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Abstract: Both seed size and abiotic stress tolerance are important agronomic traits in crops.
In Arabidopsis, two closely related transcription repressors DPA4 (Development-Related PcG
Target in the APEX4)/NGAL3 and SOD7 (Suppressor of da1-1)/NGAL2 (NGATHA-like protein)
function redundantly to regulate seed size, which was increased in the dpa4 sod7 double mutants.
Whereas ABA-induced transcription repressors (AITRs) are involved in the regulation of ABA
signaling and abiotic stress tolerance, Arabidopsis aitr2 aitr5 aitr6 (aitr256) triple mutant showed
enhanced tolerance to drought and salt. Here we performed CRISPR/Cas9 genome editing to disrupt
DPA4 and SOD7 in aitr256 mutant, trying to integrate seed size and abiotic stress tolerance traits
in Arabidopsis, and also to examine whether DPA4 and SOD7 may regulate other aspects of plant
growth and development. Indeed, seed size was increased in the dpa4 sod7 aitr256 quintuple mutants,
and enhanced tolerance to drought was observed in the mutants. In addition, we found that shoot
branching was affected in the dpa4 sod7 aitr256 mutants. The mutant plants failed to produce
secondary branches, and flowers/siliques were distributed irregularly on the main stems of the plants.
Floral organ number and fertility were also affected in the dpa4 sod7 aitr256 mutant plants. To examine
if these phenotypes were dependent on loss-of-function of AITRs, dpa4 sod7 double mutants were
generated in Col wild type background, and we found that the dpa4 sod7 mutant plants showed a
phenotype similar to the dpa4 sod7 aitr256 quintuple mutants. Taken together, our results indicate that
the integration of seed size and abiotic stress tolerance traits by CRISPR/Cas9 editing was successful,
and our results also revealed a role of DPA4 and SOD7 in the regulation of inflorescence architecture
in Arabidopsis.
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1. Introduction

Seed size is one of the most important agronomic traits in plants. Several different types of seed
size regulators have been identified. For example, the ubiquitin receptor DA1 [1], the E3 ubiquitin
ligases DA2 and EOD1 (Enhancer of da1-1)/BB (BIG BROTHER) [2], the ubiquitin-specific protease
UBP15 [3], and the CYP78A cytochrome P450 monooxygenase KLUH and EOD3 (Enhancer3 of
da1-1) [4–6], have been reported to regulate seed size in Arabidopsis.

Int. J. Mol. Sci. 2019, 20, 2695; doi:10.3390/ijms20112695 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0001-7619-2385
http://www.mdpi.com/1422-0067/20/11/2695?type=check_update&version=1
http://dx.doi.org/10.3390/ijms20112695
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2019, 20, 2695 2 of 15

Most of the seed size regulators identified so far in Arabidopsis are transcription factors, including
the AP2 (APETALA2)/EREBP (Ethylene Responsive Element Binding Protein) family protein AP2 [7–9],
the WRKY transcription factors TTG2 (Transparent Testa GLABRA2), MINI3 (MINISEED3) and SHB1
(Short Hypocotyl Under Blue1) [10–14], the auxin response factor ARF2 [15], the bHLH transcription
factor ABI5 (ABA Insentive5) [16], the plant-specific VQ motif proteins IKU1 (HAIKU1) and IKU2 [17,18],
and the B3 domain transcription factors DPA4 (Development-Related PcG Target in the APEX4)/NGAL3
and SOD7 (Suppressor of da1-1)/NGAL2 (NGATHA-like protein) [19,20].

Among these transcription factors, DPA4 and SOD7 have redundant functions in regulating seed
size, as the seed size was increased in the dpa4 sod7 double mutant [20]. Cotyledon and flower size
was also affected in the dpa4 sod7 double mutant [20], but it is unclear whether DPA4 and SOD7 may
regulate other aspects of plant growth and development at mature stages.

Abiotic stress tolerance is also one of the most important agronomic traits in plants.
ABA (abscisic acid) is the key plant hormone that regulates plant responses to abiotic stresses including
drought, cold, heat and salt [21–23]. ABA signaling is controlled by several different regulators
including the PYR/PYL/RCAR receptors, the phosphatases PP2Cs (A-group Protein Phosphatase 2C),
the protein kinases SnRKs (Nonfermenting 1 (SNF1)-Related Protein Kinases), the ABF/AREB/ABI5-type
bZIP transcription factors, and the E3 ligases such as KEG (Keep on Going), DWA1 and DWA2 [24–32].
Changes in the expression level of these ABA signaling regulator genes affect ABA signaling, resulting in
alteration of plant tolerance to abiotic stresses. For example, overexpression of PYLs improved drought
tolerance [33,34], whereas loss-of-function of SnRKs or ABF/AREB/ABI5-type bZIP transcription factor
genes reduced drought tolerance [35,36].

Previously we have identified AITRs (ABA-induced transcription repressors) as a novel
transcription factor family [23]. We found that AITRs function as an additional feedback regulatory loop
in ABA signaling, and thereby is involved in the regulation of plant response to abiotic stresses [23].
The loss-of-function mutant aitr2 aitr5 aitr6 (aitr256) showed dramatically enhanced tolerance to
drought and salt [23].

The CRISPR RNA-guided Cas9 endonuclease is able to cleave double-stranded DNA targets
complementary to the guide RNA, and can be used for genome editing in eukaryotic cells to generate
mutations at the target sites [37,38]. So far the CRISPR/Cas9 techniques have been successfully used for
genome-editing to generate transgene-free targeted mutations in different plant species including the
model plant Arabidopsis and crops such as rice [39–42]. Due to its transgene-free nature, CRISPR/Cas9
genome-edited plants may have a bright future for commercial applications in plant breeding.

Considering that DPA4 and SOD7 negatively regulate seed size [20], while AITRs negatively
regulate abiotic stress tolerance [23], we performed genome editing for DPA4 and SOD7 in aitr256
mutant, trying to integrate different important agronomic traits in plants by using CRISPR/Cas9
genome-editing. We found that the dpa4 sod7 aitr256 quintuple mutants obtained produced larger
sized seeds, and showed enhanced tolerance to drought. In addition, we also found that DPA4 and
SOD7 play a role in regulating shoot branching, floral organ development and fertility in Arabidopsis.

2. Results

2.1. Seed Size is Increased in the dpa4 sod7 aitr256 Quintuple Mutant Plants

It has been shown that DPA4 and SOD7 function redundantly to regulate seed size in Arabidopsis,
as the dpa4 sod7 double mutant produced larger seeds [20]. Our previously experiments showed that
AITRs are a novel transcription factor family that is involved in the regulation of ABA signaling and
plant response to abiotic stress tolerance, as the aitr256 triple mutants showed enhanced tolerance
to ABA and abiotic stresses including drought and salt [23]. Considering that both seed size and
abiotic stress tolerance are most important agronomic traits in plants, we wanted to examine whether
it is possible to integrate the larger seeds and enhanced abiotic stress tolerance traits caused by
loss-of-function of AITRs, DPA4 and SOD7 by generating dpa4 sod7 aitr256 quintuple mutants.
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CRISPR/Cas9 Genome editing is able to generate transgene-free mutant plants [39–42], we thus
used CRISPR/Cas9 to edit DPA4 and SOD7 in the aitr256 triple mutants. Two independent Cas9-free
homozygous mutant lines, i.e., dpa4 sod7 aitr256-c1 and dpa4 sod7 aitr256-c2 were generated. In both
lines, a single nucleotide insertion or deletion was occurred for DPA4 and SOD7 (Figure 1a to a few
amino acid substitutions and premature stops for DPA4 and SOD7, respectively (Figure 1b).

Figure 1. Generation of dpa4 sod7 aitr256 quintuple and dpa4 sod7 double mutants. (a) Alignment of
CRISPR/Cas9 targeted nucleotide sequences of DPA4 and SOD7 in Col wild type and the dpa4 sod7
aitr256 quintuple and dpa4 sod7 double mutants. The mutants were obtained by transforming aitr256
triple mutant and Col wild type plants, respectively with DPA4 and SOD7 targeting pHEE construct,
sequencing to examine the editing status in T1 generation, and selecting Cas9-free homozygous mutants
in T2 and/or T3 generations. Nucleotide numbers are relative to the start codon. Underlines indicate
the PAM sites. (b) Alignment of the amino acid sequences of DPA4 and SOD7 in the Col wild type and
dpa4 sod7 aitr256 quintuple and dpa4 sod7 double mutants. Coding sequences of DPA4 and SOD7 were
subjected to ORF analysis by using ORFfinder (https://www.ncbi.nlm.nih.gov/orffinder/), and predicted
amino acid sequences were used for alignment with the amino acid sequences of DPA4 and SOD7,
respectively. Identical amino acids are shaded in black and similar in gray. Amino acid numbers are
relative to the Met encoded by the start codon.

When compared with the Col wild type and the aitr256 triple mutant, the dpa4 sod7 aitr256
quintuple mutant plants produced larger flowers (Figure 2a), bigger cotyledons (Figure 2b), and larger
seeds (Figure 2c), similar to that observed in the dpa4 sod7 double mutant [20]. On the other hand,
no difference was observed between the Col wild type and the aitr256 triple mutant (Figure 2).

https://www.ncbi.nlm.nih.gov/orffinder/
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Figure 2. Organ and seed size in the dpa4 sod7 aitr256 quintuple mutants. (a) Flowers of the Col wild
type, the aitr256 triple and the dpa4 sod7 aitr256 quintuple mutants. Pictures were taken from the
third flower on the main inflorescence stem of the plants indicated. (b) Seedlings of the Col wild type,
the aitr256 triple and the dpa4 sod7 aitr256 quintuple mutants. Seeds were sterilized and then plated on
1/2 MS plates. The plates were kept at 4 ◦C in darkness for 2 days before transferred to a growth room.
Picture was taken 5 days after the transfer. (c) Seeds of the Col wild type, the aitr256 triple and the dpa4
sod7 aitr256 quintuple mutants. Picture of dry seeds was taken for the plants indicated. Bar, 0.2 cm.

2.2. The dpa4 sod7 aitr256 Quintuple Mutants are Hyposensitive to ABA and Drought

Having shown that the dpa4 sod7 aitr256 quintuple mutants produced larger seeds, we further
examined ABA response and drought tolerance in the dpa4 sod7 aitr256 quintuple mutants.

We first tested ABA response of the dpa4 sod7 aitr256 quintuple mutants by ABA inhibition of
cotyledon greening. To do that, sterilized seeds were germinated and grown on 1/2 MS plates in the
presence and absence of 2.5 µM ABA. As shown in Figure 3a, the dpa4 sod7 aitr256 quintuple mutants
showed a reduced ABA sensitivity. Quantitative analyses showed that only ~20% of the Col wild type
seedlings produced green cotyledons, whereas that in the dpa4 sod7 aitr256 quintuple mutants this
number raised to ~90% (Figure 3b). No difference in ABA response was observed between the dpa4
sod7 aitr256 quintuple mutants and the aitr256 triple mutant (Figure 3).
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Figure 3. ABA sensitivity of the dpa4 sod7 aitr256 quintuple mutants. (a) ABA sensitivity of the Col
wild type, the aitr256 triple and the dpa4 sod7 aitr256 quintuple mutants. Seeds were sterilized and
then plated on 1/2 MS plates with 2.5 µM ABA, or without ABA as a control. The plates were kept at
4 ◦C in darkness for 2 days before transferred to a growth room. Pictures were taken 17 days after the
transfer. Upper panel, without ABA, lower panel, with ABA. (b) Quantitative of green seedlings of
the Col wild type, the aitr256 triple and the dpa4 sod7 aitr256 quintuple mutants in response to ABA
treatment. Seedlings with green cotyledons were counted after the pictures were taken. Data represent
the mean ± SD of three replicates.

We then examined drought tolerance of the dpa4 sod7 aitr256 quintuple mutants. The plants were
grown in soil for 30 days with sufficient watering, and then were subjected to drought treatment by
withholding watering for 12 days. As shown in Figure 4, all the dpa4 sod7 aitr256 quintuple mutant
plants recovered 2 days after re-watering, but all the Col wild type plants failed to recover from the
drought treatment (Figure 4). No difference in drought tolerance was observed between the dpa4 sod7
aitr256 quintuple mutants and the aitr256 triple mutant (Figure 4). These results indicate that larger
size trait in the dpa4 sod7 double mutant and enhanced abiotic tolerance trait in the aitr256 triple mutant
were successfully integrated by genome editing of DPA4 and SOD7 in the aitr256 triple mutant.
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Figure 4. Drought tolerance of the dpa4 sod7 aitr256 quintuple mutants. Seeds of the Col wild type,
the aitr256 triple and the dpa4 sod7 aitr256 quintuple mutants were germinated and grown in soil pots
for 30 days with sufficient watering. The plants were drought treated by withholding water for 12 days,
and then watering was resumed. Pictures were taken before and after drought treatment, and 2 days
after watering was resumed. Upper panel, before drought treatment, middle panel, after drought
treatment, lower panel, 2 days after water was resumed.

2.3. DPA4 and SOD7 Regulate Inflorescence Architecture

In addition to the changes previously reported in the dpa4 sod7 double mutant, such as bigger
cotyledons, large-sized flowers and seeds [20], we found that the shoot branching was also affected
in the dpa4 sod7 aitr256 quintuple mutants. In the Col wild type plants, the main inflorescence stem
produced a few secondary branches, the siliques distributed almost evenly on the stems, and all except
the first 1–2 siliques were able to produce seeds (Figure 5). The aitr256 triple mutant plants were
morphologically indistinguishable to the Col wild type plants (Figure 5). However, in the dpa4 sod7
aitr256 quintuple mutant plants, the main inflorescence stem failed to produce any secondary branches,
clusters of siliques were observed on the main stems, and only a few, especially late generated siliques
were able to bear seeds (Figure 5).
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Figure 5. Inflorescence architecture in the dpa4 sod7 aitr256 quintuple and the dpa4 sod7 double mutants.
Seeds of the Col wild type, the aitr256 triple, the dpa4 sod7 aitr256 quintuple and the dpa4 sod7 double
mutants were generated and grown in soil pots for 30 days with sufficient watering. Pictures for
inflorescences were taken from 7-week-old plants, for siliques were taken from 6-week-old plants.
Upper panel, inflorescences of 7-week-old plants, middle panel, siliques arrangement on the main
inflorescence stems, lower panel, 8th siliques on main inflorescence stems.

We also noticed that main stems of the dpa4 sod7 aitr256 quintuple mutants were still able to grow
and flower even when the Col wild type and the aitr256 triple mutant finished flowering (Figure 5).
Therefore, the main stems of dpa4 sod7 aitr256 quintuple mutants eventually reached a height about
twice of the Col and the aitr256 triple mutant (Figure 6a), and produced about twice as much siliques,
however, only about one fourth of the siliques in the dpa4 sod7 aitr256 quintuple mutants were able to
produce seeds (Figure 6b).
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Figure 6. Height and siliques of the dpa4 sod7 aitr256 quintuple and the dpa4 sod7 double mutants.
(a) Height of 12-week-old Col wild type, the aitr256 triple, the dpa4 sod7 aitr256 quintuple and dpa4 sod7
double mutants. (b) Siliques of Col wild type, the aitr256 triple, the dpa4 sod7 aitr256 quintuple and
dpa4 sod7 double mutants. Seeds of the Col wild type, the aitr256 triple, the dpa4 sod7 aitr256 quintuple
and the dpa4 sod7 double mutants were generated and grown in soil pots for 12 weeks, plant height
was measured, total siliques and siliques with seeds (normal siliques) on the main inflorescence stems
of the plants were counted. Data represent the mean ± SD of at least 11 plants.

To examine if the phenotypes observed in the dpa4 sod7 aitr256 quintuple mutant plants were
a synergistic effect between the loss-of-function of AITR genes and DPA4 and SOD7, we generated
dpa4 sod7 double mutants by using CRISPR/Cas9 to edit DPA4 and SOD7 in Col wild type plants.
Therefore, two independent Cas9-free homozygous mutant lines, i.e., dpa4 sod7-c1 and dpa4 sod7-c2
were generated. Similar to the dpa4 sod7 aitr256 quintuple mutants, a single nucleotide insertion or
deletion occurred in DPA4 and SOD7 (Figure 1a), resulting in a few amino acid substitutions and
premature stops for DPA4 and SOD7, respectively in both lines (Figure 1b).

Similar to the dpa4 sod7 aitr256 quintuple mutant plants, we found that the dpa4 sod7 double
mutant plants were unable to produce secondary branches, cluster siliques were found on the main
stems, only a few late generated siliques produced seeds, and reached a higher height (Figures 5 and 6).

2.4. DPA4 and SOD7 Regulate Floral Organ Development

In addition to the large-sized flowers, we found that some of the flowers in the dpa4 sod7 aitr256
quintuple mutant plants have 5 petals (Figure 7a). Furthermore, detailed observation showed that
sepal and stamen numbers were also changed in some of the flowers in the dpa4 sod7 aitr256 quintuple
mutant plants (Figure 7b). Quantitative analysis showed that in the Col wild type plants, all the flowers
have 4 sepals and 4 petals, about 80% of the flowers have 6 stamens, while the other ~20% have 5
stamens (Figure 7c). In the dpa4 sod7 aitr256 quintuple mutant plants, the numbers of sepals and petals
ranged from 3–5, whereas that of stamens ranged from 4–6 (Figure 7c). Similar changes were observed
in the dpa4 sod7 double mutant plants (Figure 7a–c). As expected, the seed size was increased in the
dpa4 sod7 double mutants (Figure 7d).
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Figure 7. Flower morphology and seed size of the dpa4 sod7 aitr256 quintuple and the dpa4 sod7 double
mutants. (a) Flowers of the Col wild type, the aitr256 triple, the dpa4 sod7 aitr256 quintuple and dpa4
sod7 double mutants. Pictures were taken from flowers on the main inflorescence stems of the plants
indicated. (b) Floral organs of the Col wild type, the aitr256 triple, the dpa4 sod7 aitr256 quintuple and
dpa4 sod7 double mutants, showing irregular number of sepals, petals and/or stamens. (c) Percentage
of floral organs of the Col wild type, the aitr256 triple, the dpa4 sod7 aitr256 quintuple and dpa4 sod7
double mutants. From left to right, Col, aitr256, dpa4 sod7 aitr256-c1, dpa4 sod7 aitr256-c2, dpa4 sod7-c1
and dpa4 sod7-c2. A total of 100 flowers for each genotype from the main inflorescence stems of the
plants indicated were investigated. (d) Seeds of the Col wild type and the dpa4 sod7 double mutants.
Picture of dry seeds was taken for the plants indicated. Bar, 0.2 cm.

3. Discussion

CRISPR/Cas9 genome-editing has been successfully used to generate transgene-free mutants
in different plant species including Arabidopsis [39–42]. We provide evidence in this study that
CRISPR/Cas9 genome-editing can be used to integrate important agronomic traits in Arabidopsis.
In addition, we also found that DPA4 and SOD7, negative regulators of seed size [20], are involved in
the regulation of shoot branching and floral organ development.

Both seed size and abiotic stress tolerance are most important agronomic traits in plants.
Many reports in Arabidopsis have shown that a lot of transcription factors are involved in the
regulation of seed size [8–14,16–18,20,43], as well as abiotic stress tolerance [23,35,36,44]. Among them,
DPA4 and SOD7 act redundantly to regulate seed size, as the dpa4 sod7 double mutant produced larger
seeds [20]. AITRs function redundantly to regulate abiotic stress tolerance, as the aitr256 triple mutant
showed enhanced tolerance to abiotic stresses including drought and salt [23]. Generation of dpa4 sod7
aitr256 quintuple mutants to integrate larger seeds and enhanced abiotic stress tolerance by using
traditional means, i.e., crossing, is possible, but identification of homozygous mutants, especially when
multiple genes are involved is laborious and protracted.

On the other hand, genome editing by CRISPR/Cas9 has been showed to be an efficient way
to generate transgene-free mutants in a much faster manner [39–42]. Up to eight genes have been
successfully edited at the same time by using a single CRISPR/Cas9 construct [39], and CRISPR/Cas9
genome editing has been used to improve important agronomic traits in crops [45]. Therefore, we edited
DPA4 and SOD7 in the aitr256 triple mutants to see if we are able to generate mutants that could produce
larger seeds and show enhanced abiotic stress tolerance. As expected, we obtained Cas9-free dpa4 sod7
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aitr256 quintuple mutants (Figure 1). Similar to dpa4 sod7 double mutant [20], the dpa4 sod7 aitr256
quintuple mutants produced larger seeds (Figure 2). Enhanced tolerance to ABA (Figure 3), as well
drought (Figure 4), was also observed in the dpa4 sod7 aitr256 quintuple mutants. These results indicated
that the bigger seeds and enhanced abiotic stress tolerance traits were successfully combined in the dpa4
sod7 aitr256 quintuple mutants, suggesting that CRISPR/Cas9 genome editing can be used to integrate
different agronomic traits in plants, which shortens the traditional breeding process significantly.

In addition, we also found that inflorescence architecture was altered in the dpa4 sod7 aitr256
quintuple mutants, which failed to produce secondary branches, have clustered siliques, and greatly
reduced fertility (Figures 5 and 6). The dpa4 sod7 aitr256 quintuple mutants also produced flowers
with altered number of floral organs including sepal, petal and stamen (Figure 7). Since none of these
phenotypes had been reported previously, we further generated dpa4 sod7 double mutants by using
CRISPR/Cas9 (Figure 1), to examine if these phenotypes are dependent on aitr256 mutant background.
As expected, the dpa4 sod7 double mutants produced larger seeds (Figure 7). However, the inflorescence
phenotype of the dpa4 sod7 double mutants was similar to that of the dpa4 sod7 aitr256 quintuple
mutants (Figures 5 and 7). These results suggested that the inflorescence phenotype observed in the
dpa4 sod7 aitr256 quintuple mutants was independent of the aitr256 mutant background, and DPA4
and SOD7 played a role in the regulation of shoot branching in Arabidopsis.

The dpa4 sod7 Cas9-free mutants produced bigger cotyledons, large-sized flowers and seeds,
similar to that observed in the dpa4 sod7 T-DNA insertion mutants [20], indicating that dpa4 sod7
Cas9-free mutants are indeed loss-of-function mutants. On the other hand, no morphological changes
were observed in the DPA4 and SOD7 heterozygous edited T1 plants, and among their offspring, all the
phenotypes observed in the dpa4 sod7 mutants co-segregated with the homozygous edit status of both
DPA4 and SOD7, it is very unlikely that the inflorescence phenotype observed in the dpa4 sod7 mutants
were caused by off-target mutation of other genes. Considering that fertility was greatly reduced in
the dpa4 sod7 double mutants (Figure 5), DPA4 and SOD7 may not serve as good candidate genes for
genome editing by CRISPR/Cas9 to increase yield in plants, even though the dpa4 sod7 double mutants
indeed produced larger seeds (Figure 7).

Shoot branching is another important agronomic traits, which is regulated by the interplay of
several different plant hormones including auxin, strigolactone, cytokinins and abscisic acid [46–48].
The TCP (TB1/CYCLOIDEA/PCF) transcription factor BRC1 (BRANCHED 1) is the central regulator of
shoot branching, which negatively regulates branching in Arabidopsis [49]. All the plant hormones
mentioned above and other regulators regulate shoot branching mainly via regulating the expression of
BRC1, or the activity of BRC1 [47,48]. DPA4 and SOD7 have been shown to function as transcriptional
repressors [20], therefore it will be interesting to examine whether DPA4 and SOD7 are also functioning
through BRC1 to regulate branching in Arabidopsis.

Specification of floral organs is regulated by several key transcription factors [50], including the
MIKCc-type MADS-domain transcription factors AG (AGAMOUS), AP3/PI (PISTILLATA), AP1 [51–54],
and the AP2 [7]. Since floral organ numbers were changed in the dpa4 sod7 double mutants, it will
be also interesting to examine if DPA4 and SOD7 may regulate the expression of the above key
transcription factor genes involved in the regulation of floral organ specification.

Nevertheless, our results in the study show that genome editing by CRIPSPR/Cas9 is able to
integrate different agronomic traits in plants, and DPA4 and SOD7 play a role in regulating branching
and floral organ specification in Arabidopsis.

4. Materials and Methods

4.1. Plant Materials and Growth Conditions

The Arabidopsis (Arabidopsis thaliana) ecotype Columbia-0 (Col) was used as wild type. The aitr2
aitr5 aitr6 (aitr256) triple mutant was in the Col ecotype background, and has been described
previously [23].
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Arabidopsis seedlings for cotyledon size observation and ABA treatment were grown on 1/2 MS
plates. Arabidopsis plants used for plant transformation and phenotypic observation were grown in
soil pots. All plants were grown in a growth room with growth conditions described previously [44,55].

4.2. Construct

To generate CRISPR/Cas9 construct for genome editing of DPA4 and SOD7, exon
sequences of DPA4 and SOD7 were subjected to CRISPRscan (http://www.crisprscan.org/

?page=sequence) to identify appropriate target sequences. Selected target sequences were
then evaluated with Cas-OFFinder (http://www.rgenome.net/cas-offinder/). The target
sequences used for editing DPA7 was 5′-AGGCTCCTCATCCTCCGTCG(CGG)-3′,
for SOD7 was 5′-CGGAGATGACGTGGCGACGA(CGG)-3′. The pHEE401E vector was
used to generate CRISPR/Cas9 construct by following the procedures described by
Wang et al. [56]. The primers used to insert the target sequences into the pHEE401E vector
were, DT1-BsF (SOD7), 5′-ATATATGGTCTCGATTGGGAGATGACGTGGCGACGAGTT-3′,
DTI-F0 (SOD7), 5′-TGGGAGATGACGTGGCGACGAGTTTTAGAGCTAGAAATAGC-3′,
DT2-R0 (DPA4), 5-AACCGACGGAGGATGAGGAGCCCAATCTCTTAGTCGACTCTAC-3′,
and DT2-BsR (DPA4): 5′-ATTATTGGTCTCGAAACCGACGGAGGATGAGGAGCCC-3′.
The primers used for colony PCR and to sequence the CRISPR/Cas9 constructs
generated were, U626-IDF, 5′-TGTCCCAGGATTAGAATGATTAGGC-3′ and U629-IDR,
5′-AGCCCTCTTCTTTCGATCCATCAAC-3′.

4.3. Plant Transformation, Transgenic plant Selection and Cas9-Free Mutant Isolation

About 5-week-old Col wild type and the aitr256 triple mutant plants with several mature flowers
on the main inflorescence were used for transformation. The plants were transformed with the
CRISPR/Cas9 construct generated by using floral dip method [57]. T1 seeds were collected and
transgenic plants were selected by plating the seeds on 1/2 MS plates containing 30 µg/mL hygromycin
and 50 µg/mL carbenicillin. Gene editing status was examined at T1 generation by amplifying and
sequencing the genomic sequence of DPA4 and SOD7. T2 seeds generated from gene edited T1 plants
were sown directly into soil pots and used to select homozygous Cas9-free mutants. Two independent
lines of Cas9-free homozygous mutants were obtained and used for the experiments.

4.4. DNA Isolation and PCR

To examine gene editing status of DPA4 and SOD7, DNA was isolated from leaves of the
transgenic plants, and used as templates to amplify genomic sequences of DPA4 and SOD7,
respectively by PCR. PCR products was recovered from gel and used for sequencing. Sequencing
results were examined and aligned with wild type genome sequences of DPA4 and SOD7,
respectively. To isolate Cas9-free mutants, DNA isolated from leaves of the gene edited transgenic
plants was used as template to amplify Cas9 gene fragment by PCR. The primers used for PCR
amplification of DPA4 and SOD7 were, DPA4-F, 5′-ATGTCAGTCAACCATTACTCCAC-3′ and DPA4-R,
5′-CATAGTGGGAATACTCTGAGTGAG-3′, and SOD7-F, 5′-ATGTCAGTCAACCATTACCACAAC-3′

and SOD7-R, 5′-AAGAGAACATGTAAATATGCAATACAAATTA-3′. The primers used for
PCR amplification of Cas9 were, Cas9-F, 5′-GGACAACGAGGAGAATGAGG-3′, and Cas9-R,
5′-TGTCTCGACCAGCTGCCTCTT-3′

4.5. ABA Sensitivity Analysis

ABA inhibited cotyledon greening assay was used to examine ABA sensitivity of the dpa4 sod7
aitr256 quintuple mutants by following the procedure described previously [58,59]. Briefly, sterilized
seeds of the Col wild type, the aitr256 triple and the dpa4 sod7 aitr256 quintuple mutants were plated
on 1/2 MS plates with or without 2.5 µM ABA. The plates were kept at 4 ◦C in darkness for 2 days,
and then transferred to a growth room. Pictures were taken 17 days after the transfer by using a

http://www.crisprscan.org/?page=sequence
http://www.crisprscan.org/?page=sequence
http://www.rgenome.net/cas-offinder/
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digital camera, seedlings with green cotyledons were counted, and percentage of green cotyledons
was calculated. The experiments were repeated three times with similar results.

4.6. Drought Tolerance Analysis

Drought tolerance of the dpa4 sod7 aitr256 quintuple mutants was assayed as described
previously [23] with some modifications. In brief, seeds of the Col wild type, the aitr256 triple
and the dpa4 sod7 aitr256 quintuple mutants were germinated in soil pots and grown for 30 days with
sufficient watering. The plants were withheld watering for 12 days, and then watering was resumed.
Pictures were taken before and after drought treatment, as well as 2 days after watering was resumed,
by using a digital camera.

4.7. Morphological Assays

For morphological assays of seedling cotyledons, sterilized seeds of the Col wild type, the aitr256
triple and the dpa4 sod7 aitr256 quintuple mutants were plated on 1/2 MS plates. The plates were kept
at 4 ◦C in darkness for 2 days and then transferred to a growth room. Picture of 5-day-old seedlings
were taken under a dissection microscope equipped with a digital camera.

For morphological assays of mature plants, seeds of the Col wild type, the aitr256 triple, the dpa4
sod7 aitr256 quintuple and the dpa4 sod7 double mutants were germinated and grown in soil pots.
Pictures for the plants and inflorescences were taken at indicated growth stages by using a digital
camera. Pictures for flowers and siliques were taken under a dissection microscope equipped with
a digital camera. Flowers were dissected under a dissection microscope and pictures were taken by
using a digital camera. Twelve-week-old plants that have stopped flowering were used for height
measurement and siliques counting.
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