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Abstract 
Articular cartilage is a porous medium, reinforced by collagen fibers and saturated by an 

aqueous electrolyte. The presence of electrically charged macromolecules, the proteoglycans, 

leads to electro-chemo-mechanical interactions in the tissue which enhance its adaptation to 

physiological requests. In the present work, a new finite element formulation is presented and a 

finite element program is developed, with the purpose of numerically simulate the response of an 

articular cartilage sample to a combination of chemical and mechanical actions. The model 

considers the distinct physiological and mechanical roles of the fluid in the intrafibrillar and 

extrafibrillar compartments. As a new feature, the presence of the intrafibrillar fluid is taken into 

account in a straightforward manner based on experimental observations. Parametric 

identification and simulations of actual loading processes are described in part II of this paper.  
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1. Introduction 
Synovial joints are a specific group of joints in the human body that present a fibrous capsule filled by a fluid rich in 

nutrients (the synovial fluid) which nourishes a thin layer of articular cartilage that covers the extremities of the bones 

and provides frictionless movements in the joint [1],[2]. Articular cartilage is a highly specialized connective tissue, 

lacking nerves and blood vessels, characterized as a porous medium structured by collagen fibers (mostly of type II) and 

saturated by an electrolyte (representing 60% to 85% of the total volume of the tissue) with water as solvent and metallic 

ions as solutes [2-5]. Charged macromolecules, the proteoglycans (PG), intermingled with collagen fibers, give rise to 

electro-chemo-mechanical couplings that allow moderate deformation to take place and ensure an optimal adaptation of 

the tissue to physiological loads. Collagen and PGs are, thus, the main components of the extracellular matrix (ECM), 

responsible for the support of the stresses resulting from the forces in the joints and, together with water and dissolved 

inorganic salts, determine the complex behavior of the tissue that we wish to model in a macroscopic continuum 

framework. The cells present in the tissue (the chondrocytes) which are responsible for both the production and 

degradation of the ECM, being in this way in charge for its maintenance and repair, represent just 2% to 10% of the adult 

cartilage volume [3],[4]. 

Collagen is a fundamental protein with the tropocollagen molecule as its basic unit. Each tropocollagen unit is 

composed by three polypeptide chains that coil around each other forming a triple helix. The subsequent polymerization 

of the tropocollagen molecules originates collagen fibrils that, when grouped together, create a collagen fiber. The triple 

helix configuration, in addition to the covalent cross links that can be formed between the fibrils, provide collagen and 

the tissue with its tensile (stiffness and strength) properties [4]. 

Proteoglycans are composed by a protein core attached to several glycosaminoglycan (GAG) chains, which may 

further aggregate through a non-covalent protein linkage to a hyaluronan (HA) molecule. According to its GAG 

composition, different types of proteoglycans may be found among the tissue; aggrecan, the most abundant one, is gifted 

with the greatest capability to interact with HA molecules through the link protein [3],[4]. The link protein provides 

stabilization to the PGs aggregation, contributing to the immobilization of PGs within the collagen network, which has 

a major importance in the normal function of articular cartilage [3]. Under physiologic conditions, the GAG chains are 

negatively charged due to the presence of sulfate and carboxyl groups and the high number of fixed negative charges 

https://publicacoes.isep.ipp.pt/jcaimb
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(the fixed charge density - FCD) causes electrostatic repulsive forces between these molecules. The existence of these 

forces plays an important role in the tissue compressive stiffness since, when a compressive force is applied, the repulsion 

between the PG molecules opposes the movement and, therefore, if the number of PGs in the cartilage tissue increases, 

the FCD and the compressive stiffness increase as well [3]. 

The system comprising the tissue and the synovial fluid tends to evolve in order to achieve chemical balance. For 

instance, if the salt concentration (e.g. NaCl, CaCl2) in the synovial fluid increases (hypertonic solution), a higher amount 

of ionic species is attracted inside the tissue according to Donnan's osmotic effect. Inside the tissue, these counter-ions 

shield the electrostatic repulsive forces between PGs and, consequently, allow for a higher contractive deformation or, 

equivalently, a lower compressive stiffness of the tissue [3]. By the contrary, in the presence of a hypotonic surrounding 

medium, less cations will also be present inside the tissue, leading to higher repulsive forces between PGs, lower 

contractive deformations and higher compressive stiffness [6]. The chemical composition of the synovial fluid has, 

additionally, an impact on the level of swelling and hydration of the tissue. According to the osmotic effect, water tends 

to flow from a medium with lower concentration of ions to a medium with higher concentration. In this way, due to the 

fact that the PG molecule is negatively charged and counter-ions are always present inside the tissue, in the presence of 

a hypotonic surrounding medium, an osmotic flow is generated leading to the migration of water from the hypotonic 

region (outside the tissue) towards the hypertonic region (inside), contributing to the swelling of the tissue [7]. However, 

when the surrounding medium is hypertonic (with higher concentration of salt), the tissue loses water and shrinks [6]. 

The fluid part of cartilage is therefore a vital component of the tissue, since it is responsible not only for the exchange 

of nutrients and waste products between the chondrocytes and the synovial fluid in the joint, but it also plays an important 

role in defining the mechanical response of the cartilage due to the presence of dissolved inorganic free cations such as 

Na+ and Ca2+, which balance the proteoglycan negative charges. Within the cartilage tissue, water may be found, besides 

inside the cells, in two different locations: (a) in the intrafibrillar (IF) space, inside the collagen fibers (between the 

collagen fibrils) or (b) in the extrafibrillar (EF) space, outside the collagen fibers and covering the proteoglycan 

molecules. In both spaces, part of the water is free to move when some load (e.g. compressive force) is applied or due to 

the presence of an osmotic pressure [3,4,8]. 

As any other tissue of the body, during the natural aging process of life, the cartilage tissue may suffer modifications 

in the ECM, due to alterations in the normal function of the chondrocytes, that lose their full capacity to synthesize the 

ECM components [9], [10]. Osteoarthritis is a disease characterized by the loss of articular cartilage in the joints (decrease 

of its thickness) due to an unbalance between synthesis and degradation of the cartilage components (promotion of the 

cells' catabolic process over the anabolic), culminating in altered biomechanics. Therefore, the understanding and 

knowledge of the tissue behavior and its evolution through age is crucial in the improvement of prevention and treatment 

of the degenerative pathologies that may affect the cartilage tissue as well as in the development of novel engineered 

materials to be used in regenerative medicine. 

Over the past years, several chemo-mechanical models have been proposed to capture various aspects of articular 

cartilage response. In a work conducted by Mow et al. [11], the cartilage tissue was considered as a combination of a 

fluid and a solid phase. In such model, the collagen matrix, along with the proteoglycans, compose the solid phase of a 

matrix considered to be a porous, permeable medium. The fluid phase accounted for the interstitial fluid, being both 

phases incompressible. The triphasic model, proposed by Lai et al. [12], is an extension of the latter biphasic model, 

where the cartilage tissue is now decomposed into three phases: an incompressible interstitial fluid phase, accounting for 

the presence of water, an ionic phase composed by the ionic species Na+ and Cl- (addition relatively to the biphasic 

model), and an incompressible solid phase, comprising the collagen and proteoglycan molecules of the porous-permeable 

ECM. The model was later generalized to include multi-electrolytes [13]. 

According to the experimental observations by Maroudas et al. [8], the presence of water in two distinct compartments 

of the tissue is significant for the mechanical aspects of its response. Along this perspective, Huyghe [14] and Loret and 

Simões [15-17] proposed a three phase electro-chemo-mechanical model with one solid and two fluid phases. In the 

latter model, the EF fluid phase included the EF water, the charged proteoglycans and dissolved ions, while the IF fluid 

phase was constituted by the IF water along with dissolved salts. The collagen fibers are the components of the solid 

phase. Water and ions of the IF phase have first to transfer through the collagen wall to reach the EF phase, being the 

latter the one that communicates with the external environment. In order to model the exchanges of mass between the 

two fluid phases and between the EF compartment and the surrounding medium, equations of mass transfer, together 

with the generalized diffusion equations developed in [18], were implemented in the simulation of the mechanical 

response of the tissue using the finite element method [19]. The consideration in these models of two fluid phases may 

be particularly important when studying osteoarthritis since collagen fibers, which become damaged in a osteoarthritic 
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cartilage, act in the model like membranes between these two compartments. Although quite complete, the model by 

Loix et al. [19] requires the definition of several material parameters that cannot be obtained from the existing 

experimental data, including the characteristic transfer times between the IF and EF phases (the mass transfer between 

phases is not instantaneous) and the parameters related to the difference of the pressure of water in these phases. 

Moreover, with this model, the authors were not able to replicate the experimental results by Eisenberg and Grodzinsky 

[6]. Nonetheless, the model used in [19] introduces, for the first time, the notion of fictitious bath or equilibrium bath 

that is used to define the articular cartilage mechanical parameters. 

The finite element formulation proposed in this paper follows the framework of the model by Loix et al. [19], that is, 

a three phase model is also considered, with one solid phase and two fluid phases, accounting for the presence of two 

water compartments (EF and IF phases). However, as new features of the present formulation: 1) the electro-chemo-

mechanical constitutive law used in this work is defined in [20], which is different from the one used by Loix et al. [19] 

and 2) the contribution of the IF phase to the simulations is considered in a different and simplified way, not requiring 

the definition of IF material parameters and functions. In fact, according to Basser et al. [21], during a compression test 

in a specimen extracted from the hip, the percentage of IF water varied from 23.32% to 27.80% of the total amount of 

water, in all the stages of the test. Thus, a fixed value of 25% is considered in this work for the percentage of IF water 

with respect to the total amount of water, and consequently, the percentage attributed to the EF part is the remaining 

75%. Exchange of mass (ions and water) between the EF phase and the environment surrounding the tissue (bath/synovial 

fluid) through boundary membranes, always guaranteeing the equilibrium at the interface between the exterior and 

interior of the tissue, is taken into account as well as diffusion of the ionic species within the EF phase. Only the presence 

of Na+ and Cl- is considered in this model since NaCl is the most abundant salt in the tissue [3]. As a simplification over 

[15-17] and [19], exchange of ions between the two fluid phases, although existing, is not modelled and, therefore, there 

is no access to the values of the masses of the IF ionic species. Proteoglycans, being macromolecules, do not pass through 

the membranes, thus they only exist in the EF phase. 

Following this formulation, a finite element program is developed in MATLAB environment with the purpose of 

numerically simulate the response of an articular cartilage sample to a combination of chemical and mechanical actions. 

Parametric identification and simulations of actual loading processes are described in part II of this paper. 

 

2. Field and constitutive equations 
 

2.1. Mass and volume measures 

The cartilage sample is a multi-phase tissue, being as well a multi-species mixture, composed by water (w), sodium 

(Na+), chloride (Cl-), among others. In this work, two distinct phases will be directly modelled: the EF fluid phase, 

E={w,PG,Cl-,Na+}, and the solid phase, composed by the cartilage fibers, S={c}. The EF phase may be further divided 

in two distinct subsets: one composed by the mobile species, Emo = {w, Cl-, Na+}, and one composed only by the ionic 

species, Eions = {Cl-, Na+}. 

In this way, two types of constitutive equations are required to describe the tissue behavior: electro-chemo-mechanical 

equations, which account for deformation, and generalized diffusion equations, describing the flow of the ionic species 

and water through the extrafibrillar phase. 

During the development of the field and constitutive equations, that will be conducted further ahead, several mass 

and volume quantities in the EF phase will be used, which need therefore to be defined a priori. The current volume, the 

current mass and the current number of moles of the species k in the EF phase will be denoted as VkE, MkE and NkE, 

respectively. Considering V0 the initial volume of the porous medium, and V and VE the current total and EF volumes, 

several other entities related to the species k in this phase may be defined: 

- some are intrinsic, like the intrinsic density k = MkE/VkE, the molar volume 𝑣𝑘 = VkE/NkE and the molar mass 𝑚̂𝑘 = 

MkE/NkE related by k = 𝑚̂𝑘 /𝑣𝑘; 

- some refer to the current volume, like the volume fraction nkE =VkE/V and the apparent density kE = nkE k = MkE/V; 

- some refer to the initial volume, like the mass content mkE = MkE/V0, the volume content vkE = VkE/V0 = mkE/k and the 

molar content NkE = NkE/V0; 

- and some are defined in the EF phase, like the molar concentration ckE =NkE/VE and the molar fraction xkE =Nk/k NkE. 
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All the entities described above can also be obtained for the EF phase as a whole by summing the contributions of all the 

species: volume content vE = k v
kE, volume fraction nE = k n

kE, total number of moles NE = k NkE and molar content  

NE= k NkE = NE/V0. 

 

2.2. Mass and momentum balances 

The mass balance equation of mobile EF species (water and ionic species) can be written as [22] 

  

d𝑚𝑘𝐸

d𝑡
+ div𝑴𝑘𝐸  = 0,     k ∈ 𝐸𝑚𝑜, (1) 

 

where MkE is the mass flux of the species through the solid skeleton defined as 

 

𝜌𝑘
−1𝑴𝑘𝐸 = 𝑛𝑘𝐸(𝒗𝑘𝐸 − 𝒗𝑆), (2) 

 

where vkE is the velocity of species k and vS is the solid skeleton velocity. Eq.(1) reflects the fact that the change of mass 

of the fluid phase species k is due to the mass exchange with the surroundings. 

Dividing Eq.(1) by k, we obtain 

 
d𝑣𝑘𝐸

d𝑡
+ div𝑱𝑘𝐸  = 0, (3) 

 

where JkE is the species volume flux through the solid skeleton 

 

𝑱𝑘𝐸 = 𝜌𝑘
−1𝑴𝑘𝐸 = 𝑛𝑘𝐸(𝒗𝑘𝐸 − 𝒗𝑆). (4) 

 

Assuming that the solid skeleton and all the EF species are incompressible, the change of volume of the tissue is 

symmetric to the change of the volume of the fluid phase due to diffusion, that is 

 

div 𝒗𝑆 + div 𝑱𝐸 = 𝟎,  (5) 

 

where JE = kϵE JkE, which is obtained summing up Eq.(4) for all the EF species and assuming that the velocity of the 

proteoglycans is equal to the solid phase velocity. 

Neglecting body forces and dynamic effects, the balance of momentum equation is 

 

div 𝝈 = 𝟎,  (6) 

 

where  is the total Cauchy stress tensor. 

 

2.3. The global structure of the constitutive equations 

The global structure of the constitutive equations was previously developed, in a thermodynamic framework, in [23]. 

In such framework, the Clausius-Duhem inequality, neglecting thermal effects and considering the contribution of just 

one fluid phase (in this work the IF phase is indirectly taken into account), results in an expression that contains two 

terms of distinct natures and which, consequently, are required to be positive individually: 

 

{
 
 

 
 𝐷̇1 = −𝑊̇ + 𝑺: 𝑬̇ +∑g𝑘𝐸

𝑒𝑐 Ṅ𝑘𝐸 ≥ 0

𝑘𝜖𝐸

𝐷̇2 = −∑
𝛁g𝑘𝐸

𝑒𝑐

𝑣𝑘
. 𝑱𝑘𝐸 ≥ 0

𝑘𝜖𝐸

.
 (7) 
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2.3.1. Electro-chemo-mechanical constitutive equation 

Considering articular cartilage as a hyperelastic material, the first term 𝐷̇1 in Eq.(7) is considered to exactly vanish, 

that is 

 

𝑊̇ = 𝑺: 𝑬̇ +∑g𝑘𝐸
𝑒𝑐 Ṅ𝑘𝐸

𝑘𝜖𝐸

, (8) 

 

where ( ̇ ) denotes a time derivative, W=W(E, NkE) is the internal energy per unit of initial (reference) volume V0, S is 

the 2nd Piola-Kirchhoff stress tensor, E is the Green-Lagrange strain tensor (E = ½ (FTF- I), where F is the gradient of 

deformation tensor) and g𝑘𝐸
𝑒𝑐  is the electro-chemical potential per unit of mole of species k. 

Additionally, for the formulation of the equations that govern the tissue deformation, two constraints need to be 

included: the electroneutrality and incompressibility conditions. The electroneutrality condition introduces a constraint 

in the constitutive equation, that incrementally can be written as: 

 

𝐼𝑒̇𝑙 = 𝐹∑𝜉𝑘Ṅ𝑘𝐸
𝑘𝜖𝐸

= 0, (9) 

 

where F is Faraday's constant (F = 96485 Coulomb mol1) and k is the valence of species k. The incompressibility of all 

the tissue constituents introduces a second constraint in the constitutive equations, that incrementally can be written as: 

 

𝐼𝑖̇𝑛𝑐 = 𝐽̇ −∑𝑣𝑘Ṅ𝑘𝐸
𝑘𝜖𝐸

= det𝑭 𝑭−T: 𝑭̇ −∑𝑣𝑘Ṅ𝑘𝐸
𝑘𝜖𝐸

, (10) 

 

where J = V/V0 = det F.  

In order to satisfy the two aforementioned constraints, an augmented internal energy W is defined, that results from 

the introduction of the Lagrange multipliers E and pE interpreted, respectively, as the electrical potential and the pressure 

in the fluid EF phase 

 

W = 𝑊(𝑬,N𝑘𝐸) − 𝜙
𝐸
𝐼𝑒𝑙 + 𝑝

𝐸
𝐼𝑖𝑛𝑐  ,  (11) 

 

from which results 

 

Ẇ = 𝑺: 𝑬̇ + ∑ g𝑘𝐸
𝑒𝑐 Ṅ𝑘𝐸𝑘𝜖𝐸 −𝜙𝐸𝐹∑ 𝜉𝑘Ṅ𝑘𝐸𝑘𝜖𝐸 + 𝑝𝐸 (det 𝑭 𝑭

−T: 𝑭̇ − ∑ 𝑣𝑘Ṅ𝑘𝐸𝑘𝜖𝐸 ) 

= 𝑺̅: 𝑬̇ + ∑ g̅𝑘𝐸
𝑒𝑐 Ṅ𝑘𝐸𝑘𝜖𝐸  

(12) 

 

where 𝑺̅ = S + pE detF F1:FT and g̅𝑘𝐸
𝑒𝑐  = g𝑘𝐸

𝑒𝑐   𝑣𝑘 pE – F k E are the effective 2nd Piola-Kirchhoff stress tensor and the 

effective electro-chemical potential per unit of mole of species k, respectively. 

Since Ẇ is also given by 

 

Ẇ =
𝜕W

𝜕𝑬
: 𝑬̇ + ∑

𝜕W

𝜕N𝑘𝐸
Ṅ𝑘𝐸𝑘𝜖𝐸  , (13) 

 

the coupled electro-chemo-hyperelastic constitutive equations are obtained from 𝑺̅ = ∂W/∂E and g̅𝑘𝐸
𝑒𝑐   = ∂W/∂NkE, 

subjected to the constraints Iinc = ∂W/∂pE = 0 and Iel = ∂W/∂E = 0. 

As in [20], the constitutive form of the energy W here proposed is decomposed into a coupled chemo-mechanical 

contribution and a purely chemical contribution, W = Wch-mech + Wch. The coupled chemo-mechanical contribution is, in 

turn, decomposed into a coupled chemo-mechanical term Wch-mech,1(E, NkE) =  pch(NkE) (det F  1) and by a product of 

a purely chemical term Wch,2(NkE) by a purely mechanical term Wmech(E), corresponding to the strain energy of the tissue 

matrix (PGs, collagen and other proteins), as 
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Wch-mech(𝑬,N𝑘𝐸) = Wch-mech,1(𝑬,N𝑘𝐸) +Wch,2(N𝑘𝐸)Wmech(𝑬). (14) 

 

The purely chemical term is given by: 

 

Wch(N𝑘𝐸) = RT (∑N𝑘𝐸 ln𝑁𝑘𝐸
𝑘𝜖𝐸

- N𝐸 ln𝑁𝐸 ) , (15) 

 

where T is the temperature and R is the gas constant (R = 8.314 J mol1 K1). 

The mole based electro-chemical potentials of the species are then obtained as follows: 

 

g𝑘𝐸
𝑒𝑐 =

𝜕W

𝜕N𝑘𝐸
+ 𝑣𝑘  𝑝𝐸  +  𝐹 𝜉𝑘𝜙𝐸 =

𝜕Wch-mech

𝜕N𝑘𝐸
+ 𝑅𝑇 ln 𝑥𝑘𝐸 + 𝑣𝑘  𝑝𝐸  +  𝐹 𝜉𝑘𝜙𝐸, (16) 

 

which, in the absence of chemo-mechanical couplings (∂Wch-mech/∂NkE = 0), present their classical form, composed by a 

mechanical (𝑣𝑘  pE), a chemical (RT ln xkE) and an electrical (Fk E) term. 

As usual, in the definition of the electro-chemical potentials of the ionic species, only the chemical and electrical 

terms are retained, thus: 

 

g𝑘𝐸
𝑒𝑐 = 𝑅𝑇 ln 𝑥𝑘𝐸 +  𝐹 𝜉𝑘𝜙𝐸,   𝑘𝜖𝐸

𝑖𝑜𝑛𝑠 . (17) 

 

In the case of the electrically neutral water molecule, its electro-chemical potential, neglecting again the chemo-

mechanical couplings, is defined as: 

 

g𝑤𝐸
𝑒𝑐 = 𝑣𝑤 𝑝𝐸 + 𝑅𝑇 ln 𝑥𝑤𝐸. (18) 

 

The Cauchy stress tensor is also obtained as [20]: 

 

𝝈 =
1

det𝑭
 𝑭𝑺𝑭𝐓 =

1

det 𝑭
𝑭
𝜕Wch-mech

𝜕E
𝑭𝐓 − 𝑝𝐸𝑰 =  −𝑝𝑐ℎ𝑰 +Wch,2 E: 𝑬− 𝑝𝐸𝑰, (19) 

 
where F ∂Wmech/∂E FT/det F = E:E. Rewriting Eq.(19), we get: 

 

𝝈 + 𝑝𝐸𝑰 = − 𝑝𝑐ℎ𝑰 +Wch,2 E: 𝑬, (20) 

 

where E is the 4th rank mechanical constitutive tensor of the tissue immersed in a saturated bath and I is the 2nd order 

identity tensor. In the absence of chemo-mechanical couplings (pch = 0 and Wch,2 = 1), the classical constitutive equation 

of an inert porous medium is obtained,  + pE I = E:E. Therefore, the first chemo-mechanical term Wch-mech,1 gives rise to 

an isotropic chemical stress pch I, while the term Wch,2 is intended to amplify the stiffness of the tissue for small ionic 

concentrations, thus reflecting the shielding effect [6]. 

In order to obtain the final form of the constitutive equation, the concept of fictitious bath or equilibrium bath needs 

to be introduced, that is a bath whose composition and pressure 𝑝̃𝐵 may vary in time and space so that, at any time, it is 

in electro-chemical equilibrium with any point of the tissue. Thus, the pressure pE can be defined as pE = 𝑝̃𝐵 + 𝜋̃𝑜𝑠𝑚, 

where 𝜋̃𝑜𝑠𝑚 is the osmotic (or Donnan) pressure between the tissue's point and the corresponding fictitious bath. 

Therefore, the constitutive equation Eq. (20) can be written as: 

 
𝝈 + 𝑝̃𝐵𝑰 + 𝜋̃𝑜𝑠𝑚𝑰 + 𝑝𝑐ℎ𝑰 = Wch,2 E: 𝑬. (21) 

 

Since the properties of the fictitious bath are obtained from those of the tissue, the osmotic pressure 𝜋̃𝑜𝑠𝑚 can be seen 

as a function of the primary variables and, therefore, it is eligible to enter in the constitutive equation. Due to the fact 

that the osmotic pressure 𝜋̃𝑜𝑠𝑚 varies with the ionic concentration, it will be used to define both pch and Wch,2. In this 

sense, the following expressions are suggested in [20]: 
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𝑝𝑐ℎ = 𝛼𝑝 𝜋̃𝑜𝑠𝑚, (22) 

 

Wch,2 = 1 + 𝛼𝑤  𝜋̃𝑜𝑠𝑚,  (23) 

 

where p and w are chemo-mechanical parameters, with p being non-dimensional. 

It is important to notice that when the composition of the tissue is uniform and the tissue is in equilibrium with an 

external bath of known pressure and chemical composition, 𝑝̃𝐵 and 𝜋̃𝑜𝑠𝑚 become the real bath (pB) and osmotic (osm) 

pressures (the fictitious bath then becomes the real one), and the fluid pressure at any point of the tissue is: 

 

𝑝𝐸 = 𝑝𝐵 + 𝜋𝑜𝑠𝑚 (24) 

 

However, when there is no equilibrium, the pressure pE and the chemical composition are obtained, at every time, 

from the primary variables and never from the properties of the surrounding bath, since those properties are not 

constitutive, and, thus, should not be involved in the definition of the constitutive equation. The notion of fictitious bath 

is then particularly useful during transient states (e.g. when changes of the chemical composition of the bath occur) or 

when the external bath is inhomogeneous. 

 
2.3.2. Generalized diffusion equation 

In [18], two equivalent forms of the generalized diffusion equations, that satisfy the dissipation inequality 𝐷2 ≥ 0 in 

Eq.(7), were proposed. The first one relates the vector j, containing the volume fluxes of the species in the fluid phase 

relative to the solid phase, with the vector f of their electro-chemical gradients by an isotropic, semi-definite positive, 

generalized diffusion matrix : 

 

𝒋 = −  𝒇, (25) 

 

where 

𝒋 = {

𝑱𝑤𝐸
𝑱𝑁𝑎𝐸
𝑱𝐶𝑙𝐸

} , 𝒇 = {

𝜌𝑤𝛁𝜇𝑤𝐸
𝑒𝑐

𝜌𝑁𝑎𝛁𝜇𝑁𝑎𝐸
𝑒𝑐

𝜌𝐶𝑙𝛁𝜇𝐶𝑙𝐸
𝑒𝑐

}     and     = [

𝑤𝑤 𝑤𝑁𝑎 𝑤𝐶𝑙
𝑁𝑎𝑤 𝑁𝑎𝑁𝑎 𝑁𝑎𝐶𝑙
𝐶𝑙𝑤 𝐶𝑙𝑁𝑎 𝐶𝑙𝐶𝑙

]. (26) 

 
In Eq.(26), the electro-chemical potentials 𝜇𝑘𝐸

𝑒𝑐  are related to the electro-chemical potentials per unit of mole by 𝜇𝑘𝐸
𝑒𝑐  = 

𝑔𝑘𝐸
𝑒𝑐 /𝑚̂𝑘. 

The second proposed form relates the vector J, containing the volume flux of the water, the diffusive fluxes of the 

ionic species 𝑱𝑘
𝑑 = nkE (vkE  vwE) and the electrical current density within the tissue Ie, with the vector F, containing the 

gradients of the fluid pressure, of the molar fractions and of the electric potential, by a matrix : 

 

𝑱 = −  𝑭 (27) 

 

where 

 

𝑱 =

{
 

 
𝑱𝑤
𝑱𝑁𝑎
𝑑

𝑱𝐶𝑙
𝑑

𝑰𝑒 }
 

 

, 𝑭 =

{
  
 

  
 
𝛁𝑝𝐸 − 𝑅𝑇𝛁𝑐𝑃𝐺
𝑅𝑇

𝑣𝑁𝑎
𝛁 ln 𝑥𝑁𝑎𝐸

𝑅𝑇

𝑣𝐶𝑙
𝛁 ln 𝑥𝐶𝑙𝐸

𝛁𝜙𝐸 }
  
 

  
 

 . (28) 

 

The matrix  governs the coupled motions of water and ionic species inside the tissue that result from Darcy's law of 

seepage (due to a water pressure gradient), Fick's law of diffusion (due to an ionic concentration gradient) and Ohm's 
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law of electrical flow (due to an electrical potential gradient). Since the electrical current density Ie is a linear combination 

of the water volume flux Jw and of the ionic diffusion fluxes𝑱𝑘
𝑑, matrix  is symmetric, isotropic and, at best, positive 

semi-definite. Its form is given in [18] by: 

 

   =

[
 
 
 
 
𝑘𝐸𝐸
0

0
𝑘𝑁𝑎𝑁𝑎
𝑑

0
0

𝑘𝑒
   𝑘𝑁𝑎𝑒

𝑑

0
𝑘𝑒

0
𝑘𝑁𝑎𝑒
𝑑

𝑘𝐶𝑙𝐶𝑙
𝑑

𝑘𝐶𝑙𝑒
𝑑

𝑘𝐶𝑙𝑒
𝑑

𝜎𝑒 ]
 
 
 
 

 (29) 

 

where 

 

{
 
 
 
 
 
 

 
 
 
 
 
 𝑘𝐸𝐸 =

𝐾ℎ
𝜌𝑤𝑔

    is the "short-circuit" permeability,

𝐾ℎ    is the hydraulic conductivity,
𝑘𝑒 = −𝑘𝐸𝐸𝐹𝑒̃𝑃𝐺    is the electro − osmotic coefficient,

𝜎𝑒 = 𝑛
𝐸𝐹 ∑ 𝑐𝑘𝐸𝑢𝑘𝐸

∗ + 𝑘𝐸𝐸𝐹
2𝑒̃𝑃𝐺

2    is the electrical conductivity,

𝑘𝜖𝐸𝑖𝑜𝑛𝑠

𝑘𝑘𝑙
𝑑 = 𝑣𝑘𝑣̂𝑙𝑛

𝐸𝑐𝑘𝐸
𝑢𝑘𝐸
∗

𝐹
𝐼𝑘𝑙

𝑘𝑘𝑒
𝑑 = 𝑣𝑘𝑛

𝐸𝑐𝑘𝐸𝑢𝑘𝐸
∗ sgn(𝜉𝑘)

𝑒̃𝑃𝐺 = 𝑒𝑃𝐺
𝑛𝐸

𝑛𝑤𝐸
≈ 𝑒𝑃𝐺 = 𝜉𝑃𝐺𝑐𝑃𝐺    is the fixed charge density (FCD)

 (30) 

 

and 𝑢𝑘𝐸
∗  is the effective ionic mobility of species k ϵ Eions related to the corresponding coefficient of diffusion DkE by the 

Nernst-Einstein relation ukE = DkE |k| F/RT, being 𝑢𝑘𝐸
∗  =  ukE ,with  representing the tortuosity factor. 

The coefficients of the matrices  and  are related by a compatibility relation, which permits to write the coefficients 

of  as [18]: 

 

  = 𝑘𝐸𝐸 [

1 𝐿𝑁𝑎 𝐿𝐶𝑙
𝐿𝑁𝑎 𝐿𝑁𝑎

2 L𝑁𝑎L𝐶𝑙

𝐿𝐶𝑙 L𝑁𝑎L𝐶𝑙 𝐿𝐶𝑙
2

] + [

0 0 0

0 𝑘𝑁𝑎𝑁𝑎
𝑑 0

0 0 𝑘𝐶𝑙𝐶𝑙
𝑑

] (31) 

 

where Lk = nkE/nwE, k ϵ Eions. 

 

3. Finite element formulation 

 
3.1. Element contributions 

The four field equations developed in section 2.2 that need to be satisfied are the balance of momentum, Eq.(6), the 

global balance of mass, Eq.(5), and the balance of mass of ions Na+ and Cl, Eq.(3). From these equations the four 

primary unknowns of the formulation are obtained: the displacement of the solid skeleton and the electro-chemical 

potentials of the EF species (w, Na+, Cl-). All other quantities of interest may be deduced from these four primary 

unknowns. 

To formulate the problem in its weak form, the field equations are multiplied by virtual fields (u, ), and integrated 

by parts over the body V, which results in: 
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∫ 𝛁(𝛿𝒖): 𝝈 d𝑉
𝑉

= ∫ 𝛿𝒖 ∙ 𝝈 ∙ 𝒏̂ d𝑆
𝜕𝑉

∫ 𝛿𝜇 div 𝒗𝑆 − 𝛁(𝛿𝜇) ∙ 𝑱𝐸  d𝑉
𝑉

= −∫ 𝛿𝜇 𝑱𝐸 ∙ 𝒏̂ d𝑆
𝜕𝑉

∫ 𝛿𝜇 
d𝑣𝑘𝐸

d𝑡
− 𝛁(𝛿𝜇) ∙ 𝑱𝑘𝐸  d𝑉

𝑉

= −∫ 𝛿𝜇 𝑱𝑘𝐸 ∙ 𝒏̂ d𝑆
𝜕𝑉

, 𝑘 ∈  𝐸𝑖𝑜𝑛𝑠 ,

  (32) 

 

where 𝒏̂ is the unit outward normal to the boundary ∂V of the volume V. 

The replacement of the virtual fields in Eq.(32), in each finite element, by its approximation with the shape functions 

u and  results in the non-linear first order semi-discrete equation 

 

  F 𝑖𝑛𝑡 = F
 𝑒𝑥𝑡, (33) 

 

where F
 int

 and F
 ext

 are obtained by assembling the element contributions F𝑒
 𝑖𝑛𝑡

 and F𝑒
 𝑒𝑥𝑡

 below 

 

  F𝑒
 𝑖𝑛𝑡 =

{
 
 
 
 

 
 
 
 ∫ 𝑩𝑢

T𝝈 d𝑉𝑒

𝑉𝑒

∫ 𝝍𝜇
T div 𝒗𝑆 − 𝛁𝝍𝜇

T  𝑱𝐸  d𝑉
𝑒

𝑉𝑒

∫ 𝝍𝜇
T  
d𝑣𝑁𝑎𝐸

d𝑡
− 𝛁𝝍𝜇

T  𝑱𝑁𝑎𝐸  d𝑉
𝑒

𝑉𝑒

∫ 𝝍𝜇
T  
d𝑣𝐶𝑙𝐸

d𝑡
− 𝛁𝝍𝜇

T  𝑱𝐶𝑙𝐸  d𝑉
𝑒

𝑉𝑒 }
 
 
 
 

 
 
 
 

  and F𝑒
 𝑒𝑥𝑡 =

{
 
 
 
 

 
 
 
 ∫ 𝝍𝑢

T 𝝈 ∙ 𝒏̂ d𝑆𝑒

𝜕𝑉𝑒

−∫ 𝝍𝜇
T 𝑱𝐸 ∙ 𝒏̂ d𝑆

𝑒

𝜕𝑉𝑒

−∫  𝝍𝜇
T 𝑱𝑁𝑎𝐸 ∙ 𝒏̂ d𝑆

𝑒

𝜕𝑉𝑒

−∫ 𝝍𝜇
T 𝑱𝐶𝑙𝐸 ∙ 𝒏̂ d𝑆

𝑒

𝜕𝑉𝑒 }
 
 
 
 

 
 
 
 

. (34) 

 

From the element vector of the internal forces F𝑒
 𝑖𝑛𝑡

, the element stiffness and diffusion matrices may be retrieved 

through their definition, K 
e
 = ∂F𝑒

 𝑖𝑛𝑡
/∂X 

e
 and C 

e
 = ∂F𝑒

 𝑖𝑛𝑡
/∂V 

e
, with X 

e
 and V 

e 
 representing, respectively, the 

vectors of the element degrees of freedom and their time derivatives: 

 

  X 𝑒 = {

𝒖
𝜇𝑤𝐸
𝑒𝑐

𝜇𝑁𝑎𝐸
𝑒𝑐

𝜇𝐶𝑙𝐸
𝑒𝑐

} ,   V 𝑒 = X 𝑒 ,̇  (35) 

 

  K 𝑒 =

[
 
 
 
 𝑲𝑢𝑢

𝑒

𝟎

𝑲𝑢𝜇𝑤
𝑒

𝑲𝜇𝑤𝜇𝑤
𝑒

𝑲𝑢𝜇𝑁𝑎
𝑒

𝑲𝜇𝑤𝜇𝑁𝑎
𝑒

𝑲𝑢𝜇𝐶𝑙
𝑒

  𝑲𝜇𝑤𝜇𝐶𝑙
𝑒

    𝟎
    𝟎

   𝑲𝜇𝑁𝑎𝜇𝑤
𝑒

  𝑲𝜇𝐶𝑙𝜇𝑤
𝑒

 𝑲𝜇𝑁𝑎𝜇𝑁𝑎
𝑒

𝑲𝜇𝐶𝑙𝜇𝑁𝑎
𝑒

𝑲𝜇𝑁𝑎𝜇𝐶𝑙
𝑒

𝑲𝜇𝐶𝑙𝜇𝐶𝑙
𝑒

]
 
 
 
 

, (36) 

 

  C 𝑒 =

[
 
 
 
 
𝟎

𝑪𝜇𝑤𝑢
𝑒

  𝟎
  𝟎

𝟎
𝟎

         𝟎
         𝟎

𝑪𝜇𝑁𝑎𝑢
𝑒

𝑪𝜇𝐶𝑙𝑢
𝑒

𝟎
𝟎

  𝑪𝜇𝑁𝑎𝜇𝑁𝑎
𝑒

  𝑪𝜇𝐶𝑙𝜇𝑁𝑎
𝑒

𝑪𝜇𝑁𝑎𝜇𝐶𝑙
𝑒

𝑪𝜇𝐶𝑙𝜇𝐶𝑙
𝑒

]
 
 
 
 

. (37) 

 

The non-zero components of the matrices K 
e and C 

e
 are then: 
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𝑪𝜇𝑤𝑢
𝑒 = ∫ 𝝍𝜇

T tr 𝑩𝑢 d𝑉
𝑒

𝑉𝑒

𝑪𝜇𝑘𝑢
𝑒 = ∫ 𝝍𝜇

T  
3

4

𝑣𝑘𝐸

𝑛𝐸
𝑧𝑘𝐸  tr 𝑩𝑢 d𝑉

𝑒 ,   
𝑉𝑒

𝑘 𝜖 𝐸𝑖𝑜𝑛𝑠

  𝑪𝜇𝑘𝜇𝑙
𝑒 = ∫ 𝝍𝜇

T  
𝑚̂𝑙

𝑅𝑇
𝑣𝑘𝐸  𝑧𝑘𝑙𝐸𝝍𝜇 d𝑉

𝑒

𝑉𝑒
,   𝑘, 𝑙 𝜖 𝐸𝑖𝑜𝑛𝑠,

  (38) 

 

𝑲𝑢𝑢
𝑒 = ∫ 𝑩𝑢

T [(1 + 𝛼𝑤𝜋̃𝑜𝑠𝑚)E+ [(𝑅𝑢 − 𝛼𝑝𝑄𝑢)𝑰 + 𝛼𝑤𝑄𝑢E: 𝑬]⨂𝑰]𝑩𝑢 d𝑉
𝑒

𝑉𝑒

𝑲𝑢𝜇𝑙
𝑒 = ∫ 𝑩𝑢

T  [[(𝑅𝑙 − 𝛼𝑝𝑄𝑙)𝑰 + 𝛼𝑤𝑄𝑙E: 𝑬]𝑚̂𝑙]𝝍𝜇 d𝑉
𝑒

𝑉𝑒
  ,   𝑙 𝜖 𝐸𝑚𝑜

𝑲𝜇𝑤𝜇𝑙
𝑒 = ∫ 𝛁𝝍𝜇

T 𝜌𝑙∑ 𝑘𝑙
𝑘∈𝐸

𝛁𝝍𝜇 d𝑉
𝑒

𝑉𝑒
  ,   𝑙 𝜖 𝐸𝑚𝑜

𝑲𝜇𝑘𝜇𝑙
𝑒 = ∫ 𝛁𝝍𝜇

T 𝜌𝑙𝑘𝑙𝛁𝝍𝜇 d𝑉
𝑒

𝑉𝑒
  ,   𝑘 𝜖 𝐸𝑖𝑜𝑛𝑠, 𝑙 𝜖 𝐸𝑚𝑜,

   (39) 

 

where Bu is defined as the strain-displacement matrix, Qu and Ql are given by Eq.(A.6) and Ru and Rl are given by 

Eq.(B.15). To obtain each of the components of the element matrices, it is necessary to resort to the constitutive equations 

developed in section 2.3, taken additionally into account the manipulations described in detail in Appendix A and 

Appendix B. 

In the finite element simulations presented in this work, a one dimensional bar element, with three nodes (quadratic 

interpolation) for the displacement unknown and two nodes (linear interpolation) for the electro-chemical potentials, is 

used. The use of two nodes and linear interpolation for the electro-chemical potentials is motivated by the fact that in 

classical porous media, in which the nodal degrees of freedom also comprise the water pressure, a linear interpolation is 

usually used to approximate this variable along the element. In this way, each variable may be approximated, within a 

generic element e, by the predefined shape functions multiplied by the nodal values of the respective variables: u = 

[u]{ue} and 𝜇𝑘
𝑒𝑐 = []{𝜇𝑘

𝑒𝑐𝑒} with 

 

𝑢𝑒 = {
𝑢1

𝑢2

𝑢3
}   and  𝜇𝑘

𝑒𝑐𝑒 = {
𝜇𝑘
𝑒𝑐1

𝜇𝑘
𝑒𝑐2
} . 

 

(40) 

 

In order to obtain the non-zero components of the stiffness and diffusion matrices, the Gaussian quadrature rule is 

applied, where two integration points are used for both displacement and electro-chemical potentials. 

In a 1D (uniaxial strain) analysis, the 4th rank mechanical constitutive tensor E defined in Eq.(20) and used in Eq.(39), 

involves just one constitutive parameter (Esat) to be obtained from experimental results. 

 

3.2. Time integration 

For the integration of the semi-discrete equations previously developed, both an incremental and an iterative process 

are performed, where the steps in the incremental process are denoted by n and the iterations by i. Moreover, a midpoint 

scheme is used for the time integration, meaning that, for each step n+1, the equations are evaluated at time tn+ = tn +  

∆t, with  = 0.5, where ∆t = tn+1  tn. 

Within each step n+1, several iterations are performed until convergence is reached, which corresponds to a vanishing 

residual R: 

 

R𝑛+𝛼 = F
 𝑒𝑥𝑡

(S𝑛+𝛼) − F
 𝑖𝑛𝑡(X𝑛+𝛼 ,V𝑛+𝛼) = 0, (41) 
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where S represents the nodal "loads" and X and V represent the vectors of the nodal primary variables (displacement 

and electro-chemical potentials) and of the nodal velocities of the primary variables, respectively. The quantities Z = S, 

X,V, evaluated at the time tn+, are defined as Zn+ = (1) Zn +  Zn+1, with Zn and Zn+1 the values of Z evaluated at 

time tn and tn+1, respectively. 

In the present problem, the internal forces are non-linear functions of the nodal primary unknowns. In this way, a 

linearization of Eq.(33) around the current solution (X 
i and V 

i, for i ≥ 1), through the development of the internal 

forces into a Taylor series neglecting the higher order terms, results in: 

 

F
 𝑒𝑥𝑡

(S 𝑛+𝛼
𝑖 ) − F

 𝑖𝑛𝑡
(X 𝑛+𝛼

𝑖+1 ,V𝑛+𝛼
 𝑖+1

) ≈ R𝑛+𝛼
 𝑖+1 −C

 ∗
(𝛼∆V) = 0, (42) 

 

with R𝑛+𝛼
 𝑖+1  the residual at step n+1, evaluated at time tn+, and at iteration i+1 which, recalling Eq.(41), has the form 

 

R𝑛+𝛼
 𝑖+1 = F

 𝑒𝑥𝑡
(S𝑛+𝛼
 𝑖

) − F
 𝑖𝑛𝑡(X𝑛+𝛼

 𝑖 ,V𝑛+𝛼
 𝑖 ), (43) 

 

where Z𝑛+𝛼
 𝑖

 = (1) Zn +  Z𝑛+1
 𝑖

, with Z = S, X,V. 

With all the above relations formulated, the iterative process is then conducted as follows: 

 

{
for 𝑖 = 0                              V𝑛+1

 0 = V𝑛  ,                          X𝑛+1
 0 = X𝑛 + (1 − 𝛼)∆𝑡V𝑛

 for 𝑖 ≥ 1     V𝑛+1
 𝑖 = V𝑛+1

 𝑖−1 + ∆V   ,    X𝑛+1
 𝑖 = X𝑛 + ∆𝑡V𝑛+𝛼

 𝑖 = X𝑛+1
 0 + 𝛼∆𝑡V𝑛+1

 𝑖  (44) 

 

where the velocity update ∆V, in each iteration, is obtained from the linearized equation Eq.(42) where the effective 

diffusion matrix C * is defined as: 

 

C
 ∗ = C+ 𝛼∆𝑡K   with  C =

𝜕F 𝑖𝑛𝑡

𝜕V
 (X𝑛+𝛼

 𝑖 ,V𝑛+𝛼
 𝑖 ),  K =

𝜕F 𝑖𝑛𝑡

𝜕X
 (X𝑛+𝛼

 𝑖 ,V𝑛+𝛼
 𝑖 ). (45) 

 

As the iterative process progresses, it is expected that the system converges until ∆V becomes sufficiently small. 

Thus, the convergence criterion used is the following: 

 

||ΔṼ||𝑛
𝑖 /||ΔṼ||𝑛

0 ≤ 𝑇𝑂𝐿, (45) 

 

where ||ΔṼ||𝑛
𝑖  represents the norm of the normalized ∆V vector, at step n and iteration i, and TOL represents the 

threshold which is a very small number.  
The normalization of the ∆V vector is desirable since either X and V are composed of variables (displacements, 

electro-chemical potentials and their time derivatives) that have different physical dimensions and orders of magnitude. 

In this way, the components of ∆V related to displacements are normalized by the maximum value obtained at iteration 

0, and a similar normalization procedure is performed on the components of ∆V related to the electro-chemical potentials: 

 

(∆V̅̅ ̅̅ 𝑛
 𝑖
)
𝑢
= 

(∆V𝑛
 𝑖)
𝑢

(∆V𝑛
 0)

𝑚𝑎𝑥,𝑢

     and     (∆V̅̅ ̅̅ 𝑛
 𝑖
)
𝜇
=  

(∆V𝑛
 𝑖)
𝜇

(∆V𝑛
 0)

𝑚𝑎𝑥,𝜇

  . (46) 

 

Once this normalization is performed, the same threshold TOL may be used for both type of variables. 

 

4. Conclusions 
Articular cartilage is a porous medium, reinforced by collagen fibers and saturated by an aqueous electrolyte. The 

presence of proteoglycans (electrically charged macromolecules) is the reason why electro-chemo-mechanical 

interactions occur, which enhance the tissue adaptation to physiological actions. 

In previous works [15,18,20], it was proposed 1) a constitutive law and 2) a generalized diffusion model for articular 

cartilage. In those models, the collagen fibers constitute the solid phase of the porous medium and the fluid phase is 
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composed by water, PGs and dissolved inorganic salts (NaCl). In the current work, two fluid compartments are also 

considered, in order to account for the division of water in the IF and EF spaces inside the tissue, as highlighted in [8]. 

However, as a new feature, the IF compartment is taken into account in a simplified way, distinct to what was previously 

considered in [16,17,19,20], but consistent with experimental observations [21]. This simplification avoids the definition 

of material parameters and functions related to the IF compartment that cannot be obtained from the existing experimental 

data. 

A finite element program, whose formulation is based on the described model, is developed in a MATLAB 

environment with the purpose of numerically simulate the response of an articular cartilage sample to a combination of 

chemical and mechanical actions. The parametric identification and simulations of actual loading processes are described 

in the companion paper. 

  

Appendix A. Osmotic equilibrium and fictitious bath 
From the electro-chemical potentials of the ionic species Na+ and Cl-, the chemical potential of the salt NaCl may be 

obtained: 

 

g𝑁𝑎𝐶𝑙 = g𝑁𝑎𝐸
𝑒𝑐 + g𝐶𝑙𝐸

𝑒𝑐 = 𝑅𝑇 ln(𝑥𝑁𝑎𝐸𝑥𝐶𝑙𝐸), (A.1) 

 

with xkE the molar fraction of the species k in the EF compartment. 

The electroneutrality condition of the (fictitious) bath requires that 𝑥̃𝐶𝑙𝐵 = 𝑥̃𝑁𝑎𝐵 (with 𝑥̃𝐶𝑙𝐵 and 𝑥̃𝑁𝑎𝐵 the molar 

fractions of the species in the fictitious bath), and the electroneutrality condition of the tissue imposes that xClE = xNaE + 

yPG where yPG = PG xPG < 0. Imposing the chemical equilibrium between the two phases (ficticious bath and cartilage 

tissue), 𝑔̃𝑁𝑎𝐶𝑙 = 𝑔𝑁𝑎𝐶𝑙 , we obtain: 

 

𝑥𝑁𝑎𝐸𝑥𝐶𝑙𝐸 = 𝑥̃𝑁𝑎𝐵𝑥̃𝐶𝑙𝐵   or   𝑥̃𝑁𝑎𝐵𝑥̃𝐶𝑙𝐵 = √𝑥𝑁𝑎𝐸(𝑥𝑁𝑎𝐸 + 𝑦𝑃𝐺) (A.2) 

 

and 

 

𝑥̃𝑤𝐵 = 1 − 𝑥̃𝑁𝑎𝐵 − 𝑥̃𝐶𝑙𝐵 = 1 − 2√𝑥𝑁𝑎𝐸(𝑥𝑁𝑎𝐸 + 𝑦𝑃𝐺)    
𝑥𝑤𝐸 ≈ 1−𝑥𝑁𝑎𝐸 − 𝑥𝐶𝑙𝐸 = 1 − 2𝑥𝑁𝑎𝐸 − 𝑦𝑃𝐺 . 

(A.3) 

 

Note that xPG is neglected in the first equality in Eq.(A.3)2. 

From the chemical equilibrium of water (𝑔̃𝑤= gw), the fictitious Donnan osmotic pressure is thus defined as: 

 

𝜋̃𝑜𝑠𝑚 = 𝑝
𝐸
− 𝑝̃

𝐵
=
𝑅𝑇

𝑣𝑤
ln (

𝑥̃𝑤𝐵
𝑥𝑤𝐸

) ≈
𝑅𝑇

𝑣𝑤
(𝑥𝑁𝑎𝐸 + 𝑥𝐶𝑙𝐸 − 𝑥̃𝑁𝑎𝐵 − 𝑥̃𝐶𝑙𝐵)

=
𝑅𝑇

𝑣𝑤
(2𝑥𝑁𝑎𝐸 + 𝑦𝑃𝐺 − 2√𝑥𝑁𝑎𝐸(𝑥𝑁𝑎𝐸 + 𝑦𝑃𝐺)) 

(A.4) 

 

from which results 𝑝̃𝐵 = pE  𝜋̃𝑜𝑠𝑚. 

In order to obtain the quantities necessary to formulate the finite element method the expression of 𝜋̃𝑜𝑠𝑚 needs to be 

differentiated: 

 

𝛿𝜋̃𝑜𝑠𝑚 ≈
𝑅𝑇

𝑣𝑤
(𝛿𝑥𝑁𝑎𝐸 + 𝛿𝑥𝐶𝑙𝐸−2δ 𝑥̃𝑁𝑎𝐵) 

=
𝑅𝑇

𝑣𝑤
(𝛿𝑥𝑁𝑎𝐸 + 𝛿𝑥𝐶𝑙𝐸 − 2𝛿√𝑥𝑁𝑎𝐸𝑥𝐶𝑙𝐸) =∑ 𝑃𝑘𝛿𝑥𝑘𝐸

𝑘𝜖𝐸𝑖𝑜𝑛𝑠
 , 

 

with  𝑃𝑁𝑎 =
𝑅𝑇

𝑣̂𝑤
(1 −

𝑥𝐶𝑙𝐸

√𝑥𝑁𝑎𝐸𝑥𝐶𝑙𝐸
) =

𝑅𝑇

𝑣̂𝑤
(1 −

𝑥𝐶𝑙𝐸

𝑥̃𝑁𝑎𝐵
), 

and  𝑃𝐶𝑙 =
𝑅𝑇

𝑣̂𝑤
(1 −

𝑥𝑁𝑎𝐸

√𝑥𝑁𝑎𝐸𝑥𝐶𝑙𝐸
) =

𝑅𝑇

𝑣̂𝑤
(1 −

𝑥𝑁𝑎𝐸

𝑥̃𝑁𝑎𝐵
). 

(A.5) 
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Then, using Eq.(B.11) in Appendix B, we get: 

 

𝛿𝜋̃𝑜𝑠𝑚 = 𝑄𝑢div 𝛿𝒖 +∑ 𝑄𝑙𝑚̂𝑙𝛿𝜇𝑙𝐸
𝑒𝑐

𝑙𝜖𝐸𝑚𝑜
 , 

 

with  𝑄𝑢 = ∑ 𝑃𝑘
3

4𝑘𝜖𝐸𝑖𝑜𝑛𝑠
𝑦𝑃𝐺

𝑛𝐸
𝜉𝑘𝑥𝑘𝐸

𝑧𝐸
 , 

  𝑄𝑙 = ∑ 𝑃𝑘𝑘𝜖𝐸𝑖𝑜𝑛𝑠
𝑥𝑘𝐸

𝑅𝑇
𝑧𝑘𝑙, 

 𝑧𝑘𝑙  =  𝐼𝑘𝑙  − 𝜉𝑘𝜉𝑙 𝑥𝑙𝐸/𝑧𝐸    and   𝑧𝐸 = 𝑥𝑁𝑎𝐸 + 𝑥𝐶𝑙𝐸 . 

(A.6) 

 

As the system evolves towards the equilibrium, which occurs when the tissue is in balance with the (homogeneous) 

real bath (the fictitious bath then becomes the real bath), the electro-chemo-mechanical equilibrium conditions (Eq.(A.2), 

Eq.(A.3) and Eq.(A.4)) can also be used to obtain the equilibrium concentrations within the tissue and the osmotic 

pressure as a function of the known (real) bath composition xNaB = xClB = x*, as: 

 

𝑥𝑁𝑎𝐸 =
−𝑦𝑃𝐺

2
+
√𝑦𝑃𝐺

2 +4𝑥∗2

2
, 𝑥𝐶𝑙𝐸 =

𝑦𝑃𝐺

2
+
√𝑦𝑃𝐺

2 +4𝑥∗2

2
 , 

𝑥𝑤𝐸 = 1 −√𝑦𝑃𝐺
2 + 4𝑥∗2, 𝜋𝑜𝑠𝑚 =

𝑅𝑇

𝑣̂𝑤
(√𝑦𝑃𝐺

2 + 4𝑥∗2 − 2𝑥∗). 

(A.7) 

 

By approximating the total volume of the EF phase by the volume of the EF water (water is the most abundant constituent 

of the EF phase of the tissue) and replacing the molar fractions by molar concentrations  (xkE ≈ ckE𝑣𝑤), an approximated 

equation for the osmotic pressure can be obtained: 

 

𝜋𝑜𝑠𝑚 = 𝑅𝑇(√𝑒𝑃𝐺
2 + 4𝑐∗2 − 2𝑐∗), (A.8) 

 

where c* = cNaB = cClB is the ionic concentration of the bath. 

 

Appendix B. Algebraic manipulations 
In this Appendix some algebraic manipulations necessary to update the dependent variables and to obtain the element 

stiffness and diffusion matrices are provided. The constraints that must be obeyed by the molar fractions in the EF phase 

are: 

 

{
𝑥𝑤𝐸 + 𝑥𝑁𝑎𝐸 + 𝑥𝐶𝑙𝐸 + 𝑥𝑃𝐺 = 1
𝑥𝑁𝑎𝐸 − 𝑥𝐶𝑙𝐸 + 𝑦𝑃𝐺 = 0,

 (B.1) 

 

where the PGs molar fraction xPG is considered to be approximately zero. Nevertheless, the quantity yPG = PG xPG can 

not be neglected, since, despite the fact that xPG is a very small number, the PGs valence PG is a very large number and, 

thus, yPG is a significant quantity. 

The volume content of the EF phase vE is given by vE = VE/V0, and the variation of the volume content is vE = VE/V0. 

The volume of the EF phase is given by VE = kϵE VkE, which can be approximated by the volume of water in the EF 

phase VwE, since water is the most abundant component in this phase. The same is true for the IF phase: vI = VI/V0 ≈ 

VwI/V0, and vI = VI/V0. The solid phase is considered to be incompressible and thus variations of the total volume are 

only due to variations of the volume of the fluid phases due to exchanges of mass with the surrounding bath. In this way 

the following expression can be written: 

 

𝛿𝑣𝐸 +  𝛿𝑣𝐼 =
𝛿𝑉𝐸
𝑉0

+
𝛿𝑉𝐼
𝑉0

≈
𝛿𝑉𝑤𝐸
𝑉0

+
𝛿𝑉𝑤𝐼
𝑉0

 (B.2) 
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=
𝛿𝑉𝑤
𝑉0

=
𝛿𝑉

𝑉0
= 𝛿 (

𝑉

𝑉0
) = 𝛿(det 𝑭) = det𝑭 div 𝒗𝑆δt ≈ div 𝛿𝒖 

 

Moreover, as previously mentioned, it is also defined that the variation of the volume of water in the IF and EF phases 

are always equal to, respectively 25% and 75% of the total variation of the volume of water:  VwI = 0.25 Vw and VwE 

= 0.75 Vw. In this way, the variation of the EF volume content is: 

 

𝛿𝑣𝐸 =
3

4

𝛿𝑉𝑤
𝑉0

=
3

4
 div 𝛿𝒖. (B.3) 

 

The volume fraction of the EF phase is given by nE = VE/V = (kϵE VkE)/V ≈ VwE/V, and the respective variation may be 

written as: 

 

𝛿𝑛𝐸 =
𝛿𝑉𝑤𝐸
𝑉

−
𝑉𝑤𝐸
𝑉2

𝛿𝑉 =
𝛿𝑉𝑤𝐸
𝑉0

𝑉0
𝑉
− 𝑛𝐸

𝛿𝑉

𝑉0

𝑉0
𝑉
≈
𝛿𝑉𝐸
𝑉0

− 𝑛𝐸 (
𝛿𝑉𝐸
𝑉0

+
𝛿𝑉𝐼
𝑉0
) = (

3

4
− 𝑛𝐸) div 𝛿𝒖. (B.4) 

 

The variation of the PG effective molar fraction yPG can be obtained considering that yPG = PG xPG ≈PG NPG/nE 𝑣𝑤/V, 

 

𝛿𝑦𝑃𝐺 = 𝜉𝑃𝐺𝛿𝑥𝑃𝐺 ≈ −𝜉𝑃𝐺
𝑁𝑃𝐺
(𝑛𝐸)2

𝑣𝑤
𝑉
𝛿𝑛𝐸 − 𝜉𝑃𝐺

𝑁𝑃𝐺
𝑛𝐸

𝑣𝑤
𝑉2
𝛿𝑉 ≈ −𝑦𝑃𝐺 (

𝛿𝑛𝐸

𝑛𝐸
+
𝛿𝑉

𝑉
) ≈ −

3

4

𝑦𝑃𝐺
𝑛𝐸

div 𝛿𝒖. (B.5) 

 

The molar fractions of the species can be defined as a function of the volume contents vkE: 

 

𝑥𝑘𝐸 ≈
𝑁𝑘𝐸
𝑛𝐸

𝑣𝑤
𝑉
=
𝑉𝑘𝐸
𝑣𝑘𝑛

𝐸

𝑣𝑤
𝑉
=
𝑣𝑤
𝑣𝑘

𝑣𝑘𝐸

𝑛𝐸
𝑉0
𝑉

 (B.6) 

 

and therefore, since mkE = k v
kE, 

 

𝛿𝑚𝑘𝐸

𝑚𝑘𝐸
= 𝜌𝑘

𝛿𝑣𝑘𝐸

𝑚𝑘𝐸
=
𝛿𝑣𝑘𝐸

𝑣𝑘𝐸
≈
𝛿𝑥𝑘𝐸
𝑥𝑘𝐸

+
3

4𝑛𝐸
div 𝛿𝒖,     𝑘 ∈ 𝐸𝑚𝑜. (B.7) 

 

Using the definition of the electro-chemical potentials 𝜇𝑘𝐸
𝑒𝑐  = 𝑔𝑘𝐸

𝑒𝑐 /𝑚̂𝑘 and the constraints imposed to the molar 

fractions Eq.(B.1), the variation of the EF electrical potential can be obtained: 

 

𝑦𝑃𝐺𝐹𝛿𝜙
𝐸 = 𝑥𝑤𝐸𝑣𝑤𝛿𝑝𝐸 −∑ 𝑥𝑙𝐸𝑚̂𝑙𝛿𝜇𝑙𝐸

𝑒𝑐

𝑙𝜖𝐸𝑚𝑜
. (B.8) 

 

The variation of the molar fractions of the ionic species may be also computed substituting Eq.(B.8) in the variation 

of the corresponding electro-chemical potentials as 

 

𝛿𝑥𝑘𝐸 =
𝑚̂𝑘

𝑅𝑇
𝑥𝑘𝐸 (𝛿𝜇𝑘𝐸

𝑒𝑐 −
𝜉𝑘𝑥𝑤𝐸𝑣𝑤
𝑚̂𝑘𝑦𝑃𝐺

δ𝑝𝐸 +
𝜉𝑘

𝑚̂𝑘𝑦𝑃𝐺
∑ 𝑥𝑙𝐸𝑚̂𝑙𝛿𝜇𝑙𝐸

𝑒𝑐

𝑙𝜖𝐸𝑚𝑜
) 

= −
𝜉𝑘
𝑅𝑇

𝑥𝑘𝐸
𝑦𝑃𝐺

𝑥𝑤𝐸𝑣̂𝑤δ𝑝𝐸 +
𝑥𝑘𝐸
𝑅𝑇

(𝑚̂𝑘𝛿𝜇𝑘𝐸
𝑒𝑐 +

𝜉𝑘
𝑦𝑃𝐺

∑ 𝑥𝑙𝐸𝑚̂𝑙𝛿𝜇𝑙𝐸
𝑒𝑐)

𝑙𝜖𝐸𝑚𝑜
, 𝑘 ∈ 𝐸𝑖𝑜𝑛𝑠. 

(B.9) 

 

Resorting once again to the electroneutrality condition (kϵEmo k xkE) + yPG = 0, and using Eq.(B.5) and Eq.(B.9), 

the EF pressure may be defined as a function of the primary variables: 
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𝑧𝐸𝑥𝑤𝐸𝑣̂𝑤𝛿𝑝𝐸 = −
3𝑦𝑃𝐺

2

4𝑛𝐸
𝑅𝑇 div 𝛿𝒖 + 𝑧𝐸∑ 𝑧𝑙𝐸𝑥𝑙𝐸𝑚̂𝑙𝛿𝜇𝑙𝐸

𝑒𝑐

𝑙𝜖𝐸𝑚𝑜
 , (B.10) 

 

where zE = xNaE + xClE and zlE = 1 + l yPG/zE. 

Further manipulations may be performed in order to obtain the variations of the molar fractions of the ionic species 

as a function of the primary unknowns: 

 

𝛿𝑥𝑘𝐸 =
3𝑦𝑃𝐺𝜉𝑘𝑥𝑘𝐸
4𝑛𝐸𝑧𝐸

div 𝛿𝒖 +
𝑥𝑘𝐸
𝑅𝑇

∑ 𝑧𝑘𝑙𝐸𝑚̂𝑙𝛿𝜇𝑙𝐸
𝑒𝑐

𝑙𝜖𝐸𝑖𝑜𝑛𝑠
,     𝑘 ∈ 𝐸𝑖𝑜𝑛𝑠, (B.11) 

 

where zklE = Ikl  k l xlE zE and I, with components Ikl, is the identity matrix. The incremental fictitious osmotic pressure 

may also be defined, replacing Eq.(B.11) in Eq.(A.5). 

Using Eq.(B.7) and Eq.(B.11), the mass content variations may also be defined as a function of the variations of the 

primary variables: 

 

𝛿𝑚𝑘𝐸 =
3

4

𝑚𝑘𝐸

𝑛𝐸
𝑧𝑘𝐸  div 𝛿𝒖 +

𝑚𝑘𝐸

𝑅𝑇
∑ 𝑧𝑘𝑙𝐸𝑚̂𝑙𝛿𝜇𝑙𝐸

𝑒𝑐

𝑙𝜖𝐸𝑖𝑜𝑛𝑠
,     𝑘 ∈ 𝐸𝑖𝑜𝑛𝑠, (B.12) 

 

from which the derivative of the volume contents of the ionic species in order of time, dvkE/dt, used in Eq.(34), may be 

obtained: 

 

d𝑣𝑘𝐸

d𝑡
=
𝑣𝑘𝐸

𝑚𝑘𝐸

d𝑚𝑘𝐸

d𝑡
=
3

4

𝑣𝑘𝐸𝑧𝑘𝐸
𝑛𝐸

 div (
d𝒖

d𝑡
) +

𝑣𝑘𝐸

𝑅𝑇
∑ 𝑧𝑘𝑙𝐸𝑚̂𝑙 (

d𝜇𝑙𝐸
𝑒𝑐

d𝑡
)

𝑙𝜖𝐸𝑖𝑜𝑛𝑠
, 𝑘 ∈ 𝐸𝑖𝑜𝑛𝑠. (B.13) 

 

The stress increment can also be computed, using the mechanical constitutive equation Eq.(21), as well as Eq.(B.10) 

and Eq.(A.6): 

 

𝛿𝝈 = − 𝛿𝑝𝐸𝑰 − 𝛼𝑝 𝛿𝜋̃𝑜𝑠𝑚𝑰 + (1 + 𝛼𝑤  𝜋̃𝑜𝑠𝑚)E: δ𝑬 + 𝛼𝑤  𝛿𝜋̃𝑜𝑠𝑚E: 𝑬. (B.14) 

 
Defining 

 

𝛿𝑝𝐸 = −𝑅𝑢div 𝛿𝒖 −∑ 𝑅𝑙𝑚̂𝑙𝛿𝜇𝑙𝐸
𝑒𝑐

𝑙𝜖𝐸𝑚𝑜
 

with  𝑅𝑢 =
3𝑅𝑇𝑦𝑃𝐺

2

4𝑛𝐸𝑧𝐸𝑥𝑤𝐸𝑣̂𝑤
, 

and  𝑅𝑙 = −
𝑧𝑙𝐸𝑥𝑙𝐸

𝑥𝑤𝐸𝑣̂𝑤
, 

(B.15) 

 

Eq.(B.14) gets the form 

 

𝛿𝝈 = [(1 + 𝛼𝑤𝜋̃𝑜𝑠𝑚)E+ [(𝑅𝑢 − 𝛼𝑝𝑄𝑢)𝑰 + 𝛼𝑤𝑄𝑢E: 𝑬]⨂𝑰]div 𝛿𝒖

+∑ [(𝑅𝑙 − 𝛼𝑝𝑄𝑙)𝑰 + 𝛼𝑤𝑄𝑙E: 𝑬]𝑚̂𝑙𝛿𝜇𝑙𝐸
𝑒𝑐 .

𝑙∈𝐸𝑚𝑜

 (B.16) 

 

In the case of a uniaxial deformation , Eq.(B.16) becomes: 

 

𝛿𝜎 = [(1 + 𝛼𝑤𝜋̃𝑜𝑠𝑚)𝐸𝑠𝑎𝑡 + [(𝑅𝑢 − 𝛼𝑝𝑄𝑢) + 𝛼𝑤𝑄𝑢𝐸𝑠𝑎𝑡𝜀]]
d(𝛿𝑢)

d𝑥

+∑ [(𝑅𝑙 − 𝛼𝑝𝑄𝑙) + 𝛼𝑤𝑄𝑙𝐸𝑠𝑎𝑡𝜀]𝑚̂𝑙𝛿𝜇𝑙𝐸
𝑒𝑐 .

𝑙∈𝐸𝑚𝑜

 (B.17) 
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Abstract 
In the present work, the finite element formulation and program presented in part I of this paper, 

are used to numerically simulate the response of an articular cartilage sample to a combination 

of chemical and mechanical actions. In the simulations, a sample of articular cartilage, laterally 

confined, is immersed in a bath of variable chemical composition always assuming the existence 

of electro-chemical equilibrium at the tissue-bath interface. Nonetheless, inside the tissue, the 

equilibrium is not attained instantaneously. In fact, the time needed to establish a steady state 

depends on the problem geometry and on some material properties, namely the percolation and 

diffusion times associated with Darcy's and Fick's laws, respectively. A good agreement is 

obtained between the results of the present model and previous experimental data in the case of 

a homogeneous bath. As another new feature of the model, results are also obtained when the 

tissue is immersed in a bath which allows each of the sample extremities to experience distinct 

variations of the chemical composition, which gives a closer insight to the tissue's behavior under 

a more diverse environment.  
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1. Introduction 
In this work, a finite element program, whose formulation is based on the model described in part I of this paper, is 

used to numerically simulate the response of an articular cartilage sample to a combination of chemical and mechanical 

actions. The finite element formulation follows the framework of the model by Loix et al. [1] accounting for the presence 

of one solid phase and two water compartments (extrafibrillar – EF and intrafibrillar – IF phases). However, as new 

features of the present formulation: 1) it uses the electro-chemo-mechanical constitutive law defined in [2] and 2) the 

contribution of the IF phase is considered in a simplified way, not requiring the definition of IF material parameters and 

functions.  

In the simulations, a sample of articular cartilage, laterally confined, is immersed in a bath of variable chemical 

composition always assuming the existence of electro-chemical equilibrium at the tissue-bath interface. The 

corresponding chemo-mechanical parameters are obtained from the experimental tests by Eisenberg and Grodzinsky [3] 

and a good agreement is obtained between the simulated and experimental results. In particular, the shielding effect 

observed in the experimental results is very well reproduced by the model, which is something that other existing articular 

cartilage chemo-mechanical models (e.g. [4]) and existing finite element software packages based on those models (like 

FEBio [5]) are not able to replicate since they assume a constant stiffness for the tissue. 

As another new feature of the present formulation, 3) numerical results are also obtained when the tissue is immersed 

in a bath which allows each of the sample extremities to experience distinct variations of the chemical composition. This 

simulation gives a closer insight to the tissue’s behavior under a more diverse environment which is something that other 

existing models are also not able to provide. 

 

2. Parameter identification 
The definition of proper values for the material parameters is conducted by adjusting the mechanical model to actual 

experimental results obtained by Eisenberg and Grodzinsky [3]. In that work, an extraction of a cylindrical graft of bovine 

https://publicacoes.isep.ipp.pt/jcaimb
https://zenodo.org/
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articular cartilage and bone was performed, followed by several cuts, obtaining a final sample of cartilage from the 

middle zone with 6.4 mm of diameter and 600 m of thickness. Posterior confined compression tests were conducted. 

 
Table 1 - Chemical constants. 

Species, k Molar volume, 𝑣̂𝑘 (m3 mol1) Molar mass, 𝑚̂𝑘 (kg mol1) Valence k 

w 18×106 0.018 0 

Na 2.37×106 0.023 +1 

Cl 15.42×106 0.0355 1 

PG - 2000 4500 [2] 

 

The initial volume of the tissue sample described above is V0 = 0.0193×106 m3. Supposing that, initially, 80% of the 

total volume of the articular tissue is water, the initial total volume of water in the sample may be obtained: 𝑉𝑤
0 = 0.8 V0. 

However, as mentioned in section 1 of the companion paper, part of the water is contained in the IF space and the 

remaining in the EF space, being the percentage of water, with respect to the total amount, in the IF and EF phases, 25% 

and 75%, respectively. In this way, the initial EF water volume is 𝑉𝑤𝐸
0  = 1.1580×108 m3 and the respective number of 

moles, considering the water density and the water molar mass (Table 1), is 𝑁𝑤𝐸
0  = 6.4333×104 mol. Regarding the PGs, 

their mass percentage from the total tissue's mass is considered to be 5%, thus resulting in a number of moles NPG = 

5.3075×1010 mol and in a volume VPG = 5.8913×1010 m3, considering the PGs' molar mass shown in Table 1 and a 

tissue density equal to 1.1 g/cm3. Since PG molecules are not able to leave the EF space, PGs' mass remains constant. 

The bath concentration is initially set to 1000 mol/m3 = 1 M (practically near to saturation), with its pressure and 

electrical potential being set to zero (reference values). In a situation of equilibrium between the bath and the tissue, the 

electro-chemical potentials of the water and ions inside and outside the tissue are equal. In this way, the initial number 

of moles of the ionic species in the EF phase is 𝑁𝑁𝑎𝐸
0  = 1.28381×105 mol and 𝑁𝐶𝑙𝐸

0  = 1.04497×105 mol, from which the 

initial molar fraction of the PGs is obtained: 𝑥𝑃𝐺
0  = 𝑁𝑃𝐺/(𝑁𝑤𝐸

0  + 𝑁𝑁𝑎𝐸
0   + 𝑁𝐶𝑙𝐸

0  + NPG) =  7.9618×107. Moreover, 

considering that the initial total volume of the EF phase is given by the contributions of the initial volume of all its 

constituents (water, ions and PGs), its value is 𝑉𝐸
0 = 1.2361×108 m3. Taking into account the valence of the PG molecule 

(see Table 1), the initial value of the FCD is obtained: 𝑒𝑃𝐺
0  = PG 𝑐𝑃𝐺

0  =  193 moles of charge/(m3 of extrafibrillar water), 

or, equivalently, 𝑒𝑃𝐺
0  =  0.1125 mEq of charge/(g of wet tissue), which is within the values of the FCD reported by 

Maroudas [6]. 

In a state of equilibrium between the tissue and the surrounding medium, the fictitious bath coincides to the real bath, 

and thus 𝜋̃𝑜𝑠𝑚 = osm and 𝑝̃𝐵 = pB. Taking additionally the pressure of the real bath as a reference value (formally taking 

pB = 0), we obtain: pE = osm, and the constitutive equation Eq.(21) in the companion paper, under a uniaxial strain state, 

becomes: 

 

𝜎 = −𝑝𝐸(1 + 𝛼𝑝) + (1 + 𝛼𝑤𝑝𝐸)𝐸𝑠𝑎𝑡𝜀 (1) 

 

where the constitutive tensor E is represented, in a one-dimensional strain state, only by the material parameter Esat and 

pE is given by Eq.(A.8) in the companion paper: 

 

𝑝𝐸 = 𝑅𝑇 (√𝑒𝑃𝐺
2 + 4𝑐∗ − 2𝑐∗) (2) 

 

where ePG = PG cPG is the tissue FCD and c* = cNaB = cClB is the ionic concentration of the bath. In this way, three 

mechanical parameters have to be defined: p, w and Esat, the latter being the confined compression modulus at the 

tissue's saturation state. 

The adjustment of the model to the experimental points is performed in two different stages, considering in all cases 

that the system is under equilibrium: 

1. The first stage is performed under a no deformation condition, in which the bath composition is changed, 

decreasing the concentration from the initial value (chosen to be 1000 mol/m3) to a given final target concentration; 

2.  During the second stage, a negative deformation is imposed under a fixed concentration of salt in the bath. 

Temperature is considered to be equal to 298 K and pH is considered to be neutral. 
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Assuming that the collagen fibers (solid phase) and the PG molecules are incompressible, as the contractive uniaxial 

deformation ( < 0) is applied, the volume of the EF phase and the FCD value are gradually updated as: 

 

𝑉𝐸 = 𝑉𝐸
0 + ε 𝑉0, (3) 

    

and 

 

𝑒𝑃𝐺 = 𝜉𝑃𝐺𝑁𝑃𝐺/𝑉𝐸 . (4) 

 

After updating ePG using Eq.(4), the water pressure and the corresponding stress are obtained from Eq.(2) and Eq. (1), 

respectively. 

During stage 1, the variation of the salt concentration in the bath, considering a zero deformation, allows to obtain the 

first mechanical parameter in the mechanical model, p, since, during this stage, the stress is only governed by  =  pE 

(1 + p). Thus, from the initial hypertonic state, the bath concentration is decreased until the target concentration is 

reached. During this decrease of the bath concentration, a successive increase in the absolute value of the stress, due to 

the increase of the water pressure, is observed. This trend results from the flow of water towards the inside of the tissue. 

The lower the final concentration is, the higher is the water pressure, and consequently, the higher is the compressive 

stress. The value of p that most accurately approximates the model to the experimental results is p =  0.95. 

During stage 2, under a constant bath concentration c*, a negative deformation is applied. With the p parameter 

already defined, the remaining mechanical parameters, w and Esat, that determine, for each salt concentration in the bath, 

the slope of the corresponding stress-strain curve, are obtained. When the salt concentration in the bath is very large, 

there is a tendency of ionic species to move towards the inside of the tissue, increasing the shielding effect and decreasing 

the repulsive forces and the compressive stiffness of the tissue. Thus, for the same strain but different bath concentration, 

a higher compressive stress is observed when the outer concentration is lower, since the repulsive forces are less shielded 

and the compressive stiffness of the tissue is higher. Moreover, as the contractive strain increases, while maintaining the 

same chemical conditions, the proteoglycans get closer to each other, increasing the inter repulsive forces.  All these 

aspects are well reproduced by the model, as it may be seen in Fig.1. The curves obtained in Fig.1 are adjusted in order 

to fit the experimental data [3] and the values of w and Esat that minimize the error for all the curves are 5.4×106 Pa1 

and 250 kPa, respectively. 

In order to complete the material constants of the model, the values used for the transport parameters required for the 

computation of the generalized diffusion matrix components to be used in the finite element simulations, which are 

retrieved from [1], are presented in Table 2. 

 
Table 2 - Transport parameters. 

Hydraulic conductivity Kh Sodium diffusion  

coefficient DNaE 

Chloride diffusion 

coefficient DClE 
Tortuosity  

9.8×10-12 m/s 13.3×1010 m2/s 20.3×1010 m2/s 0.4 

 

3. Finite element simulations 
3.1. Initial state and simulation framework 

The sample of cartilage considered in section 2 is also considered in the finite element simulations performed in this 

section. The bath concentration is again initially set to 1000 mol/m3 = 1 M, with its pressure and electrical potential being 

set to zero (reference values). The tissue sample is also considered to be initially at zero deformation (see Fig.2). Imposing 

electro-chemical equilibrium between the initial bath and the tissue, all the initial quantities are obtained and their values 

are summarized in Table 3. 

 
Table 3 - Initial values 

V0 = 0.0193×106 m3 𝑉𝑤
0 = 1.544×108 m3 𝑝𝐸

0= 2.6413×104 Pa 𝜙𝑤
0  =  2.64283×103 V 

VPG = 5.8913×1010 m3 𝑉𝑤𝐸
0  = 1.1580×108 m3 𝑉𝑁𝑎𝐸

0 = 3.0426×1011 m3 𝑉𝐶𝑙𝐸
0 = 1.6113×1010 m3 

NPG = 5.3075×1010 mol 𝑁𝑤𝐸
0 = 6.4333×104 mol 𝑁𝑁𝑎𝐸

0 = 1.28381×105 mol 𝑁𝐶𝑙𝐸
0  = 1.04497 ×105 mol 

𝑥𝑃𝐺
0  = 7.9618×107 𝑥𝑤𝐸

0 = 0.9651 𝑥𝑁𝑎𝐸
0  = 0.0193 𝑥𝐶𝑙𝐸

0  = 0.0157 
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From this initial state, alterations are imposed either through changes in the bath concentration (chemical loading) or 

through the imposition of uniaxial (confined) deformation in the tissue (mechanical loading). During chemical loading, 

rates of change of the electro-chemical potentials are imposed at the nodes of the extremities of the tissue sample 

corresponding to constant rate of change of the number of moles of salt in the bath. During mechanical loading, constant 

rates of displacement are imposed at the nodes of the extremities of the tissue sample. 

 

  
Fig.1 - Experimental points (symbols) by Eisenberg and Grodzinsky [3] and stress-strain curves obtained by the mechanical constitutive model 

proposed, while changing the contractive deformation, from zero to a given final strain value, under different bath concentrations c* from 5 to 

1000 mol/m3, with p =  0.95, w = 5.4×106 Pa1 and Esat = 250 kPa in Eq.(1). 

 

 
Fig.2 - A cylindrical tissue sample, with 0.6 mm thickness, is immersed in a bath which is initially homogeneous in both its mechanical 

properties and chemical composition (concentration A). The specimen is in contact with the bath along the upper and lower surfaces. 

 

The main simulations performed in this work involve four distinct stages, with changes in both the chemical 

composition of the bath and in the deformation of the tissue (see Fig.2): 

1. Stage 1: in the first stage, the bath concentration is decreased from the initial value (1 M NaCl) to a given final 

target concentration, under zero deformation, in a given time interval t1; 

2. Stage 2: during a time interval t2, the system is left at rest, so that a new state of equilibrium is reached; 

3. Stage 3: in the third stage, under a constant bath solution, a contractive uniaxial strain is imposed in a time interval 

t3; 

4. Stage 4: during a time interval t4, the system is again left at rest in order for a new equilibrium to be reached. 

The four-stage simulation described above is in part similar to the one conducted in section 2, to obtain the values of 

the material parameters of the mechanical model. However, in those simulations, long term equilibrium was assumed in 

all points while, in this simulation, the time variable is included, which allows to study the evolution in time and space 

of several variables defined within the sample under the combined action of chemical and mechanical "loads", with the 

equilibrium state being reached during the simulation in the two extra stages 2 and 4. 
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For the study of the influence of mesh size and time step on the convergence of the method, simulations are conducted 

with meshes comprising different number of finite elements and different time steps. The corresponding results are 

described in detail in Appendix A. From these results, it is concluded that the number of elements and the time step that 

allow a satisfactory convergence of the results, without increasing excessively the computational effort, are respectively 

equal to 50 elements and 0.1 s. 

 

3.2. Homogeneous bath simulation 

In this section, a simulation is conducted (see Fig.2) where, during the first stage, the homogeneous bath concentration 

is decreased at a constant rate from the initial value of 1000 mol/m3 to a value of 150 mol/m3 during 1000 s, under no 

variation of thickness, followed by a 50 minutes equilibrium stage. In the third stage, a negative 20% deformation is 

applied during 1000 s, followed by another 50 minutes equilibrium stage. 

As the bath concentration decreases during stage 1, an outflow of ions is observed. Therefore, there is a consequent 

decrease of the sodium and chloride mass contents, mNaE and mClE, throughout the tissue thickness, as pictured in Fig.3. 

Nevertheless, it may be seen that such decrease does not occur in a uniform manner over the thickness of the sample, 

with the impact of the decrease of the bath concentration being first felt in the extremities of the tissue (in contact with 

the bath), with the posterior progression towards inside the sample. 

 

  
(a) (b) 

Fig.3 - Time evolution of the spatial distribution, along the tissue thickness, of the sodium (a) and chloride (b) ionic mass contents, mNaE and 

mClE, during stages 1 and 2. The ionic content decreases due to a decrease of the ionic concentration of the bath. The last three curves are 

practically superimposed which means that steady state is practically reached at t = 2000 s. The same type of behavior can be observed next in 

Fig.4 to Fig.6. 

 

Since the total volume during the first two stages of the simulation is the same as the initial one, and recalling that the 

solid phase is incompressible, the volume of the EF fluid phase must also remain constant. In this way, with the loss of 

ions in the EF phase, the water mass content, mwE, increases at the end of the second stage, with its profile along the tissue 

thickness following the trend of the tissue local deformation (see Fig.4). Since in the first 4000 s of the simulation no 

total deformation is imposed, it may be seen in Fig.4(b) that, at any time, the overall mean strain is zero. However, the 

local deformation along the thickness of the tissue is not null before steady state is reached. In fact, as the salt 

concentration decreases in the bath, water enters the specimen from the top and bottom boundaries which consequently 

expand, while the constraint imposed in the total deformation implies the inverse trend in the middle of the specimen. 

Overall, integrating the local deformation, the total thickness of the tissue remains constant at any time (see Fig.11). 

Fig.5 shows the evolution of the effective PG molar fraction yPG, which is related to the FCD, ePG, by  

yPG ≈ PG cPG 𝑣𝑤 = ePG 𝑣𝑤. The values of yPG vary between 3.5/3.6×10-3, which corresponds to a FCD value ePG ≈ 190 

moles of charge/m3, within the range of values of FCD referred by Maroudas [6]. 

The EF water pressure, pE, presents an increase at the end of stage 2 (see Fig.6(a)), being this a consequence of the 

increase of the water mass content in the EF phase without variation of the volume of the tissue. 

The EF electrical potential, E, is initially practically zero and by the end of the second stage, with the migration of 

ions towards outside the tissue, it becomes more negative (see Fig.6(b)). In fact, during the refreshment of the bath, the 

ionic concentrations decrease, both in the bath and in the cartilage, but the change is lower in the cartilage and this implies 

a decrease of the EF electrical potential. 



Journal of Computation and Artificial Intelligence in Mechanics and Biomechanics  Mariana Bento et al. 

 

 

22 

 

  
(a) (b) 

Fig.4 - Time evolution of the spatial distribution, along the tissue thickness, of the water mass content mwE (a) and of the local tissue 

deformation  (b), during stages 1 and 2. At time t = 0 s, the deformation is homogeneously equal to zero. The last three curves are practically 

superimposed which means that steady state, with zero deformation, is also practically reached at t = 2000 s. Before steady state is reached, 

the deformation is positive (extension) in the vicinity of the boundaries and negative (contraction) in the center of the specimen; the total 

thickness of the tissue remains constant at any time, though. 

 

 
Fig.5 - Time evolution of the spatial distribution, along the tissue thickness, of the proteoglycan effective molar fraction yPG, during stages 1 

and 2. The first and the last three curves are practically superimposed, that is, the steady state proteoglycan effective molar fraction is 

practically equal to the initial value because the initial and steady state water mass contents are very close since the total deformation of the 

tissue is zero. 

 

In stages 3 and 4, no alterations are imposed in the chemical composition of the bath surrounding the tissue. Thus, 

changes perceived in the chemical variables are a consequence of the applied deformation. In Fig.7, lower ionic mass 

contents are observed at the end of the simulation, although such decrease is not as significant as during the first two 

stages. When applying the contractive deformation, water and dissolved ions are expelled from the tissue. Thus, a 

decrease in the water mass content is also observed in Fig.8(a), with the consequent decrease of the tissue volume. Once 

again, the trend of the water mass content curves follows the trend of the deformation profiles (Fig.8(b)). At first, since 

the imposition of the displacement occurs at the extremities of the tissue, these are the points that experience a larger 

deformation. As the system evolves towards a new equilibrium, the deformation progresses to the inner points, until a 

homogeneous deformation is verified along the tissue thickness (see Fig.8(b)). 

In contrast to what is verified during the change of the bath chemistry, after the application of the deformation an 

increase in the negative value of yPG at the end of stage 4 is observed. Due to the decrease in the EF water volume, the 

PGs concentration is higher and so yPG and the FCD have higher absolute values (see Fig.9). 

When the negative deformation is applied, a higher EF water pressure pE is observed. Moreover, with the exit of more 

ions, the EF electrical potential decreases once again, as one may verify in Fig.10. 
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(a) (b) 

Fig.6 - Time evolution of the spatial distribution, along the tissue thickness, of the EF water pressure pE (a) and of the EF electrical potential 

E (b), during stages 1 and 2. The increase of water pressure starts at the boundaries through which water infiltrates. 

 

  

(a) (b) 
Fig.7 - Time evolution of the spatial distribution, along the tissue thickness, of the sodium (a) and chloride (b) ionic mass contents, mNaE and 

mClE, during stages 3 and 4. The ionic content decreases due to the imposed contractive deformation. The last three curves are practically 

superimposed which means that steady state is practically reached at t = 6000 s. The same type of behavior can be observed next in Fig.8 to 

Fig.10. 

 

  
(a) (b) 

Fig.8 - Time evolution of the spatial distribution, along the tissue thickness, of the water mass content mwE (a) and of the local tissue 

deformation  (b), during stages 3 and 4. The upward motion of the lower boundary and downward motion of the upper boundary are reflected 

first close to the vicinity of these boundaries, leading to an initial quicker decrease of mass content in these zones. 
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Fig.9 - Time evolution of the spatial distribution, along the tissue thickness, of the proteoglycan effective molar fraction yPG, during stages 3 

and 4. The significative increase in the absolute value of the proteoglycan effective molar fraction is due to the observed strong decrease of 

the water mass content. 

 

  
(a) (b) 

Fig.10 - Time evolution of the spatial distribution, along the tissue thickness, of the EF water pressure pE (a)  and of the EF electrical potential 

E (b), during stages 3 and 4. 

 

The time evolution of the uniform axial stress (Fig.11(a)) shows, during the change of the bath composition (stage 1), 

a slight increase due to the increase of the water mass content and of the EF water pressure. Once the compression starts 

at stage 3, with the chemical environment kept constant, the stress suffers a significant increase in absolute value. 

In Fig.11(b), it may be observed that the tissue thickness does not change during the first two stages and it decreases, 

according to the imposed deformation, during the third stage. 

Alterations in the period of time during which the bath concentration is changed (stage 1) introduce modifications in 

the response of the tissue. By making faster the decrease of the ionic content of the bath (t1 = 100 s), the stimulus felt by 

the tissue is more abrupt, which is reflected in the presence of a more distinct overshoot in the stress underwent by the 

tissue during stage 1 (see Fig.12(a)). On the contrary, if the alteration in the concentration of ions in the bath is made 

slower (t1 = 5000 s), the tissue has more time to adapt to the imposed changes, and the overshoot is almost completely 

absent (see Fig.12(b)). 

The hydraulic conductivity (Kh) is a characteristic property of porous tissues which describes the ease of a fluid to 

flow through the pores (percolation), thus being an indicator of the permeability of the porous medium. This property 

depends on the medium by itself (i.e. pore size, pore distribution and connectivity) but also on the properties of the fluid 

(e.g. density and viscosity) [7]. The higher its value, the higher the permeability is. In order to quantify the influence of 

the hydraulic conductivity in the behavior of the tissue, its value is changed from the base value 9.8×10-12 m/s (see Table 

2) to higher (9.8×1011 m/s) and lower (9.8×1013 m/s) values.  
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(a) (b) 

Fig.11 - Time evolution of the axial stress in the tissue (a) and of the tissue thickness (b), during the four-stage simulation. After each of the 

stages involving external chemical (stage 1) and mechanical (stage 3) changes, the stress reaches equilibrium during stages 2 and 4. 

 

  
(a) (b) 

Fig.12 - Time evolution of the axial stress underwent by the tissue, considering, for stage 1, a duration of 100 s (a) and 5000 s (b), during the 

four-stage simulation. After each of the stages involving external chemical (stage 1) and mechanical (stage 3) changes, the stress reaches 

equilibrium during stages 2 and 4. 

 

As Kh is assigned with successive lower values, water does not flow through the tissue so easily, which means that a 

higher compressive stress is required to impose the same contractive deformation. This behavior can be verified 

analyzing the evolution of the stress over time presented in Fig.13(a). On the contrary, when the permeability increases 

(Fig.13(b)) equilibrium at stage 4 is attained very quickly with almost no overshoot. During the change of the bath 

composition, differences among the distinct permeability values are not as evident as during the imposition of the 

deformation. Nevertheless, at the end of the first stage a lower compressive stress is obtained for the lower Kh value, 

which may be explained due to the fact that water does not flow towards inside the tissue as easily leading to a lower EF 

water pressure and consequently to a lower compressive stress. Regardless the hydraulic conductivity, at the end of the 

second and fourth equilibrium stages the final stresses are the same. It should be mentioned that the rapid changes 

observed in Fig.12(a) and Fig.13(b) have been cross-checked by reducing the time step. 

One additional note that should be considered is that the hydraulic conductivity and, consequently, the permeability, 

depends on the strain applied to the tissue, meaning that under higher deformation states the size of the pores is reduced 

and the fluid flow becomes more difficult (reduced permeability). In this way, although considered constant in this work, 
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the hydraulic permeability could have been defined in a way that would depend on the available pore volume for the 

movement of the fluid inside the tissue. Such dependence was taken into account in [1], based on the Kozeny-Carman 

equation. 

 

 
 

(a) (b) 

Fig.13 - Time evolution of the axial stress underwent by the tissue, considering a hydraulic conductivity, Kh, equal to 9.8×1013 m/s (a) and 

equal to 9.8×1011 m/s (b), during the four-stage simulation. After each of the stages involving external chemical (stage 1) and mechanical 

(stage 3) changes, the stress reaches equilibrium during stages 2 and 4. 

 

The reach of the new equilibrium state after each of the chemical or mechanical changes is not accomplished 

instantaneously as it is highlighted in each and every one of the figures mentioned above. Instead, the tissue response 

undergoes a transient period. Such transient time is related with several material properties such as the percolation time 

related to Darcy's law and the diffusion time related to Fick's law. In the case of absence of electro-chemo-mechanical 

couplings, the characteristic times of the ionic diffusion and water seepage are given by 𝜏𝑘
𝐹𝑖𝑐𝑘 = 1/(42) L2/𝐷𝑘𝐸

∗  and 
 Darcy

 

= 1/(42) L2/(Ee kEE), respectively, with 𝐷𝑘𝐸
∗  =  DkE,  the tortuosity factor, L the distance traveled by ions and water, Ee 

the confined compression modulus and kEE the "short-circuit" permeability. 

Analyzing the figures related to the evolution of stress during the stages where the equilibrium is reached (2 and 4), 

it is possible to retrieve that the equilibrium is attained faster in stage 4 than in stage 2. In Fig.11, the times required to 

reach the plateau, in stages 2 and 4, are 474 s and 203 s, respectively. This trend is in agreement with the individual times 

of diffusion and percolation, which, in the present case, are: 𝜏𝑁𝑎
𝐹𝑖𝑐𝑘 = 4.285 s and 

 Darcy
 = 3.5658 s. Since, in the second 

stage, the system evolution mainly depends on diffusion as a response to the bath chemical alteration, while in the fourth 

stage the evolution mainly depends on the water flow as a response to the applied deformation, the faster achievement 

of equilibrium during stage 4 is plausible. However, the characteristic times here presented do not account for the coupled 

interactions from which the tissue response depends. Of course, the time necessary to reach the equilibrium states depends 

on the period of time during which the modifications are introduced. The slower the changes in the bath composition or 

in the imposed deformation are introduced, the faster the equilibrium is reached. In these simulations the same period of 

time is selected for stages 1 and 3, where the chemical and mechanical actions are imposed. It is observed that a period 

of time equal to 50 minutes is larger than necessary for the equilibrium to be achieved and, therefore, in the following 

simulations a period of time equal to 1000 s is considered in stages 2 and 4. 

The computational time taken to conduct the four stages of this simulation, with 50 finite elements and a time step of 

0.1 s within a total simulation time of 8000s, is around 4 hours using a PC with the following characteristics: Intel Core 

i7-8750H 2.20 GHz processor and 8 GB of RAM. 

 

3.3. Eisenberg and Grodzinsky simulation 

The finite element program is also used to obtain several stress-strain equilibrium points, for different bath 

concentrations and different contractive deformations, in order to compare with the experimental results by Eisenberg 

and Grodzinsky [3]. Several simulations similar to the one presented in section 3.2 are then performed imposing, in stage 

1, different bath concentrations in the range showed in [3] and imposing, in stage 3, different contractive deformations. 
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Fig.14 - Stress-strain curves obtained in the finite element simulation using the material parameters specified in section 2. Marked with a × are 

the steady state points obtained for a given bath concentration and a given contractive deformation. The experimental points by Eisenberg and 

Grodzinsky [3] are represented with black symbols. 

 

In Fig.14, the stress-strain equilibrium points are represented with a cross (values retrieved at the end of stage 4), 

along with the respective interpolation curves. The results show that the finite element simulation, using the proposed 

mechanical model and considering the IF phase as described before, properly simulates the real cartilage behavior 

captured in these experiments, which is something that Loix et al. [1] were not able to simulate. 

 

3.4. Heterogeneous bath simulation 

The introduction of the fictitious bath concept in the formulation of the constitutive model makes possible to conduct 

a simulation in which the tissue sample is surrounded by a heterogeneous bath (Fig.15). In such experimental framework, 

the bath presents a physical horizontal separation which allows each of the sample extremities to experience distinct 

variations of the salt concentration over time. 

To conduct a simulation with a heterogeneous change of the bath chemistry, two different final concentrations are 

imposed, starting from the initial bath concentration of 1000 mol/m3: in the upper side, the final concentration is set to 

250 mol/m3 and, in the lower side, it is set to 150 mol/m3. Once the chemical change is performed at a constant rate 

during a time equal to 1000 s, with the next 1000 s stage to reach the equilibrium state, a 20% negative deformation is 

imposed during 1000 s, followed by another 1000 s equilibrium stage (see Fig.15). 

 
 

 
Fig.15 - Schematic of a cylindrical tissue sample, with 0.6 mm thickness, immersed in a piecewise heterogeneous bath, with a horizontal 

physical division, separating the area of concentration A (at the bottom) from the area of concentration B (at the top). 

 

When imposing a change in the chemical content of the bath that is different in the two extremities of the tissue 

sample, the behavior in the extremity nodes in reaction to the external modifications is predictable, since it is in these 
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nodes that the changes are imposed. However, the way the response to the stimulus progresses towards inside the tissue 

sample is not that straight forward. 

Looking at Fig.16, profiles similar to those obtained in section 3.2 are shown, being the distribution of the ionic mass 

contents, at the end of stage 2, now not uniform along the tissue thickness since the heterogeneity of the bath composition 

contributes to the loss of symmetry in the tissue behavior, which is also perceptible in all the figures that follow. The 

side of the tissue sample with the higher EF ionic mass contents corresponds to the side in contact with the bath with 

higher final ionic concentration. 

The water mass content and the local deformation are also no longer uniform, neither symmetric, after the new 

equilibrium state has been reached. In Fig.17(a), after the equilibrium is restored under no variation of thickness, an 

increase in the water mass content is verified in general along the tissue thickness, since in both sides of the bath there is 

a significant decrease in the salt concentration. Nevertheless, the water mass content is higher on the lower side of the 

sample, where a lower final bath concentration is imposed, since it is in this extremity that a higher outflow of ions 

occurs. Due to this non-uniform behavior of the tissue, although maintaining an overall zero deformation, the local 

deformation  presents a non-zero value in the upper extremity of the sample (see Fig17(b)). 

The proteoglycan effective molar fraction yPG presents the same trend as the deformation, that results from the uneven 

distribution of water inside the tissue (see Fig.18). The range of yPG values is maintained in comparison to previous 

simulations. 

 

  

(a) (b) 

Fig.16 - Time evolution of the spatial distribution, along the tissue thickness, of the sodium (a) and chloride (b) ionic mass contents, mNaE and 

mClE, during stages 1 and 2, for a heterogeneous change in the salt concentration of the bath. The last three curves are practically superimposed 

which means that steady state is practically reached at t = 1300 s. The same type of behavior can be observed next in Fig.17 to Fig.19. 

 

  
(a) (b) 

Fig.17 - Time evolution of the spatial distribution, along the tissue thickness, of the water mass content mwE (a) and of the local tissue 

deformation  (b), during stages 1 and 2, for a heterogeneous change in the salt concentration of the bath. 
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Fig.18 - Time evolution of the spatial distribution, along the tissue thickness, of the proteoglycan effective molar fraction yPG, during stages 1 

and 2, for a heterogeneous change in the salt concentration of the bath. 

 

In Fig.19, the EF water pressure and EF electrical potential profiles, during the first two stages, are presented. The 

rational behind the obtained curves follows the same line as described in the case of a homogeneous bath. 

 

  
(a) (b) 

Fig.19 - Time evolution of the spatial distribution, along the tissue thickness, of the EF water pressure pE (a) and of the EF electrical potential 

E (b), during stages 1 and 2, for a heterogeneous change in the salt concentration of the bath. 

 

  
(a) (b) 

Fig.20 - Time evolution of the spatial distribution, along the tissue thickness, of the sodium (a) and chloride (b) ionic mass contents, mNaE and 

mClE, during stages 3 and 4, for a heterogeneous change in the salt concentration of the bath. The last three curves are practically superimposed 

which means that steady state is practically reached at t = 3300 s. The same type of behavior can be observed next in Fig.21 to Fig.23. 

 

When the contractive deformation is imposed, the evolution of the different variables until equilibrium is reached 

occurs much like in the case of the homogeneous bath (this is due to the fact that mechano-chemical coupling is not so 

strong as the chemo-mechanical coupling), the only difference being that in the current simulation the starting state of 
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stage 3 is not uniform, and thus the results obtained after the imposed deformation (Fig.20 to Fig.23) are not uniform as 

well. 

 

  
(a) (b) 

Fig.21 - Time evolution of the spatial distribution, along the tissue thickness, of the water mass content mwE (a) and of the local tissue 

deformation  (b), during stages 3 and 4, for a heterogeneous change in the salt concentration of the bath. 

 
 

 
 

Fig.22 - Time evolution of the spatial distribution, along the tissue thickness, of the proteoglycan effective molar fraction yPG, during stages 3 

and 4, for a heterogeneous change in the salt concentration of the bath. 

 

  
(a) (b) 

Fig.23 - Time evolution of the spatial distribution, along the tissue thickness, of the EF water pressure pE (a) and of the EF electrical potential 

E (b), during stages 3 and 4, for a heterogeneous change in the salt concentration of the bath. 

 

The time evolution of the stress is shown in Fig.24, where it may be observed that, at the end of stage 4, the 

compressive stress is a little lower than the one registered in the case of the homogeneous bath (section 3.2). This result 
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is expected, since one of the baths has the same final concentration as the homogeneous bath (150 mol/m3), while the 

second bath has a higher final concentration (250 mol/m3). In contrast to the case of the homogeneous bath, there are 

now some points in the tissue in which the sodium mass content is higher, thus implying a higher shielding of the 

repulsive forces which is translated in a lower tissue compressive stiffness. In this way, the compressive stress required 

to impose a negative deformation of 20% is lower as well. 

 
 

 

 

 
(a) (b) 

Fig.24 - Time evolution of the axial stress in the tissue (a) and of the tissue thickness (b), during the four-stage simulation, for a heterogeneous 

change in the salt concentration of the bath during the first two stages of the simulation. After each of the stages involving external chemical 

(stage 1) and mechanical (stage 3) changes, the stress reaches equilibrium during stages 2 and 4. 

 

4. Conclusions 
In this work, a finite element program, whose formulation is based on the model described in the companion paper, 

is developed in a MATLAB environment and used to numerically simulate the response of an articular cartilage sample 

to a combination of chemical and mechanical actions. The sample of articular cartilage is found immersed in a bath 

whose chemical composition may be altered, while the tissue-bath interface is considered to steadily remain at electro-

chemical equilibrium. However, the equilibrium inside the tissue is not reached instantaneously. In fact, the time required 

to establish steady state depends on the problem geometry and on several material properties, such as the percolation and 

diffusion times related to Darcy's and Fick's laws, respectively. Therefore, spatial and temporal profiles are obtained, for 

several mechanical, chemical and electrical variables defined in the interior of the tissue, due to either isolated or 

combined actions of chemical (changing of the chemical composition of the external bath) and mechanical (confined 

compression) loadings. The framework may also simulate tests where the electrical field of the bath is altered but this 

type of simulations is not reported here. 

Using the finite element method, with the new constitutive equation proposed in [2], the experimental stress-strain 

curves obtained in [3] are successfully modelled. In particular, the observed shielding effect is very well reproduced by 

the model, which is something that other existing articular cartilage chemo-mechanical models (e.g. [4]) and existing 

finite element software packages based on those models (like FEBio [5]) are not able to replicate, since they assume a 

constant stiffness for the tissue. The good approximation of the real tissue behavior allows, additionally, to conclude that 

the simplification regarding the contribution of the IF phase in this model still permits to obtain acceptable outcomes, 

being this an advantage of the current formulation with respect to the one developed by Loix et al. [1] where several 

material parameters and functions were defined without experimental validation.    

The concept of fictitious or equilibrium bath also allows to obtain spatial and temporal profiles of several variables 

when the sample is immersed in a heterogeneous bath which gives a closer insight to the tissue mechanical behavior 

under a more diverse environment. This is something that other existing chemo-mechanical models are not able to 

provide. 

The control of the tissue response to mechanical, chemical and electrical actions is crucial in the improvement of 

prevention and treatment of its degenerative disease as well as in the development of novel engineered tissues, mimicking 

the biological and mechanical properties of the tissue, that could be used in regenerative medicine. 
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Appendix A. Mesh and time convergence analysis 
For the study of the influence of mesh size on the convergence of the method, simulations are conducted with 6 

meshes comprising different number of finite elements with a successively higher refinement: 6, 12, 25, 50, 100 and 200 

elements, all of them using the same integration time t equal to 1 s. For each mesh, several variables (both primary and 

secondary) are extracted at 3 fixed points (point 1 at the extremity of the sample and points 2 and 3 at 100 m and 300 

m from the extremity, respectively, see Fig.2) in order to study the evolution of their values as a function of the mesh 

refinement. The evaluation of the variables is performed at the end of the second stage, once the equilibrium is restored, 

after the change of the bath composition during stage 1 to a chosen final concentration equal to 150 mol/m3. 

From Fig.A.1, a convergent trend is perceptible for the considered variables. Even if some curves seem not to tend to 

an asymptotic value, the numerical values are very close, thus reflecting a good rate of convergence. In fact, it may be 

observed that the considered mesh refinement has almost no influence on the results, since the maximum observed 

variation with respect to the values of the finer mesh (with 200 finite elements) is only 0.003%. In this way, the number 

of elements that is considered to allow a satisfactory convergence of the results, whilst not compromising the 

computational effort, is equal to 50. 

For the study of the influence of the time step on the convergence of the method, simulations are conducted with a 

mesh of 50 finite elements. Three different time steps t = (Time stage)/(Number of steps) are tested: 1 s, 0.1 s and 0.01 

s. For each time step, spatial profiles of several variables are obtained along the tissue thickness. Analyzing the results 

presented in Fig.A.2, obtained again at the end of stage 2, a convergent trend is perceptible for the considered variables. 

The fact that some of the curves, computed with the smallest time step, seem not to be completely flat may be related to 

the fact that the mesh used in these simulations was not very refined. Since the values of the variables obtained for the 

two lower time steps (0.1 s and 0.01 s) are, again, very close, a value of t = 0.1 s is considered to reduce the time step 

influence on the results, without increasing excessively the computational cost. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Fig.A.1 - Spatial convergence analysis for several variables (electrochemical potentials of extrafibrillar sodium 𝜇𝑁𝑎𝐸
𝑒𝑐  (a) and water 𝜇𝑤𝐸

𝑒𝑐  (b), 

mass contents of extrafibrillar sodium mNaE (c) and water mwE(d), molar fractions of extrafibrillar sodium xNaE (e) and water xwE (f), 

extrafibrillar water pressure pE (g) and axial stress (h),with values taken at the steady state at end of stage 2 after a change of the bath 

concentration), at three different spatial positions. Numerical values being so close in each figure reflects the good rate of convergence. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Fig.A.2 - Time convergence analysis for several variables (electrochemical potentials of extrafibrillar sodium 𝜇𝑁𝑎𝐸
𝑒𝑐  (a) and water 𝜇𝑤𝐸

𝑒𝑐  (b), mass 

contents of extrafibrillar sodium mNaE (c) and water mwE(d), molar fractions of extrafibrillar sodium xNaE (e) and water xwE (f), extrafibrillar 

water pressure pE (g) and axial stress (h), with values taken at the steady state at end of stage 2 after a change of the bath concentration), 

considering three different time steps: 1s, 0.1s and 0.01s. Numerical values being so close in each figure reflects the good rate of convergence. 
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Abstract 
This study presents the structural and static analysis of the new Bioactive Kinetic Screw (BKS) using 

the finite element method (FEM). The FEM was conducted to predict three-dimensional (3D) 

simulations according to a cutting torque applied at a constant feed rate. The results were compared 

using two different materials in the BKS simulation: commercially pure titanium (cp-Ti) and titanium 

alloy (typically Ti6Al4V). BKS modelling was done in Solidworks ® and the FEM analysis was 

performed in the ANSYS Workbench 2020 R2 ® software. According to the results, it was observed that 

the low imposed cutting torque and BKS in cp-Ti material are recommended to obtain a less effective 

stress in the screw. In addition, the low imposed cutting torque and BKS in Ti6Al4V material are 

recommended to obtain less equivalent strain and total deformation level in the screw.  
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1. Introduction  
Drilling is the most used process to produce holes, and it is essential for different industries and clinical medical 

centers [1]. To minimize time and costs of the experimental tests of the cutting process, before use, computer models 

have become more numerous, providing accurate and safe conditions [2]. Many researchers have developed analytical, 

numerical, and experimental tests to predict and control different drilling parameters [1-7].  

Numerical methods based on the finite element analysis (FEA) are widely used presenting many advantages compared 

to other methodologies, due the reduction of the cost, to avoid wasting time during analysis, as well as faster designer of 

any component [8]. This method allows finding the approximation solution of partial differential equations of analysis 

due to the boundary conditions imposed on the problem.  

FEA is extensively used in many fields, originally developed for numerical solutions of complex problems in solid 

mechanics [9]. FEA has been recognized as a crucial solution to a variety of structural, modal, fatigue, thermal, fluid, or 

electromagnetic design problems. Nowadays, different range of purposes are applied in all these domains, namely in 

implantology [10].  

FEA can simulate the interaction between the implant and the surrounding bone. Some different studies allow the 

identification of load transfer at the bone-implant interface, which depends on the type of load, material properties, 

geometry (diameter, shape, length), among other characteristics [10].  

Different studies have been focused on optimizing the implant geometry to provide the favorable stress level for 

different static or dynamic conditions of applied load, due the interaction between the implant and the surrounding bone 

[10].  

For dental implants a range of different material have been recommended [10-13]. Typical materials used are: Pure 

Ti (cp-Ti), Ti6Al4V, Type 3 gold alloy, Ag-Pd alloy, Co-Cr alloy and Porcelain, [10, 12-13]. In the most reported studies, 

the materials are assumed to be homogeneous, linear and have elastic materials characterized by Young’s Modulus and 

Poisson’s Ratio [10, 12-13].  

In the present study, commercially pure titanium (cp-Ti) and titanium alloy (typically Ti6Al4V) were chosen for the 

analysis of the new BKS. Titanium dental implants can offer many advantages. They have excellent characteristics, 

namely excellent corrosion resistance, passivation capacity and biocompatibility [11-14]. According to investigations by 
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Shah et al. [11] concluded that, under experimental conditions, cp-Ti and Ti6Al4V provide similar osseointegration and 

biomechanical anchorage. Furthermore, the authors concluded that machined surfaces exhibit similar morphology, 

topography, phase composition and chemistry [11]. The choice of implant materials can greatly affect the stress 

concentrations at the implant-bone interface that is still under discussion [10]. 

Different authors have been studied the effect of the drilling force and torque as important parameters to avoid 

overloading the bone tissue [14]. Another important parameter is related with the bone temperature caused by the drilling. 

According to the study by Alam et al. [14] the decrease in bone temperature was attributed to the reduced time required 

for the drill to penetrate the bone, as a function of the drill rotation speed. In all experiments, the authors used a range 

between 600 to 3000 rpm for the drilling speed with constant feed rate [14]. According to a protocol, established by the 

research from Mihali et al. [15], for reducing the drilling sequence during implant preparation, based on temperature and 

insertion torque, the mean torque that the authors have been applied to all bone densities was a range between 44.12 and 

45.04 Ncm, with a rotational speed of 800 rpm. 

In this work, to analysis and measure the drill resistance capacity as a function of the applied torque, a 3D finite 

element model of the new BKS (at 4mm in diameter and 10 mm in length) was tested using two materials: titanium alloy 

Ti6Al4V (Grade 5) and commercially pure titanium cp-Ti (Grade 4). This new BKS presents itself a new delivery system 

for the use of natural growth factors, since the characteristic is to introduce protein molecules, cells, blood, and particulate 

bone through the hole of the BKS by a system of drill flutes; it also becomes a new means of delivering growth factor in 

surgery for expansion, lifting and bone fixation [16]. The main objective of this work was to identify the values of the 

cutting torque that must be applied in the BKS, depending on the rotational speed between 2250 to 4000 rpm, so that the 

ultimate strength of the material is not exceeded. The torque value is of great importance, since high values in the drilling 

can cause the drill breakage during the surgical incision [12, 17]. 

 

2. Material and Methods  
In this research work, a 3D numerical and structural linear model was developed using ANSYS 2020 R2 ® - 

Workbench 2020 R2, with the new BKS biomechanism in Ti6Al4V (Grade 5) and commercially pure titanium cp-Ti 

(Grade 4). The mechanical properties of the materials used in the study are shown in Table 1.  

Ti6Al4V Grade 5 alloy is the most commercially available of all titanium alloys. Widely applied to medical and 

biomedical implants, it offers an excellent combination of strength and toughness, corrosion resistance, good weld, and 

manufacturing characteristics. 

Cp-Ti Grade 4 is an unalloyed titanium, with excellent corrosion resistance, good weld, high strength, and used in 

different types of industries.  
 

Table 1 – Mechanical properties [11, 18]. 

 

 Ti6Al4V (Grade 5) cp-Ti (Grade 4) 

Young's Modulus, GPa 114 105 

Poisson's Ratio 0.36 0.32 

Ultimate Tensile Strength, MPa 896 553 

Tensile Yield Strength, MPa 827 483 

 

The numerical model aims to simulate the drilling process of the BKS biomechanism and evaluate the distribution of 

mechanical stresses and strains in the screw material. The 3D model was built using Solidworks ® and ANSYS 2020 R2 

® - Workbench 2020 R2 software, as shown in Fig.1.  

Boundary conditions, which represent typical drilling phenomena, are established on the lower surface of the BKS as 

fixed, and on the upper surface with the application of torque, Fig.1(a). Based on the geometrical model, volumetric 

finite element meshes were generated using SOLID187. SOLID187 element is a higher order, defined by 10 nodes having 

three degrees of freedom at each node (translations in the nodal x, y, and z directions), Fig.1(b). This tetrahedron element 

has a quadratic displacement behaviour with four-point integration and is suitable for modelling irregular meshes, such 

as those produced from various CAD/CAM systems [19]. The simulations are based on Lagrangian finite element model 

performed to determine the effective stress and strain.  
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(a) 

 
(b) 

Fig.1 – BKS model, static structural analysis (ANSYS 2020 R2 ® - Workbench 202 R2). (a) Boundary conditions. (b) Mesh. 

 
In the present study, an electric motor EM-12L with a maximum power of 59 W was selected, and angular speeds 

between 100 and 40000 rpm [20].  

The new BKS tool, intended for use in ongoing research, will work with different angular speeds depending on the 

material of which it is made, and with a constant feed rate of 0.5 mm/sec vertically downwards. In this study, only the 

mechanical load due to the cutting torque 𝑀𝑡 was considered in the model and the thermal effect produced by the BKS 

was not considered in this simulation.  

The relation between the torque (𝑀𝑡 in Nm), the maximum electrical power during drilling (𝑃 in W) and the speed of 

rotation (𝑛 in rpm) is determined according by Eq. (1) [19]. 

 

𝑀𝑡 = 9.55 
𝑃

𝑛
       (1) 

 

3. Results and Discussion 
In the present study, six numerical simulations were performed, varying the cutting torque according to the imposed 

and appropriated rotational speed for each BKS tool material, Table 2.  

Numerical results of stress, strain and deformation level were obtained during the structural analysis on the BKS for 

different imposed cutting torques, according to the rotational speed from 2250 to 4000 rpm. The chosen drilling 

parameters were due to the obtained values for the ultimate tensile strength in the BKS, identified for an imposed 

rotational speed higher than 2250 rpm, as presented in Table 2. The obtained values of the cutting torque decrease with 

the increase of the rotational speed. 

 
Table 2 – Drilling parameters. 

 

Tool BKS 
Power derived from cutting torque, Ref: Electric Motor EM-12L [20], P=59 W 

Cutting torque, 𝑀𝑡 Ncm Rotational speed, 𝑛 rpm 

Ti6Al4V (Grade 5) 

25.04 2250 

22.54 2500 

18.78 3000 

cp-Ti (Grade 4) 

17.34 3250 

16.10 3500 

14.09 4000 

 

Before the simulations, different mesh convergence tests were performed, where the computational error was 

minimized by changing the number of elements, as shown in Fig.2.  

 



Journal of Computation and Artificial Intelligence in Mechanics and Biomechanics  C.A. Andreucci et al. 

 

 

38 

           
(a)                               (b)                               (c)                               (d) 

Fig.2 – Different mesh convergence. Number of elements in (a) 18175 (b) 18857 (c) 23215 (d) 76105. 

 

Convergence tests were performed by changing the number of elements to obtain the maximum stress values verified 

at the tip of the BKS model and compared with the ultimate tensile strength of the material. As shown in Fig.3, in four 

solutions, the stress values converge where the smallest percent error obtained was 4.3% using 23215 finite elements. 

To obtain a finite element accuracy criterion of mesh discretization, an error smaller than 7% must be considered [8]. 

Accordingly, the mesh adopted to use in our simulations consists of a total of 23215 tetrahedron elements, Fig.2(c).  

 

 
Fig.3 – Mesh convergence and error (e). 

 

The obtained results from the total deformation, equivalent elastic strain, and equivalent stress for BKS allow us to 

conclude on the drilling parameters chosen for each BKS material. The results are shown for each different applied 

cutting torque on BKS and presented in different figures. Figs.4 to 9 represent the results for each material of the BKS, 

as a function of the applied cutting torque. 
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𝑛 = 2250 rpm   𝑀𝑡 = 25.04 Ncm 𝑛 = 3250 rpm   𝑀𝑡 = 17.34 Ncm 

        
𝑛 = 2500 rpm   𝑀𝑡 = 22.54 Ncm 𝑛 = 3500 rpm   𝑀𝑡 = 16.10 Ncm 

        
𝑛 = 3000 rpm   𝑀𝑡 = 18.78 Ncm 𝑛 = 4000 rpm   𝑀𝑡 = 14.09 Ncm 

    
(a) 

    
(b) 

Fig.4 – Equivalent stress in BKS with two materials. (a) Ti6Al4V (Grade 5). (b) Cp-Ti (Grade 4). 

 

 
Fig.5 – Maximum value of equivalent stress in BKS model for all drilling parameters.  
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𝑛 = 2250 rpm   𝑀𝑡 = 25.04 Ncm 𝑛 = 3250 rpm   𝑀𝑡 = 17.34 Ncm 

        
𝑛 = 2500 rpm   𝑀𝑡 = 22.54 Ncm 𝑛 = 3500 rpm   𝑀𝑡 = 16.10 Ncm 

        
𝑛 = 3000 rpm   𝑀𝑡 = 18.78 Ncm 𝑛 = 4000 rpm   𝑀𝑡 = 14.09 Ncm 

    
(a) 

    
(b) 

Fig.6 – Equivalent elastic strain in BKS with two materials. (a) Ti6Al4V (Grade 5). (b) Cp-Ti (Grade 4). 

 

 
Fig.7 – Maximum value of equivalent elastic strain in BKS model for all drilling parameters.  
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𝑛 = 2250 rpm   𝑀𝑡 = 25.04 Ncm 𝑛 = 3250 rpm   𝑀𝑡 = 17.34 Ncm 

        
𝑛 = 2500 rpm   𝑀𝑡 = 22.54 Ncm 𝑛 = 3500 rpm   𝑀𝑡 = 16.10 Ncm 

        
𝑛 = 3000 rpm   𝑀𝑡 = 18.78 Ncm 𝑛 = 4000 rpm   𝑀𝑡 = 14.09 Ncm 

    
(a) 

    
(b) 

Fig.8 – Total deformation in BKS with two materials. (a) Ti6Al4V (Grade 5). (b) Cp-Ti (Grade 4). 

 

 
Fig.9 – Maximum value of total deformation in BKS model for all drilling parameters.  
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Numerical results show that stress, strain, and deformation levels tend to increase with lower BKS rotation or higher 

imposed cutting torque. At the tip of the screw, the BKS presents higher stress and strain. The deformation is closer to 

the imposed cutting torque. The equivalent elastic strain determines the level of equivalent stress in the BKS that can be 

transmitted to the drilling process in bone material.  

The calculated strains and stresses vary along the entire length of the BKS, and this can be justified by the inertia of 

its cross-section, due to the existing space in the BKS mechanism. The inertia cross-section at the bottom decreases and 

the stress increases. 

The maximum stress, strain and deformation values are verified when a cutting torque equal to 25.04 Ncm is applied, 

corresponding to the minimum rotational speed of 2250 rpm. Comparing the materials, the high level of stress, strain and 

deformation is produced when the BKS is Ti6Al4V material.  

The BKS mechanism achieves greater deformation, stress and elastic strain for high cutting torques at low speed. The 

BKS in cp-Ti material presents the lower values of stress and strain, since that the material strength is lower than 

Ti6Al4V. The screw with less stress will allow for a longer tool life, as mentioned in the literature [21].  

 

4. Conclusions 
In the present study, numerical simulations were performed implementing a 3D FEM model. A total of 6 simulations 

were performed to study the effect of cutting torque and screw material on the drilling process. The BKS is in Ti6Al4V 

or cp-Ti material of 4 mm diameter. The drilling process uses different rotational speeds. The chosen drilling parameters 

were due to the obtained values for the ultimate tensile strength in the BKS for each material. This study can be used to 

avoid the difficulties that normally occur during the drilling process.  

The described simulation demonstrates that the screw causing strains, stresses, and deformations during the imposed 

cutting torque, which can affect the bone. Based on the simulation results, the low cutting torque imposed on the BKS 

on cp-Ti material is recommended to obtain lower stress levels on the screw. The screw with lowest stress will have a 

longer tool life. 

The BKS mechanism achieves higher stresses for high cutting torques at low speed and in Ti6Al4V material. 

The new BKS presented for dental drilling presents a space in the mechanism that can be occupied by particulate 

bone, resulting in the accumulation of material removed inside the implant screw.  

As future research, BKS can be analysed to improve its life cycle, more tests can be performed to estimate the 

maintenance time of BKS replacement, more tests can be performed to combine BKS in bone material and verify the 

interaction and accumulation of material inside the screw.  
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Abstract 
Intervertebral disc (IVD) degeneration is a progressive condition that modifies the geometric 

morphology, biomechanical behavior, and material properties of an IVD, affecting its ability to 

transmit and distribute loads. The aim of this work is to analyze the effects of applying different loads 

in different orientations both in healthy and degenerated IVDs. To perform the numerical analysis, a 

three-dimensional (3D) discretized model was constructed and analyzed with the radial point 

interpolation method (RPIM) and the finite element method (FEM). In order to simulate the IVD 

degeneration, the mechanical properties, height and applying loads were altered, allowing to represent 

six different study cases. With an elasto-static analysis, assuming small strains, the von Mises 

equivalent stress and principal stresses (𝜎1 and 𝜎3) variable fields were obtained with both RPIM and 

FEM. Also, for a region of interest, the equivalent strain is also addressed. The results show that 

distinct IVD conditions lead to distinct stress/strain distributions. Additionally, the comparison 

between the RPIM and FEM solutions indicate that the RPIM provides variable fields with lower 

magnitude. Nevertheless, both technique provide similar variable field distributions. 
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1 Introduction 

Over 80% of the adult population experiences low back pain (LBP) at some point in their lives, resulting in a vast 

amount of money in annual costs, to alleviate and treat this pain [1],[2]. Epidemiologic and biomechanical studies have 

shown that mechanical loads imposed on the human spine and, consequently, on the intervertebral disc (IVD), during 

daily life, play a significant role in this type of pain [2]. 

The IVDs are fibrocartilaginous, biconvex lens-shaped structures, which are interposed between the vertebral bodies 

of two adjacent vertebrae and are responsible for approximately 25% of the size of the spine [3]. The IVD is constituted 

by a soft, deformable, nucleus pulposus (NP) that is surrounded by the fibrous concentric layers of the anulus fibrosus 

(AF) [4],[5]. The NP and AF are comprised primarily of water, proteoglycans, and collagen fibers, in different rations 

between the two tissues [6]. They function as an additional load-absorption support that sustains high deformations, 

distributes the load, allows movement of the functional unit, and prevents friction between adjacent bodies [7],[4]. 

Throughout human life, a phenomenon called disc degeneration occurs, which is marked by changes in the disc 

morphology and biochemistry [8]. For example, when compared to a healthy disc, a degenerated one can have a 20% to 

60% reduction of its height, depending on the degree of degeneration [9]. Upon disc degeneration, there is a reduction 

in the water content in the NP, which leads to changes in its mechanical properties. For this reason, it is possible to make 

a comparison between a hydrated disc, when it is healthy, and dehydrated, when it is degenerated [10],[11]. 

IVD pressure is an important parameter to characterize spinal overload in disc degeneration [12]–[14]. To analyze the 

effects of this degeneration in the IVD, several studies have already been caried out. In the 1960s and 1970s, the 

pioneering scientific work performed by Nachemson et al. [15] showed a relationship between body positions or 

exercises (unsupported sitting, lifting weights, etc.) and lumbar IVD pressure. In this study, Nachemson and colleagues 

showed that sitting increases the pressure in the IVD by approximately 40% when compared with standing position [15]. 

A few years ago, finite element method (FEM) analysis emerged as a promising solution to study IVD pressure and its 

relationship to healthy and degenerated IVDs. Cai et al. [9], proved, using a finite element study, that an increase in the 

IVD degeneration leads to higher von Mises stress and higher shear stress [9]. This fact was also proved by Rohlmann 

et al. [16], that also used finite element method. More FEM studies focusing on the IVD have been carried out over the 

years [10]. 

https://publicacoes.isep.ipp.pt/jcaimb
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A few years later, the computational mechanics’ scientific community started to focus their attention on other 

advanced discretization techniques, such as the meshless methods. In this work, a meshless method is used to perform 

the structural analysis of the IVD and obtain the corresponding variable fields – the radial point interpolation method 

(RPIM). The RPIM emerged as a promising technique due to its sensitivity to the element’s distortion [17]. The RPIM 

has been successfully applied to 1D and 2D solid mechanics, plate and shell structures, problems of smart materials, 

geometrically non-linear problems, material non-linear problems in civil engineering [18], and biomechanics related 

topics, such as the simulation of human chromosomes [19] or even a 2D stress analysis of zirconia dental implants [20].   

In the present work, an analysis of the pressure in the IVD will be performed through the use of both RPIM and FEM, 

in order to study the effect of the pressure exerted by the vertebrae when applied in certain positions and when the 

mechanical properties of the disc are varied. 

 

2. Meshless Methods and Model Discretization 

 

2.1. RPIM formulation 

Due to continuous advances in numerical techniques and computational technology, FEM is able to simulate several 

distinct scenarios in a realistic way [8]. Despite the good results obtained using FEM, there are some mesh-related 

problems that can be minimized if a meshless approach is considered [21]. In opposition to FEM, in the meshless methods 

the nodes can be arbitrary distributed, since the field functions are approximated within an influence-domain rather than 

an element. Throughout the years, several interpolation meshless methods were developed, and one of the most relevant 

is the RPIM [22].  By meshless methods, models can be built using only nodes, without the need of a pre-established 

mesh. This makes meshless methods very effective in modeling large deformations, mesh-transient problems and fracture 

problems, especially for highly heterogeneous materials [21]. 

The RPIM constructs its shape functions using the radial point interpolator technique [22]. Thus, the variable field 

ℎ(𝒙𝐼) of an integration point 𝒙𝐼 can be interpolated with the following expression: 

 

ℎ(𝒙𝐼) =  ∑𝑟𝑖(𝒙𝐼) ∙ 𝑎𝑖

𝑛

𝑖=1

+∑𝑝𝑗(𝒙𝐼) ∙ 𝑏𝑗

𝑚

𝑗=1

= 𝒓(𝒙𝐼)
𝑇 ∙ 𝒂 + 𝒑(𝒙𝐼)

𝑇 ∙ 𝒃 (1) 

 

In which, n represents the number of nodes inside the influence-domain of 𝒙𝐼, m is the number of monomial of the 

polynomial basis functions 𝒑(𝒙𝐼), respectively. The radial basis functions (RBF) is represented by 𝒓(𝒙𝐼) and 𝒂 and 𝒃 

are the non-constant coefficients of  𝒓(𝒙𝐼) and 𝒑(𝒙𝐼), respectevly: 𝒂 = {𝑎1 ⋯ 𝑎𝑛}𝑇 and 𝒃 = {𝑏1 ⋯ 𝑏𝑚}
𝑇 .  The 

RBF used in this work is the Multi-Quadrics RBF (MQ-RBF), which can be represented as, 

 

𝑟𝑖(𝒙𝐼)  =  𝑟(𝑑𝑖𝐼)  =  (𝑑𝑖𝐼
2  +  𝑐2)𝑝 (2) 

 

Being, 𝑑𝑖𝐼 the Euclidean norm between node 𝒙𝑖 and the integration point 𝒙𝐼:  
 

𝑑𝑖𝐼 = √(𝑥𝑖 − 𝑥𝐼)
2 + (𝑦𝑖 − 𝑦𝐼)

2 + (𝑧𝑖 − 𝑧𝐼)
2 (3) 

 

and  𝑐 and 𝑝 the MQ-RBF shape parameters, already optimized for elasto-static problems in previous works: 𝑝 =
0.9999 and 𝑐 =  0.0001 [22]. In this work, a constant polynomial basis functions is used. Thus, 𝑷(𝒙𝐼) = {1} and 𝑚 =
1. 

To construct the RPI function of integration point 𝒙𝐼, it is necessary to apply Eq. (1) to each 𝑘 node inside the 

influence-domain of 𝒙𝐼. 
 

ℎ(𝒙𝑘) =  ∑𝑟𝑖(𝒙𝑘) ∙ 𝑎𝑖

𝑛

𝑖=1

+∑𝑝𝑗(𝒙𝑘) ∙ 𝑏𝑗

𝑚

𝑗=1

= ℎ𝑘 ,     𝑘 = 1,2, . . . , 𝑛 (4) 

 

Notice that ℎ𝑘 is the nodal variable value. To ensure a unique solution, the following equation must be included in 

the interpolating system of equations [22]: 
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∑𝑝𝑗(𝒙𝑖) ∙ 𝑎𝑖

𝑛

𝑖=1

= 0,    𝑗 = 1,2, . . . , 𝑚 (5) 

 

Allowing to write the following system of equations, 

 

[
𝑹 𝑷
𝑷𝑻 0

] {
𝒂
𝑏
} =  {

𝒉
0
}  ⟺  𝑮 {

𝒂
𝑏
} =  {

𝒉
0
}    (6) 

 

Being 𝑮  the moment matrix. Matrices 𝑹 and 𝑷 and vector 𝒉 are defined as,  

 

𝑹[𝑛 × 𝑛]  = [

𝑅(𝑟11) 𝑅(𝑟12) … 𝑅(𝑟1𝑛)

𝑅(𝑟21) 𝑅(𝑟22) … 𝑅(𝑟2𝑛)
⋮ ⋮ ⋱ ⋮

𝑅(𝑟𝑛1) 𝑅(𝑟𝑛2) … 𝑅(𝑟𝑛𝑛)

] ; 𝑷[𝑛 × 1]  =  [

1
1
⋮

1

] ;  𝒉[𝑛 × 1]  =  [

ℎ1
ℎ2
⋮

ℎ𝑛

]    (7) 

 

Solving Eq. (6) it is possible to obtain the non-constant coefficients:  

 

{
𝒂
𝑏
} =  𝑮−1 {

𝒉
0
}    (8) 

 

To assure that 𝑮 is invertible, it is necessary that m ≤ n. Since in this work, the number of nodes inside the influence 

domain is always much higher than the number of polynomial terms of the polynomial basis 𝒑, (𝑚 = 1), this condition 

is always largely satisfied. Substituting 𝒂 and 𝑏, into Eq. (1), the shape functions vector ϕ(𝒙𝐼) of the integration point 𝒙𝐼 
is obtained: 

 

ℎ(𝒙𝐼) =  {𝒓(𝒙𝐼)
𝑇; 𝒑(𝒙𝐼)

𝑇}𝑮−1 {
𝒉
0
}  =  {𝛟(𝒙𝐼)

𝑇;  𝛙(𝒙𝐼)
𝑇} {

𝒉
0
}  (9) 

 

being 𝛟(𝒙𝐼) = {𝛟1(𝒙𝐼),𝛟2(𝒙𝐼), . . . , 𝛟𝑛(𝒙𝐼)} and the residual, 𝛙(𝒙𝐼), defined by 𝛙(𝑥𝐼) = {ψ𝐼(𝑥𝐼)}. The RPI shape 

functions possess the delta Kronecker property, which allows to exactly impose the essential and natural boundary 

conditions using penalty techniques, and possess compact support, leading to banded system of equations. Details on the 

construction of RPI shape functions and corresponding numerical properties can be found in the literature [22]. 

 

2.2. Elasto-static system of equations 

 

After discretizing the problem domain and determining the shape functions, the equilibrium equations based on the 

principle of virtual displacements can be developed, 

 

∫ 𝛿𝜺𝑇𝝈 𝑑𝛺
𝛺

 −  ∫ 𝛿𝒖𝑇𝒃 𝑑𝛺
𝛺

 − ∫ 𝛿𝒖𝑇 𝒕̅ 𝑑Γ𝑡𝛺
= 0    (10) 

 

where 𝛺 represents the domain of the problem and Γ𝑡 the traction boundary. The strain vector is defined with 𝜺 and 

the stress vector with 𝝈. The displacement fields is represented with, 𝒖, the body force vector as 𝒃 and 𝒕̅ is the traction 

vector representing the external force applied on the natural boundary. Using the generalized Hooke’s law, the relation 

between 𝜺 and 𝝈 can be established,  
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𝜺(𝒙𝐼) = 𝑳𝒖(𝒙𝑰) ⟺

{
  
 

  
 
𝜀𝑥𝑥(𝒙𝐼)

𝜀𝑦𝑦(𝒙𝐼)

𝜀𝑧𝑧(𝒙𝐼)

𝛾
𝑥𝑦
(𝒙𝐼)

𝛾𝑦𝑧(𝒙𝐼)

𝛾𝑧𝑥(𝒙𝐼)}
  
 

  
 

=

[
 
 
 
 
 
 
 
 
 
𝑑

𝑑𝑥
0 0

0
𝑑

𝑑𝑦
0

0 0
𝑑

𝑑𝑧
𝑑

𝑑𝑦

𝑑

𝑑𝑥
0

0
𝑑

𝑑𝑧

𝑑

𝑑𝑦

𝑑

𝑑𝑧
0

𝑑

𝑑𝑥]
 
 
 
 
 
 
 
 
 

 {

𝑢(𝒙𝐼)
𝑣(𝒙𝐼)
𝑤(𝒙𝐼)

}    (11) 

 

and then,  

 

𝝈(𝒙𝐼) = 𝒄 ⋅ 𝜺 ⟺

{
  
 

  
 
𝜀𝑥𝑥(𝒙𝐼)

𝜀𝑦𝑦(𝒙𝐼)

𝜀𝑧𝑧(𝒙𝐼)

𝛾
𝑥𝑦
(𝒙𝐼)

𝛾𝑦𝑧(𝒙𝐼)

𝛾𝑧𝑥(𝒙𝐼)}
  
 

  
 

=

[
 
 
 
 
 
 
 
 
 
1

𝐸
−
𝜐

𝐸
 −

𝜐

𝐸
 0 0 0

−
𝜐

𝐸
 

1

𝐸
−
𝜐

𝐸
 0 0 0

−
𝜐

𝐸
 −

𝜐

𝐸
 

1

𝐸
0 0 0

0 0 0
1

𝐺
0 0

0 0 0 0
1

𝐺
0

0 0 0 0 0
1

𝐺]
 
 
 
 
 
 
 
 
 
−1

⋅  

{
  
 

  
 
𝜀𝑥𝑥(𝒙𝐼)

𝜀𝑦𝑦(𝒙𝐼)

𝜀𝑧𝑧(𝒙𝐼)

𝛾
𝑥𝑦
(𝒙𝐼)

𝛾𝑦𝑧(𝒙𝐼)

𝛾𝑧𝑥(𝒙𝐼)}
  
 

  
 

   (12) 

 

being 𝐸 the Young’s modulus, 𝜐 the Poisson’s coefficient and 𝐺 the shear modulus, 𝐺 = 𝐸/(2𝜐 + 2). Thus, the first 

term of Eq.(8) is as follows: 

 

∫ 𝛿𝜺𝑇𝝈 𝑑𝛺
𝛺

 = ∫ (𝛿𝑳𝒖)𝑇𝒄(𝑳𝒖) 𝑑𝛺
𝛺

   (13) 

 

The RPIM permits to interpolate nodal data to integration points (𝒙𝐼) using the shape functions of (𝒙𝐼), allowing to 

define the virtual displacement 𝛿𝒖(𝒙𝐼) with the interpolation function, 𝛟(𝒙𝑖), 
 

𝛿𝒖(𝒙𝐼) = 𝛿𝒖𝐼 = [

𝜙1(𝒙𝐼) 0 0 ⋯ 𝜙𝑛(𝒙𝐼) 0 0
0 𝜙1(𝒙𝐼) 0 ⋯ 0 𝜙𝑛(𝒙𝐼) 0
0 0 𝜙1(𝒙𝐼) ⋯ 0 0 𝜙𝑛(𝒙𝐼)

]

{
  
 

  
 
𝛿𝑢1
𝛿𝑣1
𝛿𝑤1
⋮

𝛿𝑢𝑛
𝛿𝑣𝑛
𝛿𝑤𝑛}

  
 

  
 

= 𝑯𝐼𝛿𝒖   (14) 

 

Notice that in a 3D analysis, each node 𝒙𝑖 possesses three degrees of freedom: 𝒖𝑖 = {𝑢𝑖, 𝑣𝑖, 𝑤𝑖}
𝑇. Assuming 𝑳 ⋅ 𝑯𝐼 =

𝑩𝐼, Eq.(11) becomes,  

 

∫ (𝛿𝑳𝒖)𝑇𝒄(𝑳𝒖) 𝑑𝛺 = 
𝛺 ∫ (𝑳𝑯𝐼𝛿𝒖)

𝑇𝒄(𝑳𝑯𝐼𝒖) 𝑑𝛺 = ∫ 𝛿(𝑩𝐼𝒖)
𝑇𝒄(𝑩𝐼𝒖) 𝑑𝛺 = 𝛺

𝛿𝒖𝑇 ∫ 𝑩𝑰
𝑻𝒄𝑩𝐼𝒖 𝑑𝛺 𝛺

 
𝛺

   (15) 

 

where 𝑩𝐼 is the deformability matrix of the interest point 𝒙𝐼 and can be written as,  
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𝑩𝐼 =

[
 
 
 
 
 
 
 
 
 
𝑑𝜙1(𝒙𝐼)

𝑑𝑥
0 0 ⋯

𝑑𝜙𝑛(𝒙𝐼)

𝑑𝑥
0 0

0
𝑑𝜙1(𝒙𝐼)

𝑑𝑦
0 ⋯ 0

𝑑𝜙𝑛(𝒙𝐼)

𝑑𝑦
0

0 0
𝑑𝜙1(𝒙𝐼)

𝑑𝑧
⋯ 0 0

𝑑𝜙𝑛(𝒙𝐼)

𝑑𝑧
𝑑𝜙1(𝒙𝐼)

𝑑𝑦

𝑑𝜙1(𝒙𝐼)

𝑑𝑥
0 ⋯

𝑑𝜙𝑛(𝒙𝐼)

𝑑𝑦

𝑑𝜙𝑛(𝒙𝐼)

𝑑𝑥
0

0
𝑑𝜙1(𝒙𝐼)

𝑑𝑧

𝑑𝜙1(𝒙𝐼)

𝑑𝑦
⋯ 0

𝑑𝜙𝑛(𝒙𝐼)

𝑑𝑧

𝑑𝜙𝑛(𝒙𝐼)

𝑑𝑦

𝑑𝜙1(𝒙𝐼)

𝑑𝑧
0

𝑑𝜙1(𝒙𝐼)

𝑑𝑥
⋯

𝑑𝜙𝑛(𝒙𝐼)

𝑑𝑧
0

𝑑𝜙𝑛(𝒙𝐼)

𝑑𝑥 ]
 
 
 
 
 
 
 
 
 

    (16) 

 

It is possible to discretize the integral of Eq. (13) by dividing the volume domain, 𝛺, into several subdomains, 𝛺𝐼, 
which corresponds to the physical volume occupied by each integration point, 𝒙𝐼. The volume of such a subdomain is 

represented by the integration weight, 𝜔̂𝐼, of the corresponding integration point, 𝒙𝐼. Thus, the discretized version of Eq. 

(13) can written as,  
 

𝛿𝒖𝑇 ∫ 𝑩𝑰
𝑻𝒄𝑩𝐼𝒖 𝑑𝛺 =  𝛿𝒖

𝑇 ∑ [𝜔̂𝐼𝑩𝑰
𝑻𝒄𝑩𝐼]𝒖 =

𝑁𝑄
𝐼=1 𝛿𝒖𝑇 ∑ [𝑲𝐼]𝒖

𝑁𝑄
𝐼=1 = 𝛿𝒖𝑇𝑲𝒖 

𝛺
   (17) 

 

where 𝑁𝑄 represents the total number of integration points. The local stiffness matrix 𝑲𝐼 is then assembled into the 

global stiffness matrix, 𝑲. Regarding the second and third terms of Eq. (10), the body volume forces are neglected, so 

only the third term is developed, 

 

∫ 𝛿𝒖𝑇 𝒕̅ 𝑑Γ𝑡 = 𝛿𝒖
𝑇 ∫ 𝑯𝑇 𝒕̅ 𝑑Γ𝑡 =  𝛿𝒖

𝑇 ∑ [𝜔̂𝐼𝑯𝑰
𝑻𝒕̅] = 𝛿𝒖𝑇

𝑁𝑄
∗

𝐼=1
∑ [𝒇𝐼] =
𝑁𝑄
∗

𝐼=1Γ𝑡
𝛿𝒖𝑇𝒇 

Γ𝑡
   (18) 

 

where 𝑁𝑄
∗  represents the number of integration points along the natural boundary. Thus, substituting Eq. (17) and (18) 

into Eq. (10), it is possible to establish the final discrete system of equations, 

 

𝛿𝒖𝑇𝑲𝒖− 𝛿𝒖𝑇𝒇 = 0 ⟹ 𝑲𝒖= 𝒇   (19) 

 

and then obtain the displacement field, 𝒖 = 𝑲−1𝒇. 

  

2.3. Model construction 

To obtain the IVD computational model, an anonymized CT image was used to perform the manual segmentation in 

the 3D Slicer® software, and obtain a IVD representation, in the STL format, as shown in Fig.1(a). This STL file is then 

opened in Meshmixer® software where possible mesh problems, such as holes and ill-conditioned triangles, are 

eliminated; the surface mesh of the STL is smoothed and significantly reduced (by decreasing the vertices and number 

of surface triangles), obtaining the representation presented in Fig.1(b), with 819 vertices and 1634 triangles. It should 

be noted that, at this stage, only a triangular surface mesh was obtained, and it is necessary to discretize the problem 

domain using solid elements, such as tetrahedral elements, so that a 3D analysis is allowed. For this, the FEMAP® 

student version software is used, and an IVD representation was obtained, as shown in Fig.1(c), with 1501 nodes and 

6306 elements. This file was saved in INP format, so that it can be imported into the academic meshless software 

FEMAS® (cmech.webs.com), where the pressure analysis will be performed, more specifically at the points marked in 

red in Fig.1(d). 
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(a) (b) 

 
 

(c) (d) 
Fig.1 - IVD model (a) after manual segmentation in Slicer® software; (b) after smoothing and correcting errors in Meshmixer® software; 

(c) after application of tetrahedral mesh in FEMAP® software; (d) Region of interest for the analysis. 

 

The materials and their properties were defined in the FEMAS® software. The model consists of two types of 

materials, corresponding to the NP and the AF. As previously mentioned, when a IVD degenerates, its composition 

changes, leading to a change in the mechanical properties [10],[11]. Table 1 shows the different mechanical properties 

for a healthy IVD, identified as hydrated (Case A), and for a degenerated IVD (Case B), identified as dehydrated. Based 

on the literature, both Young’s modulus (𝐸) and Poisson’s coefficient (𝜐) were defined [11], [23], [24]. Throughout this 

analysis, it was assumed that the IVD model presents isotropic, homogeneous characteristics and linear elastic behavior. 

 
Table 1 - Mechanical properties of the IVD materials. 

 
Hydrated (Case A) Dehydrated (Case B) 

 𝐸 (MPa) 𝜐 𝐸 (MPa) 𝜐 

NP 1.00 0.49 1.66 0.40 
AF 2.56 0.40 12.29 0.35 

 

In order to estimate the value of E for the simulations, it was necessary to understand that the NP accounts for 40%- 

50% of the volume of the adult IVD [5]. Considering that NP represents 50% of the volume, it is subsequently possible 

to assume that AF represents the other 50%. Thus, using the volume fraction concept, it is possible to estimate the 

homogenized Young’s moduli of both healthy and degenerated IVDs cases. 

 

𝐸 =  
𝐸𝑁𝑃  ∙  𝑉𝑁𝑃  + 𝐸𝐴𝐹  ∙  𝑉𝐴𝐹  

𝑉𝑁𝑃  +  𝑉𝐴𝐹
 (20) 

 

Being 𝐸𝑖 the Young’s modulus of material 𝑖, and 𝑉𝑖 the corresponding volume fraction. Regarding υ, it is possible to 

say that the value that was used results from the average of the NP and AF values, in both healthy and degenerated IVDs. 

 

2.4. Model construction 

After establishing the mechanical properties, it is necessary to define the essential and natural boundary conditions 

(Fig.(2)). The first ones are the restrictions applied to the inferior part of the IVD so that it does not move freely. In this 

particular case, no displacement was allowed in any direction, as shown in Fig.2(a). 
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The natural boundary conditions concern the forces that are applied to the superior part of the IVD, for the different 

cases studied. The first load case, Fig.2(b), concerns a normal pressure applied along 𝑂𝑧 axis on the top of the IVD. The 

second load case, Fig.2(c), corresponds to a force applied with a 45º angle with respect to the IVD plane, simulating a 

tilted movement to the side. The third load case, Fig.2(d), simulates a pure shear solicitation, by applying a force 

contained in the IVD plane. It should be mentioned that, in all cases, it was assumed a straight sitting position, actively 

straightening the back.  

Regarding the load magnitudes, previous works address such matter, such as the work of Wilke et al. [25]. Thus, for 

the body position mentioned before, the pressure applied to an area of 1800 mm2, is approximately 0.55 MPa. Thus, 

knowing the area of the natural boundary of load case 1 (𝐴 = 500𝑚𝑚2), it is possible to estimate the total force applied 

to the IVD: 𝐹 = 𝑝 ⋅  𝐴 = 0.55 ⋅ 500 = 275𝑁. All load cases possess the same force magnitude, only the force direction 

is modified.  

 
 

  
 

 

 

(a) (b) 

 

 

(c) (d) 
Fig.2 – (a) constrained boundary; (b) load case 1; (c) load case 2; (d) load case 3. 

 

 

3. Results 
After the RPIM and FEM analysis, displacements, stress and strain fields are obtained. In this section, the results 

obtained are presented. In Fig.3 and Fig.4 are presented the colored maps of the effective distribution of von Mises 

stresses, for a healthy IVD and degenerated IVD, respectively, when different loads are applied, as described before. 

The von Mises equivalent stress (𝜎𝑒𝑓) and equivalent strain (𝜀𝑒𝑞), both acquired along the interest region depicted in 

Fig.1(d), are shown in Fig.5, respectively. 

Table 2 shows the different values of 𝜎1 and 𝜎3, representing the maximum tensile and compressive stress in the 

model, correspondingly. Besides that, it is also possible to observe information regarding the average value of each 
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principal stress (𝜎1 and 𝜎3). Principal stresses are presented due to its importance in biotissues. For instances in the IVD, 

the fibers oriented respecting the principal stress directions.  

 
Table 2 – Principal stress 𝜎1, 𝜎3 [𝑀𝑃𝑎] and correspondent average values, 

𝜎̅1  𝑎𝑛𝑑 𝜎̅3 [MPa] for the six different study cases. 

 A1 A2 A3 B1 B2 B3 

𝜎1 0.4303 2.7703 4.8263 1.478 4.7996 5.278 

𝜎3 -3.8462 -8.096 -4.8449 -5.4609 -12.7272 -3.9345 

𝜎̅1 0.0555 0.3628 0.3615 0.1661 0.5378 -0.4068 

𝜎̅3 -0.367 -0.346 -0.421 -0.458 -0.4068 -0.4638 

 

 
 

 

 
(a) 

 
(b) 

Fig.3 – Colored maps of the effective distribution of von Mises stresses (MPa) for healthy IVD (A) in 3 different load cases (1, 2 and 3) for (a) 

FEM analysis; (b) RPIM analysis. 

 

 

4. Discussion 
The main goal of this work was to develop an IVD model, using several softwares, to perform an elasto-static meshless 

analysis. Additionally, two IVD conditions were assumed, aiming to understand the impact of the material properties on 

the stress and strain variable fields. In order to validate the meshless analysis, the models were also analyzed using the 

well-known, and extensively validated, FEM. 

Taking into consideration the results presented in Fig.(3), it is possible to assume that the higher von Mises stress are 

obtained for a degenerated IVD when a person is tilted to the side (case B2), for FEM and RPIM analyzes, with 5.987 

MPa and 3.914 MPa, respectively. By contrast, smaller values for the von Misses stress were obtained for a healthy IVD 

when the pressure is exerted on the entire superior part of the IVD, for both FEM and RPIM analyzes, with 1.212 MPa 

and 1.165 MPa, respectively. It is possible to conclude that a degenerated IVD presents higher stress values than a healthy 

IVD, as it was showed in the study performed by Cai et al. [9], Park et al. [26] and Rohlmann et al. [16]. 

Through the analysis of Fig.(4), it is possible to conclude that when the stresses in cases A and B are compared, both 

from the FEM and from the RPIM analysis, they are equivalent, but the same does not happen with strains. 
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Analyzing Fig.(5), it is possible to observe that the maximum tensile stress is obtained for a degenerated IVD when 

a shear force is applied (B3). Also, the minimum compressive stress is obtained for a degenerated IVD, but this time 

when a tilted movement to the side occurs (B2). Besides that, it is also possible to visualize that the maximum average 

value for 𝜎1 was 0.538 MPa (B2) and the minimum value for 𝜎3 was -0.464 MPa (B3). 

 
 

 

 
(a) 

 
(b) 

Fig.4 – Colored maps of the effective distribution of von Mises stresses (MPa) for a degenerated IVD (A) in 3 different load cases (1, 2 and 3) 

for (a) FEM analysis; (b) RPIM analysis.  
 

 

 

  
(a) (b) 

Fig.5 - Graphical representations of the von Mises’s effective stress (MPa) for the length of the region of interest using (a) FEM analysis; 

(b) RPIM analysis.  

 

 

5. Conclusion 
The main objectives of the present work were: to compare the performance of a meshless method (RPIM) and the 

FEM; and to study the application of different pressures in both healthy and degenerated IVDs. To achieve this goal, a 
3D model of an IVD was constructed and analyzed using an elasto-static formulation. When analyzing the different stress 
fields obtained, it was possible to corroborate the literature, in the sense that a degenerated IVD (higher Young’s 
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modulus) presents higher von Mises stresses than a healthy IVD (smaller Young’s modulus). It was also possible to 
conclude that when comparing the values obtained by FEM with RPIM, they do not vary significantly. Besides that, for 
a region of interest, stress and strain will not present similar behavior, because mechanical properties are not the same. 

With this study, it was possible to observe the advantages of using discretization techniques and simulation in the 
medical field, as well as the robustness and maturity of meshless methods in the biomechanical simulation of biological 
structures. However, it is important to refer that, involving meshless methods, no similar studies were found in literature, 
which hinders a more detailed comparison and validations of the RPIM performance. 

 

 

  
(a) (b) 

Fig.6 - Graphical representations of the equivalent strain (MPa) for the length of the region of interest using (a) FEM analysis; (b) RPIM 

analysis. 
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