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Design and simulation of a mechatronic system with an adaptive digital controller 

 

Methods for designing the new technology of continuous control systems the movement, 

which are built on the use of concepts reversed dynamics problems in conjunction with 

optimization on energy criteria, distribute on the mechatronic system. In this case analytical 

minimization of the local quadratic criterion is replaced by a numerical procedure which 

allows to obtain the finite-difference equation for the desired control that gives adaptive 

properties to mechatronic system. The process of adaptation in a mechatronic system with a 

digital controller has been studied and the conditions for its stability have been obtained. The 

main ratios for calculating the settings of an adaptive digital controller as part of a 

mechatronic DC electric drive system are given. The simulation method was used to compare 

the dynamic characteristics of two mechatronic systems: with adaptive and conventional (P 

and PI) digital controllers. The simulation results are presented in the form of transient 

responses obtained under the action of coordinate and parametric disturbances.  

Keywords: mechatronic system, the energy criterion, adaptation, local optimization, 

control law, digital controller, synthesis, analysis, simulation. 
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Introduction 

 

Mechatronics as "the science of computer control in technical systems" [1] develops 

successfully due to refinement of computer technology and algorithmic support of digital 

controllers, that play a central role in modern automation and control systems. As control 

processes in these systems are associated with the energy change, it seems natural to look for 

new approaches to the development of control algorithms for dynamic objects on the basis of 

energy criteria. In this context a series of works of P.D. Krutko should be noted. The main 

results of these works are stated in the form of "new technologies of analytical 

design of algorithmic assurance of traffic control systems" [2]. These technologies, based on 

the concept of dynamics inverse problems, combined with the local quadratic criteria 

optimization, having the physical meaning of mechanical energy, allow to design control 

laws analytically for continuous regulators based on the minimization of kinetic or 

acceleration energy. Control systems with these controllers have little sensitivity to parameter 

and coordinate perturbations.  

Mechatronic system are based on computer technology, so instead of an analytical 

optimization method that is used to design an analog adaptive controller, it is advisable to use 

numerical optimization methods. This article covers solving this problem. 
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Problem definition 

 

Suppose that an object is described by the differential equation 

 

1 0 0 0 0; 0, (0) , (0)n a n a n b u t n n n n      , (1) 

 

where n - controlled variable; u – control function; a1, a0 and b0 – parameters. 

The task is to find the discrete control law for the digital controller that processes the data 

feedback with sampling period T, and forming a control signal in the form of a step function  

 

( , , ) ( ) at ( 1) , 0,1,2, ...,u n n t u kT kT t k T k      
 

(2) 

 

which will provide transfer of the control object from the initial state (1) to a given 

equilibrium steady state ( ) , ( ) 0n t n const n t   . This requires that the process 

( ) ; ( ) 0n t n n t  , which characterizes the output of the object in a closed-loop control, was 

held in a small neighborhood of the reference process *( ) ; *( ) 0n t n n t  , formed by the 

reference model, described by the differential equation 

 

0const10001  ,,*** nnnn   (3) 

 

with appropriate initial conditions. Parameters 0  and 1  should be chosen based on the 

desired dynamic properties of the designed system. The degree of approximation of processes 

in a controlled system and the reference model is convenient to estimate by the value of the 

quality function [2], which plays the role of local optimality criterion 

 

21( ) [ *( ) ( , )] , 0,
2

G u n t n t u t    (4) 

 

where G(u) is the mass normalized value of the acceleration energy [3], calculated in the 

neighborhood of the trajectory of the reference model. The smaller is the value of G(u), the 

more the processes in the system are closer to the processes in the standard model. The 

function of quality (3) in such statement is both a criterion of control and the target condition 

for adaptation. At the same time as a feasible target function argument stands the current 

value of the control function. 

 

Design of the discrete control law 

 

Problem posed above has no analytical solution, so we use a numerical procedure to 

minimize the criterion (4). The most common numerical method of optimization criteria of 

the form (4) is a simple gradient method which algorithm while keeping symbols adopted in 

[4], has the following view: 
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The choice of a simple gradient method is due to the simplicity of its implementation on 

computing devices. Suppose that the algorithm (5) is realized on the basis of a 

microcontroller running with the discrete period T. In this case, the control signal at the 

output of the controller will be presented in the form of a step function (2), which preserves 

its value constant during the whole period T. Subject to this ratio (5) can be rewritten in the 

form of a finite-difference equation 
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defining an iterative procedure to calculate the optimal control uopt by the criterion (4). The 

parameter   in (6) defines the step size, which remains constant throughout the iterative 

procedure. It can be seen as a factor determining the stability and speed of convergence of the 

iterative process for calculating the optimal control uopt. 

Since the solution of equation (6) defines the desired equation u(kT) for k = 0,1,2, ..., then 

it will be considered as an equation of the controller. It should be noted that the successful 

solution of this equation depends on the possibility of calculating of the derivative 
u

uG



 )(  and 

the correct choice of the parameter  . 

To calculate the derivative 
( )G u

u




 we will do the following. Considering (3), we rewrite 

the expression for the quality function (4) as follows: 
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1 0 0
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G u n n n n u      (7) 

 

where  u = u(kT) for ( 1) , 0,1,2,...kT t k T k    . 

Differentiating both sides of (7) considering (1) with respect to u, we find the expression 

for the derivative 
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where u(t) = u(kT) for ( 1) , 0,1,2,...kT t k T k    . 

From (8) it follows that to calculate the required derivative information is needed about 

the current state of the reference model and the second derivative of a controlled coordinate 

system when ( 1) , 0,1,2,...kT t k T k    , as well as parameters of the reference model 1 , 

2  and the only one parameter b0 referring to the control object. In such a way, the 

calculation of the derivative (8) is straightforward at each step of the iterative process. 

Substituting (8) into the right side of (6) and using (3), we obtain the recurrence relation in 

the form of a finite-difference equation 



0 0 0[( 1) ] ( ) [ [ *] * ], 0,1,2, ... .u k T u kT b n n n n k          

 

Replacing in the resulting equation the reference model variables *n  and *n  by the 

relevant variables n  and n , characterizing the control object output, we can rewrite it as 

follows: 

0 0 1[( 1) ] ( ) [ [ ] ], 0,1,2, ... .u k T u kT b n n n n k                                      (9) 

 

The adopted change of variables corresponds to the feedback looping of the system on the 

output coordinate and its derivative. The presence in (9) of the second derivative n  with a 

minus sign indicates the need to introduce another negative feedback loop to accelerate the 

controlled coordinate. Thus, the step control signal is calculated based on the information 

about the current state of continuous control object, which is characterized by the exit 

coordinate, its speed and acceleration. 

Then we introduce the notation that determines the information function 

 

0 1( ) [ ( )] ( ) ( ).t n n t n t n t       (10) 

 

In this case, equation (9) is transformed as follows: 

 
[( 1) ] ( ) ( ), 0,1,2, ... .u k T u kT K t k       

 

Considering that the information from the measuring devices goes to the microcontroller 

discretely through time and in digital form, expression (10) can be transformed to 

 

0 1( ) [ ( )] ( ) ( ), ( 1) , 0,1,2, ... ,kT n n kT n kT n kT kT t k T k           (11) 

 

where n const  plays the role of master control. 

Finally, a discrete adaptive control law of the continuous object (1) has the form 

 
[( 1) ] ( ) ( ), 0,1,2, ... ,u k T u kT K kT k      (12) 

 

where 0K b   is a gain constant of the adaptive digital controller. 

The initial conditions for the equation (12) are defined for k = 0 by the initial value of the 

information function (11) and an initial value of the control function 0(0)u u . 

Analysis of equation (1) shows that a change in any of the parameters of the object 

0 1 0, ,a a b  (or all together), as well as the influence of external perturbations leads to a 

deviation of the current acceleration n  from the acceleration n  defined by the reference 

model. In this case, in accordance with the local optimization criteria (4) with the recursive 

procedure (12) a digital controller provides control adaptation for new conditions of the 

system. In this case the adaptation is a result of the current numerical minimization performed 

in real time. Since the target functionality of this optimization is chosen both as a criterion for 

object management, and as a target adaptation condition, so the control law (12) can be called 

direct adaptive control law. 



The block diagram of a digital controller that implements the designed discrete adaptive 

control law in the form of (12), is shown in Figure 1. 

 
Figure 1. The block diagram of a digital adaptive controller 

 

Here blocks zoh, combined with the keys, closing with a period T, perform the function of 

zero-order holder, and the unit 
1

z
 performs a control signal delay on the time T. It should be 

noted that the structure of the designed controller is not defined in advance and is found 

according to the equation for the control law once it is received. 

 

The study of the adaptation process 

 

We research the parameter K effect, included in the equation (12), on an iterative process 

of the current control approximation u(kT) to its optimum value uopt at runtime. For this 

purpose, we introduce the function 

 

[ ] ( ) ,optu kT u kT u   

 
(13) 

characterizing the deviation of the control function current value from its desired value, 

which is optimal by the criterion (4). Seeking optimal value uopt we find from the equation 

obtained by equating (8) to zero in view of (1) and performed replacement *n  and *n  on n  и 
n  respectively. We have  

 

0 1 1 0 0 0

( )
{ [ ] }( ) 0,

G u
n n n a n a n b u b

u


        


  

 

which implies 



0

1
( ),optu t

b
   (14) 

where 

0 1 1 0( ) [ ] .t n n n a n a n        (15) 

 

Then the information function (10) can be represented, considering (15), as 

 

0( ) ( ) ( )t t b u kT      

 

and we substitute the obtained result in (11). We have  

 

0[( 1) ] ( ) ( ) ( ), 0,1,2, ... .u k T u kT K t Kb u kT k        

 

We rewrite the last equation, taking into account (15), in the form 

 

0 0[( 1) ] ( ) ( ), 0,1,2, ... ,optu k T u kT Kb u Kb u kT k       

 

and by subtracting from both sides of the last result uopt, considering (13) we get 

 

0[( 1) ] (1 ) ( ), 0,1,2, ... .u k T Kb u kT k     (16) 

 

The homogeneous finite-difference equation (16) characterizes the dynamics of the 

adaptation process u(kT)→uopt of the control function current value to its new optimum which 

value is determined in accordance with the criterion (4) by new conditions of the operation 

caused by parametric or coordinate perturbations that affected the change of a controlled 

coordinate acceleration n  in accordance with equation (1). Under ( ) 0u kT   the control 

function reaches its optimal value u(kT)=uopt. From the equation (12) it follows that the 

adaptation process quality is determined by the choice of parameter 0K b  – an adaptive 

digital controller gain. 

We’ll find the parameter K in terms of stability of solution of a homogeneous finite-

difference equation (16). The expression for the desired solution is determined by the discrete 

analogue of the Cauchy-Lagrange equations, which in the case of the homogeneous equation 

has the form of 

0 0 0( ) (1 ) ,where (0) , 0,1,2, ... .Nu NT Kb u u u N     (17) 

 

A necessary and sufficient condition for asymptotic stability of the solution of equation 

(16) follows from (17) and has the form of 

 

0 01 1 or 0 2 / .Kb K b     (18) 

 

Thus, the choice of K from (18) provides the asymptotic stability of the control function 

adaptation process, which is due to the finite-difference equation solution (12). 

 



The adaptive controller parameters synthesis 

 

Calculation of the parameters 0 1,a a  of digital controller that implements the control law 

(12) and providing the desired quality of step response can be performed using the reference 

model by various methods discussed in [2] and [5]. It is necessary to specify the time tp 

(setting time) and the type of step response of designed mechatronic systems. The choice of 

the gain K should be carried out under the conditions of the adaptation process asymptotic 

stability according to the formula (18). Sampling period T should be chosen considering the 

time required for the formation of the information function digital values and calculations on 

this basis of the control function numerical values. You can use the Smith’s inequality [6] 

min /15T   , where min  – minimal time constant. As an example, we will carry out the 

synthesis of a digital controller for DC motor speed in a mechatronic system considered in 

[7], which is a dual-circuit high-speed DC system with controllers in each circuit. We assume 

that there are sensors for control object to measure its output coordinate – the angular velocity 

of the rotor shaft, together with its derivative. To measure the second derivative in the 

expression for the information function (11), we apply a real differentiator with a time 

constant Td. In this case, the adaptive digital controller, shown in Figure 1, forms, together 

with the control object, a three circuits high-speed direct current system. 

To solve this problem, first of all, we write the equation for the DC motor with 

independent excitation in the form of (1), which while retaining the notation used in [7], takes 

the form of 

1 0 0 ,aa a b u    (19) 

 

where   – angular velocity; au  – armature circuit voltage; 

 

1 2 1 2
0 1 0

1
; ; .E
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k k k k k
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T T T
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Parameters of the engine with a power of 0.45 kW correspond to those in [7]: 

 
2

1 21.72 1/ , 0.72 1/ Аms , 0.34 , 0.043 .E ak ohm k k Vs T s     (20) 

 

In this case, the model (19) parameters will have the following meanings: 

 

0 1 09.73; 23.25; 28.63.a a b    (21) 

 

Let us choose a reference model in the form of (3) and set the step response setting time of 

the designed mechatronic system tр = 0,04 seconds with a value of the overshoot %5 . In 

this case, if we define a time constant 
p  approximately characterizing the dynamics of the 

designed mechatronic system with a second order, and the damping rate  , the required 

parameters of the adaptive controller (which are also the reference model parameters) can be 

calculated using formulas 



0 1 p2

1 1
, 2 , where / ,p

p p

t       
 

 

 

(22) 

 

  – a certain number in the interval from 3 up to 7. 

Choice of 0.707   provides a process of reference model step response with overshoot 

%5 , while 1   the overshoot is absent. 

Thus, for the synthesis of a digital controller, which imparts adaptive properties to a 

system with a continuous object (1) it is sufficient to define two measures of quality - the 

time and form of step response (with or without overshoot). At the same time calculations use 

only one parameter characterizing the control object - transfer coefficient 
0b , which is 

determined after reducing the object model to the form (1). 

For the technical implementation of the adaptive controller it is important to ensure the 

information function primary calculation before calculating the control function. The 

mechatronic control system setting is put into effect by choosing only one adjusting 

parameter - the gain K, whose value must satisfy the inequality (18). 

 

Simulation 

 

Figure 2 shows the DC motor speed control mechatronic system simulation block diagram 

with parameters (20). At the same time controller parameters, calculated by the formulas 

(22), obtained the following values: 247;62530 10    at 707.0 . 

Selected during modeling adaptive controller gain 4104.2 K  satisfies (18), which in 

view of (21) takes the form 0 <K <0.07. 

The differentiation circuit time constant TD is selected from the relation 5/pDT   and the 

discrete period is assumed to be T = 100 microseconds. The model also includes a pulse-

width converter (PWM), shown in [7], and a non-linear element, limiting the maximum 

voltage in the armature circuit within the limits +110 ... – 110 V. At modeling it is provided a 

connection at t= 0.06 seconds of a perturbing action – a load torque.  

 
Figure 2. Simulation scheme of the DC electric drive with a digital adaptive controller 



The simulation results are illustrated by graphs of the step response. Figure 3 compares the 

dynamic characteristics of two high-speed digital DC systems, designed for the same work 

conditions with the same type of DC motor with PWM: adaptive and a two-circuits with two 

conventional regulators of P-and PI-type. Here, the graphs show the electrical processes in 

the armature circuit and mechanical processes associated with the controlled engines rotors 

movement. Figure 4 shows the step response of the two compared systems at a doubling of 

the time constant of the DC motor armature circuit Ta . 

 
Figure 3. Graphs of step responses in the adaptive system (left) and the two-circuits high-speed DC system (right) 

 

 
Figure 4. Graphs of step responses in the adaptive system (left) and the two-circuits high-speed DC system (right) at a 

doubling of the motor time constant Ta 



As it follows from the graphs, the mechatronic system with adaptive controller has no 

static error on the control and disturbing effect and we can see robust properties at parametric 

and coordinate perturbations. 

 

Conclusion 

 

Development of designing methods for movement control systems, based on the 

application of the concepts of dynamics inverse problems and local optimization, formulated 

and detailed by P.D. Krutko for continuous systems, in the direction of their application for 

the mechatronic systems design allows to create a fundamentally new type of digital control 

devices using a common methodology. Simple in structure and in setting up such devices are 

able to adapt to the dynamic objects of different robotic systems, giving them an extremely 

important property of robustness. 
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