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Abstract
Timely detection of an invasion event, or a pest outbreak, is an extremely challenging operation of major importance for 
implementing management action toward eradication and/or containment. Fruit flies—FF—(Diptera: Tephritidae) comprise 
important invasive and quarantine species that threaten the world fruit and vegetables production. The current manuscript 
introduces a recently developed McPhail-type electronic trap (e-trap) and provides data on its field performance to surveil 
three major invasive FF (Ceratitis capitata, Bactrocera dorsalis and B. zonata). Using FF male lures, the e-trap attracts the 
flies and retains them on a sticky surface placed in the internal part of the trap. The e-trap captures frames of the trapped 
adults and automatically uploads the images to the remote server for identification conducted on a novel algorithm involv-
ing deep learning. Both the e-trap and the developed code were tested in the field in Greece, Austria, Italy, South Africa 
and Israel. The FF classification code was initially trained using a machine-learning algorithm and FF images derived from 
laboratory colonies of two of the species (C. capitata and B. zonata). Field tests were then conducted to investigate the 
electronic, communication and attractive performance of the e-trap, and the model accuracy to classify FFs. Our results 
demonstrated a relatively good communication, electronic performance and trapping efficacy of the e-trap. The classification 
model provided average precision results (93–95%) for the three target FFs from images uploaded remotely from e-traps 
deployed in field conditions. The developed and field tested e-trap system complies with the suggested attributes required 
for an advanced camera-based smart-trap.
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Key message

• The described McPhail electronic (smart) trap showed 
good caipabilities and could be implemented in the 
future in the automatic surveillance of invasive and 
expanding fruit flies of economic importance.

Introduction

Automation of agricultural processes and decision making in 
agriculture has advanced at enormous steps during the last 
decade (Jung et al. 2021). Within these advances, automa-
tion of insect-monitoring and decision-making in pest man-
agement has been amply developed, and novel instruments 
(i.e., sensors), principles and agricultural applications were 
recently developed and communicated (e.g., Deqin et al. 
2016; Goldshtein et al. 2017; Potamitis et al. 2018; Ioan-
nou et al. 2019; Miranda et al. 2019; Nestel et al. 2019; 
Sciarretta et al. 2019; Cardim Ferreira Lima et al. 2020; 
Preti et al. 2021; Schellhorn and Jones 2021). Moreover, 
some of these electronic traps have achieved commerciali-
zation, (see for instance the RapidAIM, https:// rapid aim. io/ 
and trapview, https:// trapv iew. com/) providing services for 
real-time, wireless insect-pest monitoring and decision mak-
ing in pest management, rendering management of pest by 
artificial intelligence (AI)-supported technologies a reality 
(Schellhorn and Jones 2021).

Smart-traps (“electronic traps”) for fruit flies (FF) 
(developed and proposed) follow a variety of principles 
(Cardim Ferreira Lima et al. 2020; Schellhorn and Jones 
2021). These smart-traps utilize and function on all sorts 
of biological concepts and sensor types. Some of the most 
successful smart-traps utilize sensors that can detect some 
specific aspects of the FF behavior, like wing-beat frequency 
(Potamitis et al. 2018) or movement patterns (e.g., the Rapi-
dAIM, https:// rapid aim. io/). Fruit flies are usually attracted 
to these smart-traps by lures, which express a certain level of 
specificity. These lured smart-traps, which count the number 
of attracted insects, from which the vast majority is the target 
FF, are useful tools to support monitoring of established FF 
populations and IPM decision-making systems (see for an 
early account, Jiang et al. 2008). This same research group 
also pioneered the idea of using smart-traps as early-warning 
systems for FF in remote areas and as a management tool 
to control FF outbreaks (Liao et al. 2012). Other type of 
sensors include those based on the acquisition of images 
from the insect pest (Preti et al. 2021). Prototypes of these 
smart traps used to monitor FF include, within others, those 
tested for the oriental fruit fly, Bactrocera dorsalis (Deqin 
et al. 2016), the Ethiopian fruit fly, Dacus ciliatus (Nestel 

et al. 2019), the Mediterranean fruit fly (medfly), Ceratitis 
capitata (Sciarretta et al. 2019) and the olive fruit fly, B. 
oleae (Miranda et al. 2019).

While most of these systems provide a basis for real-time 
remote monitoring of insect pests, and are becoming a tool 
for farm pest-management, few automation systems and 
sensors have addressed the surveillance of “invasive” insect 
pests (i.e., insect pest species that are exotic to a geographic 
region and it can be naturally spread and/or unintention-
ally introduced by humans) (e.g., Rassati et al. 2016). Intro-
duction of exotic pests to new areas where they were not 
previously present has major economic and environmental 
implications (Pimentel 2011). New exotic species may sub-
stantially modify the fauna and vegetation of the invaded 
region (Lockwood et al. 2007). In addition, introduction of 
new species, especially phytophagous insects, may impose 
economic and environmental risks for the agricultural sec-
tor (Guillemaud et al. 2011). Usually, the introduction of a 
new agricultural pest will lead to massive pesticide utiliza-
tion, to halt establishment and restrict spread of the invasive 
insect pest, and the application of phytosanitary regulations 
that may restrict movement of agricultural produce from 
the quarantined area, thus having an important economic 
impact on farmers and the trading industry (Follett and 
Neven 2006). In case the invasive pests manage to become 
successfully established and spread in the new region, the 
agricultural sector will necessitate confronting this new pest, 
usually requiring costly modifications and adaptations in 
pest management strategies.

The family of FF (Diptera: Tephritidae), which contains 
more than 4000 species worldwide, include a group of insect 
pests of economic importance that infest fruits and vegeta-
bles. Eggs are laid in the rind or the flesh of the fruit and 
hatched larvae consume the flesh by drilling holes, destroy-
ing the fruit, rendering unmarketable (White and Elson-
Harris 1992). Due to their reproductive capacity and ability 
to rapidly multiply, FF may induce severe economic dam-
age to plantations, destroying up to 100% of the produce 
without control (Qin et al. 2015). Several FF species are 
known for their invasive capacity and ability to expand to 
new geographic regions. The medfly, for instance, has spread 
throughout the world in a relatively short period of time (ca. 
200 years) and is currently expanding its geographic range to 
new areas in response to climatic change (Diamantidis et al. 
2009; Szyniszewska and Tatem 2014; Gilioli et al. 2021). 
Similarly, the oriental fruit fly has spread from South East 
Asia to several islands of the Pacific Ocean and Africa and 
is frequently detected in North America (Papadopoulos et al. 
2013). It is currently threatening the European continent as 
well, where adults have been recently intercepted in Aus-
tria (Egartner et al. 2019), Italy (Nugnes et al. 2018) and 
in France (https:// gd. eppo. int/ taxon/ DACUDO/ distr ibuti on/ 
FR).

https://rapidaim.io/
https://trapview.com/
https://rapidaim.io/
https://gd.eppo.int/taxon/DACUDO/distribution/FR
https://gd.eppo.int/taxon/DACUDO/distribution/FR
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Surveillance systems to detect the introduction of exotic 
insect pests are active in many places, especially in fruit 
exporting and importing countries, and consist of fruit 
inspection in ports of entry and extensive networks of insect 
traps covering vast territorial areas (Shelly et al. 2014). 
These extensive trap networks require intensive scouting and 
monitoring and usually inflict important costs to the national 
plant protection agencies. For instance, in a small area like 
Israel, the territories under the jurisdiction of the Palestinian 
Authority and the Jordan Valley in Jordan, the IAEA/FAO 
Regional Cooperation framework helped establish a network 
of more than 1000 traps spread throughout the area to detect 
invasive Bactrocera fruit fly species that can threaten their 
fruit production and export markets (IAEA 2019). This net-
work of traps is served by many scouts on a biweekly basis 
and has an important impact on the national budgets. Estab-
lishing a network of autonomic FF surveillance will greatly 
reduce costs and improve the ability of regulating agencies 
to get early warning alerts, facilitating rapid response actions 
to minimize the probabilities of establishment of invasive 
FF. The present study reports on the development and testing 
of a novel sensor (electronic trap, “e-trap”) to detect invasive 
FF in a timely manner that includes a trapping system, wire-
less transmission of images of captured insects, an image 
analysis system, and an algorithm to identify and count the 
captured adults. The e-trap was tested under field conditions 
in several regions of the Mediterranean and South Africa, 
targeting three important invasive FF: two Bactrocera spe-
cies (B. dorsalis and B. zonata) and C. capitata that is cur-
rently expanding its distribution to more continental areas of 
Europe. This e-trap can also serve as a tool to monitor “low-
prevalence” orchards, and as part of the “system approach” 
to reduce risk of exporting infested fruits to FF “free areas” 
(Jang et al. 2014).

Methodology

The fruit fly trap and optical sensor

The e-trap is based on the conventional McPhail trap, devel-
oped and used by M. McPhail in 1935 to monitor the Mexi-
can fruit fly (Anastrepha ludens) in Mexico (Steykal 1977). 
Since then, this trap and several variations has become a 
conventional trap to monitor FF throughout the world. The 
McPhail e-trap developed in this study (Fig. 1) comprises 
3-pieces of plastic units: (a) a central cylinder (13.5 cm in 
diameter), bearing an invagination opening to the external 
environment in the bottom of the cylinder (6 cm in diam-
eter), (b) a lid closing the cylinder from the top, and (c) a 
battery’s box (with capacity for 6-rechargeable and replace-
able lithium batteries) that attach to the lateral external-wall 
of the cylinder (Fig. S1). The central cylinder is internally 

divided into several lateral chambers that accommodate the 
electronics and camera, and a central chamber where enter-
ing FF are directed (by the color) onto a yellow sticky-board 
where they adhere and die (Figs. S2 and S3). The yellow-
sticky board faces a high-resolution camera (Raspberry pi 
Camera Module V2, Okdo Technology LTD) that is acti-
vated by a Raspberry pi Zero v 1.3 Microcomputer (Rasp-
berry Pi Limited), which acquires the image and handles the 
uploading of the image to the cloud or server using cellular 
communication with a 4G USB Dongle (any modem func-
tioning with the local communication system). The location 
of the yellow sticky-board and the camera within the trap 
create an optimal geometry and “focus” that covers the entire 
sticky-board surface and produces high-resolution images 
of the adhered insects (Fig. S4). Fruit flies are attracted to 
the trap using male lures (Methyl Eugenol, ME, for Bac-
trocera males, Trimedlure, TML, for Ceratitis males,) and 
protein-based products, such as Biolure, for female flies. At 
this stage, the e-trap is activated twice a day, sending two 
images per day. Energy is obtained from six lithium batteries 
(NCR18650PF) that allows the e-trap to function uninter-
ruptedly for around 6–7 months. Uploaded images are pro-
cessed by image analysis algorithms developed specifically 
for this purpose (see following sections). The results are 
managed and fed into risk models and/or sending alerts to 
stakeholders (Fig. 2).

Field‑test of e‑trap’s fruit fly attraction, electronic 
functioning and communication

The e-traps were tested, and their performance was com-
pared with conventional traps, in five countries (Israel, 
Greece, Austria, Italy and South Africa). Investigation 
and comparison of the e-trap attractiveness was conducted 

Fig. 1  Picture of the McPhail e-trap prototype hanging from a citrus 
tree
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targeting males of B. dorsalis (South Africa, where the spe-
cies is established in the North parts of the country, and 
Italy, where recent interceptions were reported in 2018), B. 
zonata (Israel, where it is present and contained in urban 
and suburban Tel Aviv), and C. capitata (Israel and Greece, 
where it is endemic, and Austria where interceptions of the 
fly are common) using methyl eugenol (ME) dispensers for 
the first two species and Trimedlure (TML) dispensers for 
the third species. Traps were shipped from the Agricultural 
Research Organization (ARO) in Israel to partners and 
field-deployed for several periods in different ecosystems 
(Table S1). E-traps were paired with conventional traps com-
monly used in each country to monitor these flies. An expert 
entomologist serviced conventional traps with a periodicity 
of once a week up to once every 3 weeks (depending on 
location, season and distance). Also, an expert entomologist 
daily-inspected digital images uploaded by the e-traps to a 
google drive server. Data collected from individual e-traps 
included: daily upload of images (i.e., communication) and 
count of attracted FF (i.e., attractiveness). Data from paired 
conventional traps included the period of inspection and 
amount of FF attracted and trapped. These data were used to 
contrast trapping performance between the e-traps and con-
ventional traps (paired t-test). Comparison between e-traps 
and conventional traps was made by counting the number 
of flies trapped in the e-traps during the same period of the 
conventional traps, which was framed by the service of the 
conventional trap. Thus, each e-trap was reset each time that 
the scout visited the paired conventional trap. The statistics 
only included periods with positive captures in any of the 
two trap. In addition, frequency of events in which informa-
tion on the capture of the target fly by the e-trap preceded 
(even by one day) the information provided by the scout at 
the end of the visiting period was derived. In this case, we 

also only used periods with positive captures of target FF. 
This provided information on the early warning abilities of 
the e-trap in contrast to the current methods of servicing 
non-automatic traps by scouts.

Training a deep learning detector and classifier 
of Bactrocera and Ceratitis fruit flies

Source of data

Images to train the detector and classifier were derived from 
two sources: the “FF-photographic studio” (FF-studio) and 
from actual field images described in the previous section. 
The FF-studio consisted of an e-trap body with the abil-
ity to manually activate the camera and take at any time 
a picture of the yellow sticky-board (populated with dif-
ferent settings of laboratory FF). Adhesion of FF to the 
yellow sticky-boards was facilitated by using a laboratory 
setup exposing the e-trap insert (bearing the yellow sticky-
board) to living laboratory FF (B. zonata and C. capitata) 
within a 40 × 40 cm Perspex cage (Fig. S5). These mock-ups 
were then inserted in the FF-studio system (Fig. S6), and 
images were produced under different illuminations result-
ing from placing and manually activating the FF-studio 
system outdoors under different tree canopies, and during 
different hours of the day. Pictures with diverse quantities 
of FF derived from the artificial exposure of the yellow 
sticky board to flies in the laboratory cage, and different 
illuminations, were produced and uploaded automatically 
by the FF-studio to the cloud. Several hundred of images 
were obtained, simulating the actual conditions of an active 
e-trap with the two target FF species. Data from the field 
were derived from the e-traps deployed and tested in the 
field as described previously. Several hundreds of images 

Fig. 2  Diagram showing the 
McPhail e-trap processes
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were obtained from this field-test. Images from the field con-
tained the three FF species, and other insects attracted and 
adhered to the yellow-sticky board (ants, lacewings, bees, 
etc.). Bactrocera dorsalis images were obtained from traps 
deployed in citrus orchards in South Africa, and served to 
train the classifier (no images of B. dorsalis were artificially 
obtained with specimens from the laboratory). Images from 
all the insects obtained by these two methods were manually 
classified and annotated.

Data labeling and augmentation

The images acquired in the FF-studio contained mainly 
specimens that included a single FF species, either C. 
capitata or B. zonata. This enabled labeling each image 
and use that label for every insect detected in the image. 
To propagate labels from image to insects within an image, 
a class-agnostic detector was developed to extract image 
patches that contain insects, regardless of their species. 
Images were collected under controlled conditions, with a 
significant contrast between the background and the objects. 
We exploit this contrast and apply the “Canny” operator to 
detect insects in the image (Canny 1986). Canny is a clas-
sical image-processing algorithm for object detection that 
involves three main stages: (i) applying image smoothing for 
noise removal, (ii) compute the changes in x–y directions of 
the image (i.e., gradient) using Sobel/Prewitt/Roberts filters 
(Bhardwaj and Mittal 2012), and (iii) selecting gradients 
within a specific range determined by the user. The hyper 
parameters of the Canny algorithm were tuned to reach a 
good detection accuracy. The automatic annotation process 
is summarized in Fig. 3.

Annotating images collected using the field-test described 
earlier was more challenging because insects found in each 
e-trap image included diverse insect species, besides the 
target FF. No other FF besides the target one was trapped. 
Each insect was annotated using the  SuperAnnotate© tool, 
which allows to define manually the locations of objects in 
the image by delimiting rectangles enclosing those objects 
(bounding boxes) (https:// www. super annot ate. com). The 

first step consisted on bounding boxes for each individual 
insect in an image. Objects were labeled with one of 11 
possible classes: the three species of FF, B. zonata (PEACH-
FF), C. capitata (MEDFLY) and B. dorsalis (ORIENTAL-
FF), and other non-Tephritid attracted insects such as house 
flies, lacewings, bees and ants. No other FF were detected in 
any of the e-traps and conventional traps. Beside the above 
classes, we used an extra class, “other,” for less common 
species encountered in the e-trap.

To enrich the dataset, a standard data augmentation 
method was applied. Data augmentation enriches the data 
by adding slightly modified copies of existing data or creat-
ing new synthetic data from existing data. It improves clas-
sification accuracy by significantly increasing data diver-
sity without collecting new physical samples (Shorten and 
Khoshgoftaar 2019). This strategy is known to contribute to 
generalization and prevent overfitting (Shorten and Khosh-
goftaar 2019). Four augmentation operators were used: (1) 
horizontal flipping of the input image with probability 0.5 
(the augmentation was applied to 50% of the images); (2) 
vertical flipping with probability 0.5; (3) rotating the input 
image with an angle between 0 and 90 degrees, with prob-
ability of 0.3; and (4) randomly changing brightness and 
contrast of the input image with probability of 0.2.

Standard data partitioning was used into three sets—train, 
validation and test sets, with a ratio of 0.6/0.2/0.2, respec-
tively. Train set is the actual set used to train the model, 
validation set is used to tune the hyper parameters based 
on the performance of the model on this data split, and test 
set is used to provide a final evaluation of the trained model 
fit over unseen data. To evaluate model performance, we 
randomly split the data to train/validation/test (k-fold cross-
validation) five times to explore the generalization ability of 
the trained model (Stone 1974). We fitted the model using 
each group training set and evaluated performance by using 
each test set. We report the average result over five test sets.

Fig. 3  Automatic annotation process: a original image, b rescaling and applying Canny algorithm, c drawing contours based on Canny, d bound-
ing the contours with boxes

https://www.superannotate.com
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Training and deep learning

A Faster R-CNN ResNet50 model (Ren et al. 2015) was 
trained. Faster R-CNN is a common deep convolutional 
network used for object detection, which has shown to be 
an accurate predictor of different objects’ locations. First, 
a convolutional mask scans the image and generates can-
didate bounding boxes. Then, a fixed length feature vec-
tor is extracted. Finally, a simple neural network predicts 
the object class and bounding box coordinates. The model 
was initialized with a ResNet50 backbone pre-trained on 
ImageNet (a benchmark dataset for image classification and 
object detection), and fine-tuned the model with the FF-
studio dataset.

A second-deep detection model was trained using the 
field dataset. Specifically, we trained the same architecture 
of the Faster R-CNN model that was used for the FF-studio 
data, for 200 epochs (i.e., the number of iterations over the 
entire training dataset that the machine learning algorithm 
performs). We optimized the model with stochastic gradi-
ent descent (Bottou 2010). We tuned model hyper param-
eters using the validation set. Specifically, we searched over 
learning rates in [ 5e−4 , 1e−3 , 2e−3 , 5e−3, 1e−2, 2e−2, 5e−2] , and 
batch size in [1, 2, 3, 5]. Best validation loss was obtained 
with learning rate =  2e−2 , momentum = 0.9 and a batch size 
of 1.We used the standard loss functions of Faster R-CNN: 
a cross-entropy loss for classification, and L2 loss for bound-
ing box regression. Results were evaluated using standard 
metrics for object detection. Specifically, we computed the 
average precision per class and true positive rate using these 
basic definitions:

Here, true positive (TP) is a correct detection (Detection 
with “Intersection over Union,” IoU ≥ threshold), false posi-
tive (FP), is a wrong detection (Detection with IoU < thresh-
old), and false negative (FN) is a case where a ground truth 
is not detected. True negative (TN) does not apply, since in 
object detection the data include many possible bounding 
boxes which should not be detected (i.e., the background) 

(1)Accuracy =

∑
�

label
�

Boxpred
�

= label
�

Boxgt
��

∑

Boxpred

(2)Precision =

∑

TP
∑

TP +
∑

FP

(3)Recall =

∑

TP
∑

TP +
∑

FN

(4)IoU =
area

(

Bpred ∩ Bgt

)

area
(

Bpred ∪ Bgt

)

(Padilla et al. 2021). Using these terms, we compute preci-
sion and recall values for all classes, using IoU thresholds 
of 0.5. Then, we constructed a precision–recall curve where 
each data point in the curve represents precision and recall 
values for a specific score threshold varying from 0 to 1. 
We also compute the average precision value (AP) for each 
class. For the accuracy metric, we first filtered out all pre-
dictions with IoU lower than 0.5 with any ground truth box 
and all predictions with confidence scores lower than 0.5, 
keeping only valid predictions. Then, we counted the ratio 
between correct classification and the total number of valid 
predictions.

Evaluation of the trained model using field data

Validation consisted on deploying e-traps in the field for 
30 days during June 2021. Five e-traps with ME as attract-
ant were deployed in suburban areas of Tel Aviv, Israel, to 
capture male B. zonata flies, and five e-traps were deployed 
in Northern Israel orchards, loaded with TML (3 e-traps) and 
Biolure (2 e-traps), to capture C. capitata male and female 
flies. The use of Biolure was intended as a test of the ability 
of the trap to capture female C. capitata, and as an attract-
ant for several other non-Tephritidae insects attracted to the 
bait, which allowed us to test the precision of the code when 
several other species of insects are present in the image. 
In addition, we used images generated during the exposure 
of the ME-baited e-traps in South Africa (Sect. 2.2), but 
that were not used for the training of the code. The pictures 
derived from the e-traps in South Africa had images of male 
B. dorsalis. These images were automatically uploaded to 
the cloud and processed with the developed deep learn-
ing detector and classifier code (see Sect. 2.3). Results 
obtained from the code were then evaluated by inspecting 
the uploaded images by an entomologist that contrasted 
the automatic results generated by the code with the actual 
images observed by the entomologist. Results of the con-
trast were summarized using a “confusion matrix” approach 
(Table S2). The image analysis classification code has been 
uploaded to a repository: https:// github. com/ ydill er/ insect_ 
detec tion/ tree/ public (the main files are train.py and test.py).

Results

McPhail e‑trap function and attractiveness of fruit 
flies

E-traps were deployed in the field and functioned continu-
ously for several periods of time ranging from a minimum 
of 60 days (in Greece) to a maximum of 257 days (in Israel). 
Average periods of time that the e-traps were operative 
uninterruptedly in the field were 165 days/trap in Israel (10 

https://github.com/ydiller/insect_detection/tree/public
https://github.com/ydiller/insect_detection/tree/public
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traps), 107 days in South Africa (6 traps), 87 days in Italy (4 
traps), 80 days in Austria (4 traps) and 76 days in Greece (6 
traps). During these periods of field activity, batteries were 
not recharged, and no electronic malfunction was recorded. 
The average rate of uploaded images (i.e., communication 
function and cellular connectivity) in the five countries can 
be seen in Fig. 4. The lowest rate of images uploaded was 
registered in Greece (55% of all potential images). In the 
rest of the countries, image uploading was above 70% of the 
potential number of images that could have been uploaded 
by all e-traps. Israel had the highest level of successful com-
munication and image uploading (84%). Since e-traps utilize 
cellular communication, and they are deployed in agricul-
tural areas, these data provide information on the general 
ability of the e-trap to function in rural environments in 

tested countries, where cellular receivers may be limited in 
space and time.

The ability of e-traps to attract targeted FF in contrast to 
conventional traps is shown in Fig. 5. Both B. dorsalis and 
C. capitata were attracted and trapped by the e-trap in simi-
lar numbers to the ones observed in the conventional traps. 
On the other hand, B. zonata was attracted in significantly 
lower numbers in the e-trap in contrast to the conventional 
Steiner-trap used in Israel for the surveillance of this FF. 
Figure 6 shows the results of early-warning events (i.e., the 
ability of the e-trap to provide information on the capture 
of the target FF before the scout visits and inspects the con-
ventional trap). The statistics includes only periods where 
any of the two traps (e-trap or conventional) captured at least 
one adult target FF. The events extend for the period between 
scout visits, and a positive early warning event includes 

Fig. 4  Average rate (proportion 
of the total possible) of effec-
tive communication and image 
uploading to the cloud in each 
of the deployment countries

Fig. 5  Average number of 
captured FF (B. dorsalis, B. 
zonata and C. capitata) per trap/
day in the electronic trap (green 
bars) and in the conventional 
traps (blue bars). Statistical 
inference was performed using 
matched paired t-test between 
e-traps and conventional traps 
deployed at close distance from 
each one. Only periods showing 
at least one FF in either of the 
traps were considered for the 
statistics. The only difference 
in trap efficacy was found for 
B. zonata 
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information provided by the e-trap at least a day before the 
scout’s visit and inspection of the conventional trap. Figure 6 
shows that in all cases, the e-traps were able to provide early 
warning information with a relatively high rate (frequency 
of positive events ranged from 77% with C. capitata and B. 
zonata to 86% with B. dorsalis in South Africa).

Training and evaluation of the deep model classifier

Figure 7 shows qualitative examples that illustrate that high 
accuracy results were obtained for the FF-studio dataset. 
Following this initial training, we further trained the deep 
detection model with the field dataset derived from images 
from the field deployment of e-traps in Austria, Italy, South 
Africa, Greece and Israel (described previously). Figure 8 
shows the loss curve during training (sum of losses) and 
the accuracy improvement during training. Figure 9 shows 
precision–recall curves for the three FF species target of the 
study. The AP (“area under the curve,” AUC) for all three 
classes of interest was high, ranging from 87.41 to 95.80%. 
Specifically, the model was robust to different light condi-
tions and was accurate on clustered samples. The total clas-
sification accuracy, for all classes in the field dataset, was 
98.29%, where both confidence score and IoU thresholds 
were set to 0.5.

Field validation

More than three hundred images derived from the e-traps in 
Israel and South Africa (not used in the training process of 
the classifier) were processed with the developed classifier 
(see illustrations of images before and after processing in 
Figs. S7–S9). The data generated by the uploaded images 
after classification of the three FF species and non-target 
insect by both code and human entomologist, and the eval-
uation metrics for the three target FF, are summarized in 
Table 1. The results show a very high precision of the clas-
sifier for the three target FF, with precision ranging from 86 
to 97%. The highest precision was obtained with C. capitata 
and the lowest (86%) with B. dorsalis (mainly due to the 
limited number of images from South Africa). This result 
suggests a high ability of the developed code to classify the 
three target FF. Non-target insects (trapped insects that were 
attracted to the trap and glued to the sticky board, such as 
other Diptera, lacewings, and bees) were also classified with 
a high precision (84–86%). Accuracy (i.e., the ability to dis-
cern between target FF and other insects) was usually high 
(> 86%). Other metrics, including sensitivity, specificity and 
undetected rate, also produced very good estimates suggest-
ing a high capability of the developed code to provide rea-
sonable results and data.

Discussion

Preti et al. (2021) provide a list of requirements to be con-
sidered when developing a camera-equipped automatic 
trap. These include, between others, a trap design that is 
effective, a trap structure that optimally accommodates 
all the required electronics, a high optical resolution but 

Fig. 6  Proportion of early-warning events that the e-trap preceded 
with information of a FF capture the information provided by the 
scout derived from visiting and servicing the conventional trap. 
Events (N) denote periods between scout visits and conventional trap 
services. Events also applied to those period that target flies were 
captured by either one of the paired traps

Fig. 7  Automatic detection results using FF-studio data. Test results 
(left) compared to ground truth annotations (right)
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low-power consuming optical system, a good wireless com-
munication system, data access and picture display, image 
recognition algorithms, and a reliable power supply. Our 
developed e-trap is in accordance with most of Preti et al. 
(2021) suggested requirements. The design of the e-trap fol-
lowed known working trapping systems used throughout the 
world to surveil and monitor FF, the McPhail trap (Steyskal 
1977). In addition, we demonstrated comparable functional-
ity and attractiveness of the e-trap in contrast to conventional 
trapping systems for two FF of economic importance con-
sidered in this study (Fig. 5). This was not the case for B. 
zonata where we had in average 1/3 of the captures shown by 
the Steiner trap (Fig. 5). However, in terms of Early Warn-
ing, the e-trap functioned very well (Fig. 6). The modular 
accommodation of the electronics, optics and transmission 
systems provides an efficient use of the internal space and 
produces a compact e-trap structure (Fig. S1). The power 
supply is provided by lithium batteries, and at the current 

Fig. 8  Training and validation 
loss for field data as tracked 
during training (left) and accu-
racy for same data (right)

Fig. 9  Precision × recall curves for the three classes of target FF

Table 1  Results from deep 
learning detector and classifier 
of Bactrocera and Ceratitis FF 
on images derived from e-traps 
deployed in the field in Israel 
during June 2021 (suburban Tel 
Aviv for B. zonata, and Upper 
Galilea for C. capitata) and in 
South Africa during October–
January

Target fruit fly and attractants used

Peach Fruit Fly 
(Bactrocera zonata)
Methyl Eugenol

Medfly (Cerati-
tis capitata)
Trimedlure and 
Biolure

Oriental Fruit 
Fly (Bactrocera 
dorsalis)
Methyl Eugenol

True positive (TP) 361 2336 180
True negative (TN) 430 429 430
False positive (FP) 28 64 29
False negative (FN) 76 81 68
Non-labeled target FF (NL) 49 364 42
Precision target FF TP/(TP + FP) 0.93 0.97 0.86
Precision non-target insect TN/(TN + FN) 0.85 0.84 0.86
Accuracy (TP + TN)/(TP + TN + FP + FN) 0.88 0.95 0.86
Sensitivity TP/(TP + FN) 0.83 0.97 0.73
Specificity target FF TN/(TN + FP) 0.94 0.87 0.94
Undetected rate TP/(TP + NL) 0.12 0.13 0.19
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rate of energy use, the e-trap can uninterruptedly function 
for at least 8 months in field conditions, as suggested by one 
of the field e-traps (A003, Table S1). We selected the option 
of lithium batteries to avoid any problem that can arise from 
low solar radiation and the ability of solar panels to recharge 
batteries resulting from cloudy environmental conditions, or 
due to certain canopy structures with low penetration of light 
where the e-trap may be placed to attract FF. Our developed 
e-trap and image analysis system is also in accordance with 
the required requisites for a good smart trap prototype (Preti 
et al. 2021), uploading images to the cloud where they can 
be inspected by the end-user, or can be processed by the 
image analysis algorithm to provide scalar results and acti-
vate population models and alert systems.

The developed insect classification model demonstrated 
good capabilities to discern the three FF species, and 
between these FF and other non-Tephritid insects. In addi-
tion, the strategy used to obtain images to train the code 
using the “FF photographic studio” was demonstrated as 
an appropriate approach. Recently, Huang et  al. (2021) 
proposed developing a classification system for citrus FF 
based on a “multi-attention and multi-part convolutional 
neural network.” They demonstrated the efficacy of their 
method using a simulation approach. Specifically, they col-
lected images of FF from the web to train their model. In 
these images, insects were intact and in optimal structural 
conditions. That approach, although efficient in terms of 
training and developing time, may not generalize well to 
field data and result in misclassification when applied to real 
images derived from field trapping. From our experience 
with actual field data and images (Table 1, Figs. S7–S9), 
flies can be misclassified due to their landing position in 
the sticky board, or be confused with other insects attracted 
and trapped in the sticky board, such as stable flies. Huang 
et al. (2021) simulation and training approach, however, may 
provide a good strategy that can be adopted to improve mis-
classifications encountered in our developed model and that 
can be distorted when feeding population dynamic models 
with scalar data, or mislead alert systems.

An important limitation of our e-trap is the fact that the 
sticky board becomes saturated with insects if fruit fly's 
populations in the environment are large. This possibility 
requires that the e-trap be serviced at a higher frequency 
than planned, and a new adhesive-board installed once the 
yellow sticky-board becomes saturated. Huang et al. (2021) 
provides a theoretical solution to solve this situation using a 
carrousel mechanism rolling a yellow adhesive sticky paper 
at certain time–frequency. This possibility was considered 
at the early stages of our e-trap design, but the idea was dis-
charged due to the foreseen complications expected from the 
addition of a mechanical system into the e-trap. Adding such 
a mechanism may create mechanical complications in the 
functionality of the trap, and increase energy requirements. 

In addition, our e-trap was conceived for environments with 
low FF populations (i.e., FF free and low prevalence areas) 
and a surveillance system for exotic FF, thus reducing the 
possibility of the adhesive-board saturation. In any case, 
Huang et al. (2021) mechanical approach may be consid-
ered and evaluated in the future if the purpose of our e-trap 
is extended to IPM and monitoring.

Smart-trap counting numbers of a single attracted FF spe-
cies in endemic areas are already in use and have been com-
mercialized (see for instance, https:// rapid aim. io/). These 
traps are used mainly for monitoring and are combined with 
decision support systems, providing the farmer’s or consult-
ing company with the ability to detect FF hot-spots, forecast 
population trends and applied mitigation measures on time 
to protect their crops (Schellhorn and Jones 2021). These 
system are a good selection for locations with endemic 
populations of a single, or dominant, FF species pest. If, 
however, the identity of the FF requires to be confirmed, 
camera-based smart-traps are a better option.

Camera-based smart-traps can be used, for example, for 
certification of FF-free orchards or low-prevalence systems 
(Anderson et al. 2017). Camera-based smart-trap can also 
be of significance to National Plant Protection Organization 
(NPPO) dealing with alien FF pest surveillance, allowing 
them to optimize surveillance costs and efforts. In this sense, 
early talks with potential NPPO user highlighted their inter-
est and the possible initial application of the early warning 
systems using the E-trap in strategic locations, where infor-
mation on interceptions is highly critical, and/or in remote 
areas with difficult access and very high cost to survey. In 
the case of camera-based surveillance systems, the addi-
tion of image analysis capabilities can greatly enhance the 
power of these devices as a surveillance tool and provide 
early warning alerts to the appropriate end-user. However, 
electronic traps based on cameras and images have some 
drawbacks. Cost may be an important limitation (Preti et al. 
2021). These systems require expensive electronic equip-
ment that can importantly increase cost, driving away small 
and medium size farmers from this technology. This limita-
tion, however, is expected to become of less importance in 
the future due to continuous reduction in the costs of these 
electronic components. In addition, energy and power sup-
ply required to drive the camera-based systems, is also an 
important limitation that has lately been solved in commer-
cial smart-traps (Preti et al. 2021). Finally, Preti et al. (2021) 
point at a fundamental problem of image-based smart-trap 
which relates to the lack of automatic image recognition and 
classification. The current study is a step further to solve this 
problem. Although image recognition at the species level 
is almost impossible, the developed code can provide good 
information at the level of FF genus. This ability, together 
with other information on the status of FF pest in certain 
region and trade patterns, can be integrated into the system, 

https://rapidaim.io/
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providing a good system for early warning of exotic FF and 
for FF free areas, or low-prevalence orchards. In addition, 
the fact that images can be inspected remotely by a specialist 
provides the system with an initial filter before scouts are 
sent to the field, especially in remote areas.

Overall, the current e-trap prototype developed in the cur-
rent study has shown satisfactory performance for capturing, 
identifying and counting adults of three major invasive FF 
species in field conditions. The current prototype is ready 
to go a step forward and be evaluated by stakeholders in FF 
management for further upscaling, and possible commer-
cialization, were dedicated hardware can be incorporated 
importantly reducing costs. We are sure that our e-trap (at 
this stage, a prototype) can be a major tool for detecting 
FF all over the globe providing timely, accurate and eco-
nomically feasible information to National Plant Protection 
Authorities, growers and the fresh fruit trading industry.
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