Formalising Attack Trees to Support
Economic Analysis

ANDREW SIMPSON!, MATTHIAS DELLAGO? AND DANIEL WooODS?

! Department of Computer Science, University of Oxford
United Kingdom
?Institute of Computer Science, University of Innsbruck
Austria
Email: Andrew.Simpson@cs.ox.ac.uk; Matthias. Dellago@student.uibk.ac.at;
Daniel. Woods@Quibk.ac.at

Attack trees and attack graphs are both examples of what one might term
attack modelling techniques. The primary purpose of such techniques is to help
establish and enumerate the ways in which a system could be compromised; as
such, they play a key role in the (security) risk analysis process. Given their
role and the consequent need to ensure that they are correct, there are good
reasons for capturing such artefacts in a formal manner. We describe such a
formal approach, which has been motivated by a desire to model attacks from the
perspectives of attackers, to support economic analysis. As an illustration, we
consider exploitation cost.

Keywords: Attack Trees; Formal Modelling; Z; Information Security Economics

INTRODUCTION

formal foundations.

good reasons for ensuring that such approaches have
For example, Lallie et al. [5]

Attack trees (see, for example, [1]) and attack graphs
(see, for example, [2]) are both examples of what one
might term attack modelling techniques. Schneier [3]
describes the former in the following way.

“Attack trees provide a methodical way of de-
scribing threats against, and countermeasures
protecting a system. By extension, attack
trees provide a methodical way of represent-
ing the security of systems.” [3]

Such approaches help to establish and enumerate
the ways in which a system’s security may be
compromised. They also identify potential routes to
such compromises. Importantly, as both the costs
and the probabilities of attacks can be taken into
account [3], they can be used in support of cost—benefit
analyses and, thus, inform investment decision-making.

Despite their perceived importance to the secure
development process (attack trees, for example,
are advocated in the SQUARE (Security Quality
Requirements Engineering) process model® as part of
the Develop Artifacts step), it is the case that such
representations are often still captured manually [4].

Irrespective of the practical reality, a great deal
of theoretical work has been undertaken on the
formalisation and visualisation of attack modelling
techniques. Despite their simplicity, there are

Shttps://us-cert.cisa.gov/bsi/articles/best-
practices/requirements-engineering/square-process

argue that there are “inconsistencies regarding the
way cyber-attacks are represented” in attack trees.
Furthermore, Mauw and Oostdijk [6] provide the
following motivation.

“What is an attack? Is it just a collection of
steps that should be performed or does it have
some internal structure? Which conditions
should an attribute satisfy before it allows
to be synthesized bottom-up? Under what
conditions may a projection of a predicate be
executed bottom-up? When do two attack
trees represent the same set of attacks? How
should combined attributes be treated? And
which extensions of the formalism (forests,
directed acyclic graphs, attack graphs) are
possible?” [6]

Ultimately, such formal representations can give
greater assurance as to correctness and they can also
help underpin automation (see, for example, the work
of Vigo et al. [7], Ivanova et al. [8] and Pinchinat et
al. [9]).

There has also been recent work on the incorporation
of threat-related data (see, for example, the contribu-
tion of Cheah et al. [10]). Typically, the focus of such
work as been on aiding organisations in giving consid-
eration to costs to defend and to help determine cost
measures such as the Return on Security Investment
(ROSI) [11], a security-specific metric derived from the

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

2 A. SIMPSON ET AL.

more familiar Return on Investment (ROTI).

While we are also motivated by the need to assist
those responsible for determining how and where
to invest in security, our focus is slightly different.
Specifically, we wish to consider an alternative
perspective — that of the attacker (as considered, for
example, by van Rensburg et al. [12]) — and consider
costs (in terms of effort, as well as financial costs)
from their perspective. Examples of such approaches
are exemplified by Cost To Break (CTB) [13] and
Return on Attack (ROA) [14]. The aim is to utilise
attack modelling techniques to identify which defensive
measures most effectively raise costs for the attacker,
thereby disincentivising attacks.

In establishing the formal models to underpin such
efforts, we leverage the schema language of Z [15] and
the support that the ProB tool [16] offers for model-
checking and animating Z descriptions in the form
of ProZ [17]. (Subsequently, we have also developed
models using the B-method [18], but that is not the
focus of this paper.) We leverage Z to facilitate a state-
based approach, whereby the states of the system under
consideration are of relevance. To quote Audinot et
al. [4], who also take such an approach: “The advantage
of such a state-based approach is that it may benefit
from verification and model checking techniques” [4].
We also utilise the Communicating Sequential Processes
(CSP) process algebra [19, 20] to help justify the
perspective taken (which involves representing trees as
sequences / traces).

We start, in Section 2, by providing the background
to and the motivation for the contribution described in
this paper. Then, in Section 3, we present what might
be thought of as the core concepts that underpin what
follows. Section 4 builds upon those foundations and
we subsequently present our state-based approach in
Section 5. Then, in Sections 6 and 7 we demonstrate
how the approach gives rise to a degree of modularity.
Finally, we summarise the contribution of the paper in
Section 8.

2. BACKGROUND AND MOTIVATION

It is well recognised that the question How secure is this
system? can often be answered with a flippant response
of “not 100%”. The field of Information Security
Economics (as established by the likes of Anderson and
Moore [21, 22]) starts from this premise, giving rise
to a focus on the development of theoretical solutions
to help support the decision-making process via the
use of appropriate models. This recognises the fact
that cost—benefit analyses are at the heart of such
security decision making, and also that (a) the threat
landscape is constantly evolving and (b) resources are
often limited and contested.

Within the Information Security Economics commu-
nity, it is well understood that a gap exists between the
theoretical models developed and the real-world data

that might be used to parameterise them (see, for ex-
ample, [23, 24, 25]). The CEMDAT (Combining Ex-
ploit Market Data with Attack Trees) project — as part
of which the work described in this paper was devel-
oped — attempts to help close that gap by leveraging
exploit pricing data from sources such as Zerodium?*.
(As an example, an analysis of longitudinal data of the
prices quoted by an exploit broker who claims to sell to
governments is discussed in [26] and [27].)

Rather than considering typical metrics such as
the aforementioned Return on Security Investment
(ROSI) [11] (which, in turn, is based upon the notion
of Annual Loss Expectancy (ALE)), the focus of the
CEMDAT project is the quantification of attacker costs:
we wish to quantify how the cost to the adversary
(who we might imagine intends to compromise a
software-based system) might vary, based on existing
capabilities. For example, exploits that require local
device access are shown to be cheaper, whereas zero-
click remote exploits are the most expensive exploits in
the dataset [26].

Subsequently, these cost estimates can be fed into
Return on Attack (ROA) models to support decision
making. The conceit is that defenders can then invest in
security solutions until the ROA is no longer profitable
or feasible for the attacker. (Of course, it is perfectly
possible that non-rational attackers will complicate this
assumption — but the irrationality of human actors has
always been, and always will be, with us [28].)

The project is driven by a desire to move beyond
existing approaches to using exploit prices as a proxy
for security (in terms of ‘cost to compromise’) by
incorporating systems and economic considerations.
The systems perspective recognises that the cost to the
attacker depends on existing capabilities; the economic
perspective can incorporate market forces such as
demand and supply. Importantly, while the formal
models discussed in this paper have been developed to
underpin reasoning about costs to attackers, there is
(as we shall see) nothing to prevent them being used in
more traditional ways (i.e. in terms of costs to defend).

As our concern is the use of attack trees to model
and reason about potential exploits, we revisit the
concept in Section 2.1. We then, in Section 2.2,
motivate the incorporation of attacker costs into such
representations, before outlining the requirements for
our formal approach in Section 2.3.

2.1. Attack trees: a brief introduction

Attack modelling techniques (AMTSs) are defined by
Lallie et al. [5] as means to “model and visualise the
sequence and/or combination of events that enable a
successful cyber-attack on a computer or network” [5].
The authors go on to suggest that AMTs can
be distributed between three broad categories: use
case methods (including, for example, misuse cases),

4nttps://zerodium. com

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

FORMALISING ATTACK TREES TO SUPPORT ECONOMIC ANALYSIS

Install

Learn

Pick lock (1) Cut open safe

(P)

combination

improperly (1)

Get
combination
from target

Find written

combination (1)

Threaten (l) Blackmail (1) Eavesdrop

| s———|

Bribe (P)

conversation

Listen to

Get target to
state
combination (1)

FIGURE 1. An example, drawn from [1].

temporal methods, and graph-based methods. The
third of these — our concern in this paper — includes
fault trees and attack graphs — with attack trees being
our particular concern.

Attack trees, which build upon at least Weiss’s
notion of threat logic trees [29] and the contribution of
Amoroso [30], are motivated by Schneier [1] thus:

“If we can understand all the different ways
in which a system can be attacked, we can
likely design countermeasures to thwart those
attacks. And if we can understand who the
attackers are — not to mention their abilities,
motivations, and goals — maybe we can install
the proper countermeasures to deal with the
real threats.” [1]

It is worth noting that Kordy et al. [31] suggest
that the general term attack tree subsumes a number
of approaches including threat trees [32], threat logic
trees [29], cyber threat trees [33], and fault trees for
attack modeling [34]. As we move forward, we shall
see that these distinctions are beyond the scope of our
interests.

No matter which approach one adopts, the simplicity
allows one to develop accessible and comprehensible
models that can help one to understand and reason
about a system and its vulnerabilities in a form
that can be easily communicated. That form can
subsequently be used to underpin decision making and,
if appropriate, reused and / or refined. Attack trees
have, to quote Mauw and Oostdijk [6], “proved to be
an intuitive aid in threat analysis.” The benefits of such
approaches are summarised by Kordy et al. [31] thus:

“The great advantage of graph-based ap-
proaches lies in combining user friendly, in-
tuitive, visual features with formal semantics
and algorithms that allow for qualitative and
quantitative analyses.” [31]

Attack trees are relatively simple constructs. Typi-
cally, the nodes in each such tree represent attacks, with
the root node representing the attacker’s goal. Each
node’s child represents what might be thought of as a
refinement of the goal, with each leaf being representa-
tive of an attack that can be refined no further. Each
refinement can be a conjunct (AND) or a disjunct (OR).

A simple example, based on an example from [1] (and
one which is commonly found in the literature — with
its familiarity motivating its use here), is illustrated
in Figure 1. Here, the goal (and root node) is ‘Open
safe’. There are four refinements of the goal: ‘Pick
lock’, ‘Learn combination’, ‘Cut open safe’ and ‘Install
improperly’. One of these (‘Learn combination’) is then
refined further. Some of these refinements (‘Pick lock’,
for example) are characterised as impossible — denoted
by I; some others (‘Cut open safe’, for example) are
characterised as possible — denoted by P.

The default assumption is that sub-goals on the
same level are combined via OR. When sub-goals are
combined via AND, it is stated explicitly — as in
the case of ‘Eavesdrop’ being refined into ‘Listen to
conversation’” AND ‘Get target to state combination’ —
with, in this illustration, a bold connector denoting an
AND combination.

It is, perhaps, worth noting how attributes such as
I and P being associated with nodes hints at how
straightforward it would be to associate other attributes

THE COMPUTER JOURNAL,

Vol. 72, No. 77, 1777

4 A. SIMPSON ET AL.

(such as costs and / or probabilities, for example) with
nodes, as well as any constraints that might be of
interest. As an example, “both I and P cannot both be
associated with a single node” is an obvious constraint
in this case.

It has been recognised [6, 5] that there are sometimes
inconsistencies in both definitions and representation
of the various aspects of attack trees and related
approaches (which is, of course, one argument for the
formalisation of such approaches). We choose to build
upon (with some adaptations), the characterisation and
terms of Mauw and Oostdijk [6]°:

“The purpose of an attack tree is to define
and analyze possible attacks on a system in a
structured way. This structure is expressed in
the node hierarchy, allowing one to decompose
an abstract attack or attack goal into a
number of more concrete attacks or sub-
goals ... An attack tree simply defines a
collection of possible attacks ... Each attack
consists of the components required to perform
this attack. A component may occur more
than once in an attack, so an attack is
a multi-set of attack components. These
attack components are at the lowest level of
abstraction that we consider and thus have no
internal structure.”

At the heart of our approach, then, we will have
components, trees and forests (collections of trees).
The model’s primary deviation from the approach
of [6] will be to choose to consider order and assume
that components occur no more than once in an
attack, meaning that attacks are associated with
injective sequences of components, rather than multi-
sets (or bags) of components. It is worth noting
that, if necessary, adapting the approach from injective
sequences to sequences, sets or multi-sets would be a
relatively straightforward process.

2.2. CEMDAT: Combining Exploit Market
Data with Attack Trees

As previously discussed, the work described in this
paper has been undertaken within the Combining
Exploit Market Data with Attack Trees (CEMDAT)
project®, which is a collaboration between researchers
based at the Universities of Innsbruck and Oxford. The
project’s key deliverable is an economic framework to
reason about the value of existing capabilities and the
mediating role of demand and supply. A key part
of this framework is a formal model that captures
characteristics of attacks. The development of this
formal model is the focus of this paper.

5It is worth noting that Mauw and Oostdijk argue that,
“formally speaking, we study rooted directed acyclic bundle
graphs, but we will still call them attack trees.” [6]

Shttps://informationsecurity.uibk.ac.at/projects/
cemdat/

A variety of ‘costs’ can be associated with attack
trees. Typically, as we have discussed, these costs
are associated with potential investments that can be
made by the organisation. However, some researchers
have considered things from the perspectives of both
attackers and those investing against attacks. As an
example, Bistarelli et al. [35] combine defense trees (“an
extension of attack trees with countermeasures”) and
game theory, and consider both ROI and ROA.

This consideration of attacks from both perspectives,
i.e. that of the attacker and that of the victim, is
an area that has received a degree of consideration in
recent years. For example, in [36], Roy and colleagues
present what they term an attack countermeasure tree
(ACT), which “takes into account attacks as well
as countermeasures (in the form of detection and
mitigation events)”. It is worth recognising that
Kordy et al. [31] provide an excellent survey of both
“attack and defense modeling approaches that are based
on directed acyclic graphs (DAGs)” and “propose a
taxonomy of the described formalisms”. Both have
influenced what follows.

Other influences on the following include: recent work
on formalising attack and defense trees, with the work
of Cheah et al. [10] being an example in this respect;
a need to recognise current and emerging commercial
needs [37]7; and a reflection that, as the lines between
safety and security are starting to become increasingly
blurred in some contexts [38, 39], having an eye to
such concerns would be wise in terms of increasing the
chances of wider applicability. A relevant example in
this respect is the contribution of Kriaa et al. [40],
which, in consideration of “the convergence of safety
and security concerns,” provides “a comprehensive
survey of existing approaches to industrial facility
design and risk assessment that consider both safety
and security.”

More broadly, it should be recognised that there
is already a wide body of literature related to
the amalgamation of attack (and defense) trees
with economic concepts. Examples in this respect
include the contributions of Niitsoo [41], Dewri and
colleagues [42, 43], Buldas and colleagues [44, 45], van
Holsteijn [46], Fila and Widel [47], and Patten et al. [48].

2.3. Requirements for a formal approach

The requirements that underpin our formal approach
are derived from the concerns stated above and are
relatively straightforward. They are, nevertheless,
worth stating explicitly.

1. The approach should broadly follow that of [6] and
give consideration to attacks, collections of attack

7Gadyatskaya and Trujillo-Rasua [37] suggest that “several
promising research directions have emerged recently to address
the needs of practitioners”: attack tree generation; attack tree
visualisation; and empirical studies involving attack trees.

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

FORMALISING ATTACK TREES TO SUPPORT ECONOMIC ANALYSIS 5

components (in the form of trees), and collections
of trees (in the form of forests).

2. The approach should give rise to machine-
readable descriptions to (a) increase confidence in
correctness and (b) support automation.

3. The approach should be suitably modular to
allow for the incorporation of attributes such as
possibility / impossibility, costs and probabilities
(and combinations thereof).

4. The approach should allow for suitable economic
analysis in terms of both ROA and ROL.

Having provided the motivation for our contribution,
we are in a position to start to present our model.

3. FROM TREES TO TRACES

In this section we present what we might think of as
the core concepts that underpin what follows. We first
justify our approach of representing the information
contained in trees in terms of sequences. We leverage
the language of Communicating Sequential Processes
(CSP) [19, 20] to do so.

It should be noted that our use of CSP is primarily
motivational and sets the scene for what follows.
Previous contributions that have leveraged CSP in
thinking about attack trees and related approaches
include those of Nguyen and colleagues [10, 49].

At the heart of our core model is the conceit that each
tree can be modelled simply as a collection of sequences.

Consider the following example, which involves four
potential attacks and, thus, four attack trees. We use
the notation of CSP to illustrate a variety of patterns.

The first such potential attack is straightforward:

A= ay — ay — attackA — Skip

Here, a1 and ay are necessary (in that order) before
attackA can happen. This process has four possible
traces ((), (a1), (a1, a2), and (ay, ag, attackA)), one of
which ({aq, ag, attackA)) concludes with attackA and is,
therefore, the trace of interest to us.

The second involves a characterisation of AND via
CSP’s partial interleaving operator:

B = (by — attackB — Skip)
I

{attackB}
(ba — attackB — Skip)

Here, b; and by are both necessary (in either order)
before the synchronised event attackB can happen.
This process has the following possible traces: (),
<b1>, <b2>, <b17 b2>, <b2, b1>, <b1, bg, attackB% and
(b, b1, attackB). In this case, there are two traces of
interest: (b1, by, attackB) and (bs, by, attackB).

The third involves OR, modelled via CSP’s external
choice operator, O:

C = ¢ — attackC — Skip
O
co — attackC — Skip

Here, either ¢; or ¢y needs to happen prior to attackC.
The possible traces of this process are (), (c1), {c2),
(c1, attackC), and (cq, attackC). In this case, there are
again two traces that end in an attack: (ci, attackC)
and {ca, attackC').

The fourth pattern involves two independent paths
to exploitation (and which, therefore, would be
captured by separate trees), which we model via CSP’s
interleaving operator, |||:

D =D1]|| D2
Here,

D1 = d; — dy — attackD — Skip
and

D2 = d3 — dy — attackD — Skip

Here, we have two trees associated with a single
attack, attackD. In this case the traces of interest are
(dq, da, attackD) and (ds, dy, attackD).

In combining the above, we can think of our forest
as consisting of these four processes, combined via
interleaving:

Forest1 = A ||| B|| C ||| D

The above is sufficient to illustrate the four pattens
of interest: a simple sequence, conjunction, disjunction,
and multiple independent paths. (Clearly, combinations
of the above are possible and can be modelled
accordingly.)

It is also worth recognising that we assume that trees
(and attacks) are modelled and evolve independently:
hence the use of interleaving.

As an illustrative example, we consider again the
example of [1], which was presented in Section 2.1.

Initially we have the following.

TreeV1 =
Pick_lock — Open_safe — Skip
gearn,comb — Open_safe — Skip
‘?}’ut,open,safe — Open_safe — Skip
?nstall,impmperly — Open_safe — Skip

Here, there are four refinements of the goal
Open_safe: Pick_lock, Learn_comb, Cut_open_safe
and Install_improperly. That is to say, there are four
ways by which the safe can be opened (according to the
tree).

Recalling that, as per Figure 1, ‘Learn combination’
is refined® into ‘Find written combination’ (followed
by ‘Learn combination’) and ‘Get combination from

8 Albeit not in the CSP sense of refinement.

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

6 A. SIMPSON ET AL.

target’ (again followed by ‘Learn combination’), we can
consider the next level via the process TreeV2:

TreeV2 =
Pick_lock — Open_safe — Skip
O
(Find_written_comb —
Learn_comb —
Open_safe — Skip
O
Get_comb_from_target —
Learn_comb —
Open_safe — Skip)
O
Cut_open_safe — Open_safe — Skip
O
Install_improperly — Open_safe — Skip

Here, three of the four original refinements of the
goal are unchanged. The other now captures the
notion that a combination can be discovered either via
Find_written_comb or via Get_comb_from_target.
Moving forward, ‘Get combination from target’ is
refined into ‘Threaten’, ‘Blackmail’, ‘Eavesdrop’ and
‘Bribe’. The process TreeV3 captures this: each
of the corresponding events can lead to the event
Get_comb_from_target being observed.

TreeV3 =
Pick_lock — Open_safe — Skip
O
(Find_written_comb —
Learn_comb —
Open_safe — Skip
O
(Threaten — TreeV3a
O
Blackmail — TreeV 3a
O
Favesdrop — TreeV3a
O
Bribe — TreeV3a))
O
Cut_open_safe — Open_safe — Skip
O
Install_improperly — Open_safe — Skip

Here, TreeV3a is defined as follows.

TreeV3a =
Get_comb_from_target —
Learn_comb —
Open_safe — Skip

Finally, ‘Eavesdrop’ is composed (via AND) of ‘Listen
to conversation’ and ‘Get target to state combination’.

As such, we have the following.

TreeV4 =
Pick_lock — Open_safe — Skip
O
(Find_written_comb —
Learn_comb —
Open_safe — Skip
O
(Threaten — TreeV3a
O
Blackmail — TreeV 3a
O
((Listen_to_conversation —
Eavesdrop — Skip)
|

{Eavesdrop}
(Get_target_to_state_comb —
FEavesdrop — Skip))s
TreeV3a
O
Bribe — TreeV3a))
Od
Cut_open_safe — Open_safe — Skip
O
Install_improperly — Open_safe — Skip

The possible traces of the process are given in Table 1.

There are a couple of things to note here. First,
consider sequences 5 and 6 of Table 1. In the original
attack tree, the sub-goals ‘Listen to conversation’ and
‘Get target to state combination’ were combined via
conjunction (AND). Allowing the events to appear in
either order is consistent with the fact that AND is
commutative. However, in this particular case, only one
of the two possible orderings (‘Listen to conversation’,
then ‘Get target to state combination’) would make
sense in the real world.

Second, those versed in CSP or related techniques
will recognise a potential issue with our representation.
Let us imagine, for example, that an attacker tried to
pursue two paths in parallel — perhaps bribing one
employee while threatening a second and blackmailing
a third. In such circumstances, TreeV4 could give rise
to a deadlock. The reason this is not a concern here is
that these processes are intended to motivate how we
might use sequences to represent possible paths to an
attack; the intent is not that the processes represent an
‘observation’ of an attacker’s behaviour in real time.

Returning to TreeV4, we can now consider the
notions of possibility and impossibility as captured in
the original representation. If we ‘hide’ the impossible
events as depicted in Figure 1, i.e. if we consider the
process

TreeV4 \

{ Pick_lock, Install_improperly,
Find_written_comb,
Threaten, Blackmail,
Get_target_to_state_comb}

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

FORMALISING ATTACK TREES TO SUPPORT ECONOMIC ANALYSIS 7

(Pick_lock, Open_safe)

(Find_written_comb, Learn_comb, Open_safe)
(

(

Uk W N

(Listen_to_conversation, Get_target_to_state_comb,

Threaten, Get_comb_from_target, Learn_comb, Open_safe)
Blackmail, Get_comb_from_target, Learn_comb, Open_safe)

Eavesdrop, Get_comb_from_target, Learn_comb, Open_safe)

=}

(Get_target_to_state_comb, Listen_to_conversation,

Eavesdrop, Get_comb_from_target, Learn_comb, Open_safe)

0

(Cut_open_safe, Open_safe)
9 (Install_improperly, Open_safe)

(Bribe, Get_comb_from_target, Learn_comb, Open_safe)

TABLE 1. Possible traces of interest of TreeV 4.

then we are left with traces 7 and 8 of Table 1, giving
rise to the following set:

{ (Bribe, Get_comb_from_target,
Learn_comb, Open_safe),
(Cut_open_safe, Open_safe)}

With regards to this specific example, this tells us
that we need to give consideration to two potential
sequences (or traces) in defending our system. More
generally, the above tells us that we can abstract away
from trees and think in terms of traces (or sequences)
in constructing our model — while recognising that a
starting point based on tree-like structures is beneficial
in terms of initial capture of information, and in terms
of facilitating communication and understanding.

4. THE FUNDAMENTALS OF THE MODEL

Having motivated our approach, we are now in a
position to present the fundamental concepts of our
model in terms of the mathematical language of Z [15,
50].

We start by introducing the basic type, Attack:

[Attack)

Borrowing the language of [6], components are the
building blocks of attacks. Thus, a set of attack
components is captured by the basic type Component:

[Component]

As an example, based on an illustrative example
of [6], we might have

open_door € Attack
and
{steal_key, force_lock, pick_lock} C Component

In the case of our example of Section 3, we would
have

{attackA, attackB, attackC, attackD} C Attack

and
{alv az, b17 b2, C1, C2, dla d27 d37 d4} g COmPO’nent

In the case of our example of Section 2.1, we would
have

Open_safe € Attack
and
{Pick_lock, Cut_open_safe, ...} C Component

A path can lead to an attack. We define Path —
a collection of non-empty, injective sequences of
components — thus:

Path == iseq; Component

Continuing with our illustrative example borrowed
from [6], we might have

{{steal_key), (force_lock), {pick_lock)} C Path

As another example, recalling our first example from
Section 3, we would have

{<a1, CL2>, <b1, b2>, .. } g Path

In the case of our second example of Section 3, we
would have

{ (Pick_lock),

(Find_written_comb, Learn_comb),

} C Path

A tree is defined as a pair, in which the first element is
an attack and the second element is a (possibly empty)
finite set of paths:

Tree == Attack x F Path
Continuing with our simple example, we might have

(open_door,
{(steal_key), (force_lock), (pick_lock)}) € Tree

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

8 A. SIMPSON ET AL.

For our other scenarios, we might have
(attackB, {(by, bz), (b2, b1)}) € Tree

and (if we limit ourselves — for reasons of space, if
nothing else — to possible paths)

(Open_safe,
{(Bribe,
Get_comb_from_target, Learn_comb),
(Cut_open_safe)})
€ Tree

Finally, we define a forest as a (possibly empty) finite
set of trees:

Forest ==TF Tree

For our simple running example based on [6] we might
have

{(open_door,

{(steal_key), (force_lock), (pick_lock)}),
(smash_down_door,)}
C Forest

Recalling our other examples we would have the
following for the first scenario

{(AttackA,{{a1, a2)}),
(AttackB, {<b17 b2>, <b2, b1>}),

(AttackC, {{c1), {(c2)}),
(AttackD, {(d1, d2), (d3, ds)})} C Forest

and, for the second scenario, we would have

{(Open_safe,
{ (Bribe,
Get_comb_from_target,
Learn_comb),
(Cut_open_safe)})} C Forest

Having motivated our use of sets and sequences to
capture attack trees, we now turn our attention to our
state-based model, which we present in terms of the
schema language of Z.

5. A STATE-BASED APPROACH

In the previous section we illustrated the core model,
consisting of attacks, components, paths, trees and
forests. We have developed a state-based model to
capture the operations of creating trees, adding them to
forests, and so on — and, most importantly, to enforce
the checking of constraints to give rise to the assurance
of correctness that we seek. We present that state-based
model in the following.

5.1. State and initialisation

We start with the state schema, Core.

— Core
components : F Component
attacks : F Attack

paths : F Path

trees : IF Tree

forest : Forest

V p : paths e ran p C components
dom trees C attacks
Va :dom trees e Vb : dom trees o
a = b = trees a = trees b
V P :ran trees ® P C paths
Vit : forest @ t € trees

Here, components, etc. capture the ‘current’ values
of the key attributes of interest. There are four (finite)
sets: components, attacks, paths and trees. Finally,
forest represents the overarching forest of interest.

The first constraint ensures that all elements
featuring in paths also appear in components. The
second constraint ensures that all elements featuring
in the domain of t¢rees should be in attacks (recall that
a tree is modelled as a pair, consisting of an element
of Attack and a finite set of elements of type Path).
The third constraint ensures that no attack can appear
in trees more than once, i.e. there is at most one
collection of paths associated with each attack. The
fourth constraint ensures that all elements featuring
in the range of trees should be in paths. Finally, the
fifth constraint ensures that only elements of trees can
appear in forest.

The initial state of the model is given thus.

__Init
Core

components = ()

attacks = ()
paths = ()
trees = ()
forest =)

(The format of the initial state — in terms of a before-
state, rather than in terms of an after-state — is
influenced by the use of the ProZ model-checker [17],
whereby the initial state is given in terms of a before-
state, rather than in terms of an after-state.)

5.2. Components

Operations to add and remove components are defined
as follows.

First, we might wish to consider the addition of
a component (such as Pick_lock, for example). The
operation schema AddComponent captures such an
action.

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

FORMALISING ATTACK TREES TO SUPPORT ECONOMIC ANALYSIS

__AddComponent
ACore

c? : Component

c? ¢ components
components’ = components U {c?}
attacks’ = attacks
paths’ = paths
trees’ = trees
forest’ = forest

Here, the input ¢? € Component is added to
components provided that it does not already appear
in that set.

The corresponding operation to remove a component
is defined as follows.

__ RemoveComponent
ACore
c? . Component

c? € components
YV p : paths @ c? ¢ ran p
components’ = components \ {c?}
attacks’ = attacks
paths’ = paths
trees’ = trees
forest’ = forest

There are two preconditions that must be satisfied.
First, the component to be removed (¢?) must be an
element of components. Second, it must not appear in
any elements of paths. (Recall that any component that
appears in paths must also appear in components.)

5.3. Attacks

Next, we consider the addition of an attack (such as
Open_safe, for example).

__AddAttack
ACore
a? : Attack

a? ¢ attacks
components’ = components
attacks’ = attacks U {a?}
paths’ = paths
trees’ = trees
forest’ = forest

The corresponding operation to remove an attack is
defined as follows.

__ RemoveAttack
ACore
a? : Attack

a? € attacks
a? ¢ dom trees
components’ = components
attacks’ = attacks \ {a?}
paths’ = paths
trees’ = trees
forest’ = forest

Again, there are two constraints that must be
satisfied. First, the attack to be removed (a?) must
be an element of attacks. Second, it must not appear
in trees. (Recall that any attack that appears in a tree
must also appear in attacks.)

5.4. Paths

We now consider the addition of paths.

__ CreatePath
ACore
p? : Path

p? & paths

ran p? C components
components’ = components
attacks’ = attacks

paths’ = paths U {p?}
trees’ = trees

forest’ = forest

This operation has two constraints. The first is a
standard one, as per the previous addition operations:
there is a check that a path that doesn’t already exist
in the set to which it is being added. The second
ensures that the elements that appear in the path also
appear in components. (A sequence in Z is modelled
as a function; hence the use of ran. As an example,
ran (a, b, ¢) = {a, b, c}.)

The corresponding operation to remove paths is
defined thus.

__ RemovePath
ACore
p? : Path

p? € paths
YV P :ran trees e p? ¢ P
components’ = components
attacks’ = attacks
paths’ = paths \ {p?}
trees’ = trees
forest’ = forest

Again, there are two constraints that must be
satisfied. First, the path to be removed (p?) must be an

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

10 A. SIMPSON ET AL.

element of paths. Second, it must not appear in trees.
(Recall that any path that appears in a tree must also
appear in paths.)

5.5. Trees

We now turn our attention to trees. The operation
CreateTree models the creation of a tree. Recall that
a tree is modelled as an ordered pair: in position 1 is
an attack and in position 2 is a (finite) set of paths.
Any attack, a € Attack, which appears in attacks and
does not appear in the domain of trees can be added to
trees — and, consequently, associated initially with the
empty set of paths.

__ CreateTree
ACore
a? : Attack

a? € attacks
a? ¢ dom trees
components’ = components
attacks’ = attacks
paths’ = paths
trees’ = trees U {a? — 0}
forest’ = forest

We model the subsequent addition of a path to a tree
via the operation AddPathToTree. The operation has
two inputs: an attack (a?) and a path (p?). There are
three preconditions: a? must appear in (the domain of)
trees; p? must appear in paths; and p? can’t already be
associated with a?. If these preconditions are met, then
p? is added to the paths associated with a? (modelled
via the override operator, &).

__AddPathToTree
ACore
a? : Attack
p? : Path

a? € dom trees

p? € paths

p? & trees a?

components’ = components

attacks’ = attacks

paths’ = paths

trees’ = trees @ {a? — (trees a?) U {p?}}
forest’ = forest

The complementary operation, pertaining to the
removal of a path, is defined similarly. Again, there
are three conditions: a? must appear in (the domain
of) trees; p? must be associated with a?; and a?
can’t appear in the forest being modelled. If these
preconditions are met, then p? is removed from the
paths associated with a? (again modelled via the
override operator, @).

__ RemovePathFromTree
ACore
a? : Attack
p? : Path

a? € dom trees

p? € trees a?

a? ¢ dom forest

components’ = components

attacks' = attacks

paths’ = paths

trees’ = trees ® {a? — (trees a?) \ {p?}}
forest’ = forest

Finally, the removal of a tree is defined as follows.

__RemoveTree

ACore
a? : Attack

a? € dom trees

a? ¢ dom forest
components’ = components
attacks’ = attacks

paths’ = paths

trees’ = {a?} <4 trees
forest’ = forest

Here, the operation RemoveTree has one input: a? €
Attack. Assuming that a? is an element of (the domain
of) trees and does not appear in (the domain of) forest,
then the tree associated with a? is removed from trees
(via the domain co-restriction operator, <).

5.6. The forest

We are now in a position to give consideration to the
forest attribute.

A tree, t?7, can be added to the forest if it appears in
trees and does not already appear in forest:

__ AddTreeToForest
ACore
t? . Tree

t? € trees

t? ¢ forest

components’ = components
attacks’ = attacks

paths’ = paths

trees’ = trees

forest’ = forest U {t?}

A tree that already appears in ¢? can be removed
from the forest.

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

FORMALISING ATTACK TREES TO SUPPORT ECONOMIC ANALYSIS 11

—_ RemoveTreeFromForest

ACore
t? . Tree

t? € forest

components’ = components
attacks’ = attacks

paths’ = paths

trees’ = trees

forest’ = forest \ {t?7}

5.7. Leveraging the model

We can now consider how we might use the model to
learn about the forest of interest. As an example, the
PathsToAttack operation schema takes an attack as
input and returns the paths associated with that attack
(if there are any):

__ PathsToAttack
=Core
a? : Attack
P!:F Path

a? € dom forest = P! = forest a?
a? ¢ dom forest = P! = ()

As an example, if the value of forest was given by

{(Open_safe,
{ (Bribe,
Get_comb_from_target,
Learn_comb),
(Cut_open_safe),
(Install_improperly)})}

then, if Open_safe was passed as input to the
PathsToAttack operation, it would follow that the
output would be

{(Bribe, Get_comb_from_target,
Learn_comb),

(Cut_open_safe),

(Install_improperly)}

6. DEMONSTRATING MODULARITY

In Section 2 we identified four requirements for our
approach. The first of these requirements

The approach should broadly follow that of [6]
and give consideration to attacks, collections
of attack components (in the form of trees),
and collections of trees (in the form of forests)

is met in a straightforward fashion. The second of these
requirements

The approach should give rise to machine-
readable descriptions to (a) increase confi-
dence in correctness and (b) support automa-
tion

is met by the fact that the I TEX representation of the
model can be analysed and automated via tools as such
as the aforementioned ProZ (as, indeed, it has been).

In this section we give consideration to the third
requirement:

The approach should be suitably modular
to allow for the incorporation of attributes
such as possibility / impossibility, costs and
probabilities (and combinations thereof).

Perhaps the most straightforward way of demonstrat-
ing this is via the characteristics of possibility and im-
possibility as considered in Section 2. (We shall consider
costs in the next section.)

We start by introducing the free type
Possibility Value:

PossibilityValue :==1 | P
We next introduce the schema Possibilities:

__ Possibilities
components : F Component
poss : Component -+ Possibility Value

dom poss = components

The two attributes are linked by the single constraint:
all elements of components must have an associated
possibility, captured via the poss function (and, indeed,
only elements of components can have an associated
possibility).

We can subsequently combine this aspect with our
core model via schema conjunction:

Core WithPossibility = Core N\ Possibilities

This gives rise to a state schema involving the
attributes and constraints (combined via conjunction)
of both Core and Possibilities.

Operations to make components possible and
impossible are defined thus.

__ MakeComponentPossible
A Core WithPossibility
ECore
c? : Component

c? € components
poss’ = poss & {c? — P}

— MakeComponentImpossible
A Core WithPossibility
ZCore

c? : Component

c? € components
poss’ = poss @ {c? +— I}

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

12 A. SIMPSON ET AL.

The use of =Core ensures that the attributes of Core
remain unchanged by these operations.

Most of our operations of Sections 5.2-5.6 are
adapted by changing A Core to ACore WithPossibility
and the incorporation of an extra constraint (poss’ =
poss) to ensure that aspect remains unchanged. So, for
example, we might have

—_ RemoveTreeFromForest
A Core WithPossibility
t?: Tree

t? € forest

components’ = components
attacks’ = attacks

paths’ = paths

trees’ = trees

forest’ = forest \ {t?7}
poss’ = poss

On the other hand, those operations of Sections 5.2—
5.6 that update the components attribute — such as
RemoveComponent — now must take into account poss
due to the fact that the two attributes are linked via the
dom poss = components constraint.

As an example, an updated
RemoveComponent is given below.

version of

__ RemoveComponent
A Core WithPossibility
c? : Component

c? € components

YV p : paths @ c? ¢ ran p
components’ = components \ {c?}
attacks’ = attacks

paths’ = paths

trees’ = trees

forest’ = forest

poss’ = {c?} <4 poss

The only change is the addition of the constraint
poss’ = {c?} < poss. This insists that the removed
component ¢? is also removed (via domain subtraction)
from the poss function — to ensure the preservation of
the invariant dom poss = components.

Finally, in addition to PathsToAttack, we might
introduce PossiblePathsToAttack, the output of which
rules out impossible paths:

__ PossiblePathsToAttack
2 CoreWithPossibility
a? : Attack
P!:F Path

a? € dom forest =
Pl ={p: forest (a?) |
Ve:ran p e possc = P)}
a? ¢ dom forest = P! ={)

Here, the set comprehension insists that only paths
in which all components are associated with P (i.e.
deemed possible) will feature in the output.

As an example, if the value of forest was given by

{(Open_safe,
{(Bribe,
Get_comb_from_target,
Learn_comb),
(Cut_open_safe),
(Install_improperly)})}

and, as per Figure 1, Install_improperly was associated
with I, then, if Open_safe was passed as input to
PossiblePathsToAttack, it would follow that the output
would be

{(Bribe,
Get_comb_from_target, Learn_comb),
(Cut_open_safe)}

7. INCORPORATING COSTS

Having considered the first three of the four require-
ments of Section 2.3, we now turn our attention to the
fourth requirement:

The approach should allow for suitable eco-
nomic analysis in terms of both ROA and ROL

We first need to introduce a notion of value. For the
sakes of convenience and simplicity, we define Cost as
an abbreviation of the natural numbers:

Cost ==

Here, Cost could be associated with necessary effort
(in terms of time), monetary cost, some other value
or some combination thereof. It could, as is typical,
pertain to cost to defend; alternatively, it could, as per
our motivation, pertain to cost to attack. (A simple
extension — involving replacing N with a tuple to
capture a combination of different costs — is, of course,
possible.) In the following, we shall consider ‘cost to
exploit’.

As per the approach taken in the previous section, we
start by introducing a new state schema to capture the
aspects of interest.

_ Costs
components : F Component
paths : F Path
costEC : Component + Cost
costEP : Path + Cost

¥V p : paths e ran p C components
dom (costEC) = components
dom (costEP) = paths
Vp : dom (costEP) e
(Vc:ran(p) @ costEP p > costEC c)

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

FORMALISING ATTACK TREES TO SUPPORT ECONOMIC ANALYSIS 13

Here, components and paths are familiar from the
Core schema. The function costEC (for ‘cost to exploit
component’) associates costs with components. (We
note that it is not the role of the model to estimate or
determine costs of components, but, rather, to capture
such information.) The function costEP (for ‘cost to
exploit path’) associates costs with paths.

The first constraint is again familiar from the Core
schema. The other constraints ensure that (a) every
element of components has an associated cost (and only
those components appear in (the domain of) costEC);
(b) every element of path has an associated cost (and
only those paths appear in (the domain of) costEP);
and (c) the cost of each path is at least that of each of its
individual component. (It would be inappropriate for
our core model to go further than this in constraining
the relationships between component costs and path
costs. For example, while, in some circumstances, the
cost associated of a path might be calculated by simply
adding the costs of its components, in the general case
the components will not be sufficiently independent
to permit such a calculation. Nevertheless, there is,
of course, the possibility to add such constraints —
such as adding costs and / or multiplying independent
probabilities — as appropriate.)

We might layer this aspect on top of our extended
model that takes into account possibilities thus.

Core WithPossibilityAndCosts =
Core N Possibilities N\ Costs

Again, some operations remain mostly unaffected by
the incorporation of costs, while others need to be
adapted. For example, AddComponent now takes the
following form.

— AddComponent
A Core WithPossibilityAndCosts
comp? : Component
cost? : Cost

comp? & components

components’ = components U {comp?}
attacks’ = attacks

paths’ = paths

trees’ = trees

forest’ = forest

costEC" = costEC' U {comp? — cost?}
costEP’ = costEP

poss’ = poss U {comp? — P}

Now it is the case that any component that is added
must have an associated cost. In addition, the default
/ initial assumption is that all components are possible
(hence the mapping of comp? to P in poss).

Further, there are additional operations to
reflect the mnew attributes. The operation
ChangePathExploitationCost, presented below, is
one such example.

__ ChangePathFExploitationCost ______
A Core WithPossibilityAndCosts
ECore
p? : Path
c?: Cost

p? € paths

Ve :ran(p?) e ¢? > costEC ¢
costEP" = costEP @& {p? — ¢?}
poss’ = poss

Here, the ZCore ensures that the attributes associated
with Core remain unchanged.

Finally, we might wish to take advantage of the two
extensions to the core model to consider the cost of
exploitation of possible attacks:

__ CostToPerformPossibleAttack
2 Core WithPossibilityAndCosts
a? : Attack
X : F Path
cl: Cost

a? € dom forest
X ={p: forest (a?) |
(Vc:ran p @ possc = P)}

X#0=
cl'=(uc: Cost |
(p:Xe

costEP p = ¢

A

Vg:X e
costEP p
<

costEP q)))

Here, we consider a possible attack, a? € Attack. The
set X consists of those paths associated with a? in the
current forest in which all components are characterised
as possible (as per the PossiblePathsToAttack schema
of Section 6). Then, the cost to perform a?, returned
via the output ¢!, is simply the ‘cheapest’ path found in
X. To do so, the p-operator is used to find the unique
cost with the stated property.

8. CONCLUSION

We have described a formal model of attack trees. The
model was motivated by the need to underpin analysis
of costs from the perspective of attackers — in this
case, we considered to ‘cost to exploit’. A number of
requirements were established for the approach; all have
been met.

It is worth noting that there is a broad literature
on the formalisation of attack trees (see, for example,
[61], [52], [53] and [5]). Widel et al. [53] argue
that, classically, two interpretations have been used for
attack trees: “the propositional semantics ... where
an attack tree is interpreted as a Boolean function

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

14 A. SIMPSON ET AL.

representing the structure of the tree” [53] and “the
multiset semantics ... interpreting an attack tree as a
set of multisets modeling the attack vectors covered by
the tree” [53]. The work of Lenin et al. [54] is offered
as an example of the former; the work of Mauw and
Oostdijk [6] is offered as an example of the latter. To
a degree, we have based our contribution on the latter.
It is also worth noting that others have seen value in
adopting a state-based approach to representing such
constructs (see, for example, the contribution of Fila
and Pinchinat [55]).

We intend to build upon this work in a number of
ways (and, indeed, have started doing so). First, as
mentioned in Section 1, the model described in this
paper has already been mapped to the B-method [18]
with a view to taking advantage of the tool support
offered by ProB [16]. Second, having established the
underpinning model, we are now in a position to
develop the toolset mentioned in Section 2 — and,
in doing so, incorporate probability distributions and
actual, estimated costs (as opposed to the more abstract
representations provided here to establish the ‘proof of
concept’). Thus, while the formal model as presented
here establishes some healthy foundations and provides
a novel perspective on a familiar problem that may be
of interest to the research community, there is much
work left to do to realise our longer term aims.

ACKNOWLEDGEMENTS

The authors would like to thank the reviewers for their
helpful comments. This material is based upon work
supported by the Air Force Office of Scientific Research
under award number FA8655-21-1-7015. Any opinions,
finding, and conclusions or recommendations expressed
in this material are those of the author(s) and do not
necessarily reflect the views of the United States Air
Force. For the purpose of Open Access, the authors
have applied a CC BY public copyright licence to any
Author Accepted Manuscript version arising from this
submission. No new data were generated or analysed in
support of this research.

REFERENCES

[1] Schneier, B. (1999) Attack trees. Dr. Dobb’s Journal,
24, 21-29.

[2] Sheyner, O., Haines, J., Jha, S., Lippmann, S., and
Wing, J. M. (2002) Automated generation and analysis
of attack graphs. Proceedings of the 2002 IEEE
Symposium on Security and Privacy (S&P 2002), pp.
273-284. IEEE Computer Society.

[3] Schneier, B. (2000) Secrets & Lies: Digital Security in
a Networked World. Wiley, Hoboken, NJ, USA.

[4] Audinot, M., Pinchinat, S., and Kordy, B. (2017) Is
my attack tree correct? In Foley, S. N., Gollmann,
D., and Snekkenes, E. (eds.), Proceedings of the
22nd European Symposium on Research in Computer
Security (ESORICS 2017) Part I, Lecture Notes in
Computer Science, 10492, pp. 83-102. Springer.

[5] Lallie, H. S., Debattista, K., and Bal, J. (2020) A review
of attack graph and attack tree visual syntax in cyber
security. Computer Science Review, 35, 100219.

[6] Mauw, S. and Oostdijk, M. (2005) Foundations of
attack trees. In Won, D. H. and Kim, S. (eds.),
Proceedings of the 8th International Conference on
Information Security and Cryptology (ICISC 2005),
Lecture Notes in Computer Science, 3935, pp. 186—
198. Springer.

[7] Vigo, R., Neilson, F., and Nielson, H. R. (2014)
Automated generation of attack trees. Proceedings
of the 27th IEEE Computer Security Foundations
Symposium (CSF 2014), pp. 337-350. IEEE Computer
Society.

[8] Ivanova, M. G., Probst, C. W., Hansen, R. R., and
Kammiiller, F. (2015) Transforming graphical system
models to graphical attack models. In Mauw, S.,
Kordy, B., and Jajodia, S. (eds.), Proceedings of the
First International Workshop on Graphical Models for
Security (GraMSec 2015), Lecture Notes in Computer
Science, 9390, pp. 82-96. Springer.

[9] Pinchinat, S., Acher, M., and Vojtisek, D. (2015)
ATSyRa: an integrated environment for synthesizing
attack trees. In Mauw, S., Kordy, B., and Jajodia, S.
(eds.), Proceedings of the First International Workshop
on Graphical Models for Security (GraMSec 2015),
Lecture Notes in Computer Science, 9390, pp. 97-101.
Springer.

[10] Cheah, M., Nga Nguyen, H., Bryans, J., and Shaikh,
S. A. (2017) Formalising systematic security evalua-
tions using attack trees for automotive applications.
In Hancke, G. P. and Damiani, E. (eds.), Proceed-
ings of the 11th IFIP WG11.2 International Conference
on Information Security Theory and Practice (WISTP
2017), Lecture Notes in Computer Science, 10741, pp.
113-129. Springer.

[11] Sonnenreich, W., Albanese, J., and Stout, B. (2005)
Return on security investment (ROSI): A practical
quantitative model. Journal of Research and Practice
in Information Technology, 38, 239-252.

[12] van Rensburg, A. J., Nurse, J. R. C., and
Goldsmith, M. (2016) Attacker-parametrised attack
graphs. Proceedings of the 10th International
Conference on Quantum, Nano/Bio, and Micro
Technologies (ICQNM 2016), pp. 316-319.

[13] Schechter, S. (2002) Quantitatively differentiating
system security. Proceedings of the 1st Workshop on
the Economics of Information Security (WEILS 2002).

[14] Cremonini, M. and Martini, P. (2005) Evaluating infor-
mation security investments from attackers’ perspec-
tive: the return-on-attack (ROA). Proceedings of the
4th Workshop on the Economics of Information Secu-
rity (WEIS 2005).

[15] Spivey, J. M. (1992) The Z Notation: A Reference
Manual. Prentice Hall, Englewood Cliffs, NJ, USA.

[16] Leuschel, M. and Butler, M. (2003) ProB: a model
checker for B. In Araki, K., Gnesi, S., and Mandrioli,
D. (eds.), Proceedings of the 2003 International
Symposium of Formal Methods Europe (FME 2003),
Lecture Notes in Computer Science, 2805, pp. 855—
874. Springer.

[17] Plagge, D. and Leuschel, M. (2007) Validating Z
specifications using the ProB animator and model

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

FORMALISING ATTACK TREES TO SUPPORT ECONOMIC ANALYSIS 15

(22]

23]

[24]

(28]

29]

(30]

(34]

checker. In Davies, J. W. M. and Gibbons, J.
(eds.), Proceedings of the 6th International Conference
on Formal Methods (IFM 2007), Lecture Notes in
Computer Science, 4591, pp. 480-500. Springer.
Abrial, J.-R. (1996) The B-Book: Assigning Meanings
to Programs. Cambridge University Press, Cambridge,
UK.

Hoare, C. A. R. (1985) Communicating Sequential
Processes. Prentice Hall, Englewood Cliffs, NJ, USA.
Roscoe, A. W. (2005) The Theory and Practice of
Concurrency. Pearson, Upper Saddle River, NJ, USA.
Anderson, R. and Moore, T. (2007) Information
security economics — and beyond. In Menezes, A.
(ed.), Proceedings of the 27th Annual International
Cryptology Conference (CRYPTO 2007), Lecture Notes
in Computer Science, 4622, pp. 68-91. Springer.
Moore, T. and Anderson, R. (2011) Economics and
internet security: A survey of recent analytical,
empirical, and behavioral research. Technical Report
TR-03-11. Harvard Computer Science Group.

Geer, Jr., D., Soo Hoo, K., and Jaquith, A. (2003)
Information security: Why the future belongs to the
quants. IEEE Security & Privacy, 99, 24-32.
Anderson, R., Béhme, R., Clayton, R., and Moore,
T. (2008). Security economics and the internal mar-
ket. https://www.enisa.europa.eu/publications/
archive/economics-sec/.

Sarker, I. H., Kayes, A. S. M., Badsha, S., Algahtani,
H., Watters, P., and Ng, A. (2020) Cybersecurity
data science: An overview from machine learning
perspective. Journal of Big Data, 7.

Dellago, M., Simpson, A. C., and Woods, D. W. (2022)
Exploit brokers and offensive cyber operations. The
Cyber Defense Review, T, 31-48.

Dellago, M., Woods, D. W., and Simpson, A. C. (2022)
Characterising 0-day exploit brokers. Proceedings of
the 21st Workshop on the Economics of Information
Security (WEIS 2022).

Smith, J. E. H. (2019) Irrationality: A History of
the Dark Side of Reason. Princeton University Press,
Princeton, NJ, USA.

Weiss, J. D. (1991) A system security engineering
process. Proceedings of the 14th National Computer
Security Conference, pp. 572-581.

Amoroso, E. G. (1994) Fundamentals of Computer
Security Technology. Prentice Hall, Englewood Cliffs,
NJ, USA.

Kordy, B., Pietre-Cambacédes, L., and Schweitzer, P.
(2014) DAG-based attack and defense modeling: Don’t
miss the forest for the attack trees. Computer Science
Review, 13—14, 1-38.

Swiderski, F. and Synder, W. (2004) Threat Modeling.
Microsoft Press.

Ongsakorn, P., Turney, K., Thornton, M. A., Nair,
S., Szygenda, S. A., and Manikas, T. (2010) Cyber
threat trees for large system threat cataloging and
analysis. Proceedings of the 4th Annual IEEE Systems
Conference, pp. 610-615. IEEE Computer Society.
Steffan, J. and Schumacher, M. (2002) Collaborative
attack modeling. Proceedings of the 2002 ACM
Symposium on Applied Computing (SAC 2002), pp.
235-259. ACM.

35]

(36]

37]

(38]

39]

[40]

[41]

42]

(43]

(44]

(45]

[46]

(47]

Bistarelli, S., Dall’Aglio, M., and Peretti, P. (2006)
Strategic games on defense trees. In Dimitrakos, T.,
Martinelli, P., Ryan, P. Y. A.,; and Schneider, S. A.
(eds.), Proceedings of the 4th International Workshop
on Formal Aspects in Security and Trust (FAST 2006),
Lecture Notes in Computer Science, 4691, pp. 1-15.
Springer.

Roy, A., Kim, D. S., and Trivedi, K. S. (2012) Attack
countermeasure trees (ACT): Towards unifying the
constructs of attack and defense trees. Security and
Communication Networks, 5, 929-943.

Gadyatskaya, O. and Trujillo-Rasua, R. (2017) New
directions in attack tree research: Catching up with
industrial needs. International Workshop on Graphical
Models for Security (GraMSec 2017), Lecture Notes in
Computer Science, 10744, pp. 115-126. Springer.
Kavallieratos, G., Katsikas, S., and Gkioulos, V.
(2020) Cybersecurity and safety co-engineering of
cyberphysical systems — a comprehensive survey.
Future Internet, 12, 65.

Ji, Z., Yang, S.-H., Cao, Y., Wang, Y., Zhou, C.,
Yue, L., and Zhang, Y. (2021) Harmonizing safety and
security risk analysis and prevention in cyber-physical
systems. Process Safety and Environmental Protection,
148, 1279-1291.

Kriaa, S., Pietre-Cambacédes, L., Bouissou, M., and
Halgand, Y. (2015) A survey of approaches combining
safety and security for industrial control systems.
Reliability Engineering € System Safety, 139, 156-178.
Niitsoo, M. (2010) Optimal adversary behavior for the
serial model of financial attack trees. In Echizen, I.,
Kunihiro, N., and Sasaki, R. (eds.), Proceedings of the
5th International Worshop on Security (IWSEC 2010),
Lecture Notes in Computer Science, 6434, pp. 354-370.
Springer.

Dewri, R., Poolsappasit, N., Ray, 1., and Whitley,
D. (2007) Optimal security hardening using multi-
objective optimization on attack tree models of
networks. Proceedings of the 14th ACM conference on
Computer and Commaunications Security (CCS 2007),
pp- 204-213. ACM.

Dewri, R., Ray, I., Poolsappasit, N., and Whitley,
D. (2012) Optimal security hardening on attack
tree models of networks: a cost-benefit analysis.
International Journal of Information Security, 11, 167—
188.

Buldas, A. and Stepanenko, R. (2012) Upper bounds
for adversaries’ utility in attack trees. In Grossklags,
J. and Walrand, J. (eds.), Proceedings of the 3rd
International Conference on Decision and Game
Theory for Security (GameSec2012), Lecture Notes in
Computer Science, 7638, pp. 98-117. Springer.
Buldas, A. and Lenin, A. (2013) New efficient
utility upper bounds for the fully adaptive model
of attack trees. In Das, S. K., Nita-Rotaru,
C., and Kantarcioglu, M. (eds.), Proceedings of the
4th International Conference on Decision and Game
Theory for Security (GameSec2013), Lecture Notes in
Computer Science, 8252, pp. 192—205. Springer.

Van Holsteijn, F. A. (2015) The motivation of attackers
in attack tree analysis. Master’s thesis. TU Delft.
Fila, B. and Widel, W. (2020) Exploiting attack-
defense trees to find an optimal set of countermeasures.

THE COMPUTER JOURNAL,

Vol. 72,

No. 7?7, 7777

16

A. SIMPSON ET AL.

(48]

(49]

50

[51]

Proceedings of the 33rd IEEE Computer Security
Foundations Symposium, (CSF 2020), pp. 395-410.
IEEE Computer Society.

Patten, T., Mitchell, D.; and Call, C. (2020) Cyber
attack grammars for risk/cost analysis. International
Conference on Cyber Warfare and Security.

Nguyen, H. N., Bryans, J., and Shaikh, S. (2019) Attack
defense trees with sequential conjunction. Proceedings
of the 19th IEEE International Symposium on High
Assurance Systems Engineering (HASE 2019), pp. 247—
252. IEEE Computer Society.

Woodcock, J. C. P. and Davies, J. W. M. (1996) Using
Z: Specification, Refinement, and Proof. Prentice Hall,
Englewood Cliffs, NJ, USA.

Tuma, K., Calikli, G., and Scandariato, R. (2018)
Threat analysis of software systems: A systematic
literature review. Journal of Systems and Software,
144, 275-294.

Mantel, H. and Probst, C. W. (2019) On the meaning
and purpose of attack trees. Proceedings of the
32nd IEEE Computer Security Foundations Symposium
(CSF 2019), pp. 184-18415. IEEE Computer Society.
Widel, W., Audinot, M., Fila, B., and Pinchinat, S.
(2019) Beyond 2014: Formal methods for attack tree-
based security modeling. ACM Computing Surveys, 52,
Article Number 75.

Lenin, A., Willemson, J., and Sari, D. P. (2014)
Attacker profiling in quantitative security assessment
based on attack trees. In Bernsmed, K. and Fischer-
Hibner, S. (eds.), Proceedings of the 19th Nordic
Conference on Secure IT Systems (NordSec 2014),
Lecture Notes in Computer Science, 8788, pp. 199—
212. Springer.

Fila, B. and Pinchinat, S. (2020). State-based attack—
defense trees. https://www.semanticscholar.org/
paper/State-based-attackdefense-trees-Fila/
3110abb87b4eab87d69487470b837aad18fccbfa#
reference.

THE COMPUTER JOURNAL,

Vol. 72,

No. 77,

7777

