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Abstract: Auxin response factors (ARFs) play important roles in various plant physiological processes;
however, knowledge of the exact role of ARFs in plant responses to water deficit is limited. In this
study, SlARF4, a member of the ARF family, was functionally characterized under water deficit.
Real-time fluorescence quantitative polymerase chain reaction (PCR) and β-glucuronidase (GUS)
staining showed that water deficit and abscisic acid (ABA) treatment reduced the expression of
SlARF4. SlARF4 was expressed in the vascular bundles and guard cells of tomato stomata. Loss of
function of SlARF4 (arf4) by using Clustered Regularly Interspaced Short Palindromic Repeats/Cas 9
(CRISPR/Cas 9) technology enhanced plant resistance to water stress and rehydration ability. The arf4
mutant plants exhibited curly leaves and a thick stem. Malondialdehyde content was significantly
lower in arf4 mutants than in wildtype plants under water stress; furthermore, arf4 mutants showed
higher content of antioxidant substances, superoxide dismutase, actual photochemical efficiency
of photosystem II (PSII), and catalase activities. Stomatal and vascular bundle morphology was
changed in arf4 mutants. We identified 628 differentially expressed genes specifically expressed
under water deficit in arf4 mutants; six of these genes, including ABA signaling pathway-related
genes, were differentially expressed between the wildtype and arf4 mutants under water deficit
and unlimited water supply. Auxin responsive element (AuxRE) elements were found in these
genes’ promoters indicating that SlARF4 participates in ABA signaling pathways by regulating the
expression of SlABI5/ABF and SCL3, thereby influencing stomatal morphology and vascular bundle
development and ultimately improving plant resistance to water deficit.

Keywords: SlARF4; tomato; water deficit; drought; ABA; auxin

1. Introduction

Originally a native of Central America, tomato (Solanum lycopersicum L.) has become
one of the most important economic crops in the world. Tomato growth and development
requires ample water supply, and water stress can indeed severely limit germination,
radicle and hypocotyl elongation, and overall biomass accumulation [1–4]. However,
tomato plants respond to a shortage in water supply by adjusting their morphology
and physiological and biochemical processes. Physiological response mechanisms to
water deficit include modifying diverse traits, such as increasing the thickness of the
epidermal epicuticular wax layer, adjusting stomata closure, favoring root elongation over
aboveground biomass allocation, strengthening the water storage machinery and reducing
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shoot to root ratio, among other things [2,3,5,6]. Concomitantly, at the biochemical level,
tomato plants experiencing water deficit produce osmotic regulators, notably increase the
activity of protective enzymes and procure the stability of membrane systems; additionally,
they unleash the regulatory action of endogenous hormones and the synthesis of secondary
metabolites that participate in the defense to prevent or minimize potential damage [7–10].
These physiological and biochemical changes are caused by stress-induced plant hormones
such as abscisic acid (ABA), various proteins such as the late embryo-enrichment protein
and the tomato dehydration protein [8,11–13], and the NAC (NAM, ATAF1/2, and CUC2)
transcription factor [9] as well as various small RNAs [14] that regulate tomato water stress
resistance-related gene expression aiming to reduce the damage by water deficit to plant
growth and development.

The auxin response factor (ARF) has been suggested to play a key role in regulating
the expression of auxin responsive genes [15–17]. ARFs combine with Auxin responsive
element (AuxRE) elements located in the promoter region of auxin responsive genes to
regulate their transcription and further regulate plant growth and metabolism [15]. Genes
of the ARF family have been found in herbaceous plants such as Arabidopsis, rice, corn,
and tomato, and among woody plants such as poplar, eucalyptus, and tea [18–22]. ARFs
have been implicated in senescence [23], hormone signaling [11,24,25] and developmental
programs [11,23,26]. In rice, OsGSK5/OsSK41 interact with OsARF4 to negatively regulate
grain size and weight [27]. In Arabidopsis, ARF2, together with the Homeodomain Gene
HB33 mediate ABA responses [24]; in turn, MP/ARF5 function upstream of the AtHB8 to
regulate embryo development, as well as vascular differentiation [28]. However, to date, the
role of ARFs in plant responses to water stress is scarcely understood. The expression levels
of multiple ARF genes were altered in tomato by drought stress [29]. There are 24 ARF
genes in tomato [22], which have an effect on plant growth and development, including
fruit set [30–33], root development [34], leaf morphology [35], and fruit ripening [36,37].
SlARF5, SlARF7, and SlARF8 regulate fruit set and parthenocarpy by mediating auxin- and
gibberellin GA-signaling pathways [30–33]. SlARF2 controls fruit ripening by mediating
ethylene and ripening transcription regulators [37]; additionally, SlARF2 regulates tomato
root development [34]. Finally, SlARF4 and SlARF10 increase chlorophyll and sugar
accumulation during fruit development [38,39]. However, there are very few reports on
the functional description of ARF in relation to resistance to water deficit.

Therefore, in this study, physiological, biochemical and molecular biology methods
were used to study the function of SlARF4 in mediating tomato resistance to water deficit
aiming to understand the role of ARFs in tomato drought resistance. The results showed
that knockouts of SlARF4 using Clustered Regularly Interspaced Short Palindromic Re-
peats/Cas 9 (CRISPR/Cas 9) resulted in induced water deficit resistance and rehydration
ability. The ABA signaling pathway gene SlABi5/ABF were upregulated in the arf4 mutant.
Transcription factor SCL3, also named GRAS4, induced tomato drought resistance by mod-
ulating the ABA signaling pathway. In our data, we found SlARF4 could directly regulate
SCL3 expression. Altogether, our data indicate that SlARF4 participates in ABA signaling
pathways by regulating SlABI5/ABF and SCL3 expression and operating the morphology of
stomata and development of vascular bundles to improve plant resistance to water deficit.

2. Results
2.1. SlARF4 Expression Is Downregulated in Response to Abscisic Acid (ABA) and Water Deficit

We measured SlARF4 expression levels in tomato seedlings under ABA and water
deficit treatments to determine whether SlARF4 expression is reduced by either. Results
of quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that the
expression level of SlARF4 showed a decreasing trend with increasing duration of water
deficit (Figure 1A). The expression level was the lowest at 6 h of treatment initiation and
slightly increased at 12 h (Figure 1A). Furthermore, as duration of ABA treatment increased,
the expression of SlARF4 decreased (Figure 1B).
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error (SE) of three independent biological replicates. Different letters (a, b, c) presented significant difference at level set p 
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SlARF4 promoter activity in tomato seedlings under normal and water stress conditions. Two-week-old seedlings har-
boring the pARF4::GUS transgene grown in MS and MS plus mannitol media were subjected to GUS staining. Above-

Figure 1. Expression pattern of SlARF4. Results of quantitative real-time polymerase chain reaction (qRT-PCR) analysis
showing that SlARF4 expression is reduced by (A) water deficit and (B) abscisic acid (ABA) treatment. Four-week-old
tomato seedlings were treated with 100 µM ABA or by desiccation for different durations; whole seedlings were used for
RNA extraction. Polyubiquitin (UBQ) (Solyc01g056940) was used as an internal standard. Data was means ± standard
error (SE) of three independent biological replicates. Different letters (a, b, c) presented significant difference at level set
p < 0.05; (C) Detection of SlARF4 promoter activity in tomato leaves by histochemical GUS staining. (D) Detection of SlARF4
promoter activity in tomato seedlings under normal and water stress conditions. Two-week-old seedlings harboring the
pARF4::GUS transgene grown in MS and MS plus mannitol media were subjected to GUS staining. Aboveground part of
aseptically cultured pARF4::GUS seedlings grown for 3 weeks (left); enlarged view of the middle and upper part of the
stem (center), paraffin section of the stem observed microscopically at 10 (right). Black arrow indicates the stomata and
xylem. MS medium; MS + 100 µM mannitol medium. The dot arrows indicates the stomata.

Results of β-glucuronidase (GUS) staining showed that SlARF4 was expressed in
the guard cells of the stomata and in leaf vascular tissues (Figure 1C). In GUS staining,
2-week-old seedlings subjected to water stress were dyed. The accumulation of GUS in
pSlARF4::GUS seedlings grown in Murashige & Skoog (MS) medium containing mannitol
was significantly lower than that observed in MS medium alone (Figure 1D). Paraffin
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sections of hypocotyls of both seedlings showed that GUS mainly accumulated in the
xylem, epidermis and guard cells (Figure 1D).

2.2. Knockout of SlARF4 by CRISPR/Cas 9 Increased Plant Sensitivity to Water Stress

SlARF4 knockout mutants showed conspicuous upward leaf-curling (Figure 2A) and a
stem thickness (Figure 2B) significantly greater than that of the wild-type (WT) plants. Ad-
ditionally, the rate of water loss from arf4 leaflets was lower than that of the corresponding
leaves in the WT plants (Figure 2C), whereas the rate of water loss in arf4 mature leaves was
higher than that of the corresponding leaves in the WT plants (Figure 2D). Both WT and
arf4 plants appeared wilted at 12 days after water-stress treatment initiation (Figure 2E).
However, leaves of arf4 plants were upright again after 24 h of re-watering, whereas those
of the WT plants were still wilted (Figure 2E). From a morphological point of view, arf4
plants had basically recovered. Different concentrations of mannitol dissolved in MS
medium simulated water stress to verify the effect of water deficit on the germination rate
of tomato seeds. The results showed that the higher the mannitol concentration, the lower
the germination rate of WT seeds, whereas arf4 seeds still maintained a high germination
rate even at 300 µM mannitol, which was 58% higher than that of WT seeds (Figure S1A).
Concomitantly, arf4 plants showed longer hypocotyls and roots (Figure S1B–D).
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and guard cell length on the upper leaves of arf4 plants was significantly shorter than that 
on the same leaves in the WT plants and tended to be more rounded (Table S1). Water 
stress induced stomatal closure in the WT plants, whereas the stomates of arf4 plants did 
not close normally (Figure 3A). Similarly, the stomates of epidermal cells in the middle 
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Figure 2. Effects of SlARF4 knockout on resistance to water deficit, morphology, and transpirational water loss in tomato
plants. (A) Degree of curliness of 2-month-old tomato leaves; (B) Thick stem of two-month-old tomato plants. (C) Rate of
water loss from small leaves isolated from 2-month-old tomato plants at room temperature. (D) Rate of water loss from
mature leaves excised from 2-month-old tomato plants at room temperature. (E) Effect of water deficit on wild-type (WT,
left) and arf4 mutant (right) tomato plants. Data was means ± SE of three independent biological replicates. Different letters
(a, b) presented significant difference at level set p < 0.05.

Under unlimited water supply, as well as under conditions of water stress, stomata
and guard cell length on the upper leaves of arf4 plants was significantly shorter than that
on the same leaves in the WT plants and tended to be more rounded (Table S1). Water
stress induced stomatal closure in the WT plants, whereas the stomates of arf4 plants did
not close normally (Figure 3A). Similarly, the stomates of epidermal cells in the middle
leaves of arf4 plants were wider and rounder, whereas those of the WT plants appeared
shriveled under water stress (Figure 3A). SlARF4 absence changed stomatal morphology
and reduced the length of the stomates, and the stomata did not close normally under
water stress. The stem xylem of 2-month-old tomato WT and arf4 plants showed a dense
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and compact arrangement under water stress, with the xylem in arf4 being more compact
and the xylem range wider (Figure 3B).
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2.3. Leaf Damage and Physiological Changes of arf4 Plants under Water Deficit

Water stress reduces plant water content; additionally, it triggers the accumulation
of reactive oxygen species (ROS) and malondialdehyde (MDA); furthermore, it causes
biofilms to oxidize and reduces photosynthetic capacity. Superoxide anion production rate
in arf4 plants under water stress was significantly higher than that in WT plants (Figure 4B),
whereas MDA content a proxy of cell membrane damage was significantly lower in arf4
plants than in WT plants (Figure 4A). arf4 plants showed a high level of antioxidant enzyme
activities, including of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT)
(Figure 4E–G), and antioxidants such as ascorbic acid and glutathione (Figure 4C,D), which
effectively reduced oxidative damage in leaves. The actual photosynthetic efficiency of arf4
plants did not decrease significantly due to water stress (Figure 4H). Consistently, maxi-
mum fluorescence intensity of tomato leaves showed that WT leaves exhibited partially
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irreversible damage under water stress, whereas arf4 leaves remained intact (Figure 4I).
To understand the state of arf4 plants at the physiological level after re-watering, SOD,
POD, and CAT activities were restored to the normal level (Figure 4E–G), while actual
photosynthetic efficiency was significantly higher than that in the WT plants (Figure 4H),
and fluorescence intensity filled the entire leaf, but the WT plants could not return to
normal after 1 day of re-watering (Figure 4J).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 18 
 

 

ure 4H). Consistently, maximum fluorescence intensity of tomato leaves showed that WT 
leaves exhibited partially irreversible damage under water stress, whereas arf4 leaves 
remained intact (Figure 4I). To understand the state of arf4 plants at the physiological 
level after re-watering, SOD, POD, and CAT activities were restored to the normal level 
(Figure 4E–G), while actual photosynthetic efficiency was significantly higher than that 
in the WT plants (Figure 4H), and fluorescence intensity filled the entire leaf, but the WT 
plants could not return to normal after 1 day of re-watering (Figure 4J). 

 
Figure 4. Effect of water stress on antioxidant capacity of WT and arf4 mutant tomato leaves. (A) malondialdehyde 
(MDA) content; (B) superoxide anion production rate; (C) ascorbic acid content; (D) glutathione content; (E) superoxide 
dismutase (SOD) activity of plant under 12 days water deficit and 1 day of re-watering; (F) peroxidase (POD) activity of 
plant under 12 days water deficit and 1 day of re-watering; (G) catalase (CAT) activity of plant under 12 days water def-
icit and 1 day of re-watering; (H) the actual photochemical efficiency of PSII (YII) of plant under 12 days water deficit and 
1 day re-watering. (I) The maximum photochemical efficiency of PSII (Fv/Fm) was determined on well watering plant 
and plant with 12 days water deficit. The underneath color code depicted in the image ranges from 0 (black) to 1 (purple); 
(J) The maximum photochemical efficiency of PSII (Fv/Fm) was determined on well watering plant and plant after one 
day of re-watering. The underneath color code depicted in the image ranges from 0 (black) to 1 (purple). Different letters 
(a, b, c, d) present significant difference at level set p < 0.05. WT-D and arf4-D represent wild-type (WT) and arf4 under 
water deficit, respectively. 

Figure 4. Effect of water stress on antioxidant capacity of WT and arf4 mutant tomato leaves. (A) malondialdehyde
(MDA) content; (B) superoxide anion production rate; (C) ascorbic acid content; (D) glutathione content; (E) superoxide
dismutase (SOD) activity of plant under 12 days water deficit and 1 day of re-watering; (F) peroxidase (POD) activity of
plant under 12 days water deficit and 1 day of re-watering; (G) catalase (CAT) activity of plant under 12 days water deficit
and 1 day of re-watering; (H) the actual photochemical efficiency of PSII (YII) of plant under 12 days water deficit and 1 day
re-watering. (I) The maximum photochemical efficiency of PSII (Fv/Fm) was determined on well watering plant and plant
with 12 days water deficit. The underneath color code depicted in the image ranges from 0 (black) to 1 (purple); (J) The
maximum photochemical efficiency of PSII (Fv/Fm) was determined on well watering plant and plant after one day of
re-watering. The underneath color code depicted in the image ranges from 0 (black) to 1 (purple). Different letters (a, b,
c, d) present significant difference at level set p < 0.05. WT-D and arf4-D represent wild-type (WT) and arf4 under water
deficit, respectively.
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2.4. Experimental Design for Transcriptomic Analysis of Wild-Type (WT) and arf4 Leaves under
Water Stress and Unlimited Water Supply

Compared with WT plants, arf4 mutants were more resistant to water stress. RNA-seq
was carried out on WT and arf4 mutant leaves under unlimited water supply and under
water stress conditions to further understand the genes or gene networks involved in the
regulation of resistance to water deficit. The complete experimental design included four
parallel experiments. The first experiment was conducted to identify the genes whose
expression was associated with water deficit in arf4 plants. The second experiment was
performed to identify the genes related to water stress response in the WT plants. The third
experiment was conducted to identify the genes directly or indirectly regulated by SlARF4
in WT and arf4 leaves under unlimited water supply. Finally, the fourth experiment was
performed to identify the genes directly or indirectly regulated by SlARF4 in WT and arf4
leaves of plants kept under conditions of water deficit. For this purpose, we conducted a
comprehensive analysis of gene expression in WT and arf4 leaves under unlimited water
supply and under water deficit: WT, arf4, WT-D, and arf4-D. All samples contained three
biological replicates and generated 12 libraries. The high-quality clean reads of the library
reached over 98% (Table S2). After filtering the rRNA, the library was uniquely mapped to
the tomato genome (Solanum lycopersicum ITAG2.3). The mapped reads ranged between
90.55% and 93.15% (Table S2). Unique mapped reads ranged from 89.96% to 92.38% and
multiple mapped reads on the reference genome accounted for 0.54% to 0.80% (Table S2).
According to the fragments per kilobase per million (FPKM) method and the Pearson
correlation coefficient (R2 > 0.8 indicates a significant correlation between the two samples),
R2 among the three replicates was greater than 0.94 (Figure S2), and the biological replicates
were significantly correlated (Figure S2). Therefore, sequencing results were highly reliable.

We performed a comprehensive analysis of gene expression related to the response
to water stress in WT and arf4 leaves, aiming to identify candidate genes that are vital
for induction of resistance to water deficit. Genes that satisfied the fold-change difference
|log2 (fold-change)| > 1 and false discovery rate (FDR) <0.05 were regarded as differ-
entially expressed genes (DEGs). Deseq2 software was used for performing pairwise
comparisons to screen DEGs. In all, 2689 (971 upregulated + 1727 downregulated) and
3866 (1636 upregulated + 2230 downregulated) DEGs between arf4 mutants and WT
plants, respectively, were involved in the response to water stress (Figure 5A). A total of
628 (516 + 80 + 6 + 26) DEGs were specifically expressed in arf4 mutants under conditions
of water deficit (Figure 5B); among them, 86 showed SlARF4-dependent regulation in
WT and arf4 leaves under water deficit (Figure 5B), 33 more showed SlARF4-dependent
regulation in WT and arf4 leaves under conditions of unlimited water supply (Figure 5B),
and 6 more DEGs showed SlARF4-dependent regulation in WT and arf4 leaves under
conditions of both water stress and unlimited water supply (Figure 5B).

2.5. Transcriptome Analysis of Response of Differentially Expressed Genes (DEGs) to Water Deficit
in Tomato WT and arf4 Mutant Plants

According to Venn diagram analysis (Figure 5B), 628 DEGs were found specifically
expressed in arf4 mutants under water stress. We hypothesized that the expression of these
genes may play an important role in improving the resistance of arf4 mutants to water
deficit. To gain further insight into the putative functions of these genes, all 628 DEGs
were mapped to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, which
revealed that 105 of these DEGs were assigned to 69 KEGG pathways (Supplementary
Table S3). Using q value < 0.05 as significance threshold, six KEGG pathways were sig-
nificantly enriched, namely, “glutathione metabolism,” “plant hormone signal transduc-
tion,” “phenylpropanoid synthesis,” “phenylalanine metabolism,” “alpha-linoleic acid
metabolism,” and “linoleic acid metabolism” (Figure 5C). Hormone signaling pathways
mainly involved auxin-, cytokine-, abscisic acid (ABA)-, jasmonic acid-, and salicylic
acid (SA) signal transduction pathways (Figure S3). Upregulation of multiple genes in
phenylpropanoid biosynthesis is shown in Figure S4. The phenylpropanoid biosynthesis
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pathway is mainly related to the synthesis of lignin, which affects the development of
vascular bundles.
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Among the 628 DEGs specifically expressed in arf4 mutants, 33 genes were differen-
tially expressed in WT and arf4 mutant plants under normal conditions, and all 33 were
mainly involved in 12 pathways (Supplementary Table S5). Among them, the change in
major hormone signaling pathway-related gene expression involved the ABA signaling
pathway (Figure S5). Among the 628 specifically expressed genes of arf4 mutants, 86 genes
were differentially expressed between WT and arf4 mutant plants under water deficit, and
these 86 genes were mainly involved in 17 pathways (Supplementary Table S4). Among
them, phenylpropanoid biosynthesis, hormone signaling pathway, and α-linolenic acid
metabolism (JA synthesis) included 2 to 3 DEGs. In the hormone signaling pathway, the
expression of two genes of ABA and SA signaling pathways changed (Figure S5), indicating
that the ABA and SA signaling pathways are involved in the response of arf4 mutants to
water deficit, in which case, ABA signaling may play an important role.

2.6. Analysis of Six DEG Promoters between WT and arf4 Plants and Their Relationship with the
ARF4 Protein

Among the 628 genes specifically expressed in arf4 mutants, six DEGs were dif-
ferentially expressed between WT and arf4 mutant plants under conditions of unlim-
ited water supply and under water deficit stress (Figure 5D). Among them, there were
two unknown genes (XLOC_000713 and XLOC_005071) that were not annotated to the
tomato genome, whereas the remaining four genes were ABI5, SCL3 (GRAS4), EXO
and Phi-1(solyc07g055460.3). The 3000-bp upstream promoter region of these four genes
was obtained from the tomato genome database (https://solgenomics.net) (accessed on

https://solgenomics.net
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26 January 2021). Cis-element analysis of these promoter regions revealed that ABI5, EXO,
and Phi-1(solyc07g055460.3) have one AuxRE cis-acting elements; and SCL3(GRAS4) has
two AuxRE cis-acting elements, indicating that the expression of these four genes can be
directly regulated by ARF4 (Figure S5). Two genes, ABI5 and SCL3(GRAS4) were involved
in ABA signal transduction pathways indicating that SlARF4 regulates tomato resistance
to water stress by regulating ABA signaling pathways.

2.7. Validation of RNA-seq Data by Quantitative Real-Time Polymerase Chain Reaction
(qRT-PCR)

To investigate the accuracy and reproducibility of the RNA-seq data, 13 DEGs were
selected from RNA-seq results for qRT-PCR (Figure S6). Using SlUBI as internal reference
gene, the 2−∆∆CT method was used to calculate relative gene expression. qRT-PCR findings
for the 13 selected genes were consistent with the RNA-seq results, revealing high accuracy
and reliability of our RNA-seq results. Transcriptome results were normalized to FPKM by
the Z-score, and the Pearson correlation coefficients for the two were R2 > 0.8 and p < 0.01
(Figure S7), indicating that our transcriptome sequencing results are reliable.

3. Discussion

Leaf curling is an important plant response to characterize resistance to water deficit.
Auxin polar transport plays an important role in the establishment of leaf proximal-distal
axis polarity [40]. Changes in the asymmetry of the axial development of leaves in higher
plants will cause leaves to curl [41,42]. Here, we showed that the lack of SlARF4 resulted
in obvious leaf curling phenotypes in tomato plants. Leaf curling can reduce effective leaf
area and, consequently, transpirational water loss, thereby increasing the ability of the
plant to improve water-use efficiency [43,44]. In natural environments, stress factors do not
occur independently but in combination; thus, water deficit is frequently concomitant with
high temperature. Heat stress can cause tomato leaves to curl and wilt [44,45]. However,
reports on leaf curling caused by water deficit are relatively rare. In rice, wheat, corn, and
other plant species, leaf curling is considered to enhance resistance to water deficit [44]. As
the stress duration increases, leaf curling in Ctenanthe setosa increased [46]. Thus, tomato
leaf curling may be a potentially useful trait to improve tomato resistance to drought under
field conditions.

Before rice leaves curl, first the stomata of the epidermal cells will close upon ini-
tiation of water deficit [43]. Plants adapted to dry conditions close their stomates after
most mesophytes have already closed them once water deficit has developed, whereby
photosynthesis does not stop immediately in these plants [46]. SlARF4-as plants have been
used to study stomatal conductance, and they have shown lower stomatal conductance
than that of their WT counterparts. However, stomatal conductance of the SlARF4-as
phenotype did not change significantly under salt or Polyethylene glycol (PEG)-simulated
water stress, compared with the control. Nonetheless, the WT showed a normal response
to osmotic stress, with a significant decrease in stomatal conductance [47]. In our study, the
epidermis of the upper leaves on arf4 plants showed smaller stomata than that of the WT
leaves, and they did not immediately close upon initiation of the water deficit treatment;
furthermore, the guard cells still retained their normal plumpness.

Vascular tissues provide mechanical support and are the means for water, nutrient,
and hormone short- and long-distance transport in plants [48]. Directed cell division is an
important factor in the development of vascular tissue; however, controlling the direction
of division in space and time is a complex issue [48]. Auxin plays an important role in
plant vascular activities; furthermore, auxin has a coordinated relationship with many
hormones [49]. Auxin signal transduction and transport can affect the differentiation
of vascular tissue, xylem formation, and improved water transport [25,50,51]. In our
experiments, among the 628 genes specifically expressed in arf4 mutants under water
deficit stress, the phenylpropanoid biosynthesis pathway was one of the most enriched
pathways. The phenylpropanoid biosynthesis pathway promotes the synthesis of lignin
and responds to various biotic and abiotic stress conditions [52]. Lignin content is also
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closely related to the development of the far and near axis of mesophyll cells and vascular
bundles [53]. Part of the auxin signal transduction pathway of arf4 mutants was interrupted,
and the stem thickness of arf4 tomato plants was increased. Further observation through
paraffin sections showed that arf4 mutants had a more developed xylem than that in the
WT plants. Therefore, stem thickening in arf4 mutants may be related to the active lignin
formation, which implies that the stem has a higher ability to transport water. As drought-
resistant varieties have thick stems [42], the increased resistance of arf4 mutants to water
deficit may be related to the growth activity involved in the thickening of the stem.

Plant water status is another important indicator for evaluating plant resistance to
water deficit [6]. In the experiments reported here, the rate of water loss in arf4 leaves
was lower than that recorded for the WT leaves. On the one hand, it benefited from leaf
curling, which reduced transpiration, whereas at the same time, the stomata did not close
completely, thereby maintaining transpiration activity; on the other hand, compared with
the WT plants, water loss was slow, which was also reflected by the lower free water
content. The rate of water loss in arf4 large leaves with petioles was higher than that of the
WT leaves, which was closely related to the more developed xylem in arf4, whereby the
latter was able to hold more water and, thus, maintain an enduring hydrated status [54].

Water deficit causes a large amount of ROS to be produced in and out of plant
cells. ROS can act as signal molecules to promote stomatal closure; furthermore, they
can cause damage to the cell membrane structure and protein denaturation and trigger
programmed cell death [55]. Sustained ROS accumulation will have a negative effect on
normal cellular physiological and biochemical activities. For example, after water stress,
sustained ROS presence causes premature leaf aging, whereby photosynthetic physiology
cannot be restored and, consequently, the plant dies [56]. In this study, the maximum
fluorescence intensity of tomato plants after water stress revealed that WT tomato plants
were irreversibly damaged. The actual photosynthetic efficiency of WT plants decreased
significantly under water stress, whereas the decrease in arf4 mutants was not significant.
Additionally, arf4 mutants resumed active growth upon re-watering for 24 h, whereas
WT plants continued to wither. Maximum fluorescence intensity in WT leaves seemed
irreversible, reflecting that WT plants were still under stress despite re-watering, implying
that the rehydration capacities of arf4 and WT plants were significantly different. We
believe that arf4 improves the rehydration ability of plants after stress relief and confers
stronger resistance to water deficit. Furthermore, tomato plants can adapt to water stress
by reducing oxidative damage [57]. Here, the superoxide anion production rate in arf4
plants was significantly higher than that in the WT plants under water stress. However,
cell membrane oxidative damage was lower in arf4 plants because of its higher antioxidant
capacity, which explains why arf4 plants showed greater resistance to water deficit [58–60].

The transcriptome and molecular data acquired in this study showed that the ABA
signaling pathway played an important role in arf4 plant resistance to water deficit. Recent
studies have shown that ABA can induce the upregulation of ABF expression, resulting
in upregulating the expression of PP2Cs to inhibit downstream SnRK2 phosphorylation,
which negatively regulates the ABA signaling pathway. At the same time, ABF can be
further combined with related genes induced by ABA [61]. In Arabidopsis, overexpression
of ABF can directly induce the expression of ABA downstream-related genes without
ABA processing [62]. This implies that ABF can independently regulate the expression
of ABA-induced genes in plants. Overexpression of ABF can enhance plant resistance to
water stress, whereas the ABF-deletion mutant reduces it [63–65]. In our experiments, both
water deficit and ABA treatments reduced the expression of the ARF4 gene in tomato. The
expression levels of ABI5 (ABF) in arf4 plants under water stress increased significantly.
In the promoters of ABI5 there is AuxRE element indicating that SlARF4 could directly
regulate ABI5 expression. Meanwhile, anther transcription factor SCL3, also named GRAS4,
was reported to improve water deficit resistance by regulating ABA signaling via modu-
lating SnRK expression in tomato directly [66]. In our study, the expression of SCL3 was
up-regulated in the arf4. Furthermore, two AuxRE elements were found in its promoter
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indicating that SlARF4 improved water deficit resistance by regulating SCL3. In this study,
SlARF4 was found to accumulate in leaf stomata by GUS staining, and the stomata on the
leaf epidermis of arf4 mutant plants could not close normally under water stress, implying
an important role of SlARF4 in stomata movement under water stress. Based on these find-
ings, a possible regulation mechanism is proposed in Figure 6. Plant homeostasis plays an
important role in plant resistance to stress. Hormonal responses in plants aim to maintain
a dynamic balance under stress. Specifically, under water stress, ABA is transported to the
guard cells. ABA promotes the accumulation of ABF by regulating the activity of SnRK2,
whereas the auxin responsive protein ARF4 can inhibit the expression of ABF under water
stress. This reversed function keeps ABF concentration in a dynamic equilibrium to prevent
an excessive expression of ABF, which would eventually close stomata. However, in arf4
plants, the deletion of SlARF4 significantly upregulates the expression of ABF, promotes
the massive expression of the PP2C family, dephosphorylates SnRK, and cannot further
regulate the expression of stoma-related genes, whereby stomates are rendered unable
to close.
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4. Materials and Methods
4.1. Plant Material and Water Deficit Treatment

The SlARF4 knockout mutants by CRISPR/Cas 9 were provided by the lab of GBF,
Université de Toulouse, INRA. Two single-guide (sg) RNAs (AATGGAGGTCACACCA-
GAG and GGAACTGAA AAGCCACCAT) in the coding sequence of Solyc11g069190 were
designed and cloned into the vector pAGM4723. The positive construct was transformed
into Agrobacterium tumefasciens which was used for tomato genetic transformation. The
plant #5 bearing the desired mutation of SlARF4 was used for the water deficit study. More
information about the SlARF4 CRISPR/Cas 9 lines generation could be found in the paper
of Bouzroud et al. [47]. Tomato SlARF4 knockout (arf4) and pARF4::GUS plants were
grown in a controlled climate room (25 ± 5 ◦C) under a 16 h/8 h (light/dark) photoperiod
at the South China Agricultural University. Tomato plants were either kept under condi-
tions of unlimited water supply (control) or subjected to a water deficit for 10–15 days;
each treatment included three biological replicates. The leaves at the same position were
collected from each replicate of both control and water stress treatments. Leaf samples were
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immediately frozen in liquid nitrogen and stored at −80 ◦C until analysis. MS medium
containing 100, 200, or 300 µM mannitol was prepared to simulate water deficit. Tomato
seedlings of WT and transgenic plants were incubated aseptically for 2 weeks to measure
the root and hypocotyl length.

4.2. RNA-seq Analysis

All samples (three biological replicates) were sent to Guangzhou Gene Denovo Bio-
logical Technology Co., Ltd. (Guangzhou, China) for RNA isolation and RNA-Seq library
preparation and sequencing. The cDNA libraries were sequenced using the Illumina HiSe-
qTM 2500. Sequence read mapping and assembly were performed using the procedure
described by Song [67]. DEGs were determined using an FDR < 0.05 and an absolute value
of |log2 (fold change)| > 1 as the threshold. The KEGG database was used to identify
putative biological functions and pathways according to Mao et al. [68]. Transcriptome data
analysis and mapping were carried out using OmicShare Tools (www.omicshare.com/tools)
(accessed on 26 January 2021), a free online platform developed by Guangzhou GENE
DENOVO Biotech.

4.3. Paraffin Transverse Section of Stem Tissues

Plant material was immersed in Formalin-Aceto-Alcohol (FAA) fixing solution. Vac-
uum was applied for 15–20 min and then the tissues were stored in 70% alcohol after
fixation for 1–2 days. A 30–95% gradient alcohol dehydration treatment was carried out
for one hour at each stepwise increase of alcohol concentration. Tissue sections were
subsequently immersed in ethanol:xylene (1:1) transparent treatment and xylene:paraffin
(1:1) mixture for 13–20 h and then soaked in pure paraffin three times for 1 h each time.
Subsequently, these tissues were embedded and sectioned and dewaxed twice with pure
xylene for 10 min each time, which was followed by rehydration treatment with each alco-
hol concentration. Finally, toluidine blue or eosin aqueous solution dyeing were applied
for 30 min to 1 h, and tissues were then thoroughly rinsed and observed after dehydration
treatment with 70–100% ethanol.

4.4. GUS Staining

The GUS staining solution included 50 µM sodium phosphate buffer solution (pH 7.2),
2 mM K4Fe6, 0.2% Triton X-100, and 2 mM X-gluc. Leaves or seedlings were immersed
in a recessed container containing GUS dye solution and vacuum-pumped at intervals of
5–5-10 min and then dyed in the dark at 37 ◦C for 24 to 48 h. Finally, an ethanol gradient
was used to decolor until only GUS color was left.

4.5. Determination of Biochemical and Physiological Traits

Mature leaves were detached to determine the rate of water loss using the following
formula: [water loss rate (%) = (weight at the 0 h weight at the nth h)/weight at the
0 h × 100%]. Leaf curl was calculated using the following formula [Leaf curl (%) = (maxi-
mum leaf width − natural leaf width)/maximum leaf width × 100%]. Stem thickness of
the third internode from the ground on 2-month-old tomato plant was measured using a
Vernier caliper. Observation of stomata was carried out on mature leaves between the 4th
and 7th nodes from the shoot base in both control and treated plants. Image Pro was used
for measuring upper and middle stomata-related data. Measurements were performed
between 09:00 and 11:00 h using a microscope BX53 (Olympus, Japan). Superoxide anion
production rate, antioxidant enzyme activities (SOD, POD, and CAT), and malondialde-
hyde (MDA), ascorbic acid, and glutathione contents were measured following the methods
described by Loukehaich et al. [69].

The ImageJ software (Image-Pro Plus 6.0) was used to measure hypocotyl and root
length. Three technical repeats were performed for all quantifications.

www.omicshare.com/tools
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4.6. Analysis of Chlorophyll Fluorescence

Maximal quantum yield of PSII (Fv/Fm) and actual photochemical efficiency of PSII
(YII) have been widely used to reflect drought resistance in vegetables [70,71]. In this
study, the Fv/Fm and YII were measured by using an imaging-PAM fluorometer (Walz,
Effeltrich, Germany). The two-month-old tomato plants were darkened for 30 min prior to
measurement. The third fully expanded leaves from the top were picked, smoothed and
placed on the table of the chlorophyll fluorescence imaging system. First, initial fluorescence
(Fo) was measured during the weak measuring pulses and then maximal fluorescence
(Fm) was measured by a 0.8 s pulse light, and images for chlorophyll fluorescence were
taken at the same time. Next, the actinic light was used to stimulate normal photosynthesis
for several minutes. During illumination, steady-state fluorescence (Fs) and maximal
fluorescence in this light (Fm’) were obtained. Fv/Fm was calculated using the equation:
Fv/Fm = (Fm − Fo)/Fm. YII was calculated using the equation: Y(II) = (Fm’ − Fs)/Fm’.
Three leaves for one biological repetition and three biological repetitions were measured in
this study.

4.7. Statistical Analysis

The data presented were the mean of three replications with corresponding standard
errors (mean ± SE). Data were analysed using IBM SPSS statistics 23 software (SPSS Inc.
Chicago, IL, USA). The one-way analysis of variance (ANOVA) was carried out on the
SPSS software. The differences between the means were determined by Tukey’s least
significant difference (LSD) test at p < 0.05. The value with different letters was considered
a significant difference at p < 0.05.

4.8. RNA Isolation and qRT-PCR Analysis

To validate the RNA-seq results, water-stressed tomato leaf samples from each sam-
pling time point were subjected to qRT-PCR analysis. Total RNA was provided by Gene
Denovo Biological Technology Co., Ltd. (Guangzhou, China). The cDNA was reverse-
transcribed using the PrimeScript RT Reagent Kit with gDNA Eraser (Takara, China),
following the protocol of the manufacturer. Gene-specific qRT-PCR primers were de-
signed using Primer-BLASÉ in National Center for Biotechnology Information (NCBI)
(https://www.ncbi.nlm.nih.gov/) (accessed on 10 January 2019) for 13 selected genes. qRT-
PCR was performed using a LightCycler-480 RT-PCR system (Roche, Basel, Switzerland).
Each reaction mixture contained 5 µL 2 × TB Green Master Mix Reagent (Takara, China),
1 µL cDNA sample, and 100 nM gene-specific primer in a final volume of 10 µL. PCR
conditions were as follows: 95 ◦C for 30 s, followed by 40 cycles of heating at 95 ◦C for 5 s
and annealing at 60 ◦C for 30 s. A template-free control for each primer pair was set for
each cycle. All PCR reactions were normalized using the Ct value corresponding to the
tomato UBI gene. Measurements of three biological and three technical replicates were
used.

5. Conclusions

SlARF4 is involved in the growth and development of tomato plants. Under water
deficit, SlARF4 participates in ABA signaling pathways by regulating ABI5/ABF and SCL3
expression, and by influencing stomatal morphology and vascular bundle development to
improve plant resistance to water deficit.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/7/3347/s1, Figure S1. Morphology of water stress-resistant tomato seedlings under mannitol
treatment. (A) WT and arf4 mutant tomato seed germination rate; (B) Hypocotyl length in WT and
arf4 mutant tomato seedlings cultured during 2 weeks in 100 and 300 µM mannitol-supplemented
MS medium; (C) Root length of WT and arf4 mutant tomato seedlings cultured during 2 weeks at
100 and 300 µM mannitol-supplemented MS medium. (D) Upper and lower rows show 2-week-old
WT and arf4 mutant tomato seedlings, respectively. The scale represents 1 cm. Significance level
set at p < 0.05, n = 5. Figure S2. Correlation analysis of the expression of three biological repeated

https://www.ncbi.nlm.nih.gov/
https://www.mdpi.com/1422-0067/22/7/3347/s1
https://www.mdpi.com/1422-0067/22/7/3347/s1


Int. J. Mol. Sci. 2021, 22, 3347 14 of 17

samples in tomato under different treatments. The WT and arf4 (ARF4) mutant grown under water
stress are represented by WT-D and arf4-D (ARF4-D), respectively. Figure S3. Gene expression
associated with plant hormone signal transduction pathways in arf4 mutants grown under water
stress. The red box represents differently expressed genes. Figure S4. Gene expression of arf4 mutants
in Phenylpropanoid biosynthesis pathway under water stress. The red box represents differently
expressed genes. Figure S5. Two set of specific differentially expressed genes involved in ABA
and salicylic acid (SA) signaling pathways. The red box represents differently genes. Figure S6.
Auxin response element analysis of 3000 bp upstream promoters’ sequences of ABi5, SCL3, EXO
and solyc07g055460.3. Figure S6. Comparison between fluorescent qRT-PCR and transcriptome
sequencing results for 13 selected genes. ARF4 represents the arf4 mutant. Figure S7. Pearson’s
correlation between RNA-seq data and qRT-PCR data. Table S1. Effect of water stress on stomata
morphology of tomato leaf epidermis. Table S2. Summary statistics of RNA-seq data of the 12
libraries mapped to the tomato reference genome (Solanum lycopersicum ITAG2.3). Table S3. KEGG
pathways analysis of 628 DEGs. Table S4. KEGG pathways analysis of 86 DEGs. Table S5. KEGG
pathways analysis of 32 DEGs.
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