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Abstract—Scientific workflows are today a vital tool for compu-
tational science, enabling the definition and execution of complex
applications in heterogeneous and often distributed environments.
A key characteristic of scientific workflow applications is that
they often require the massive processing of an enormous amount
of data that, in many cases, convey personal information. To allow
an efficient and transparent privacy compliance check process,
in this paper, we propose a blockchain-based solution coupled
with an ad-hoc index structure that makes it possible an efficient
compliance check for a massive amount of data.

Index Terms—Privacy, Scientific Workflows, Blockchain.

I. INTRODUCTION

Today, advances in information technologies, especially
those related to machine learning tools, support data-driven
and information-driven science in multidisciplinary fields, such
as biological, medical, physical, chemical, etc. As a result,
many scientific organizations make their services available to
researchers to create distributed systems capable of processing
and supplying large amounts of data, allowing coordinated
sharing among the parties involved, the so-called grids.

Scientists can pool these distributed resources to achieve
their scientific goals, generating scientific workflows (SWFs).
These resources include high performance computing services
and large databases, used in pipelines. For instance, a collab-
orative scientific workflow can be used by organizations (e.g.,
research laboratories, computing centers) to jointly conduct
experiments to obtain a result (e.g., particular treatments, use
of new molecules or substances). In general, each piece of
information that passes through the workflow has its own
terms and conditions of use. More importantly, when dealing
with scientific workflows, many datasets may contain highly
sensitive personal information (e.g., genomics data, health
status, disease, and causes of death). Some organizations
may be reluctant to release and use this information without
proper mechanisms to ensure controlled and secure sharing.
Additionally, organizations need to be compliant with privacy
regulations, such as the European General Data Protection
Regulation (GDPR),1 the California Consumer Privacy Act

1Available at https://gdpr.eu/

(CCPA),2 or the Brazilian Lei Geral de Proteção de Dados
(LGPD),3 just to mention few.

Several proposals have successfully applied access control
techniques to preserve data confidentiality in collaborative
workflows (e.g., [1], [2]), but our approach differs because
we adopt a user-centric vision since we deal with user privacy
preferences rather than access control rules centrally managed
by the security administrator. The user, aka data owner, can
define his/her own privacy preferences, which represent his/her
will on the processing of his/her personal data. After that, the
service receives the data only if its privacy policy meets the
privacy requirements of the data owner.

In this context, trust among the parties involved in the
workflow is essential. Usually, a third party, in which all
organizations place their trust, controls and manages both the
execution of the workflow and the controlled exchange of
data. However, it is not always easy to find an agreement
among organizations to choose the third party that will have
the control. Many scientific work have highlighted problems
of trust in centralized workflows, such as data provenance and
the repeatability of experiments [3], [4].

For these reasons, in this paper, we propose a distributed
solution, in which the workflow is managed by the blockchain.
This solution introduces numerous advantages, such as ver-
ifiability, authenticity, immutability and non-repudiation of
information. By leveraging on blockchain, each party involved
in the collaboration is able to monitor and audit the workflow
performed on the blockchain as well as the privacy compliance
process. Smart contracts, which allow the programmability of
the blockchain, as in Hyperledger Fabric [5] and Ethereum
[6], can be used to encode the workflow logic and checking
the compliance with data owner’s privacy preferences.

Performing privacy compliance during the scientific work-
flow execution might be time consuming due to the huge
amount of data tuples to be processed, each of which might
require a privacy compliance check. Therefore, to reduce the
overhead of privacy preference enforcement, we propose a

2Available at https://oag.ca.gov/privacy/ccpa
3Available at https://lgpd-brazil.info/
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multi-dimensional index structure, called IP graph, which is
built by taking into account each component of a privacy
preference/policy, as well as the inclusion relationship that
may hold among privacy policies/preferences. The experimen-
tal evaluation we have carried on shown the efficiency gain
achieved by the proposed index structure.

Ensuring data privacy in scientific workflows has been
subject to many studies (e.g., [7]–[9]), but most of the previous
proposals adopt a centralized solution for privacy compliance
check. There are also few more recent proposals leveraging on
blockchain, but they are mainly targeting data provenance. For
instance, BlockFlow [10] is a blockchain-based platform for
scientific data provenance. One of the approach more related
to our proposal is ProvChain [11]. Although it does not target
scientific workflows, it provides a blockchain-based solution
combining data provenance and privacy guarantees. However,
privacy is achieved through anonymization techniques, rather
than through the selective release of information driven by
privacy preference enforcement. Finally, there are other work
leveraging on blockchain for privacy preference enforcement,
but they are targeting different application domains, such as
IoT [12], mobile applications [13], or smart grids [14].

The remainder of this paper is organized as follows. Section
II introduces some background information. Section III pro-
vides the general architecture of the proposed solution, while
the index data structure is discussed in Section IV. Section
V gives an overview of how the proposed index structure is
used for privacy compliance check, whereas more details are
given in Section VI. Experiments are discussed in Section VII,
whereas Section VIII concludes the paper.

II. BACKGROUND

A. Scientific workflows

A scientific workflow [15], [16] is a sequence of config-
urable activities that elaborate different datasets in order to
obtain computational solutions to a scientific problem. A scien-
tific workflow management system (SWMS) [17] manages op-
erations, authorizations and data transfer among organizations
involved in the collaboration. It provides interfaces to scientists
for defining the workflow, simplifying the communication
and data sharing among services, and keeping track of the
data provenance (e.g., Kepler4, or Taverna5). A SWMS is
equipped with a workflow engine (WE) that takes care of
tasks execution by properly invoking services according to
the workflow order. Scientific workflows, compared to other
types of workflows, such as business workflows, involve an
intensive computation load and comply with the dataflow
oriented model [17]. Tasks are performed by services often
configured as web services (using API architectures, such as
SOAP, REST, RPC, GraphQL, etc.).

Example 1: Figure 1 shows an example of scientific work-
flow. It represents a high level view of the process of iden-

4Availabe at https://kepler-project.org/
5Availabe at https://incubator.apache.org/projects/taverna.html
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Fig. 1: An example of scientific workflow for promoter iden-
tification [17]

tification and characterization of eukaryotic promoters.6 In
step 1, the microarray7 data is selected to be analyzed using
clustering techniques to find similar gene patterns (step 2). In
step 3, the identifiers of the found pattern is used to search the
whole sequence in a database, which is then passed to a tool
that searches for similar sequences (step 4). The subsequent
steps allow to generate a promoter model that is repeatedly
optimized and refined until the desired result is achieved.

Example 1 shows how large amounts of data are conveyed
among many actors/organizations who have different roles and
functions, such as databases (e.g., GenBank) and processing
tools (e.g., BLAST), that could store and process sensitive
information belonging to third parties.

B. Blockchain

Blockchain is a distributed ledger technology (DLT), in
which data are replicated and shared by multiple nodes [18].
In the blockchain, information is stored in blocks, crypto-
graphically joined together to form a chain. Blocks contain
transactions, recording any activity or exchange of resources
made by network nodes. The consensus algorithm ensures that
each node has the same data (current state of the ledger),
by reaching a common agreement. Examples of consensus
protocols are Proof-of-Work (PoW) and Byzantine Fault-
Tolerant (BFT) [19]. By now, the vast majority of blockchains
support smart contracts, that is, small autonomous programs
that are executed during the transaction validation process. A
blockchain can be permissionless or permissioned. Participa-
tion in permissioned blockchains is limited only to authorized
and recognized nodes, whereas in permissionless ones, each
node can participate in the activities of the network. Our
solution uses Hyperledger Fabric,8 a permissioned blockchain
that can efficiently manage large amounts of data and supports
smart contracts, called chaincodes.

C. Privacy model

We leverage on the model defined in [20] to specify
privacy preferences and policies, as it is light and expressive.
According to [20], purposes are structured into a purpose tree
structure PT (see, Figure 2 for an example).

6A promoter is a region of DNA, where RNA polymerase binds to initiate
the transcription of one or more genes.

7Set of microscopic DNA spots attached to a solid surface (e.g., glass,
plastic, or silicon chip) forming an array.

8Available at https://www.hyperledger.org/
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Fig. 2: An example of purpose tree

A privacy preference is formally defined as follows.
Definition 1 (Privacy preference [20]): A privacy preference

is a tuple pp = ⟨α, consumer, ip, rt, tpu⟩, where α is the data
tuple to which the preference applies, consumer specifies the
set of consumer’s identities to which pp applies, ip specifies
the intended purposes for which α can be collected and used
by any entity in consumer, rt specifies the retention time, and
tpu the third party usage.9 The intended purpose ip is in turn
modelled as a pair (Aip,Exc), where Aip (allowed intended
purposes) is a set of purposes belonging to a purpose tree PT
and Exc (exceptions) is a set of purpose elements that descend
from elements in Aip that must be denied. ip authorizes the
access for all purposes that descend from the elements in Aip,
except for those that descend from any element in Exc.

Example 2: Let us consider a genomic scientific workflow
where several services interact to collaborate in research. A
data owner wants to grant his/her data for this research but
he/she wants his/her data to be used for administrative analysis
purposes and all medical purposes, but not for development
of services on his/her personal data. Furthermore, data can be
used for 5 years, prohibiting dissemination to third parties,
that is, those parties not directly involved in the workflow.
These requirements, can be modeled by the following pri-
vacy preference: pp = ⟨genomicData, {genomicResearch},
({admin,medical}, {development}), 5y, unshareable⟩.

In contrast, a privacy policy is modeled as a tuple: ⟨α, up,
dataRet, dataRel⟩, where α is the data tuple to which the
policy refers to, up is the data usage purpose, dataRet is
the data retention time, and dataRel is the third party usage.
The data usage purpose up = (Aup,Exc) is modelled as the
intended purpose ip.

Example 3: A consumer privacy policy, stating that genomic
data are collected and used for medical purposes only, they are
collected for no more than 3 years and without the ability
to share them with third parties, can be modeled as: p =
⟨genomicData, ({medical}, {}), 3y, unshareable⟩.

Therefore, to check the compliance of a privacy policy with
a privacy preference we have first to check if the purposes
derived from an intended purpose contains the set of purposes
derived from the policy data usage purpose. Formally, we
denote with

−→
ip (resp. −→up) the set of purposes implied by ip

(resp, up).
−→
ip consists of the set of elements in the purpose

tree PT that descend from each purp in ip.Aip, from which
the elements that descend and ascend from each purp in

9For simplicity, in what follows, we assume that the retention time is
expressed in days and the third party usage tpu assumes one of two values,
namely shareable or unshareable.
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Fig. 3: Overview

ip.Exc have been pruned. Computation of −→up follows the same
strategy.

During the privacy compliance check, we verify that: (1)
p.−→up is contained in pp.

−→
ip , (2) p.dataRet is less than or equal

to pp.rt and (3) p.dataRel=pp.tpu. If these checks succeed,
then the privacy enforcement is successful. In what follows, we
use the notation PE(pp, p) to indicate the compliance check of
a privacy preference pp against a privacy policy p. The result
of PE(pp, p) is true, if p respects the constraints specified in
pp, false, otherwise.

III. ARCHITECTURE

As depicted in Figure 3, our reference architecture implies
different actors. We have the workflow requestor (WR), which
is the entity (e.g., a person or a company) invoking a SWF.
Referring to Example 1, a requestor could be a researcher
providing an input microarray data in order to obtain new
candidate target genes. Workflow tasks are executed via ser-
vices delivered by different service providers (SP), such as
the BLAST tool or a promoter model generator of Example 1.
Services might need to process datasets managed by external
data sources (DS), which handle data collected by different
individuals (data owner DO).

We leverage blockchain to govern the workflow deployment,
with the aim of ensuring that the data owners’ privacy prefer-
ences are respected by every task execution. We assume that
when a data owner uploads his/her data to a data source (see,
Fig. 3, step 1'), he/she also registers the corresponding privacy
preference in the blockchain. This is done through a dedicated
smart contract, called PR-SC (see, Fig. 3, step 1). Privacy
preferences are specified according to the model presented in
the Section II-C.

Similarly to other blockchain-based workflow execution
platforms (cfr. [21], [22]), we assume the presence of an
off-chain entity, called Deployer, in charge of encoding the
workflow into a smart contract, called Scientific Workflow
Engine Smart Contract (SWE-SC).10 The smart contract is
then deployed on the blockchain to manage tasks/services
invocation, following the defined workflow. Thus, when the

10The design of a smart contract for workflow management has been
extensively covered by previous work, such a [21] and [22]. Therefore, we
do not focus here on the Deployer component.
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requestor wants to execute a SWF, it invokes the corresponding
SWE-SC (see, Fig. 3, step 2).

During workflow execution, when a service is invoked
(see, Fig. 3, step 3), the service provider generates a request
to a data source for the data needed for service execution.
The request contains also the service privacy policy (cfr.
Section II-C) (see, Fig. 3, step 4). Once the data source has
retrieved all data tuples needed by the service, it asks the
blockchain to verify privacy compliance (see, Fig. 3, step 5).
This request triggers the privacy enforcement that is executed
via the privacy enforcement smart contract (PE-SC). This
smart contract verifies the privacy preferences associated with
requested data tuples against the service’s privacy policy. Once
done, PE-SC communicates to the data source the selection
of tuples that can be released to the service, that is, those
whose associated privacy preferences are satisfied by service’s
policy (see, Fig. 3, step 6). These tuples are then released
to the requiring service (see, Fig. 3, step 7). In general, this
release involves the exchange of large amounts of data, which
is managed off-chain. This is out of scope of this paper, but it
can be done following the approach in [22]. Once the service
terminated its task, it returns the results to SWE-SC to proceed
with the next steps (see, Fig. 3, step 8). Steps 3-8 in Figure
3 are repeated until the end of the scientific workflow. Lastly,
the service releases output data to the requestor (see, Fig. 3,
step 9).

Having privacy enforcement done during the workflow
execution might be not feasible in the context of scientific
workflows, characterized by huge amount of data tuples to be
processed, each of which might require a privacy compliance
check. At the task level, a way to optimize this process is to
collect all tuples with the same privacy preference, such to
perform only one privacy enforcement against the provider’s
privacy policy. Even if this represents a relevant improvement,
it might not be enough to solve scalability issues. Indeed,
usually multiple workflows are processed in parallel, each
consisting of several tasks. Therefore, there is the need of
adopting further solutions to decrease the number of privacy
compliance checks.

For this purpose, we propose an alternative solution that
exploits the relationships between privacy preferences. To
better introduce this concept, let us consider two privacy
preferences pp1 and pp2, whose conditions are equal except for
the retention times set to 12 months for pp1 and 6 months for
pp2, respectively. Here, we can easily see that if the provider’s
privacy policy satisfies the most restrictive privacy preference
(i.e., the one with 6 months retention), it also satisfies the other
one (i.e., the one with 12 months retention). By extending
this concept to all preference’s components, we introduce the
inclusion property between two privacy preferences, formally
defined as follows.11

Definition 2 (Inclusion property for privacy preferences):

11For the sake of simplicity, we use the set
−→
ip =

−−→
Aip−

−−→
Exc (Sec. II-C)

instead of ip, obtaining pp = ⟨−→ip, rt, tpu⟩. The same considerations apply
to the privacy policy p = ⟨−→up, dataRet, dataRel⟩.

Let pp1 = ⟨−→ip1, rt1, tpu1⟩ and pp2 = ⟨−→ip2, rt2, tpu2⟩ be two
privacy preferences. We say that pp1 is included in pp2, pp1 ⊆
pp2, if tpu1 = tpu2 ∧ rt1 ≤ rt2 ∧

−→
ip1 ⊆ −→

ip2.

For the sake of simplicity, Definition 2 considers only
privacy preference components relevant for the inclusion (i.e.,
ip, rt and tpu). Conceptually, if constraints defined in a
privacy preference pp are logically contained in those of
another privacy preference pp′, then pp′ contains pp (denoted
as pp ⊆ pp′ ) and a privacy policy p that satisfies pp
also satisfies pp′. If we consider a privacy policy p and a
privacy enforcement PE(pp, p) = true, it follows that also
PE(pp′, p) = true.

Inclusion property can be used to determine if the com-
pliance of a policy p with a new privacy preference ppnew
is implied by the compliance already verified with another
privacy preference included in ppnew. An inclusion property
can be defined also between two privacy policies.

Definition 3 (Inclusion property for privacy policies): Let
p1 = ⟨−→up1, dataRet1, dataRel1⟩ and p2 = ⟨−→up2, dataRet2,
dataRel2⟩ be two privacy policies. We say that p1 is included
in p2, p1 ⊆ p2, if dataRel1 = dataRel2 ∧ dataRet1 ≤
dataRet2 ∧ −→up1 ⊆ −→up2.

This property can be used to further reduce the number
of checks to be performed during the workflow execution.
Indeed, Let us consider a privacy preference pp and two
privacy policies p1 and p2, such that p1 ⊆ p2. Then, if p2
satisfies pp, then also p1 satisfies pp. Moreover, to efficiently
exploit the inclusion property during workflow execution,
we introduce an index structure to organize the registered
privacy preferences and policies according to their inclusion
properties. In particular, we propose a multidimensional index
data structure tailored for blockchain and smart contracts. In
what follows, we discuss the index for privacy preferences.

IV. PRIVACY PREFERENCES INDEX

A first naive preferences index could be built by simply
considering the preferences inclusion property. This could be
done by creating an hierarchy on registered privacy prefer-
ences: each node corresponds to a preference, connected only
with children nodes representing included privacy preferences.
Even if it would bring some benefits, we can improve it
by considering that preference’s components are in logical
conjunction (and). This means that we need just a not-satisfied
check to conclude that the preference is not satisfied. This
reduces the number of checks, avoiding unnecessary controls
in case of non-compliance.

Thus, rather than exploiting an hierarchy based on the
inclusion property, we propose an index structure where we
exploit separately the inclusion relationship of each preference
component (i.e., ip, tpu, rt). In the following, we present how
the index is generated by considering each single component.
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A. IP Graph

In this section, we focus on the privacy preference’s ip
component.12 We model the inclusion relationship among

−→
ips

via a directed acyclic graph (DAG), called IP graph. Given
a set of privacy preferences, this graph is built such that any
vertex represents the

−→
ip of an existing privacy preference and

its edges indicate the inclusion relationships. An edge from
a node n1 to a node n2 means that the

−→
ip corresponding to

n1 are included in the
−→
ip corresponding to n2. Multiple pp

sharing the same
−→
ip are identified by the same vertex.

Given a new pp, this is inserted in the graph only if its−→
ip is not already present. If this is the case, we insert a new
node for

−→
ip . According to the IP graph definition, we need

to add also those nodes representing the sets of purposes that
could be included by

−→
ip , if not already present. To compute

these sets we exploit the purpose tree PT recursively as the
following example clarifies.

Example 4: Consider the PT in Figure 2. For simplicity, we
represent purposes with the corresponding numeric encoding
shown in Figure 2.13 Let us consider

−→
ip1 = ⟨2, 3, 4, 5, 8, 9, 10⟩.

According to the PT in Figure 2, from
−→
ip1 we derive 2↓ =

⟨2, 3, 4⟩, and recursively 3↓ = ⟨3⟩ and 4↓ = ⟨4⟩. All these
vertexes are inserted in the IP graph (see Figure 4a), but we
avoid connecting the latter (i.e., 3↓, 4↓) directly to the starting−→
ip1 since it has been already derived from 2↓. From

−→
ip1, we

also get 5↓ = ⟨5⟩ and 8↓ = ⟨8, 9, 10⟩. Again, recursively,
from ⟨8, 9, 10⟩ we get 9↓ = ⟨9⟩ and 10↓ = ⟨10⟩. Let us now
suppose that a second

−→
ip2 = ⟨2, 3, 4, 7, 8, 9, 10, 11⟩ is inserted.

In this case, we connect the existing nodes (i.e., ⟨2, 3, 4⟩ and
⟨8, 9, 10⟩) and insert only the new ones 7↓ = ⟨7, 8, 9, 10, 11⟩
and 11↓ = ⟨11⟩.

As the example shows, the index requires the creation of ip
nodes for which there is no privacy preference among those
registered (e.g., nodes ⟨2, 3, 4⟩ in Figure 4a), but this simplifies
and speeds up the enforcement. Hereafter, we refer to nodes
for which there is a privacy preference as real nodes, denoted
as rectangles in Figure 4a, while we refer to the others as link
nodes, represented by an oval/circle.

B. TPU tree

In the IP Graph, we have that all pps sharing the same−→
ip , i.e. ⟨−→ip, ∗, ∗⟩,14 are associated with the same node. By
considering the tpu component, we index all the pp that
also have the same tpu, i.e. ⟨−→ip, ∗, tpu⟩. The tpu component
can only have two values, true or false. Therefore, we can
represent it through a 1-level tree, rooted on a real node

−→
ip

and with false and true as leaves. We call this structure TPU
tree.

12For sake of simplicity, we refer to ip as its implied intended purpose set−→
ip .

13We encode PT with a pre-order numbering, starting from the root as
value 1 and using increasing integers for every other purpose. For instance,
{Admin, Profiling,Analysis} is represented by {2, 3, 4}.

14We use the wildcard character “∗” to indicate any value of the corre-
sponding component.
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Fig. 4: Example of index data structures

Example 5: Let us assume to consider two new pps: pp1 =
⟨⟨2, 3, 4⟩, 270, false⟩, and pp2 = ⟨⟨2, 3, 4⟩, 180, true⟩. These
two proferences have the same ip, that is, ⟨2, 3, 4⟩, but two
different tpu values. As a result, as represented in Figure 4b,
⟨2, 3, 4⟩ will become a real node, and it can be used to index
ppf = ⟨⟨2, 3, 4⟩, ∗, false⟩ or ppt = ⟨⟨2, 3, 4⟩, ∗, true⟩ in the
TPU tree, represented with hexagons.

C. RT list

The rt component represents the retention time expressed
in days. In the enforcement phase, it must be easy to select a
subset of rt greater than or equal to a given value. At this aim,
we exploit a list, for storing an ascending ordered sequence
of rt values.

More precisely, for each ip node, we have two RT lists:
one stored in the “F” leaf (for tpu = false), and one stored
in “T” (for tpu = true). In both the cases, elements in RT
lists contain for each rt value the list of associated privacy
preferences. These represent the privacy preferences having
the same ip, tpu and rt values. The ids of these preferences
are contained into the idPPs element attached to each rt
element.

Example 6: Let us assume that two new pp have been con-
sidered: pp1 = ⟨⟨2, 3, 4, 5, 8, 9, 10⟩, 60, false⟩ and pp2 = ⟨⟨2,
3, 4, 5, 8, 9, 10⟩, 1080, false⟩. Both pp have common ⟨⟨2, 3, 4,
5, 8, 9, 10⟩, ∗, false⟩, so we can use nodes ip = ⟨2, 3, 4, 5, 8,
9, 10⟩ and tpu = false to store them. The connected RT list
(represented by sequences of rt values) has to hold rt = {60,
1080}. The list for tpu = true, instead, hosts three new pp
with rt = {90, 1440, 1800}.
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D. Task index

In order to support privacy enforcement for multiple tasks
simultaneously, the proposed index also associates with each
registered pp (i.e., to its components) the list of tasks where
this preference is used. This list contains those tasks that
require at least a data tuple to which pp applies. At this aim,
each task is assigned a indexTask, set as a counter starting
from 1. The list of tasks is encoded as a bit-string, where the
j-th bit corresponds to task with indexTask = j and it is set
to 1 if task with indexTask = j is associated with pp. The
list of tasks where a pp is used, aka taskIDs bit-string, is
thus associated with the RT list element representing that pp,
as depicted in Figure 4d.

V. PRIVACY ENFORCEMENT

In this section, we show how the proposed index is used
to perform privacy preferences’ enforcement. In particular, we
first present the enforcement for a single task t. Then, we
discuss how the enforcement is extended to support multiple
tasks.

A. Single task privacy enforcement

Let us consider a task t, with indexTaskt, that has to be
executed by a service provider SPt. In order to proceed with
task execution, SPt requests to a data source DS the access to
a set of tuples and submits its privacy policy to the blockchain.
As illustrated in Section III, before releasing the requested
data, DS triggers the privacy enforcement. At this purpose,
the blockchain retrieves all privacy preferences applied to data
tuples required by t and generates the privacy preference index,
say IP grapht, as described in Section IV. To evaluate all these
preferences against the privacy policy p of provider SPt, we
exploit IP grapht. In particular, we can see p as an entry point
in IP grapht, by locating the node in IP grapht modeling the
ip component with value equal to p.−→up.

Let n be such an entry node.15 As a first step, we retrieve
the set of real nodes RN contained in the subtree rooted at
n. As an example, considering the IP graph in Figure 4d and
assuming the link node ⟨8, 9, 10⟩ as the entry node for p, then
real nodes to be evaluated are: ⟨2, 3, 4, 5, 8, 9, 10⟩ and ⟨2, 3, 4,
7, 8, 9, 10, 11⟩. Then, for each rn ∈ RN , we check its TPU
tree and RT list. In particular, we follow the TPU tree branch
based on p.dataRet. Then, we select in the retrieved RT list all
rt elements greater than or equal to p.dataRel. Let refer to this
set as rt sat. For each rt ∈ rt sat, we check if indexTaskt
is present in its taskIDs. If this is the case, p satisfies all
privacy preferences modelled by that rt element. Thus, SPt

is authorized to receive tuples associated with these privacy
preferences. Therefore, DS will send SPt only those tuples
required by indexTaskt to which one of the satisfied privacy
preferences apply.

Example 7: Let us consider the example shown in Figure
4d and suppose that the policy p = ⟨⟨8, 9, 10⟩, false, 720⟩

15If in does not exist, we insert a new link node in IP grapht with value
p.−→up value, and we proceed as described.

is associated with the service provider requiring to execute
task with taskIndex = 1. The link node ⟨8, 9, 10⟩ is the
entry point for p. Starting from it, we reach the first real
node ⟨2, 3, 4, 5, 8, 9, 10⟩, with tpu = false. The rt list returns
{60, 1080}. Considering dataRet = 720, we select rt = 1080
because it is greater than dataRet. Thus, policy p satisfies the
privacy preferences associated with this rt element, that is,
those whose ids are contained in the corresponding IdPPs.
Moreover, this rt element has an idTask = 0x0000101,
indicating that taskIndex = 1 requires at least a data tuple
to which are applied a preferences in IdPPs. This implies
that the service provider has to receive those tuples required
by taskIndex = 1 to which a preferences in IdPPs apply.
This process is repeated to analyze the other real nodes and
compute the final set of tuples to be returned.

B. Multiple tasks privacy enforcement

The enforcement described in the previous section can be
optimized to simultaneously support multiple tasks’ execution.
In particular, we assume that the system has a list of tasks
T to be performed simultaneously and each task t has its
own privacy policy p, forming the policy set P . Then, rather
than generating a different index for each task in T , we
exploit the policy inclusion property to reduce the number
of indexes. In particular, we order all policies in P in a
queue q = {p1, . . . , pn}, where for each pair pj and pj+1

it holds that pj+1 ⊆ pj . Thus, if we associate a unique
privacy preference index, hereafter IP graphq , to q (aka to the
corresponding tasks), we can reduce the number of compliance
checks. Indeed, if the more restrictive policy satisfies a privacy
preference(s) in IP graphq , then all the more permissive ones
satisfy it as well. The generation of q and IP graphq is done
iteratively by considering each task t in T . More precisely, for
each task t, we check if its p can be inserted in the existing q.
If so, we insert p in queue q and update IP graphq by including
the privacy preferences associated with data tuples considered
by t. If p cannot be inserted in q, that is, it does not satisfy
the inclusion property for any of the policies in q, then a new
queue q′ is created with a new associated privacy preference
index, IP graph′q . At the end, the blockchain maintains the
set of created queues Q, with the corresponding IP graphq ,
∀q ∈ Q. For the sake of clarity, in the following, we explain
privacy enforcement by assuming the presence of a unique q
ordering all policies associated with T .

We start by considering the most restrictive policy in q, i.e.,
p1, and by following the single task enforcement procedure.
Thus, we search for the entry node n in IP graphq referring
to p1, that is, the node with value equal to p1.

−→up. Similarly
to the single task case, when the entry point does not exist,
a link node with value p1.

−→up is inserted. Then, we retrieve
the set of real nodes RN contained in the subtree rooted
at n. Given rn ∈ RN , we consider its TPU tree branch
based on p1.dataRet. Thus, we select in the retrieved RT list
all rt greater than or equal to p1.dataRet. This represents
all privacy preferences satisfied by p1. According to the
definition of privacy preference indexes, each rt in RT list has
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associated the idTask element storing the tasks consuming
data tuples which are covered by preferences indexed by rt.
Hereafter, we denote as AuthTaskp1 (SatPrefp1 resp.) the
union of task’s ids (privacy preference’s ids, resp.) contained
in idTask elements (idPPs elements, resp.) of the retrieved
rt (those with rt greater than or equal to p1.dataRet). Thus,
all privacy preferences SatPrefp1

applying to at least a data
tuple consumed by tasks in AuthTaskp1 are satisfied by p1.
Since p1 is the most restrictive policy, then all other policies
in q satisfy SatPrefp1

as well. This implies that all tasks
corresponding to policies in q are authorized to receive some
tuples. More precisely, each task receives only those required
tuples to which is applied a preference in SatPrefp1

.
Similarly to single task enforcement procedure, the above

process is repeated for each rn ∈ RN . Note that all retrieved
rt elements are marked, so to avoid to re-consider them in the
next evaluation. Once all rn has been evaluated, we re-start
the enforcement by processing the second policy, p2, in the
queue, and so forth till all policies in q have been evaluated.
It is important to note that, at each iteration, the set of nodes
in IP graphq to be evaluated is less than the previous one, as
we avoid to re-evaluate privacy preferences (i.e., rt elements)
already satisfied by a more restrictive policy.

VI. BLOCKCHAIN-BASED WORKFLOW EXECUTION

As a first step (step 1, Fig.3), the data owner cre-
ates and sends his/her privacy preference pp to the
blockchain, using a privacy preference tuple defined as tpp =
⟨idTpp, idDO, idS, pp⟩, where idTpp is the privacy pref-
erence tuple identifier, idDO is the data owner identifier,
idS is the service identifier (aka consumer in the privacy
model presented in Sec. II-C) to which privacy preference
pp applies. Through a smart contract, the link between a
tuple, identified by idTpp, and the associated pp is saved
on-chain as (idTpp, tpp). In parallel, the data owner sends
his/her data to the data sources (step 1’, Fig.3), using a data
tuple td = ⟨idTd, idDO, idTpp, d⟩, where idTd is the data
tuple identifier, idDO is the data owner identifier, idTpp is
the privacy preference identifier, and d are the data on which
idTpp applies.

The requestor starts a new workflow via the smart contract
SWE-SC, implementing the workflow engine (step 2, Fig.3).16

For each task t of the workflow, SWE-SC contacts the target
service by sending the instructions necessary to perform the
corresponding job (step 3, Fig.3). As described in step 4
(Fig.3), the target service might need to access some data
stored in a data source to perform its task. If this is the case,
task t is inserted into the list of tasks T .

Privacy enforcement is handled by the Privacy enforcement
smart contract (PE-SC) (see Pseudocode 1). This smart con-
tract is invoked by a trigger stored in the blockchain. The
trigger can be set on a time basis, e.g., every 500 milliseconds,
or based on the number of tasks in T , e.g., every 10 tasks.

16We do not describe this smart contract. Interested readers can find more
details in [22], [23].

Pseudocode 1: Privacy enforcement smart contract
(PE-SC)
Data: T , the set of tasks to be executed

1 Function MultipleTasksEnf (T )
2 Let T be the set of tasks to be executed;
3 Let P be the set of policies associated with tasks

in T ;
4 Q = generateQs(P);
5 forall q ∈ Q do
6 IPgraphq = generateIPgraph(q);
7 while q! = {} do
8 Let AuthTuples be initialized empty;
9 Let p1 be the first policy in q;

10 (AuthTasksp1
, SatPref )=

SingleEnf (p1,IPgraphq);
11 Let IdsTuplesAuthTasks be the ids of

tuples required by tasks in AuthTasksp1
;

12 Let IdsTuplesSatPref be the ids of tuples
to which preferences in SatPref apply;

13 AuthTuples=
IdsTuplesAuthTasks∩IdsTuplesSatPref ;

14 Return: AuthTuples to all tasks in T
with policies in q;

15 q = q \ p1;
16 end
17 end
18 end
19 Function SingleEnf (p,IPgraph)
20 Let p be a privacy policy;
21 Let IPGraph be a privacy preferences index;
22 Let n be the node with value equal to p.−→up;
23 Let RN be the set of real nodes in the subtree

rooted at n;
24 Let AuthTasks and SatPref be initialized

empty;
25 forall rn ∈ RN do
26 Let rn.TPU tree be the TPU branch with value

equal to p.dataRet;
27 Let rt be the set of RT list in rn.TPU tree;
28 rtsat = {rt′ ⊂ rt|rt′ ≥ p.dataRel};
29 forall rt ∈ rtsat do
30 AuthTasks = AuthTasks

⋃
rt.idTask;

31 SatPref = SatPref
⋃
rt.idPPs;

32 end
33 end
34 Return: AuthTasks, SatPref ;
35 end

In particular, the trigger invokes the MultipleTasksEnf
function in PE-SC by passing T as input. As described in
Section V-B, given the privacy policies associated with tasks
in T , the function computes all the corresponding queues and
order them (line 4). Each queue q is then considered (loop
in line 5) by generating a distinct IP graphq on which each
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policy in q is evaluated (loop in line 7). This loop starts from
the most restrictive policy in q (i.e., p1), by then removing
it from q before the new iteration (line 15). To evaluate a
given p on IP graphq , we exploit function SingleEnf (line
10). This function implements the single enforcement process
described in Section V-A. In particular, this function: searches
for the entry node n in IP graphq with value equal to p.−→up (line
22); retrieves the set of real nodes RN rooted at n (line 23);
considers only their TPU tree branches satisfying p.dataRet
(line 26); computes their rtsat elements having values greater
than or equal to p.dataRel (line 28). This set of rt elements
represents all privacy preferences satisfied by policy p. Then,
SingleEnf function returns to MultipleTasksEnf the list
of satisfied privacy preference SatPref (line 31) and the list
of authorized tasks AuthTasks (line 30). To compute the
tuples to be released, the MultipleTasksEnf retrieves the
set of tuples required by tasks in AuthTasks and the set of
tuples to which a privacy in SatPref is applied (lines 11 and
12). The intersection between these two sets consists of the
tuples to be released to all tasks whose policies are in q (line
13) Indeed, since the considered policy is the most restrictive
in q, then all other policies satisfy SatPref as well.

VII. EXPERIMENTAL RESULTS

We run a set of experiments to test the efficiency of the
proposed solution. We leverage on a dedicated Ubuntu server
18.04.5 LTS, with AMD Ryzen Threadripper 1950X 16-Core
processor, 32GiB system memory, and 256GB NVMe disk
storage. We use Hyperledger Fabric v2.2 LTS with Docker
container to run peers.

In what follows, we first introduce the used datasets and
then the obtained results.

A. Datasets

For our tests we used a synthesized dataset, since we are
not aware of a real publicly available dataset containing both
privacy policies and preferences.

The number of tasks is an essential parameter to test the
overhead of our privacy enforcement. A task is equivalent to
a certain number of privacy preferences’ compliance checks.
However, a privacy preference can cover multiple data tuples,
because the same privacy preference can be associated with
different data tuples. We use coverage to measure the relation-
ship between the amount of privacy preferences and the total
number of data tuples of a task. We assume that the coverage is
uniformly distributed among privacy preferences, for example
a coverage of 5% means that a privacy preference covers an
average of 20 data tuples out of 100 of a given task. Therefore,
if a task has 100,000 data tuples with coverage = 1%, it
means that there are 1,000 tuples to which apply the same
privacy preference. Our system supports multi-task scenarios,
that is, privacy enforcement for different tasks within a single
execution of the corresponding smart contract. In this case, we
set the same coverage for each task, so as to have results with
the same amount of privacy compliance checks

The other two parameters are the complexity of the privacy
policies/preferences and their selectivity. The complexity of
a privacy policy (resp. privacy preference) is determined by
the operations necessary to carry out the privacy enforcement
through the proposed algorithm. For privacy preferences, the
greater the number of purposes purp[#] in ip, a greater
number of nodes are created in the IP graph. For tpu, choosing
true or false is irrelevant to the computation. In contrast, a
large rt value, rt[d], means a longer traversal time for the rt
list. Thus, we define three complexity classes:

• Low: 1 ≤ purp[#] ≤ 6 ∧ 1 ≤ rt[d] ≤ 1, 200;
• Mid: 7 ≤ purp[#] ≤ 12 ∧ 1, 201 ≤ rt[d] ≤ 2, 400;
• High: 13 ≤ purp[#] ≤ 18 ∧ 2, 401 ≤ rt[d] ≤ 3, 600.
Assuming an index with privacy preferences uniformly

distributed between low, mid and high complexity, we note
that the lower the number of purposes in up is, the greater is
the complexity because there are more nodes in the IPgraph
to be analyzed; the smaller the dataRet value, dataRet[d], is,
the greater the complexity is because the values to be analyzed
in the RTlist are more; instead the complexity does not vary
as the dataRel varies as it is a single value. Also in this case
we define three complexity classes for privacy policies:

• Low: 13 ≤ purp[#] ≤ 18 ∧ 2, 401 ≤ dataRet[d] ≤
3, 600;

• Mid: 7 ≤ purp[#] ≤ 12∧1, 201 ≤ dataRet[d] ≤ 2, 400;
• High: 1 ≤ purp[#] ≤ 6 ∧ 1 ≤ dataRet[d] ≤ 1, 200.
Finally, selectivity is the ratio between the privacy prefer-

ences that pass the compliance check and the total number of
privacy preferences.

To evaluate our framework under different scenarios, we
generated several datasets under the following conditions:
Privacy policy complexity: Low, Mid, High; coverage: 1%,
5%, 10%; selectivity: 50%, 75%, 100%; tasks: 1-10.

Privacy preferences that populate the datasets have complex-
ity uniformly distributed between low,mid, and high. In total
we generated 270 datasets and ran each test 10 times to get
more accurate results. The values reported in what follows are
the average values of the 10 executions. By sizing the data
reply to 100,000 data tuples, as the coverage varies we get
1,000 (1%), 5,000 (5%), 10,000 (10%) privacy preference per
task. In the case of coverage at 10% and 10 tasks, we reached
100,000 privacy compliance checks in a single execution of
the smart contract.

B. Results
To test the performance gain of our proposal, we compare

it against a naive implementation of the compliance checks,
where instead of creating a dedicated index, privacy prefer-
ences are stored into lists, one for each task.

All combinations of tests described in the previous section
were carried out, producing a large amount of results. To
present them, we start by setting coverage at 5% and complex-
ity at Mid value. This can be considered as an average case,
reflecting a real system load, where heterogeneous privacy
preferences limit the grouping capacity of the IP graph, as
they contain different ip, tpu and rt.
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Fig. 5: Privacy enforcement execution time of our approach
(fast) compared with the naive approach

The privacy enforcement execution time is the net time
required to execute privacy enforcement for all the tasks in
the input queues Q. This measure does not take into account
the time needed by the blockchain to reach the distributed
consensus. Figure 5 shows the trend, fixing complexity and
coverage as stated before, and varying the number of tasks
and selectivity. At maximum load, with our approach we
spend 0.0645 ms, whereas the naive implementation takes
58,9135 ms, and this trend increases as the number of tasks
and selectivity increase.

We also measure the transaction throughput, that is, the
number of blockchain transactions performed in one second.
Figure 6 shows the throughput trend of our approach compared
to the naive one. The naive algorithm is more efficient on
a single task. In contrast, its performance decreases quickly
when dealing with multiple tasks, reaching 19-26 tx/s. In
contrast, our approach, which has been designed to perform
privacy enforcement of multiple tasks, maintains a linear trend
as the number of tasks and selectivity increase, until 8-10 tx/s.

Finally, the privacy preference throughput shows the number
of privacy preferences processed per transaction in one second.
As reported in Figure 7, for our approach, we obtain higher
throughput values then the naive approach, starting from 2
tasks, reaching peaks of 500,000 privacy preferences per
second, whereas in the naive case, the trend is around 110,000-
141,000 privacy preferences per second.

Fig. 6: Blockchain throughput measured in transactions per
second

Fig. 7: Privacy preference throughput

Finally, to avoid showing all the graphs, for each considered
combination of coverage and complexity values, we summa-
rize the privacy enforcement execution time in a single graph.
Each point in Figure 8 represents the average time for all tasks
(from 1 to 10) and for all selectivity (50%, 75%, 100%) with
the same coverage and complexity. For instance, the value of
the point corresponding to coverage 5% and Mid complexity
(M = 2), represents the average of all times reported in
the graph in Figure 5. This graph does not give absolute
information on the execution time, rather it shows how the
trend evolves while increasing complexity and coverage.
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Fig. 8: Privacy enforcement mean execution time when cov-
erage varies from 1% to 10% and complexity from L to H

VIII. CONCLUSION

In this paper, we presented a privacy-preserving blockchain-
based scientific workflow platform, able to perform privacy
enforcement in an efficient and scalable way. This is achieved
through a multi-dimensional index structure that speeds up
the process of privacy compliance check. We plan to extend
the proposed solution along several directions. First, we plan
to integrate a greater number of features in the supported
privacy model (e.g., automatic privacy preference generation
for newly generated information , etc.). We also plan to study
techniques to further improve the performance and scalability
of our system.
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