Furthermore, CRISPR-Cas9
has been used for high-throughput screening of genes, gene knockout, chromosomal
loci live-cell labeling, endogenous gene expression, and single-stranded RNA (ssRNA)
edition. The application of CRISPR-Cas9 for studying the function of a gene has generated
disease models. However, several queries and challenges need to be addressed. CRISPR-
Cas9 will likely enhance our comprehension of disease activity and its management. For
targeted genome engineering, detecting programmable nucleases that produce cuts in
double-strands has radically changed molecular biology; ZFNs pioneered this success, with
TALEN extending the genome modifying capacity [12]. Globally, CRISPR-Cas9 received
recognition from researchers for its visible benefits over TALEN and ZFN [13], being its
(1) ease of designing target, (2) ability to create mutations by inserting the guided RNA
and Cas9 protein, and (3) multiplexing ability to target several genes at one time [14,15].
Omics and CRISPR-Cas9 technology are poised to identify stress tolerance genes, molecular
insight, and genome engineering to generate stress tolerance in crops. Developing and
improving modern technologies to modify plant genomes and accumulate sufficiently
large volumes of experimental molecular biological data will help create new schemes and
approaches to improve economically valuable traits in plants and develop new varieties of
important crops.

2. Multi-Omics Technology
2.1. Genomics

In plants, functional genomics has identified several genes that control abiotic and
biotic stress reactions [16,17]. Some genes have been engineered to develop stress (biotic
and abiotic) resistance in crop plants [18–22]. Numerous new candidate genes have been
discovered from wild crop relative genomics for stress (abiotic and biotic) tolerance in
crops [2,23]. For example, a high-density buckwheat complete genome sequencing genomic
map, Hi-C online accessible sequencing data, and fosmid DNA libraries [17]. The authors
also detected whole-genome duplication, identified numerous candidate genes for drought,
cold stress, and heavy metal stress resistance, and predicted nearly 33,500 genes. Another
study identified 33 transcription factors (TFs) of the tea plant using the transcriptomic
and genomic database (http://planttfdb.cbi.pku.edu.cn/), which were classified into four
groups (HD-Zip I to IV) after analyzing common motifs and domains [24]. A protein
interaction was found. The results highlighted the diverse expression of Cshdz genes to
salinity, drought, high and low temperature, and the association between Cshdz genes
and resistant plants. In Solanum americanum, integrated RenSeq and genetic mapping
were used to locate the genetic locus that confers resistance against late blight [25]. In
wheat, MutRenSeq, a new version of RenSeq, was used to isolate R genes that confer
resistance against stem rust [26]. Genome-wide analysis with ChIP-seq identified 21 ABA-
associated TFs and their broad regulatory network [27]. Furthermore, a novel family of
TFs was identified in Arabidopsis that was functionally involved in salt reactions and ABA.
Genotyping by sequencing (GBS) is a newly discovered genomics technology for inspecting
plant genetic diversity at a whole-genome level. An F2 population of Brassica olearacea was
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used to develop a high-density genetic map covering 879.9 cM, genotyped by 4103 single
nucleotide polymorphisms (SNPs) [28]. The authors detected two major quantitative
trait loci (QTLs) that confer resistance against clubroot resistance. The integration of
high-throughput phenotyping and functional genomics delivers new approaches for crop
improvement systems.

2.2. Transcriptomics

RNA profiling—realized recently using microarrays, gene expression, digital profil-
ing, RNA sequencing, and serial analysis of gene expression [29]—can identify multiple
stress resistance-related candidate genes, inferring relevant gene functions. The avail-
able online databases provide whole genome-wide transcriptomics data for plant stress
reactions [30,31]. In Arabidopsis, transcriptomic analysis under drought and heat stress
identified nearly 770 unchanged transcripts with 53 dissimilar specific proteins [32]. These
findings were confirmed in sunflower [33]. Furthermore, combined heat and drought
upregulated stress cytosolic ascorbate peroxidase1 (APX1) [34]. In chickpea, serial analysis
of gene expression (SAGE) and next-generation sequencing (NGS) approaches were used
to analyze the total transcriptome of drought- and salt-stressed plants [33,34]. Similarly,
the subtractive cDNA suppression hybridization method was used in stressed chickpea
plants [35]. A comparative microarray approach provided information on functional genes
and pathways crosstalk in multiple stress transcriptomic studies in cotton [36]. In maize,
RNA sequencing was performed to understand the adverse effects of cold, drought, salt
stress, and heat stress [37]. Li et al. documented differentially expressed genes associated
with signaling pathways, transcription, and metabolism [38]. RNA gel blot and microarray
combined approaches verified that DREB2A, a transcription factor, controls the expression
level of drought and cold stress genes [38]. Serial analysis of gene expression (SAGE) has
been used extensively in plants to study gene-related responses against stresses. For exam-
ple, in rice, from 5921 expressed genes, almost 10,122 tags were analyzed. Of 50,519 tags
by global gene expression, 15,131 tags were similar to distinctive transcripts [39]. The
integration of RNA-seq and bulked segregant analysis, called BSR-seq, has the power to
enhance stress resistance in plants. For instance, Bra019409 and Bra019410 were possible
candidate genes for clubroot resistance in Brassica rapa [40,41]. RNA-seq-mediated gene
expression analysis could accelerate plant breeding by garnering knowledge on host-P
interactions and identifying stress-related genes.

2.3. Proteomics

The qualitative and quantitative study of total proteins expressed in a cell, tissue,
or organism is known as proteomics [42]. In the context of plant stress tolerance, entire
proteomes are studied; however, numerous studies have investigated the cell wall pro-
teome, organellar proteome, proteogenome, nuclear proteome, and phosphoproteome [43].
Several forms of mass spectrometry were used recently to profile the proteome in response
to abiotic stresses [42,44,45]. Mass spectrometry for proteomics provides extensive pro-
teome information when used in plant stress reactions and genome-wide studies. Proteome
profiles can be compared to identify the function of particular proteins in biotic- and
abiotic-induced stress signaling and differentially expressed stress-resistant proteins. Fur-
thermore, phosphorylation group proteins play an important role in abiotic stresses [42,46].
A study on a proteome matrix in water-stressed rice identified signaling proteins and reac-
tive oxygen species [47]. Various studies have used proteomics to highlight heavy metal
stress in Brassica juncea [48], Glycine max [49], Linum usitatissimum [50], and Arabidopsis
thaliana [51]. Heidarvand and Maali-Amiri (2013) comprehensively studied the proteomic
profile of chickpea exposed to cold stress [52]. The phosphoproteome of wheat leaves
has also been studied [53]. Several isoforms of S-adenosylmethionine in soybean under
flooding and drought have been identified [54]. In tomato, signaling nuclear proteins
with crosstalk chloroplast proteins were reported in drought-stressed plants [55]. Another
study used tandem MS and two-dimensional gel electrophoresis (2-DE) approaches in
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waterlogged barley regimes to reveal the proteome profile [43]. The authors noted that
sensitive barley genotypes had reduced photosynthetic performance and total biomass.
Differentially expressed proteins in roots and leaves were associated with antioxidants and
energy metabolism [43]. In Eriobotrya japonica, RNA-seq with isobaric tags relative absolute
quantification (iTRAQ) was used to understand the cold tolerance mechanism [56]. The
results revealed 1210 differentially expressed genes (DEGs) and 300 differentially expressed
proteins (DEPs); of 3620 genes, only 27 shared both DEPs and DEGs. Kyoto encyclopedia of
genes and genomes (KEGG) analysis predicted that biosynthesis of secondary metabolites
and metabolic pathways were common. Real-time quantitative reverse transcription poly-
merase chain reaction (qRT-PCR) validation showed that gene expression of phenylalanine
ammonia-lyase, anthocyanin synthase, and NADP-D-sorbitol-6-phosphate dehydrogenase
was consistent with the transcriptome profile. Lou et al. suggested that these three genes
play an important role in cold tolerance. Proteomics is a new technology for identifying
proteins and pathways linked to the plant stress response and plant physiology. Moreover,
proteomics enhances the understanding of stress-related proteins applied to molecular
biology for crop improvement.

2.4. Metabolomics

Metabolomics is a high-throughput assessment of all metabolites in an organism.
For exogenous and endogenous metabolites, scientists use non-targeted and targeted
techniques [57]. Metabolites—including organic acids, peptides, secondary metabolites,
steroids, hormones, ketones, vitamins, aldehydes, amino acids, and lipids—generate
extensive data compared to transcriptomics and proteomics [58]. Advances in liquid
chromatography–mass spectrometry (LC-MS), gas chromatography–mass spectrometry
(GC-MS), direct injection mass spectrometry (DIMS), nuclear magnetic resonance (NMR),
and high-performance liquid chromatography (HPLC) with other metabolomic approaches
have further clarified stress tolerance processes and metabolite profiling [59]. There are
almost 250,000 metabolites in plants; the concentration and total number are considerably
higher in stressed than non-stressed environments [60]. The detection of valid metabolomic
markers will enhance stress tolerance in plants [59,61]. Numerous researchers have doc-
umented metabolic profiles under stress environments in plants [62–65]. For example,
drought-stressed Arabidopsis thaliana accumulated various metabolites containing proline,
gamma-aminobutyrate (GABA), raffinose oligosaccharides, and others in the tricarboxylic
acid cycle. Furthermore, activation of stress metabolic pathways and transcriptional reg-
ulation was dependent on abscisic acid (ABA) [66]. The superoxide dismutase gene was
engineered into Populus plants, and data processing generated information on reactive
oxygen species (ROS) metabolism [67]. Feng et al. (2013) reported a reduction in glycolysis-
related sugar levels in salt-stressed barley leaves [68]. Shen et al. (2016) studied drought
stress in chickpea varieties, which increased branched-chain amino acids and allantoin
and decreased glucosamine, aspartic acid, and aromatic amino acids [8]. In Arabidopsis,
transcription factor genes, Myb28 and Myb29, particularly for aliphatic GSL production and
biosynthetic gene expression, unknown genes, and regulatory networks were estimated by
integrating metabolic profiling and transcriptome data [69]. Furthermore, overexpression
of these TFs in Arabidopsis produced industrial GSLs. Functional genomics, metabolomics,
transcriptomics, and proteomics open a new direction for decoding secondary metabolism.
We suggest that omics approaches from multiple platforms could provide molecular insight
and enhance stress resistance through plant breeding. Table 1 summarizes some available
databases and their URLs.
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Table 1. Accessible genome level databases.

Name Species Database Resource URL

TAIR Mainly for Arabidopsis
thaliana Whole genome http://www.arabidopsis.org

1001genomes Arabidopsis thaliana Whole genome http://www.1001genomes.org
Phytozome Numerous Whole genome http://www.phytozome.net

NCBI Numerous Whole genome http://www.ncbi.nlm.nih.gov
Cottongen Gossypium spp. Whole genome and breeding http://www.cottongen.org

Soybean breeders
toolbox Glycine max Whole genome http://www.soybase.org

MaizeGDB Zea mays Whole genome http://www.maizegdb.org
RAP-DB Oryza sativa Whole genome http://rapdb.dna.affrc.go.jp

PlantGDB Numerous Whole genome http://www.plantgdb.org
IWGSC Triticum aestivum Whole genome http://www.wheatgenome.org

Gramene Numerous Whole genome http://www.gramene.org
Ensemblplants Numerous Whole genome http://plants.ensembl.org

KEGG Numerous Whole genome http://www.genome.jp/kegg/
genome/plant.html

Graingenes Numerous Whole genome http://wheat.pw.usda.gov/GG2
/index.shtm

PMN Numerous Metabolomics http://www.plantcyc.org

CSB.DB Arabidopsis thaliana Metabolomics http://csbdb.mpimp-golm.mpg.de/
csbdb/gmd/gmd.html

PRIMe Arabidopsis thaliana Metabolomics http://prime.psc.riken.jp/lcms/ms2
tview/ms2tview.html

AFGN Arabidopsis thaliana Gene expression https://www.deutsche-botanische-
gesellschaft.de/en/about-us/afgn

OryzaExpress Oryza sativa Gene expression http://plantomics.mind.meiji.ac.jp/
OryzaExpress/

RGAP Oryza spp. Gene expression http://rice.plantbiology.msu.edu
CottonFGD Gossypium spp. Gene expression http://www.cottonfgd.org

Genevestigator Numerous Gene expression http://genevestigator.com

TriFLDB Triticum aestivum Gene expression https://bigd.big.ac.cn/
databasecommons/database/id/3452

BAR Numerous Gene expression http://bar.utoronto.ca/welcome.htm
NOBLE Medicago truncatula Gene expression http://mtgea.noble.org/v2
Uniprot Numerous Proteomics http://www.uniprot.org/proteomes/

RICE PROTEOME Oryza sativa Proteomics http://gene64.dna.affrc.go.jp/RPD
Proteomics database Arabidopsis thaliana Proteomics http://proteomics.arabidopsis.info

SUBA Arabidopsis thaliana Proteomics http://www.suba.bcs.uwa.edu.au/
AGRIS Arabidopsis thaliana Transcription factor http://arabidopsis.med.ohio-state.edu

PlantTFDB Numerous Transcription factor http://planttfdb.gao-lab.org/

LegumeTFDB Lotus japonicas, Medicago
truncatula, Glycine max Transcription factor http://legumetfdb.psc.riken.jp

Grassius Zea mays, Oryza sativa,
Sorghum bicolor Transcription factor http://grassius.org/

TRIM Oryza sativa Mutants http://trim.sinica.edu.tw
RMD Oryza spp. Mutants http://rmd.ncpgr.cn/
ABRC Arabidopsis thaliana Mutants http://abrc.osu.edu
NASC Arabidopsis thaliana Mutants http://arabidopsis.org.uk/home.html

Fox Hunting Numerous Mutants http:
//nazunafox.psc.database.riken.jp

SIGnAL Arabidopsis thaliana Mutants http://signal.salk.edu

3. CRISPR Technology

Due to its robust success, CRISPR-Cas9 is becoming a potential tool for genetically
enhancing desirable crop traits, i.e., disease resistance, nutrient content, adaptation to
multiple stresses, plant architecture, and yield. In some cases, a specific trait can be
improved by negative regulatory gene knockout. Rice grain weight improved with gene
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modification of some QTL [70]. Maize grain yield under drought increased with genome
engineering of the ARGOS8 locus [71]. In woody plants, CRISPR-Cas9 produced mutants
in the first transgenic generation; this is significant as woody plant breeding is difficult
due to their long lifespan [72,73]. Another study knocked out the OsGAN1 gene in rice
and verified that it regulates root length and plant height [74]. Similarly, OsABCG26 gene
knockout verified that this gene regulates pollen exine and anther cuticle, and OsTCD10
had a substantial role in chloroplasts of cold-stressed rice [75,76]. Figure 1 summarizes the
principles of CRISPR-Cas9.
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3.1. CRISPR-Cas9 Genome Engineering to Biotic Stress Tolerance

Genome editing by CRISPR-Cas9 has been used effectively in several crops, including
cotton, maize, rice, and wheat. However, most genome engineering studies have targeted
biotic stresses, such as diseases. In wheat, the CRISPR-Cas9 method was used successfully
to knock out all three EDR1 homologs to create plants (Taedr1) with increased tolerance
to powdery mildew [77]. In Arabidopsis, the knockout of susceptible gene EDR1 increased
resistance to powdery mildew [78]. Recessive resistance genes, eIF (eukaryotic translation
initiation factor), have been detected in several dissimilar hosts, with eIF (iso) 4E and eIF4E
genes used with CRISPR-Cas9 to form virus-resistant plants in Arabidopsis and cucumber,
respectively [79,80]. CsLOB1 is a susceptible gene of the citrus canker (causative agent;
Xanthomonascitri); CRISPR-Cas9 was used to edit this gene to develop resistant grapefruit
plants [81,82]. Additionally, a negative resistance function MLO gene, responsible for
powdery mildew susceptibility, was mutated successfully by Cas9 knockouts to enhance
resistance against powdery mildew in tomato and wheat [83–85]. The application of
CRISPR-Cas9 as an antivirus tool cleaved beet severe curly top virus, which decreased
the viral infection [86,87]. The rice tungro spherical virus (RTSV), linked to the negatively
controlled susceptible eIF4G gene, was eliminated using CRISPR-Cas9 to develop resistant
rice varieties [88]. From CRISPR-Cas9, the loss of function VvWRKY52 gene produced
resistance against Botrytis cinerea in grape (Vitis vinifera) [89]. Furthermore, CRISPR-Cas9
has been used to interrupt multiple virus genomes, including CLCuK0V, TYLCSV, and
TYLCV [90]. For cucumber mosaic virus and tobacco mosaic virus, a technology to modify
RNA virus genomes has been advanced from sgRNA and FnCas9. Hence, molecular
immunity to RNA viruses was mediated by sgRNA/FnCas9 expression in Arabidopsis and
tobacco [91]. CRISPR-Cas9 successfully targeted OsERF922 against blast fungus resistance
in rice [92]. Plant ethylene-responsive factors (ERFs) can control tolerance against various
stresses because they are involved in the ethylene (cytokinin) pathway [93]. When taken



Int. J. Mol. Sci. 2021, 22, 1292 7 of 13

together, these reports deliver robust indications that CRISPR-Cas9 can enhance biotic
stress resistance in plants. Figure 2 summarizes omics and CRISPR-Cas9 strategies for
stress-tolerant crop production.
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3.2. CRISPR-Cas9 Genome Engineering to Abiotic Stress Tolerance

Abiotic stress tolerance mediated by various genes is a complex trait. There are
major interactions and crosstalk among components of metabolic, regulatory, and signaling
pathways [94,95]. CRISPR-Cas9-mediated genome editing can be used to modify almost
any sequence (depending on accessibility to the protospacer adjacent motif, PAM site) to
reveal its function in the genome. Molecular breeders have discovered numerous abiotic-
stress-resistant T genes and engineered them into crop plants. CRISPR-Cas9-generated
mitogen-activated protein kinases3 (slmapk3) gene mutants increased the defense response
to drought in tomato (Solanum lycopersicum) [96]. CRISPR-Cas9 was used to generate
mutants in rice to understand the mechanism of stress-ABA-activated protein kinase2 [97].
In Arabidopsis under cold stress, CRISPR-Cas9 was used to generate mutants (cbfs double
and triple mutants) to determine the role of C-repeat binding factors [98]. In maize, the
CRISPR-Cas9 approach was used to increase the expression level of the ARGOS8 gene
(negatively regulate ethylene response) to develop drought tolerance; the promoter of
ARGOS8 changed into GOS2. These mutants had enhanced grain yields under drought
conditions in the field [69]. Moreover, overexpressing TaCP and SPCP2 increased drought
tolerance in Arabidopsis [99–101]. Plants overexpressing the melatonin biosynthesis genes
were identified as abiotic stress-tolerant [102,103]. In hybrid rice, targeted editing of
the TMS5 gene led to the rapid formation of temperature-sensitive breeding lines [104].
Plant breeding activities may have reduced T gene alleles after selecting yield-related
genes during domestication programs [105]. Breeders have developed stress-tolerant
crops with gene function information [3]. The above examples show that CRISPR-Cas9
can modify/eliminate genes to mediate resistance against numerous abiotic stresses, e.g.,
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salinity, drought, extreme temperatures, heavy metals, and nutrient deficiencies [106,107]
(Table 2).

Table 2. CRISPR-Cas9 application for crop improvement.

Species Traits Target Genes Reference

Abiotic stresses
Rice Improved resistance to arsenic stress ARM1 [108]

Depletion of Cd into grain LCT1 [109]
Depletion of Cd into grain Nramp5 [107]

Drought tolerance SAPK2 [97]
Tomato Drought tolerance SIMAPK3 [96]
Maize Drought tolerance ARGOS8 [69]

Arabidopsis Cold tolerance CBF1 CBF2 [99]

Biotic stresses
Arabidopsis Resistance to turnip mosaic virus eIF (iso)4E [80]

Wheat Improved resistance to powdery mildew TaMLO [85]
Improved resistance to powdery mildew EDR1 [77]

Rice Increased resistance to blast fungus OsERF922 [92]
Increased resistance to tungro spherical virus eIF4G [88]

Barley Improved resistance to fungal pathogens MORC1 [110]
Orange Improved resistance to citrus canker CsLOB1 [111]
Tomato Improved resistance to powdery mildew Mlo1 [84]

Anthocyanin biosynthesis ANT1 [112]
Grape Improved resistance to Botrytis cinerea WRKY52 [89]

Cucumber Virus resistance eIF4E [79]

4. Conclusions and Perspectives

High-throughput verification of experimental platforms is required to reveal gene func-
tions in plants. Innovative efforts include plant phenotyping (http://www.lemnatec.com),
metabolomics, and enzyme assay (http://www.biolog.com) platforms [113]. However,
the prediction of gene function based on networks is an active research area but limited
in plant science. We need additional data, easy access to tools and data, improved data
analysis, and high-throughput verification from experiments to achieve a network-based
gene function identification goal. Omics technologies, databases, and bioinformatics tools
primarily provide information on candidate genes, biosynthetic pathways, proteins, master
regulators, biological networks, and cross talk, especially on the plant stress response.

The CRISPR-Cas9-mediated genome editing system has fundamentally influenced
gene function research and, ultimately, crop improvement [114,115]. The plant genome
engineering approach has no ethical issues. CRISPR-Cas9 mutants are generated with
greater efficiency and specificity than TALEN and ZFN. Hence, the CRISPR-Cas9-mediated
genome editing system has great potential for practical research. Various CRISPR-Cas9
platforms have been developed for plant genome engineering but require advanced targets
for specificity and efficiency.

Moreover, gene replacement and DNA part knock-in is a challenge [116]. Cas9 vari-
ants, gene repression, and activation domains can control target gene expression [117].
Hence, this system could be used to develop climate-resilient crops.

A toolbox based on CRISPR-Cas9 has been established for gene repression and activa-
tion in plants [118]. CRISPR-Cas9 could be adapted for new approaches, e.g., epigenomic
regulation, chromatin imaging, and RNA cleavage [40,41,119]. Given its versatility, sim-
plicity, efficiency, and flexibility, the future of functional genomics is likely to depend on
the CRISPR-Cas9 system. Omics and CRISPR have provided a snapshot for improving
an organism’s functioning and interactions at the cell and tissue level by depicting and
measuring biomolecules.
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Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus.
Plant Biotechnol. J. 2018, 16, 1918. [CrossRef]

89. Wang, X.; Tu, M.; Wang, D.; Liu, J.; Li, Y.; Li, Z.; Wang, Y.; Wang, X. CRISPR/Cas9-mediated efficient targeted mutagenesis in
grape in the first generation. Plant Biotechnol. J. 2018, 16, 844. [CrossRef]

90. Zaidi, S.S.-E.-A.; Tashkandi, M.; Mansoor, S.; Mahfouz, M.M. Engineering plant immunity: Using CRISPR/Cas9 to generate virus
resistance. Front. Plant Sci. 2016, 7, 1673. [CrossRef]

91. Zhang, T.; Zheng, Q.; Yi, X.; An, H.; Zhao, Y.; Ma, S.; Zhou, G. Establishing RNA virus resistance in plants by harnessing CRISPR
immune system. Plant Biotechnol. J. 2018, 16, 1415. [CrossRef]

92. Wang, F.; Wang, C.; Liu, P.; Lei, C.; Hao, W.; Gao, Y.; Liu, Y.-G.; Zhao, K. Enhanced rice blast resistance by CRISPR/Cas9-targeted
mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE 2016, 11, e0154027. [CrossRef] [PubMed]

93. Jung, J.; Won, S.Y.; Suh, S.C.; Kim, H.; Wing, R.; Jeong, Y.; Hwang, I.; Kim, M. The barley ERF-type transcription factor HvRAF
confers enhanced pathogen resistance and salt tolerance in Arabidopsis. Planta 2007, 225, 575. [CrossRef] [PubMed]

94. Garg, R.; Verma, M.; Agrawal, S.; Shankar, R.; Majee, M.; Jain, M. Deep transcriptome sequencing of wild halophyte rice, Porteresia
coarctata, provides novel insights into the salinity and submergence tolerance factors. DNA Res. 2014, 21, 69. [CrossRef] [PubMed]

95. Mickelbart, M.V.; Hasegawa, P.M.; Bailey-Serres, J. Genetic mechanisms of abiotic stress tolerance that translate to crop yield
stability. Nat. Rev. Genet. 2015, 16, 237. [CrossRef] [PubMed]

96. Wang, L.; Chen, L.; Li, R.; Zhao, R.; Yang, M.; Sheng, J.; Shen, L. Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3
mutagenesis in tomato plants. J. Agric. Food Chem. 2017, 65, 8674. [CrossRef]

97. Lou, D.; Wang, H.; Liang, G.; Yu, D. OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Front. Plant
Sci. 2017, 8, 993. [CrossRef]

98. Jia, Y.; Ding, Y.; Shi, Y.; Zhang, X.; Gong, Z.; Yang, S. The cbfs triple mutants reveal the essential functions of CBF s in cold
acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytol. 2016, 212, 345. [CrossRef]

99. Chen, H.-J.; Su, C.-T.; Lin, C.-H.; Huang, G.-J.; Lin, Y.-H. Expression of sweet potato cysteine protease SPCP2 altered developmental
characteristics and stress responses in transgenic Arabidopsis plants. J. Plant Physiol. 2010, 167, 838. [CrossRef]

100. Liu, H.; Hu, M.; Wang, Q.; Cheng, L.; Zhang, Z. Role of papain-like cysteine proteases in plant development. Front. Plant Sci.
2018, 9, 1717. [CrossRef]

101. Zang, Q.-W.; Wang, C.-X.; Li, X.-Y.; Guo, Z.-A.; Jing, R.-L.; Zhao, J.; Chang, X.-P. Isolation and characterization of a gene encoding
a polyethylene glycol-induced cysteine protease in common wheat. J. Biosci. 2010, 35, 379. [CrossRef]

102. Antoniou, C.; Chatzimichail, G.; Xenofontos, R.; Pavlou, J.J.; Panagiotou, E.; Christou, A.; Fotopoulos, V. Melatonin systemically
ameliorates drought stress-induced damage in Medicago sativa plants by modulating nitro-oxidative homeostasis and proline
metabolism. J. Pineal Res. 2017, 62, e12401. [CrossRef] [PubMed]

103. Byeon, Y.; Back, K. Low melatonin production by suppression of either serotonin N-acetyltransferase or N-acetylserotoninmethyltr-
ansferase in rice causes seedling growth retardation with yield penalty, abiotic stress susceptibility, and enhanced coleoptile
growth under anoxic conditions. J. Pineal Res. 2016, 60, 348. [PubMed]

104. Zhou, H.; He, M.; Li, J.; Chen, L.; Huang, Z.; Zheng, S.; Zhu, L.; Ni, E.; Jiang, D.; Zhao, B. Development of commercial thermo-
sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Sci. Rep.
2016, 6, 1–12. [CrossRef] [PubMed]

105. Rauf, S.; da Silva, J.T.; Khan, A.A.; Naveed, A. Consequences of plant breeding on genetic diversity. Int. J. Plant Breed. 2010, 4,
1–21.

http://doi.org/10.1073/pnas.98.1.373
http://doi.org/10.1111/mpp.12375
http://doi.org/10.1111/mpp.12417
http://doi.org/10.1073/pnas.1313271111
http://doi.org/10.1111/pbi.12677
http://www.ncbi.nlm.nih.gov/pubmed/27936512
http://doi.org/10.1111/j.1364-3703.2006.00362.x
http://www.ncbi.nlm.nih.gov/pubmed/20507473
http://doi.org/10.1038/s41598-017-00578-x
http://www.ncbi.nlm.nih.gov/pubmed/28352080
http://doi.org/10.1038/nbt.2969
http://doi.org/10.1186/s13059-015-0829-4
http://doi.org/10.1038/nplants.2015.144
http://doi.org/10.1111/pbi.12927
http://doi.org/10.1111/pbi.12832
http://doi.org/10.3389/fpls.2016.01673
http://doi.org/10.1111/pbi.12881
http://doi.org/10.1371/journal.pone.0154027
http://www.ncbi.nlm.nih.gov/pubmed/27116122
http://doi.org/10.1007/s00425-006-0373-2
http://www.ncbi.nlm.nih.gov/pubmed/16937017
http://doi.org/10.1093/dnares/dst042
http://www.ncbi.nlm.nih.gov/pubmed/24104396
http://doi.org/10.1038/nrg3901
http://www.ncbi.nlm.nih.gov/pubmed/25752530
http://doi.org/10.1021/acs.jafc.7b02745
http://doi.org/10.3389/fpls.2017.00993
http://doi.org/10.1111/nph.14088
http://doi.org/10.1016/j.jplph.2010.01.005
http://doi.org/10.3389/fpls.2018.01717
http://doi.org/10.1007/s12038-010-0043-1
http://doi.org/10.1111/jpi.12401
http://www.ncbi.nlm.nih.gov/pubmed/28226194
http://www.ncbi.nlm.nih.gov/pubmed/26919041
http://doi.org/10.1038/srep37395
http://www.ncbi.nlm.nih.gov/pubmed/27874087


Int. J. Mol. Sci. 2021, 22, 1292 13 of 13

106. Abdelrahman, M.; Al-Sadi, A.M.; Pour-Aboughadareh, A.; Burritt, D.J.; Tran, L.-S.P. Genome editing using CRISPR/Cas9–targeted
mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses. Plant Physiol. Biochem.
2018, 131, 31. [CrossRef]

107. Tang, L.; Mao, B.; Li, Y.; Lv, Q.; Zhang, L.; Chen, C.; He, H.; Wang, W.; Zeng, X.; Shao, Y. Knockout of OsNramp5 using the
CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci. Rep. 2017, 7. [CrossRef]

108. Wang, F.-Z.; Chen, M.-X.; Yu, L.-J.; Xie, L.-J.; Yuan, L.-B.; Qi, H.; Xiao, M.; Guo, W.; Chen, Z.; Yi, K. OsARM1, an R2R3 MYB
transcription factor, is involved in regulation of the response to arsenic stress in rice. Front. Plant Sci. 2017, 8, 1868. [CrossRef]

109. Lu, H.P.; Liu, S.M.; Xu, S.L.; Chen, W.Y.; Zhou, X.; Tan, Y.Y.; Huang, J.Z.; Shu, Q.Y. CRISPR-S: An active interference element for a
rapid and inexpensive selection of genome-edited, transgene-free rice plants. Plant Biotechnol. J. 2017, 15, 1371. [CrossRef]

110. Kumar, N.; Galli, M.; Ordon, J.; Stuttmann, J.; Kogel, K.H.; Imani, J. Further analysis of barley MORC 1 using a highly efficient
RNA-guided Cas9 gene-editing system. Plant Biotechnol. J. 2018, 16, 1892. [CrossRef]

111. Peng, A.; Chen, S.; Lei, T.; Xu, L.; He, Y.; Wu, L.; Yao, L.; Zou, X. Engineering canker-resistant plants through CRISPR/Cas9-
targeted editing of the susceptibility gene Cs LOB 1 promoter in citrus. Plant Biotechnol. J. 2017, 15, 1509. [CrossRef]
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