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Machine Learning for Real-Time Processing of
ATLAS Liqguid Argon Calorimeter Signals with FPGAs
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1. ATLAS Liquid Argon Calorimeter
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* Sampling calorimeters for the measurement of energy deposited by electrons, photons
and hadronic jets

* 182 000 cells filled with Liguid Argon as medium for ionization

* Resulting triangular pulse is amplified, shaped and digitized at 40 MHz

* Energy reconstruction with Optimal Filter (OF): linear combination of up to 5 samples
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Artificial Neural Networks
shall be deployed here

* High Luminosity LHC (HL-LHC) planned to start in 2029 with up to 7.5 times nominal
luminosity

* About 140 proton-proton-collisions per bunch crossing
* Challenges for LAr calorimeter readout under HL-LHC conditions:

» Revised trigger scheme allows selection of events at 1 MHz and in subsequent bunch

crossings (BC)
* Number of events with overlapping signals will increase
- in-time and out-of-time pile-up

run 3 will start now

* New Liguid Argon Signal Processor (LASP) boards will be installed during Long Shutdown 3
(LS3, Phase-Il upgrade):
LAr Signal Processor (LASP)

* FPGA to implement more complex ,
real-time energy reconstruction algorithms >

* Maximum latency of ~150 ns required by trigger

* Up to 512 detector cells processed on one !
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* Readout chain can be simulated with AREUS
software:
e Supports electronics noise, digitization and LHC
bunch train structure
* Generates digitized pulse sequence as expected
from specific detector cell

3.1 Convolutional Neural Networks (CNN)

* Machine Learning solutions under investigation to Output
replace OF in future HL-LHC conditions
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* Pulse tagging sub-network (2 layers)
e Sigmoid activation function
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Energy Reconstruction

* Energy reconstruction sub-network (1-2 layers) Concat '

« Uses results of tagging sub-network and raw ADC
samples

* ReLU activation function
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Pulse Tagging

* Trained and evaluated on AREUS samples
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* Training in two stages:
1. Tagging part only as pre-training Input
2. All layers together for energy reconstruction
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* RNNs have connections between nodes over time - memory

e Long Short-Term Memory (LSTM) well suited for long sequences due to gated design

 Limited number of internal dimensions and only one layer due to FPGA resource
constraints

* Single dense neuron as decoder to reconstruct energy from LSTM output
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* Single-cell LSTM (above)
* Operates sample per sample on entire sequence

« Expected to be more robust for overlapping pulses i & & & Lo Y
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* Vanilla RNN: simple structure to reconstruct energy -
and forward information
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3.3 Performance in Simulation
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Frequency Frequency
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Latency
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* CNNs:
* short latency and small usage of Digital Signal Processors (DSP)
* Usage of FPGA logic (ALM) and maximum execution frequency of multiplexed version
need to be optimized further
* Vanilla RNN:
* meets requirements for resource usage and maximum clock frequency in mutltiplexed
version
* Energy reconstruction using CNNs/RNNs can be implemented on LASP FPGA,
shows good agreement between software and firmware model and outperforms OF

5. Outlook

 Reliability of ANNSs for varying pulse shapes and sequences must be tested in more
detalil:
* Influence of bunch train structure expected at HL-LHC
 Temporal and spatial variation of proton-proton collisions at same bunch crossing
leading to shifts of pulse digitization
* Influence of varying pulse shapes in different detector regions
— Can the same network structure be used in all detector regions?

* Studies on reproducibility of performance for multiple o ", ,
trainings of same ANN architecture: —— cut off RelU
* How often do we have to retrain / recalibrate the ANNs? *®] — PLAN sigmoid
* Training Is a statistical process
- How many trainings are needed to obtain best

0.6

performance? 0.4
* Can optimized loss functions increase the
* reproducibility? 021
* All ANN architectures must be optimized for 00 = | | | |
minimal FPGA resource usage - ~ ° ? ‘

Examples for resource-saving
replacements for sigmoid
activation function

* FPGA implementation is ongoing:
* Multiplexing of CNNs and RNNs

* Optimization of internal fixed point calculation
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