
REVIEW Open Access

VIGE: virus-induced genome editing for
improving abiotic and biotic stress traits in
plants
Irene N. Gentzel1*, Erik W. Ohlson2, Margaret G. Redinbaugh1 and Guo-Liang Wang1*

Abstract

Agricultural production is hampered by disease, pests, and environmental stresses. To minimize yield loss, it is
important to develop crop cultivars with resistance or tolerance to their respective biotic and abiotic constraints.
Transformation techniques are not optimized for many species and desirable cultivars may not be amenable to
genetic transformation, necessitating inferior cultivar usage and time-consuming introgression through
backcrossing to the preferred variety. Overcoming these limitations will greatly facilitate the development of
disease, insect, and abiotic stress tolerant crops. One such avenue for rapid crop improvement is the development
of viral systems to deliver CRISPR/Cas-based genome editing technology to plants to generate targeted beneficial
mutations. Viral delivery of genomic editing constructs can theoretically be applied to span the entire host range of
the virus utilized, circumventing the challenges associated with traditional transformation and breeding techniques.
Here we explore the types of viruses that have been optimized for CRISPR/Cas9 delivery, the phenotypic outcomes
achieved in recent studies, and discuss the future potential of this rapidly advancing technology.
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Introduction
Plant disease, insect, and abiotic stresses – worldwide
impacts
It is estimated that plant disease induces global yields
losses between 20 and 40% for rice, maize, wheat, potato,
and soybean, five of the most important crops worldwide
(Savary et al. 2019). Similarly, global total crop losses due
to insect pests are estimated at 18–20% (Sharma et al.
2017). Disease incidence is particularly devastating in
countries in which subsistence farms suffer from the com-
pounding effects of poor soil nutrient availability, extreme
weather variability, and lack of agricultural resources and
infrastructure. As one example, in sub-Saharan Africa, the
viral disease maize lethal necrosis (MLN) may cause 100%
maize yield loss and production losses nearing or

exceeding $300 million USD annually (Pratt et al. 2017;
Redinbaugh and Stewart 2018). Aside from disease, envir-
onmental stresses, such as drought, contribute to nearly
20% of crop losses worldwide and soil salinity reduces
yields to 20–50% of their potential (Leng and Hall 2019;
Shrivastava and Kumar 2015). Advances in crop improve-
ment through traditional breeding and/or genetic engin-
eering, paired with conservation practices are of great
importance for ensuring a viable agricultural future for na-
tions struggling to achieve global average yields (Shiferaw
et al. 2011; Varshney et al. 2021).
CRISPR/Cas9, or clustered regularly interspaced short

palindrome repeats/CRISPR-associated protein 9, is a
rapidly advancing genomic editing system that provides
some advantages over traditional breeding methods, in-
cluding expediated development time, increased location
specificity of the mutation, and the ease of design and
implementation of the system (Borrelli et al. 2018). The
Cas9 nuclease isolated from the human bacterial
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pathogen Streptococcus pyogenes is the most popular
form of Cas9 protein, and has been codon-optimized for
use in many plants including maize and soybean (El-
Mounadi et al. 2020; Le Rhun et al. 2019; Zhang et al.
2019). Alterations to plant genomes are generated by
targeting the Cas9 nuclease to specific sites in the DNA
via guide RNAs (gRNAs) (El-Mounadi et al. 2020). Upon
nucleotide cleavage by Cas9 to make double stranded
breaks, mutations are introduced by error-prone en-
dogenous DNA repair mechanisms. Repair by nonho-
mologous end joining can introduce base edits,
deletions, and gene insertions when donor template is
present (Chen et al. 2019; Zhang et al. 2019). High-
fidelity homology-directed repair results in gene inser-
tions or deletions based on precise homologous recom-
bination with donor template (Chen et al. 2019; Zhang
et al. 2019). Furthermore, multiplexing gRNAs into a
single construct allows multiple genes to be targeted
during one transformation event (Uranga et al. 2021a).
In addition to Cas9 editing, manipulation of gene ex-
pression can be accomplished by utilizing deactivated
Cas9 (dCas9) derivatives fused to transcriptional activa-
tors or repressors (Li et al. 2017; Lowder et al. 2015).
CRISPR/Cas9 constructs can be delivered to plants in

several ways, including protoplast electroporation, leaf
biolistic bombardment, or leaf infiltrations with Agro-
bacterium strains carrying the constructs (Varanda et al.
2021). The drawbacks of these methods include the cost
of specialized equipment for biolistics, expertise in gen-
erating and maintaining viable protoplasts, and difficulty
efficiently infiltrating certain species of plant leaves. As
an alternative to these traditional methods, new virus-
based tools have been developed to deliver CRISPR/Cas9
constructs to plants (Ariga et al. 2020; Varanda et al.
2021; Zhang et al. 2019). Much like other virus-based
technologies for protein expression or virus-induced-
gene-silencing (VIGS), viral delivery of CRISPR/Cas9
components can greatly enhance functional genomic
studies geared towards the development of improved
crop varieties, by circumventing the challenges of poor
transformation efficiency found among crop species
(Ariga et al. 2020; Wang et al. 2020). In this review, we
summarize the progress made towards engineering plant
viruses into CRISPR/Cas9 delivery constructs and their
potential for plant stress resistance research. While
many of the studies presented here show the utility of
plant viruses to mediate genome editing, we additionally
discuss the future development of these virus-induced
genome editing (VIGE) vectors to also transiently up- or
down-regulate target gene expression.

Advantages of viral delivery of CRISPR/Cas9 constructs
Plant viruses have contributed to plant genomic studies
for decades (Dommes et al. 2019; Wang et al. 2020). In

particular, they have been modified for virus-induced
gene silencing (VIGS) of plant genes, virus-mediated
overexpression (VOX) of heterologous proteins in
planta, and host-induced gene silencing (HIGS) of
trans-species genes (Dommes et al. 2019; Lee et al. 2012;
Nowara et al. 2010; Wang et al. 2020). The transient na-
ture of these three distinct molecular biology tools has
greatly facilitated plant gene function studies by obviat-
ing the need for the time-consuming process of produ-
cing transgenic plants (Lee et al. 2012). Additionally, the
development of these high-throughput tools has shed
light on the limitations and capacities of the viruses
themselves (Shi et al. 2021; Wang et al. 2020). Their
emerging role as VIGE vectors adds yet another function
to their repertoire for CRISPR/Cas9 mediated modifica-
tion of both model and non-model plants for gene func-
tion studies and crop improvement (Wang et al. 2020).
Overcoming problems with poor plant transformation

efficiency makes viral delivery of CRISPR/Cas9 con-
structs desirable by facilitating the use of plants with
preferred genetic backgrounds (Ariga et al. 2020). Unlike
biolistic methods of Cas9/gRNA construct delivery, vi-
ruses replicate in planta thereby continuing to increase
gRNA titer and thus promoting greater editing efficiency
(Hu et al. 2019a). If the infected plants express the Cas9
construct, backcrossing to wild type plants is necessary
to obtain filial generations of edited, transgene-free
plants (Li et al. 2021). This can be avoided if the
complete Cas9/gRNA complex is delivered by the virus
to wild type plants, as the plant genome will only con-
tain the CRISPR/Cas9-mediated edits (Ma et al. 2020).
This, provided that the virus is not transmitted through
seed, alleviates regulatory burdens commonly associated
with transgenic organisms.
There are, however, some important considerations

when developing viral vectors for this purpose: 1) virus
host range and tissue specificity or exclusion (e.g., epi-
dermal, vascular, meristematic tissues); 2) genomic cargo
carrying capacity of the virus; 3) mode and efficiency of
transmission (mechanical, insect, etc.), and 4) biosafety
and biocontainment of the engineered viruses. The host
range of a given virus tends to be restricted to either di-
cots or monocots, although some monocot viruses have
been successfully propagated in dicotyledonous species,
particularly Nicotiana benthamiana (Ellison et al. 2020).
Other viruses, such as tobacco rattle virus (TRV) or pea
early browning virus (PEBV) have broad host ranges that
make them good candidates for CRISPR/Cas9 delivery
tools (Ali et al. 2018). Tissue-specificity is another im-
portant consideration, as some viruses such as potato
leafroll virus (PLRV) are phloem-limited (Bendix and
Lewis 2018). Restriction of virus movement could nega-
tively impact the robustness of Cas9-mediated editing
and therefore any associated phenotypic outcomes as
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compared to viruses that spread systemically. Addition-
ally, most viruses are excluded from meristematic tissue,
necessitating further modification of the infectious clone
such as adding mobile elements to the gRNA sequence
(Ellison et al. 2020; Lei et al. 2021).
The size limits of foreign inserts are often dictated by

the physical structure of the virus. Typically, rod-shaped
viruses can incorporate more foreign genomic material
than small (ca. 30 nm) icosahedral viruses (Ariga et al.
2020; Xie et al. 2021). Sonchus yellow net rhabdovirus
(SYNV), a bullet-shaped or bacilliform virus, can stably
carry up to 5 kb of foreign sequence in its genome (Ma
et al. 2020; Peng et al. 2021; Wang et al. 2015). Trans-
mission electron microscopy of SYNV virions expressing
Cas9 in addition to a GFP gRNA revealed that the virion
length increased by about 35% while the width remained
similar to wild type SYNV (Ma et al. 2020). Similarly,
the rod-shaped beet necrotic yellow vein virus (BNYVV)
had an insert capacity of up to 2.6 kb (Jiang et al. 2019).
Viruses that tolerate a greater insert load are attractive
for studies requiring larger inserts, such as multiplexed
gRNAs, stacked VIGS sequences, or gene overexpression
(Jiang et al. 2019).
An important consideration for developing and utiliz-

ing viruses for Cas9/gRNA delivery is mode of transmis-
sion. Some viruses are easily transmissible to plants by
mechanical methods such as rub inoculation, while
others require direct injection via vascular puncture in-
oculation (VPI) or insect transmission (Gao et al. 2019;
Redinbaugh et al. 2001). As shown in Table 1, several in-
fectious clones across a range of virus genera have been
developed into CRISPR/Cas9 delivery vectors. Many of
these viruses, such as tobacco rattle virus (TRV), were
previously developed as VIGS or protein expression vec-
tors prior to their development for gRNA delivery (Ali
et al. 2015a; Liu et al. 2002; Torti et al. 2021). Interest-
ingly, some of these engineered viruses such as foxtail
mosaic virus (FoMV), potato virus X (PVX), and TRV,
do not have known natural vectors and can be transmit-
ted to plants via biolistics. This is advantageous from a
biosafety standpoint, as transmission to test plants in the
absence of an insect or bacterial vector provides a higher
level of biocontainment to reduce the likelihood of acci-
dental release into the environment (Brewer et al. 2018).
Seed transmission of engineered viruses is another bio-
safety issue, although many of the studies we describe in
this review determined that edited progeny plants were
virus-free (Brewer et al. 2018).

Available virus-mediated CRISPR/Cas9 plant genome
editing tools
As summarized in Table 1, numerous viruses have been
adapted for delivering the Cas9/gRNA components to
plants. Most of these VIGE systems were developed and

tested in N. benthamiana due to the ease of producing
viral inoculum via leaf agroinfiltrations. If the virus sys-
tem replicates sufficiently in N. benthamiana, infected
leaves can be harvested to generate inoculum for experi-
ments with other plants that are more difficult to infil-
trate. Additionally, stable transgenic Cas9-expressing N.
benthamiana lines facilitate testing efficiency of gRNAs
during development of the viral system. As one example,
Jiang et al. (2019) developed a BNYVV system for co-
expressing multiple proteins in sugar beet. To further
develop this virus for CRISPR/Cas9 editing capabilities,
experiments with this system delivering a gRNA target-
ing PDS in Cas9-overexpressing N. benthamiana re-
sulted in photobleaching of 78% of the inoculated plants.
This suggests that BNYVV may also be a useful genome
editing tool in sugar beet once Cas9-expressing plants
are available (Jiang et al. 2019).
For some crop plants, stable Cas9 transgenics are

available to directly study gene function after viral deliv-
ery of gRNAs. While these transgenic plants would re-
quire backcrossing to eliminate the Cas9 transgene prior
to agricultural use, they are very useful for testing the ef-
fectiveness of gRNAs or when the virus of interest has
restricted foreign insert capacity. Hu et al. (2019a) dem-
onstrated the gene editing capabilities of barley stripe
mosaic virus (BSMV) in N. benthamiana as well as
wheat and maize. Previously, BSMV had been developed
as a protein expression vector, demonstrated by a large
2 kb GFP fusion with an aluminum malate transporter
gene, TaALMT1, that improved aluminum toxicity toler-
ance in wheat (Cheuk and Houde 2018). After confirm-
ing successful editing by BSMV delivery of PDS gRNA
into N. benthamiana leaves co-infiltrated with Cas9 con-
structs, Hu et al. (2019a) tested the system with trans-
genic Cas9-expressing wheat and maize. In wheat,
gRNAs targeting the grain length and weight gene,
TaGASR7, had mutation efficiencies up to 78% as indi-
cated by restriction digest analysis of the target gene. This
study did not investigate the phenotypic effects of the
TaGASR7 mutations; however, which will likely be ad-
dressed in future studies. In maize plants, gRNAs targeting
thermosensitive genic male-sterile 5 (ZmTMS5) were de-
termined to have editing efficiencies up to 48% (Hu et al.
2019a). A subsequent study showed that multiple BSMV
constructs could be co-inoculated to simultaneously target
multiple genes in wheat without concern for superinfec-
tion inclusion, which is usually avoided by using a single
multiplex construct (Li et al. 2021).
To address concerns of low gRNA expression by viral

vectors, Cody et al. (2017) developed a modified tobacco
mosaic virus (TMV) vector lacking a coat protein to pre-
vent systemic movement through the plant and thus in-
crease local viral titer for transient expression assays.
When GFP gRNAs were co-infiltrated with Cas9, nearly
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Table 1 Infectious viral vectors for delivering CRISPR/Cas9 and/or gRNAs to plants for genomic editing

Genusa Virus Name Plant(s) Used Laboratory
Inoculation
Method(s)

Virus Insert Cargo Host Gene
Target(s)c and
editing
frequencyd

Mutations heritable? Reference

Begomovirus Cabbage
Leaf Curl
virus
(CaLCuV)

Cas9-
overexpressing N.
benthamiana

Agrobacteria
infiltration

Single gRNA NbIspH: 75%
NbPDS: 85%

Not determined (Yin et al.
2015)

Cotton leaf
crumple
virus (CLCrV)

Cas9-
overexpressing
Arabidopsis
thaliana

Agrobacteria
infiltration

Single
gRNA (+/− FT)

AtBRI1: 25–50%
AtGL2:18.8–
62.5%

Yes (4.4–8.8%) (Lei et al.
2021)

Benyvirus Beet
necrotic
yellow vein
virus
(BNYVV)

Cas9-
overexpressing N.
benthamiana

Agrobacteria
infiltration

Single gRNA NbPDS3: 85% Not determined (Jiang
et al.
2019)

Beta-Nucleo-
rhabdovirus

Sonchus
yellow net
rhabdovirus
(SYNV)

N. benthamiana
(WT or GFP-
expressing)

Agrobacteria
infiltration,
rub
inoculation

Cas9 and single or
multiplexed gRNAs

GFP: 77–91%
NbPDS: 40–
79%
NbRDR6: 53–
91%
NbSGS3: 79–
91%
Multiplexed
NbRDR6 +
NbSGS3: 60–
96%

90–100% via tissue
regeneration; indels
maintained in M1 and M2
generations after selfing

(Ma et al.
2020)

Cyto-
rhabdovirus

Barley
yellow
striate
mosaic virus
(BYSMV)

GFP-expressing N.
benthamiana

Agrobacteria
infiltration

Cas9 and single
gRNA

GFP:
demonstrated
by sequencing
but not
quantified

Not determined (Gao et al.
2019)

Hordeivirus Barley stripe
mosaic virus
(BSMV)

WT or GFP-
expressing N.
benthamiana; Cas9-
expressing wheat/
maize

Agrobacteria
infiltration,
rub
inoculation

Single or
multiplexed gRNAs

NbPDS: 19–
80%
Multiplexed
NbPDS + GFP:
10–12%
TaGASR7: 78%
ZmTMS5: 48%

Plants regenerated from N.
benth tissue exhibited
mutations; not determined for
wheat and maize

(Hu et al.
2019a)

N. benthamiana;
Cas9-expressing
wheat

Agrobacteria
infiltration;
rub
inoculation

Single gRNA (+/−
FT)

TaPDS: 3.8–
96.1%
TaGW2: > 75%
TaGASR7: >
70%

Yes: 46–69% in M1,
transmitted to M2

(Li et al.
2021)

Mastrevirus Bean yellow
dwarf virus
(BeYDV)b

Tomato Agrobacteria
infiltration

Cas9 and single
gRNA

SlCRTISO:
90.4%
SlPSY1: 56.4%
Gene
replacement:
25%

Gene replacement: Progeny of
T0 plants segregated for red vs
orange fruit color.

(Dahan-
Meir et al.
2018)

Potexvirus Potato virus
X (PVX)

N. benthamiana Agrobacteria
infiltration;
rub
inoculation

Cas9 and gRNA NbTOM1 62% plants regenerated from
infected tissue had NbTOM1
edits.

(Ariga
et al.
2020)

Cas9-expressing N.
benthamiana

Agrobacteria
infiltration

Single/multiplexed
gRNAs +/− tRNA
spacers, mobile FT

NbXT2B: 37–
85%
NbPDS: 25–
73%
NbFT: 52%

46–95% for regenerated plants
from infected tissue; germline
transmissible with mobile FT
gRNA modification

(Uranga
et al.
2021a)

Foxtail
mosaic virus
(FoMV)

Cas9-expressing N.
benthamiana/ S.
viridis/ Z. mays

Agrobacteria
infiltration;
rub
inoculation

Single gRNA NbPDS: 73–
91%
SvCA2: 45–60%
ZmHKT1: 7–

NbPDS: Not heritable
SvCA2: Not heritable
ZmHKT1: not determined

(Mei et al.
2019)
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70% editing efficiency in GFP-overexpressing N.
benthamiana leaves was observed. Subsequent experi-
ments targeting ARGONAUTE1 paralogs NbAGO1-H
and NbAGO1-L also resulted in genomic edits, although
at lower efficiency (Cody et al. 2017). Although most
other CRISPR/Cas9 virus systems are intended to gener-
ate heritable mutations, the focus of this TMV system is
to provide transient editing technology complementary
to established VIGS methods (Cody et al. 2017). A
follow-up study further optimized the system using RNA
interference suppressors and simultaneously delivering
Cas9 and gRNAs from a single TMV construct to elim-
inate the need for transgenic plants or co-delivery of the
components from separate constructs (Chiong et al.
2021). Though editing efficiency was lower when using a
single construct compared to co-delivery, it was none-
theless possible to obtain ~ 7% editing efficiency in N.
benthamiana even with the large insert load of about
4.2 kb (Chiong et al. 2021).
One of the highest editing efficiencies reported to date

was obtained using SYNV (Ma et al. 2020). As discussed

earlier, SYNV can carry a large insert cargo, making it a
good candidate for expressing Cas9 as well as single or
multiplexed gRNAs. Ma et al. (2020) demonstrated this
in N. benthamiana, where editing efficiency ranged from
40 to 91% in plants infected with single gRNA con-
structs targeting GFP, NbPDS, NbRDR6, or NbSGS3.
They also observed similar editing efficiency when
SYNV constructs contained multiplexed NbRDR6 and
NbSGS3 gRNAs, indicating further the practical utility of
this virus system. While no progeny of the virus infected
plants carried mutations, editing efficiencies of 90–100%
were obtained in plants regenerated from infected tissue
(Ma et al. 2020). Similarly, another rhabdovirus system
using barley yellow striate mosaic virus (BYSMV) was
developed to express Cas9 and GFP-gRNA, resulting in
genomic editing of GFP-expressing N. benthamiana
(Gao et al. 2019).
Potexviruses have also been used as gRNA delivery ve-

hicles. PVX was successful in delivering Cas9 as well as
gRNAs to N. benthamiana plants via agroinfiltration
(Ariga et al. 2020). Additionally, this group replaced

Table 1 Infectious viral vectors for delivering CRISPR/Cas9 and/or gRNAs to plants for genomic editing (Continued)

Genusa Virus Name Plant(s) Used Laboratory
Inoculation
Method(s)

Virus Insert Cargo Host Gene
Target(s)c and
editing
frequencyd

Mutations heritable? Reference

38%

Tobamovirus Tobacco
mosaic virus
(TMV)

GFP-expressing N.
benthamiana

Agrobacteria
infiltration

Individual or
simultaneous
delivery of Cas9 and
single or multiplex
gRNAs

GFP: 61–63%
NbAGO1: 6–
27%
Multiplexed:
11–64%

Not determined (Chiong
et al.
2021;
Cody et al.
2017)

Tobravirus Tobacco
rattle virus
(TRV)

Cas9-expressing N.
benthamiana /A.
thaliana

Agrobacteria
infiltration;
rub
inoculation

Single gRNAs NbPDS3: 21–
57%
NbPCNA: 45–
63%
AtGL1: 21%
AtTT4:
demonstrated
by sequencing

NbPDS3 edits detected in seed
from earliest developing
flowers; not determined for
Arabidopsis

(Ali et al.
2015a, b,
2018)

Cas9-expressing N.
benthamiana

Agrobacteria
infiltration

Multiplexed gRNAs
with mobile FT or
tRNA modifications

NbPDS3: 58%
NbAG:53–86%
Multiplexed:
10–95%

Mutations detected in progeny
for two generations.

(Ellison
et al.
2020)

Pea early
browning
virus (PEBV)

Cas9-expressing N.
benthamiana

Agrobacteria
infiltration,
rub
inoculation

Single or multiple
gRNAs

NbPDS: 36–
72%

Not determined (Ali et al.
2018)

aGenera data from (Walker et al. 2020) and https://talk.ictvonline.org/files/master-species-lists/m/msl/12314
bNow classified as chickpea chlorotic dwarf virus (CpCDV) (Kanakala and Kuria 2018)
cGene abbreviations:
Arabidopsis thaliana: AtGL1 (GLABRA1); AtTT4 (TRANSPARENT TESTA GLABRA4); AtBRI1 (BR-insensitive 1)
Nicotiana benthamiana: NbTOM1 (Tobamovirus multiplication 1); NbXT2B (UDP-xylosyltransferase 2B); NbPDS (Phytoene desaturase); NbFT (Flowering locus T); NbIspH
(isopentenyl/dimethylallyl diphosphate synthase); GFP (green fluorescent protein); RDR6 (RNA-dependent RNA Polymerase 6); SGS3 (Suppressor of Gene Silencing 3);
NbAGO1 (ARGONAUTE1); NbPCNA (proliferating cell nuclear antigen)
Solanum lycopersicum (tomato): CRTISO (carotenoid isomerase) and PSY1 (phytoene synthase 1)
Triticum aestivum (wheat): TaGASR7 (Gibberellic Acid-Stimulated Regulator 7)
Zea mays (maize): ZmTMS5 (thermosensitive genic male-sterile 5); ZmHKT1 (high-affinity potassium transporter 1)
Setaria viridis (green millet): SvCA2 (Carbonic anhydrase 2)
dEditing efficiencies (indels) determined by PCR/restriction digest assays of the DNA target region or sequencing unless specified otherwise
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Cas9 with a larger base-editing version, which proved to
be stably integrated into the virus genome. While PVX
did not infect the germline to produce edited progeny,
plants regenerated from rub-inoculated tissue yielded
plants with NbTOM1 edits, although at a lower effi-
ciency compared to those regenerated from agroinfil-
trated plants (62%). It was later revealed that PVX could
be useful for delivering multiplexed gRNAs, and that
edits were heritable when gRNAs included mobile FT
modifications (Uranga et al. 2021a). Another potexvirus,
FoMV, was previously developed as a VIGS vector and
protein expression system (Beernink et al. 2021; Liu and
Kearney 2010; Mei and Whitham 2018; Mei et al. 2016).
The FoMV vector indicates it has potential as a gRNA
delivery system for N. benthamiana, maize, and green
millet (Beernink et al. 2021; Mei et al. 2019). Although
editing was observed in both inoculated and systemic tis-
sue including flowers, the edits were not heritable in N.
benthamiana (Mei et al. 2019). Using the FoMV system to
target the maize salt-tolerance gene ZmHKT1 in segregat-
ing Cas9-expressing maize resulted in 3–6% editing
efficiency, which increased to 7–38% when plants were
co-inoculated with sugarcane mosaic virus (SCMV) to
create a synergistically more robust infection (Mei et al.
2019). Even higher editing efficiency was observed for
FoMV targeted SvCA2 of green millet, with 45% in inocu-
lated leaves and 60% in systemic leaves (Mei et al. 2019).
Two tobraviruses, tobacco rattle virus (TRV) and pea

early browning virus (PEBV), are currently being used as
CRISPR/Cas9 delivery vectors. TRV, with a wide host
range and an easily modifiable bipartite positive sense
RNA genome, is a proven VIGS vector for N. benthami-
ana, tomato, and more recently maize and wheat (Liu
et al. 2002; Senthil-Kumar and Mysore 2014; Zhang
et al. 2017). Initial studies showed that TRV could suc-
cessfully edit PDS3 and PCNA genes in N. benthamiana,
either singly or simultaneously when gRNAs were co-
delivered from separate constructs (Ali et al. 2015a). In
that study, germline PDS3 editing was observed in seeds
collected from the earliest developed flowers, obviating
plant regeneration from infected tissue (Ali et al. 2015a,
b). Further testing of this system in Cas9-expressing
Arabidopsis showed that TRV delivery of AtGLI or
AtTT4 gRNAs could produce indels at those target sites
(Ali et al. 2018). Interestingly, a direct comparison of
TRV versus PEBV editing efficiency of PDS3 in Cas9-
expressing N. benthamiana showed PEBV had a much
higher editing efficiency (27–35% compared to 57–63%,
respectively) (Ali et al. 2018). Recently, TRV-delivered
gRNAs produced heritable edits when the gRNAs were
fused with mobile FT or tRNA sequences targeting
NbPDS and NbAG (Ellison et al. 2020). Another study
used TRV gRNA delivery to target viral pathogens dir-
ectly, rather than focusing on plant defense related gene

targets to increase resistance (Ali et al. 2015c). Here, the
group reported that gRNAs targeting geminivirus to-
mato yellow leaf curl virus (TYLCV) resulted in ~ 42%
editing efficiency and correlated with symptom reduc-
tion in infected Cas9-expressing N. benthamiana plants
(Ali et al. 2015c).
Most of the CRISPR/Cas9 virus delivery systems to

date rely on RNA viruses; however, there are a few DNA
viruses – notably geminiviruses – that also have been
developed for this purpose (Baltes et al. 2014; Dahan-
Meir et al. 2018; Lei et al. 2021; Yin et al. 2015). Cabbage
leaf curl virus (CaLCuV) was shown to be an effective
VIGS and miRNA expression vector prior to modifica-
tion for gRNA delivery to Cas9-expressing N. benthami-
ana plants (Yin et al. 2015). Removal of the AL1 insect
transmission protein attenuates symptoms but not viru-
lence, a useful characteristic for assessing phenotypes
more clearly for genes of interest (Yin et al. 2015). When
targeting PDS, CaLCuV gRNA delivery resulted in 85%
mutation efficiency, which was higher than with gRNAs
targeting NbIspH (75%) (Yin et al. 2015). Another virus-
induced genome editing system developed by Lei et al.
(2021) used cotton leaf crumple virus (CLCrV) (Lei et al.
2021). In this example, the study added a mobile FT se-
quence to the gRNAs for heritable genome editing of
AtBRI1 and AtGL2 in Arabidopsis - modifications that
have also proven effective in other virus systems (Ellison
et al. 2020; Lei et al. 2021; Uranga et al. 2021a). In one
of the few studies that used agroinfiltration of plants
other than N. benthamiana, Dahan-Meir et al. (2018)
developed bean yellow dwarf virus (BeYDV) replicons
into a gRNA delivery vehicle for tomato. Interestingly,
they were able to restore red fruit color to a fast-neutron
generated crtiso deletion mutant (orange fruit) through
double stranded break/homologous recombination of
the wild type CRTISO sequence delivered by the
BeYDV-Cas9 construct (Dahan-Meir et al. 2018).

The future of virus delivery of CRISPR/Cas9 to plants for
engineering disease, insect and stress resistance
Traditional transformation methods with CRISPR/Cas9
constructs were used to target a variety of plant pheno-
types, including reduced lodging in elite rice cultivars,
drought tolerance in Arabidopsis and maize, and patho-
gen resistance across numerous plant species (Hu et al.
2019b; Nuñez-Muñoz et al. 2021; Varanda et al. 2021;
Wang et al. 2019; Zaynab et al. 2020). The diverse panel
of CRISPR/Cas9 viral systems discussed in this review –
many just recently published as proof-of-concept – have
great potential for developing improved crop varieties
with resistance to disease, pests, and abiotic stresses.
Utilizing viral systems to deploy CRISPR/Cas9 con-
structs to yield germline edits would save time and re-
sources usually required for regenerating plants, and can
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eliminate years of backcrossing when the virus system is
capable of delivering the full Cas9-gRNA complex. Add-
itionally, many studies have shown that the inoculated
virus is not detected in progeny plants unless vegeta-
tively propagated, thus eliminating regulatory concerns.
Given that this methodology is still in its infancy, few of
the studies we describe here have addressed plant dis-
eases or abiotic stresses. Insect control using CRISPR/
Cas9 technology is also very limited to date, regardless
of plant transformation methodology (Lu et al. 2018;
Rato et al. 2021; Tyagi et al. 2020). Therefore, much
work remains to optimize these systems across econom-
ically important crop plants, since proof-of-concept in
most of these studies was demonstrated in N. benthami-
ana or Arabidopsis.
Given the success of the 40+ plant viruses engineered

as VIGS or protein expression vectors, solving current
limitations of viral CRISPR/Cas9 vectors will undoubt-
edly yield remarkable results in plant genome editing
studies (Cody and Scholthof 2019; Wang et al. 2020).
Plant species- or cultivar-specific resistance to VIGE
vectors are increasingly less problematic as the number
of available vectors grows. The current bottleneck of
many VIGE vector systems for generating stress-
resistant crops is the low to no recovery of plants with
heritable gene edits (Wang et al. 2020). Many re-
searchers have discovered during VIGE system develop-
ment that despite robust somatic cell genome editing,
few progeny plants inherited the edits, indicating virus
exclusion from the germline meristematic cells (Table
1). The totipotency of plant cells allows regeneration of
plants from edited somatic tissue via technically time-
consuming and fastidious culturing methods, which pro-
vides a mechanism for recovering edited plants similar
to that of traditional CRISPR/Cas9 delivery methods
(Atkins and Voytas 2020). Although plant regeneration
is an advancement over transient VIGS assays, VIGE
vector systems will likely gain popularity only once
germline edits are reliably obtained to avoid the long
timelines of traditional plant transformation methods.
To overcome this current pitfall, increased virus or
gRNA distribution within the plant could boost the
number of inherited genome edits. As discussed earlier,
work by several groups showed that fusing gRNAs with
mobile RNAs such as tRNA or FT RNA sequences
greatly increased the likelihood of heritable editing (Elli-
son et al. 2020; Lei et al. 2021; Li et al. 2021; Uranga
et al. 2021a).
In addition to effective germline targeting in a given

plant/virus system, production of a desired phenotype
such as drought tolerance or pathogen resistance re-
quires identification of appropriate gene targets. Due to
the robustness of viral infection, a positive attribute of
viral delivery of CRISPR/Cas9 constructs is that the

phenotypic outcome of gene editing can be analyzed dir-
ectly in infected tissue prior to seed set and plant selec-
tion, enabling timely refinement or modification of the
gRNA sequences if needed for optimal results (Cody and
Scholthof 2019). This facilitates the identification of ap-
propriate gene targets from a list of candidates, for ex-
ample. Recent work with traditional non-viral CRISPR/
Cas9 assays have targeted a number of genes impacting
plant responses to drought, heat stress, salinity, and dis-
ease (Das et al. 2018; Sun et al. 2021). Additionally, the
traditional VIGS systems have been successfully used to
study plant responses to both biotic and abiotic stresses
(Dommes et al. 2019; Dulermo et al. 2009; Shi et al.
2021). Therefore, it is only a matter of time before VIGE
systems will be employed to similarly study gene func-
tion during pathogen infection or under abiotic stress.
Indeed, as discussed below, the expanding toolbox of
CRISPR/Cas9 derivatives paired with VIGE vectors will
allow more thorough analysis of stress responses than by
the traditional methods alone.
Broad application of virus delivery of CRISPR/Cas9

constructs will aid researchers much like VIGS systems
have greatly advanced our understanding of plant gene
function (Fig. 1). Additionally, viral CRISPR/Cas9 sys-
tems can be further modified to include Cas9 derivatives
such as dCas9 fusions with transcriptional activators or
repressors to further examine plant gene function, as is
described for the recently published VipariNama rapid
phenotyping system with TRV (Khakhar et al. 2021).
Also, dCas9 fusions with epigenetic modifiers such as
histone deacetylases or acetyltransferases have been re-
ported for animal systems, opening up new opportun-
ities for plant epigenetic studies (Kwon et al. 2017;
Nakamura et al. 2021; Roca Paixão et al. 2019). Indeed,
it was recently shown that TRV delivery of gRNAs to
Arabidopsis expressing dCas9-TET1 – a human DNA
demethylase - resulted in a heritable reduction of
FLOWERING WAGENINGEN promoter methylation
(Ghoshal et al. 2020). In addition to Cas9-based editing
tools, viral delivery of alternate CRISPR/Cas complexes
are also under development for gene editing. A recent
report illustrated the use of the comparatively smaller
Cas12a nuclease in tobacco etch virus (TEV) co-
infiltrated with potato virus X (PVX) carrying an FT
gRNA in N. benthamiana (Uranga et al. 2021b). Inter-
estingly, this compatible interaction between the two vi-
ruses resulted in a nearly 75% editing efficiency (Uranga
et al. 2021b). The Cas13 nuclease can target single
stranded RNA, rather than double stranded DNA tar-
geted by Cas9, leading to interest in applications target-
ing RNA viruses (Cao et al. 2021; Wolter and Puchta
2018; Yu et al. 2021). Additionally, deactivated Cas13
(dCas13) can be used for a variety of interesting applica-
tions, including RNA virus detection by binding
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fluorescently-tagged dCas13 to the RNA target (Wolter
and Puchta 2018).
As highlighted in this review, many new CRISPR/Cas9

viral delivery systems are being developed and are ready
for application in plant functional genomics studies. Ul-
timately, once biosafety and bioethics concerns have
been addressed, it may eventually be possible to deploy
these virus constructs via their natural insect vectors to
rapidly save stressed crop plants in field applications.
Thus, we anticipate these technologies will be adopted
by many laboratories to advance their crop improvement
studies for understanding gene function and developing
disease/insect resistant and abiotic stress tolerant
cultivars.
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