
Synthetic flow-based cryptomining attack
generation through Generative Adversarial Networks
Alberto Mozo1,*, Ángel González-Prieto2,3, Antonio Pastor4, Sandra Gómez-Canaval1,
and Edgar Talavera1

1Universidad Politécnica de Madrid, Madrid, Spain.
2Universidad Complutense de Madrid, Madrid, Spain.
3Instituto de Ciencias Matemáticas (CSIC-UAM-UCM-UC3M), Madrid, Spain.
4Telefónica I+D, Madrid, Spain
*a.mozo@upm.es

ABSTRACT

Due to the growing rise of cyber attacks in the Internet, the demand of accurate intrusion detection systems (IDS) to prevent
these vulnerabilities is increasing. To this aim, Machine Learning (ML) components have been proposed as an efficient and
effective solution. However, its applicability scope is limited by two important issues: i) the shortage of network traffic data
datasets for attack analysis, and ii) the data privacy constraints of the data to be used. To overcome these problems, Generative
Adversarial Networks (GANs) have been proposed for synthetic flow-based network traffic generation. However, due to the
ill-convergence of the GAN training, none of the existing solutions can generate high-quality fully synthetic data that can totally
substitute real data in the training of ML components. In contrast, they mix real with synthetic data, which acts only as data
augmentation components, leading to privacy breaches as real data is used.
In sharp contrast, in this work we propose a novel and deterministic way to measure the quality of the synthetic
data produced by a GAN both with respect to the real data and to its performance when used for ML tasks. As a
by-product, we present a heuristic that uses these metrics for selecting the best performing generator during GAN
training, leading to a novel stopping criterion, which can be applied even when different types of synthetic data are to
be used in the same ML task. We demonstrate the adequacy of our proposal by generating synthetic cryptomining
attacks and normal traffic flow-based data using an enhanced version of a Wasserstein GAN. The results evince that the
generated synthetic network traffic can completely replace real data when training a ML-based cryptomining detector,
obtaining similar performance and avoiding privacy violations, since real data is not used in the training of the ML-based detector.

Keywords: Traffic network generation, Generative Adversarial Networks, cryptomining, Jaccard index, Cyber-range.

Introduction
Cybersecurity and large-scale network traffic analysis are two important areas receiving considerable attention over the last few
years. Among other reasons, this is due to the necessity of empowering the telecom industry to adopt suitable mechanisms to
face emerging and sophisticated cyberattacks. Nowadays, Internet Service Providers (ISPs) and their clients are exposed to a
growing rise in the number and type of threats (e.g., network attacks, data theft over the wire), some of which also attack at the
application level using the network for identity theft, phishing, or malware distribution. In general terms, these threats severely
put QoE (Quality of Experience) at risk, undermining services, network resources, and users’ confidence. In this context, one
promising solution is the use of Machine and Deep Learning (MDL) techniques to address the appearance of new points of
vulnerability and exposure to new attack vectors [1, 2, 3]. At the same time, malicious agents are moving forward in the same
direction to use MDL for their activities or to deceive MDL inference engines [4].

The application of MDL techniques requires the availability of considerable amounts of data to take advantage of their
powerful learning processes. Telecom data management processes are not well suited to offer these required data sets as they
exhibit a set of problems not only are related with the gathering and sharing of data but also with their processing in a MDL
pipeline. This situation represents a considerable drawback since data gathering and processing tasks in the telecom industry
have been optimized to guarantee services and billing. Indeed, they are not prepared with specific MDL data processing
techniques. The applicability of MDL algorithms should take into account the evolution of attack patterns over time, which
implies to produce periodically additional volumes of relevant data for training new MDL models.

Moreover, a great percentage of MDL techniques used in Intrusion Detection Systems (IDS) are the so-called supervised
techniques that require labelled data sets to train and validate MDL models. As in many other domains, telecom industry faces

the impossibility of having labelled data sets or developing efficient and accurate processes to label them. Since network traffic
is generated by end users and applications, it can be challenging for an ISP to identify and label the nature of network traffic at
the detailed level required by MDL techniques. This difficulty is exploited by cyber criminals, who seek to mix cyber attacks
with normal traffic by encrypting it over common TCP ports (e.g., Transport Layer Security (TLS) using TCP/443 (HTTPS)).
Although unsupervised techniques that do not need labelled data sets can be applied in some scenarios, a significant number of
sophisticated attacks require supervised MDL methods to be detected.

Even if efficient mechanisms for labelling data sets can be implemented, data are increasingly protected by the legal
regulations that governments impose to guarantee the privacy of their contents (e.g., European General Data Protection
Regulation (GDPR)). These restrictions may discourage the use of real data sets for MDL training and validation purposes.
For a suitable advance on cybersecurity research, and specifically, on threat detection in network traffic, the telecom industry
requires novel methods to generate labelled data sets to be used in MDL training and validation processes.

In the last decade, Generative Adversarial Networks (GANs) [5] have gained significant attention due to its ability to
generate synthetic data simulating realistic media such as images, text, audio and videos [6, 7, 8, 9]. Nowadays, GANs are
broadly studied and applied through academic and industrial research in different domains beyond media (e.g., natural language
processing, medicine, electronics, networking, and cybersecurity). In short, a GAN model is represented by two independent
neural networks (the generator and the discriminator) that compete to learn and reproduce the distribution of a real data set.
After a GAN has been trained, its generator can produce as many synthetic examples as necessary, providing an efficient
mechanism for solving the lack of labelled data sets and potential privacy restrictions.

In this context, this work proposes the application of GANs to generate synthetic flow-based network traffic that mimicks
cryptomining attacks and normal traffic. In contrast to most of the proposed works that are based on data augmentation
solutions, we aim to generate synthetic data that can fully replace real data (attacks and normal traffic). Therefore, MDL models
trained with synthetic data will obtain a similar performance to MDL models trained with real data when both are tested and
deployed in real-time scenarios.

This solution has two clear advantages: Firstly, addressing the existing shortage of publicly available network traffic datasets
containing attacks and normal traffic and secondly, avoiding the privacy violations that could appear when real data is used in
MDL training and testing processes.

In the light of these advantages, interesting applications can be devised. The first one is related to MDL cross-developments.
Providing labelled data that does not incur in privacy breaches can foster cross-development of MDL components by third
parties. For example, a telecom provider developing ML-based components to be part of an IDS, receives synthetic data from a
telecom operator to train and validate these ML-based components. As the synthetic data have been generated from real data
using GANs, the ML component after training will reach the desired level of performance and furthermore, no breach of data
privacy will be raised as the telecom operator is not sharing any real data with the telecom provider.

Furthermore, the solution proposed in this work is useful for application in Cyber-range exercises. Cyber ranges are well
defined controlled virtual environments used in cybersecurity training as an efficient way for trainees (e.g. cyber-security
personnel) to gain practical knowledge through hands on activities [10, 11].

Synthetic flow-based network traffic and attacks generated by GANs can be used in cyber ranges to generate different
data for a concrete type of exercise and avoid blue teams learning such exercise always with the same data. Having trained a
GAN model to replicate a given type of attack (or normal traffic), we can generate as many attacks of such type as required.
Therefore, even if the blue team repeats an exercise several times, the analised attacks and normal traffic are not going to be
exactly the same in each run of the exercise. In addition, red teams can use GANs in penetration testing (pentest) exercises to
generate realistic attacks that never contain the same attack data even if the launched attacks are of the same type. Thus, the
robustness of an IDS against a type of attack can be evaluated launching many different synthetic samples of the same attack.

Furthermore, a Cyber-range can import from third parties data sets containing attacks and normal traffic that are subject to
privacy or anonymity restrictions. As the network data used in the exercises by the blue and red teams are the synthetic ones
generated by the GANs, no breach of privacy appears during the realization of such exercises. Moreover, exporting attacks and
normal data (e.g. to other platforms in a federated cyber range) can be done without incurring in any privacy violation as the
exported data to be shared with a third entity are exclusively the synthetic network traffic generated by the GANs.

These ideas have been applied by the authors of the manuscript in the H2020 SPIDER project [12] that proposes a
cyber-range solution that is specifically designed to train cybersecurity experts in telecommunications environments and covers
all cybersecurity situations in a 5G network environment. As a novelty in cyber-ranges, SPIDER brings a way to seamlessly
integrate ML-based components and GANs to be used as part of blue and red team toolboxes. The GAN models proposed
in this manuscript will be used in SPIDER as the basic building block of the Synthetic Network Traffic Generator to obtain
synthetic network traffic data (attacks and well-behaved connections) that reproduce the statistical distribution of real traffic to
be used later in cyber range exercises.

2/29

Proposal
To demonstrate the applicability of our proposal, we select a cryptomining attack scenario. Cryptomining is a paradigmatic
cryptojacking attack that is gaining momentum in these days. Cryptomining attacks concern the network traffic generated
by cybercriminals that create tailored and illegal processes for catching computational resources from users’ devices without
their consent to use them in the benefit of the criminal for mining cryptocurrencies. It has been shown that these malicious
connections can be detected in real-time with decent accuracy even at the very beginning of the connection’s lifetime by using
an ML classifier [13].

Our goal is to obtain synthetic traffic of sufficient quality to allow a complete replacement of real data by synthetic samples
during the training of a ML-based crytomining attack detector. This property ensures that we will not violate any privacy
restriction and sets our proposal apart from existing works that only propose data augmentation solutions based on mixing real
with synthetic data.

To generate flow-based information that replicates normal traffic and cryptomining connections, we apply two Wasserstein
GANs [14] to generate both types of network traffic separately. Unlike current solutions, our WGANs replicate not only already
completed connections, but also connections at different stages of their lifetime. Regarding that successful GAN training is still
an open research problem [15], we propose to evaluate a set of GAN enhancements to measure their impact on the convergence
of the WGAN training and the quality of the synthetic data generated.

In addition, we propose two new metrics based on the L1 distance and the Jaccard coefficient to measure the quality of
the synthetic data generated by GANs with respect to their similarity with real data. These new metrics consider the joint
distribution of all variables of the flow-based data rather than the mean over the distance of each variable as other works
propose.

To the best of our knowledge and due to the ill-convergence of GANs, none of the existing works propose a clear stopping
criterion during GAN training to obtain the best performing synthetic data. To address this problem, we propose a simple
heuristic for selecting the best performing GANs when it is required to fully replace real data with synthetic data for training
MDL models. This heuristic exploits our experimental observations in three aspects:

1. When synthetic data is used for training a MDL model, its performance is not well correlated with any quality metric that
can be applied to the synthetic data, and therefore, it is required to train and validate a MDL model with a sample of the
synthetic data to obtain the ML performance (e.g. F1-score on testing).

2. After having trained thousands of GANs models, we observed that the performance value we used (F1-score) tends to
oscillate during training, and therefore, stopping training because the cost function is not decreasing or the quality of the
data is not improving is not an appropriate criterion as performance could improve after additional training. In order to
obtain the best performing GAN we suggest to measure GAN performance at the end of each mini-bath training.

3. Even if we select the best performing GAN for each type of traffic, it is not guaranteed that their joint performance will be
the best when both types of synthetic data are combined to fully replace the real data during the training of MDL models.

The first and second observations involve evaluating the performance of each generator obtained at the end of a mini-batch
training stage to select the best one. The third observation indicates that even when selecting the best performing generator for
each type of traffic, the performance obtained when we mix them may not be the best, and therefore we propose a heuristic for
finding the best performing combination. A random selection of the intermediate GAN models obtained during training works
well, requiring only a moderate number of samples. Nevertheless, we observed that when F1− score on testing was used as the
performance metric, reducing the sample GAN universe to the top-10 best performing for each type of traffic produced similar
results requiring a significantly fewer number of samples.

Experiments
To demonstrate the proposed solution, we ran an extensive set of experiments. The data sets used in our experiments were
previously generated in a realistic network digital twin called the Mouseworld lab [16, 17]. In this lab, we launched real
clients and servers that interacted with other hosts located in different places in the Internet and collected the generated traffic
composed of encrypted and non-encrypted flows (normal traffic and cryptomining connections). A set of 59 statistical features
were extracted from each TCP connection in real time each time a new packet was received. We carefully selected a reduced set
of 4 features for our GAN experiments.

We trained independently two WGANs, one for each type of traffic, configuring them with a rich set of hyperparameters.
We performed a blind random search in the hyperparameter space of each WGAN and to select the best configuration of
hyperparameters we used the F1-score obtained in a nested ML-model that was executed after each train epoch. For each type
of traffic, we selected the WGAN that obtained the best F1-score for the nested classifier in any of its epochs. In addition,
we compute the two proposed metrics (L1 distance and Jaccard) on each WGAN to analyse the similarity of the synthetic

3/29

traffic they are generating with respect to the real data. Given that for each winning WGAN, we have as many intermediate
generators as the train steps we run, the previously proposed heuristic is run to choose pairs of generators that produce good
results in a global nested evaluation of both WGANs. Thus, we avoid testing all possible combinations of generators from the
two WGANs.

To measure the quality of the synthetic data generated by our GANs, we train a ML classifier for detecting cryptomining
connections in real-time using only a combination of the synthetic traffic generated by the two WGANs (normal traffic and
cryptomining attacks). Another ML classifier configured with the same set of hyperparameters is trained using real data. Both
models are tested against a second set of real data to measure whether the ML model trained exclusively with synthetic data
performs at the same level than the model trained with real data. As a baseline for the quality of synthetic traffic, we use a naive
approach based on a noise generator added to the averages of the variables. As an upper bound, we consider the results obtained
with real traffic. In addition, we run the same experiments but adding some extensions to the standard WGAN configurations to
analise whether the performance of the nested ML or the convergence of the training process increase when these heuristics are
considered.

Paper structure
The rest of the paper is structured as follows: Section 1 presents the related work in this topic and the manuscript contributions
are detailed in subsection 1.1. The problem setting is shown in Section 2. The proposed model is depicted in Section 3 and the
model architecture, generator custom activation functions and WGAN enhancements and heuristics are explained in specific
subsections. The proposed quality and similarity metrics are detailed in Section 4. The empirical evaluation using standard
WGANs is presented in Section 5 and the effects of several improvements and variants are shown in Section 6. A summary of
the experimental results is detailed in Section 7. We conclude and summarize with some interesting open research questions in
Section 8.

1 Related work
Over the past, a few different research works have targeted the generation of synthetic network traffic using GANs [18],
although the majority of them only propose data augmentation solutions that are not applicable in scenarios in which data
privacy must be guaranteed as they use a combination of real and synthetic data.

A recent work [19] proposes a GAN approach to generate network traffic that mimics the traffic from Facebook’s chat to
modify the behavior of a real malware imitating a normal traffic profile based on input parameters from the GAN . This approach
is able to modify malware communication in order to avoid detection. MalGAN [20] is a GAN that can generate synthetic
adversarial malware examples, which are able to bypass black-box machine learning based detection models. Bot-GAN [21]
presents a GAN-based framework to augment botnet detection models generating synthetic network data. An augmentation
method based on AC-GANs was proposed to generate synthetic data samples for balancing network data sets containing only
two classes of traffic [22]. No details are given of either the structure of the GAN or how the experiments were evaluated,
making it impossible to reproduce the proposed solution or measure the synthetic data quality. Another similar work [23] used
GANs and the “ISCX VPN nonVPN" traffic dataset [24] but without proposing any evaluation method to contrast the obtained
results.

A Deep Convolutional Generative Adversarial Network (DCGAN) was recently proposed as a semisupervised data
augmentation solution [25]. Samples generated by the DCGAN generator as well as unlabeled data are used to improve the
performance of a basic CNN classifier trained on a few labeled samples from the "ISCX VPN nonVPN" traffic dataset. Another
work [26] presents a Cycle-GAN to augment and balance the ADFA-LD dataset containing system calls of small footprint
attacks. Footprints are converted into images to be processed by Cycle-GANs in the standard way. A data augmentation method
using the NSL-KDD data set is proposed to generate adversarial attacks that can deceive and evade an intrusion detection
system [27]. No details are provided on the network structure and hyperparameters used during training, which prevents
experimental replicability. In addition, the proposed solution only uses flow statistics after the connection has finished, which
restricts its applicability to forensic scenarios.

PAC-GAN [28] proposes a different approach to generate packets instead of flow-based data. Authors assume that the
bytes in a packet have a topological structure in order to apply convolutional neural networks in the generator. The generator
implements 3 types of request packets (Ping request, HTTP Get and DNS request). Only request packets are generated because
the quality metric applied only counts the number of responses received when these synthetic packets are sent to a server.
Unfortunately, this metric cannot detect whether the GAN is learning the input packets by heart and simply replicating them at
the output. The limited number of packet types that can be generated, together with the fact that they do not propose a realistic
metric for measuring the quality of the data generated, discourages the use of this solution in realistic environments.

A close work to our research is proposed in [29] where three GAN variations are used to generate flow-based network traffic
information in unidirectional Netflow format. As GANs generate continuous values, this work presents a method inspired by

4/29

Word2Vec from the NLP domain to transform categorical variables (e.g., IP addresses) into continuous variables. The dataset
used as input to the proposed GANs is a publicly available CIDDS-001 data set [30] that contains a mixture of normal traffic
and attack connections. Unfortunately, only one record per connection is stored containing the final status of flow variables,
which precludes its application in real-time IDS scenarios where flow-based information is needed to be generated recurrently
along the life of the connection to detect malicious flows in their early beginning. In addition, the authors propose to use as
quality metrics the Euclidean distance between variables and manual techniques such as visual inspection and domain value
checking done by experts that are impractical from a scalability perspective. Moreover, the Euclidean distance measures each
variable separately when what needs to be measured is the distance of the synthetic distribution from the real distribution but
considering both as multivariate distributions. Finally, the authors do not propose as validation metric a performance evaluation
of a ML-based attack detector trained with the synthetically generated flow-based data.

Another remarkable work is [31], where a GAN architecture is applied to generate DDoS attacks. The authors conducted the
experimental analysis on the CICIDS2017 dataset and showed that, with the synthetic data, they were able to effectively cheat a
previously trained IDS. Despite their success, it is worth mentioning that, in some sense, the goal of this work is opposite to
ours. They try to cheat a IDS by creating new samples, but these new samples do not necessarily must exhibit a high quality.
Very clumsy synthetic samples that only emphasize in the key features analyzed by the IDS can also do the job. In fact, this
work does not show any evidence assessing the quality of the generated attacks. In sharp contrast, this work aims to generate
samples (both of normal and malicious traffic) able to fully substitute the real data when training a nested ML classifier. We
do not want to cheat the ML model, but to train it with the synthetic data and, for that, a high quality in the generation must
be achieved. Additionally, [31] also proposes to use a GAN to improve the performance of the IDS but for that they need to
violate two of our main restrictions: i) the IDS is fed with synthetic attacks, but also with real normal traffic, infringing the
privacy constraints; and ii) the IDS is trained at the same time than the GAN, so that the generator agent does not need to output
samples with high quality in a holistic sense, but only regarding those features that will be exploited by the IDS.

Outside the domain of network intrusion generation, there also exist several proposals that combine GANs with synthetic
attacks. For instance, the works [32, 33] seek to inject very subtle differences, almost imperceptible to the human eye, in genuine
image samples that mislead the classification task of a Convolutional Neural Network (CNN). In spite of their achievements,
these solutions are not scalable to synthesize network attacks for several reasons. The first one is that again the objective of
these works is contrary to ours. They try to cheat a ML model by adding small perturbations to the original sample so they
do not need to obtain high quality generated samples. Another important issue with these approaches is that, somehow, their
procedure is closer to data augmentation than to genuine data generation. Indeed, the GAN is allowed to take an original sample
as input, and it only has to add a small noise. This process is simpler than the generation of a completely new sample from
scratch, as the one proposed in the present paper. Finally, these works deal with graphical samples for which it is known that
GANs can replicate the data with good quality thanks to their statistical features. As we will show in this work, when domain
restrictions are included in the data (as the ones characteristic to traffic flow indicators), the generation of this type of samples
with a GAN turns out to be much more problematic.

Finally, it is worth mentioning that some works in the literature are focused on cyber ranges. A cyber range is a well defined
controlled virtual environment used in cybersecurity training as an efficient way for trainees to gain practical knowledge through
hands-on activities. Several works have been proposed to study and classify the concept of a cyber range covering different
types of cyber ranges and security testbeds [34, 35, 36]. Although, in recent years, Artificial Intelligence and Machine Learning
based technologies have been started to be actively used for cyber defense purposes [37, 38, 39], their inclusion in cyber ranges
is still in their infancy. The H2020 SPIDER project [12], in which we are applying the main results of this manuscript, proposes
a cyber range solution, covering all cybersecurity situations in a 5G network environment, where ML-based components can
be seamlessly integrated in blue and red team toolboxes. The SPIDER framework is able to produce offensive and defensive
artifacts using Synthetic Network Traffic Generators that can emulate specific types of attacks and normal traffic. To the best of
our knowledge, only the H2020 SPIDER project is proposing to apply GANs to generate such synthetic attacks and normal
traffic that can be used by red and blue teams. Thus, red teams can use the synthetic attacks to break the robustness of an IDS
during pentest exercises and blue teams can learn how to reconfigure IDS defenses when faced with different synthetic attacks.
This novel feature circumvents the current limitations of cyber range commercial products that, using a fixed set of previously
stored attacks, only generate slight variations of these attacks mainly based on adding noise combinations to the mean values.

1.1 Contribution
The main differences of the previous proposals and our work are: (i) Unlike the prevailing existing data augmentation solutions,
we obtain synthetic flow-based traffic that can fully replace real data and therefore, this solution can be applied in scenarios
where data privacy must be guaranteed, (ii) existing metrics measure the differences of synthetic and real data independently
for each each variable, but we propose a set of new metrics to measure more realistically the similarity of the two as joint
multivariate distributions, (iii) due to the ill-convergence of the GAN training, none of the published papers mention a clear

5/29

stopping criterion during training for selecting the best performing GAN, but we propose a simple heuristic that selects such
GAN by measuring the performance of a ML task in which real data is fully replaced by synthetic data for the task training, (iv)
the proposed heuristic is extended to efficiently choose generators from different GANs to generate a combination of high
quality synthetic data to be used in the same ML task – in our scenario we generate a mixture of two different types of synthetic
traffic to train a ML-based cryptomining attack detector–, (v) our solution does not generate one flow-based element at the end
of the connection, but a set of elements representing different instants of a connection throughout its lifetime, which allows its
usage and deployment in real-time scenarios, and (vi) we selected a recently appeared cryptomining attack as a paradigmatic
use case to demonstrate the feasibility of our proposal and how it can be integrated into a next-generation cyber range.

2 Problem setting
The framework of this work is a network environment in which real clients and servers compete to exchange different types of
traffic sharing Internet connectivity. On one side, normal traffic clients interact with servers (web surfing, video and audio
streaming, cloud storage, file transfer, email and P2P among others) but, on the other side, cryptomining clients connect to real
mining pools generating a certain amount of cryptomining-related traffic that competes with the normal traffic for processing
time and/or bandwidth. In this context, cybercriminals can populate their cryptocurrency wallets by using botnets or run
illegal processes in browsers to surreptitiously add victims’ computer resources without their consent and spend computational
resources for the criminal’s benefit.

For this reason, it is crucial to develop a system capable of identifying cryptomining-related traffic so that an attack detector
can limit the bandwidth dedicated to this type of traffic or, in a extreme situation, block the connection. To be usable for this
purpose, this detection must be conducted in real-time. Nowadays, some solutions for cryptomining detection are based on
ML-based binary classifiers, such as random forest, decision trees or logistic regression. In order to prepare these models,
it is necessary to feed them with lots of labelled data. With this data, during the so-called training process, an optimization
algorithm adjusts the internal parameters of the model to extract the patterns that identify the cryptomining traffic with respect
to the normal traffic so that this knowledge can later be used to classify the traffic. Despite this is the customary procedure
in ML, in this scenario this solution poses an important privacy problem. Indeed, the data needed for the training process is
typically an excerpt of the real traffic crossing the node, for which a thorough offline analysis of its nature has to be conducted
to identify the cryptomining traffic.

Regarding that companies are reluctant to share their data with third party developers and governments concerned about
privacy issues are imposing limitations to telecom providers for accessing user data or inspecting packet payload, the aim of
this work is to construct a generative model able to substitute these data belonging to real clients by fully synthetic data with
no information of the original clients. With this solution at hand, the Internet service providers are able to generate as much
new anonymous data as needed to train their ML models or share it with third party developers without generating any privacy
breach or jeopardizing the privacy of their users.

The generated data should be as faithful to the real data as possible in the sense that they should provide significant
information to the ML models to extract the underlying patterns distinguishing between normal and cryptomining traffic. In
this sense, the performance of the generative models will be evaluated based on their ability to create high-quality synthetic
data. Explicitly, the generated data must lead to a similar performance of the ML-based models when tested against models
trained with real traffic, even though they were trained with synthetic data instead of real data.

As the original dataset to be replicated, we shall use a collection of flow-based statistics extracted from 4 hours of real
traffic that was generated in a realistic network digital twin called the Mouseworld lab. This data was gathered in a controlled
location of the Internet in two different instants of time: the first gathering will be used as the training dataset to be replicated
and the second will be stored as the testing dataset. The details of this process can be found in Section 5.1.

For each traffic flow (TCP connection), we compute a set of 59 statistical variables describing the flow. The computation is
carried out each time a packet for this connection is received or when a timeout fires. For our GAN experiments, 4 variables
were selected: (a) number of bytes sent from the client, (b) average round-trip time observed from the server, (c) outbound
bytes per packet, and (d) ratio of packets_inbound / packets_outbound. It is worth noting that other sets of statistical variables
are representatives of a flow (TCP connection) and may be computed. In fact, the Tstat tool [40] used for this task extracts and
computes a total of 140 variables. The four chosen features were selected as they exhibit several interesting properties for our
generative experiments.

• These four features themselves lead to a good performance in a standard ML classifier when used to classify between
normal and criptomining traffic.

• Each feature exhibits a different statistical behaviour, which allows to demonstrate that the proposed solution can replicate
a variety of data distributions and not only the normal one.

6/29

• The average value of each feature in the two types of traffic (normal and cryptomining) were close and, therefore, the
traffic ML classifier needed to learn something subtler from the data features than their means. This property allows us
to quantify the improvement obtained by using the proposed generative model versus a naïve Gaussian generator that
produces data around a mean value. This is particularly interesting when we want to replicate data distributions that do
not follow a normal distribution or have some hard domain constrains such as non-negativity or discrete distributions,
such as those fulfilled by the chosen features.

3 Proposed model
The solution we propose to address the problem described in Section 2 is based on Generative Adversarial Networks (GANs),
as introduced by Goodfellow [5]. A GAN network is a generative model in which two neural networks compete to improve
their performance. To be precise, we have a d-dimensional random vector X : Ω→ Rd , defined on a certain probability space
Ω, that returns instances of a certain phenomenon that we would like to replicate. Usually, we have that Ω = {x1, . . . ,xN} is
a large dataset of vectors xi ∈ Rd and X just picks randomly (typically uniformly) an element xi ∈Ω. Moreover, in standard
applications of GANs, we have that the instances xi are images represented by their pixel map and the objective of the GAN is
to generate new images as similar as possible to the ones in the dataset.

For this purpose, a classical GAN proposes to put two neural networks to compete: a neural network G, called the generative
network, and another neural network D, called the discriminant. The discriminant is a network computing a function D :Rd→R
that is trained to solve a typical classification problem: given x ∈ Rd , D(x) is intended to predict whether x = X(ω) for some
ω ∈Ω or not i.e. whether x is compatible with being a real instance or it is a fake datum. Observe that, along this paper, we will
follow the convention that D(x) is the probability of being real, so D(x) = 1 means that D is sure that x is real and D(x) = 0
means that D is sure that x is fake. On the other hand, the generative network computes a function G : Rl → Rd . The idea of
this function is that Rl will be endowed with a probability distribution λ , typically a spherical normal distribution or a uniform
distribution on the unit cube. The probability space Λ = (Rl ,λ) is called the latent space and the goal of the generator network
is to tune G in such a way that the random variable G : Λ→ Rd distributes as similar as possible to X .

The competition appears because the networks D and G try to improve non-simultaneously satisfactory objectives. On the
one hand, D tries to improve its performance in the classification problem but, on the other hand, G tries to generate as best
results as possible to cheat D. To be precise, observe that the perfect result for the classification problem for D is D(x) = 1 is x
is an instance of X and D(x) = 0 if not. Hence, the mean error made by D is

E = EΩ [1−D(X)]+EΛ [D(G)] = 1−EΩ [D(X)]+EΛ [D(G)] ,

where EΩ and EΛ denote the mathematical expectation on Ω and Λ respectively. In this way, the objective of D is to minimize
E while the objective of G is to maximize it. It is customary in the literature to consider as objective the function 1−E and to
weight the error with a certain concave function f : R→ R. In this way, the final cost function is

F (D,G) = EΩ f [D(X)]+EΛ f [−D(G)]

and the objective of the game is

min
G

max
D

F (D,G) = min
G

max
D

EΩ f [D(X)]+EΛ f [−D(G(Z))] .

Typical choices for the weight function f are f (s) =− log(1+exp(−s)), as in the original paper of Goodfellow [5], or f (s) = s
as in the Wasserstein GAN (WGAN) [14]. This operation method can be depicted schematically as in Figure 1.

Despite the simplicity of the formulation of the cost function, the optimization problem is far from being trivial. The best
scenario would be to obtain a so-called Nash equilibrium for the game, that is, a pair of discriminant and generative networks
(D0,G0) such that the function D 7→F (D,G0) has a local maximum at D = D0 and the function G 7→F (D0,G) has a local
minimum at G = G0. In other words, at a Nash equilibrium, neither D or G can improve their result unilaterally. Based on this
idea, the classical training method as proposed by Goodfellow in [5] is alternating optimization of D and G using classical
gradient descend-based backpropagation. Despite that this method may provoke some convergence issues, as mentioned below,
it is a widely used learning algorithm due to its simplicity and direct implementation using standard machine learning libraries
like Keras or TensorFlow.

To be precise, the algorithm proposed by Goodfellow suggests to freeze the internal weights of G and to use it to generate a
batch of fake examples from Λ. With this set of fake instances and another batch of real instances created using X (i.e. sampling
randomly from the dataset of real instances), we train D to improve its accuracy in the classification problem with the usual
backpropagation (i.e. gradient descent) method. Afterwards, we freeze the weights of D and we sample a batch of latent data

7/29

Figure 1. GAN architecture used as reference model.

of Λ (i.e. we sample randomly noise using the latent distribution) and we use it to train G using gradient descent for G with
objective f (−D(G(z))). We can alternate this process as many times as needed until we reach the desired performance.

As noted in a recent work [41], the game to be optimized is not a convex-concave problem, so in general the convergence
of the usual training methods is not guaranteed. Under some assumptions on the behaviour of the game around the Nash
equilibrium points, it is proved that the usual gradient descent optimization is locally asymptotically stable [41]. However, the
hypotheses needed to apply this result are quite strong and seem to be unfeasible in practice. For instance, it has been published
an example of a very simple GAN, the so-called Dirac GAN, for which the usual gradient descend does no converge [42].

For this reason, several heuristic methods for stabilizing the training of GANs have been proposed such as feature matching,
minibatch discrimination, and semi-supervised training [43] as well as approaches changing the weight function f as the
Wasserstein GAN [14]. The most promising approaches are based on the modification of the usual alternating gradient
descending optimization such as the introduction of instance noise [44, 45] and regularization methods based on gradient
penalty [46]. A recent work [47] proposes a formal study of the dynamics of the GAN training process, but due to the
complexity of the analysis, two simplified neural network architectures and a torus space were considered. For a thorough
analysis of the different methods for stabilizing the training of GANs, see [42].

The study of the type of network and the best architecture for D and G have been intensively studied in the literature.
Convolutional neural networks for D and deconvolutional networks for G seem to be good choices for image generation and
discrimination [48], as the set of variables (i.e pixels) in an image have topological information that can be exploited by these
convolutional networks. However, due to their simplicity, fully connected NN (multilayer perceptrons) have also been applied
to GANs with pretty good performance [5], in particular when no topological information is contained in the variables to be
replicated.

3.1 Architecture
Aiming to mimic two types of behaviour (cryptomining attacks and well-behaved connections), in preliminary experiments, we
adopted a well-known conditional GAN model, the so-called Auxiliary Classifier GANs (AC-GAN) [49], as the architecture to
generate at the same time the two types of traffic variables. As this strategy did not produce an adequate performance when
replicating the two types of traffic and generated significant oscillations in the convergence process, we opted to use a different
approach. We conjecture that the oscillatory behaviour could be caused by the fact that cryptomining connections follow a
very specific statistical pattern, and on the contrary, the normal traffic connections are made of a mixture of many different
connections that globally exhibit a nearly random behaviour. In addition, there is a great imbalance in the number of data for
each of the two types of connections, which might incline the GAN training to obtain one distribution closer to the real data
than the other.

Assuming that the two types of traffic are independent each other and therefore it is not necessary to use one for the
synthetic generation of the other, we finally proposed to train independently two standard GANs, one for normal traffic (i.e.
well-behaved connections) and the other for the cryptomining connections. The reference architecture for these GANs is shown
in Figure 1. As previously explained, this model is composed of two networks, a generator and a discriminator, competing
between them. The generator is input with a random noise vector and produces a synthetic sample. The discriminator receives
real and fake samples as input and tries to classify them appropriately in their correct category. During training, the goal of the
generator is to learn how to produce fake samples that can be classified as real by the discriminator. On the contrary, the goal of

8/29

(a) Label 0. Feature 1 (b) Label 0. Feature 2 (c) Label 0. Feature 3 (d) Label 0. Feature 4

(e) Label 1. Feature 1 (f) Label 1. Feature 2 (g) Label 1. Feature 3 (h) Label 1. Feature 4

Figure 2. Frequency distribution histogram of the 4 variables extracted from normal (Label 0) and cryptomining (label 1)
traffic. Label 0 (2a, 2b, 2c and 2d) and label 1 (2e, 2f, 2g and 2h).

the discriminator is to learn how to differentiate real from fake examples.

To get rid of the mode collapse problems that frequently appear during GAN training, we adopted as a reference model
the WGAN architecture [14], in which a Wasserstein loss function is used as loss function instead of a standard cross-entropy
function. A detailed explanation of why using W-GANs over standard GANs enhances the convergence during the GAN
training process can be found in [50]. In addition to the replacing of the loss function, we tested two different strategies to
enforce the required Lipschitz constraint in this function. Initially, a radical weight clipping strategy, as suggested in [14], was
applied. Later, we replace weight clipping with a more elaborated gradient penalty approach [51]. It is worth noting that in our
experiments, none of them produced a significant enhancement in the convergence of the GAN training and in many occasions,
we observed that the gradient penalty heuristic even produced significant oscillations. Therefore, we finally chose a WGAN
architecture with no additional strategy to enforce the Lipschitz constraint and the discriminator was optimized using only
small learning rates and a new adaptive mini-batch procedure as heuristics to avoid reaching mode collapse situations.

We selected fully connected neural networks (FCNNs) as the architectural model for both the discriminant and the generative
networks. This decision was based on the observation that the statistical nature of the 4 features to be synthetically replicated
did not exhibit any topological structure or time relationship among them and therefore, convolutional (CNNs) or recurrent
networks (e.g. LSTMs) respectively would not provide any advantage with respect to FCNNs. We observed in preliminary
experiments that very deep networks with a large number of hidden layers or units did not generate significant improvements in
performance and on the contrary, they enlarged convergence times and produced non-negligible oscillations in the convergence
during the training process. This effect could be explained by the fact that the cryptomining classification problem does not
need very complex models to obtain a decent accuracy [13]. Therefore, we selected a moderate number of hidden layers
(between 3 and 5) for generator and discriminator networks.

To provide the generator with more complex nonlinear capabilities to learn how to fool the discriminator, we used
hyperbolic tangent and Leaky-ReLU functions [52] as activation functions in the neurons of its hidden layers. In the case of the
discriminator only LeakyReLUs were used. Regarding that the discriminator does not play as a direct critic as in standard
GANs but as a helper for estimating the Wasserstein distance between real and generated data distributions, the activation of its
output layer is a linear function. As the generator has to produce synthetic samples close to the real data, we considered two
possibilities for the activation functions of its output layer: linear and domain-customized functions. A detailed explanation of
the rationale and trade-offs of using domain-customized activation functions instead of linear functions is presented in the next
subsection 3.2.

In addition, we selected a well-known heuristic for training WGANs from the literature [51] and designed some new ones
to test if they offered any advantage in the convergence of the training process or in the performance of the synthetic data during
the attack detection process. In subsection 3.3 we detail the applied heuristics: (i) adaptive mini-batches on training, (ii) noise
addition, (iii) multiple-embedding and (iv) complementary traffic addition.

9/29

3.2 Custom activation function for the real data domain
An important issue in the generation of synthetic replicas of network traffic variables is that real data are sometimes not
normally distributed. In general, telecom domain variables used in ML are usually statistical data representing the evolution
of flow variables such as counters, accumulators, and ratios that always take positive values. In our real-time experiments,
flows are monitored periodically from start to finish and therefore, the collected values for some of these variables are not
normally distributed and tend to follow an exponential distribution with many occurrences of values near to 0 and a long tail
of large values appearing very rarely. Figure 2 shows the frequency distribution histograms of the four variables extracted
from the normal traffic and cryptomining connections we used in our experiments. Generator networks usually have a linear
activation in the neurons of their output layer, which produces output variables following a normal distribution with mean
that of the distribution of the real data. When the real data follow a different distribution (e.g. exponential), using linear
activation functions in the output layer of the generator can produce synthetic data outside the domain of the real data. For
example, if we consider a variable representing an accumulator, only positive values are possible in the domain of real data.
However, the generator will produce synthetic data with the same mean as the real data distribution (exponential) but following
a normal distribution that contains negative data not existing in the real domain (elements of the leftmost part of the bell-shaped
distribution). This anomaly can be observed graphically by superimposing the exponential and normal density curves on the
mean value. A set of points appears on the leftmost part of the bell-shaped curve but not on the exponential curve. These points
will take negative values and therefore, they do not exist in the real data domain. Furthermore, the bell-shaped curve is not
containing the rare elements appearing in the rightmost part of the long tail of the real data. It is worth noting that this problem
has not attracted much attention in the literature since most of the work on GANs has been done for image generation where a
normal distribution of pixel values is tolerated quite well by the human eye.

To mitigate this problem, we propose to use specific activation functions in the output neurons of the generator to adjust as
much as possible the data distributions of the generator outputs to the statistical distribution of the real variables and thus, avoid
the generation of negative values outside the domain of such variables. To try to replicate variables that follow an exponential
distribution, we propose to use ReLU functions in the generator as activation functions of the neurons at the output layer. The
ReLU function only generates positive values due to its non-linear behaviour (the output is the input value for positive values
and 0 for negative values). In order to provide a smoother transition at values close to 0, we experimentally observed that a
Leaky-ReLU function with a very small slope for negative values performed better than a pure ReLU function. It is worth
noting that the use of a Leaky-ReLU function will generate a marginal number of samples with negative values that can be
easily filtered out later in a post-processing step. Nevertheless, further research work should investigate new activation functions
to perfectly match the statistical distribution of real variables.

3.3 Heuristics
We designed three novel mechanisms and applied a well-known heuristic based on adding noise to the discriminator and
tested each of them to see if they could impact on the training convergence or the quality of the generated synthetic data.
These heuristics are the following: (i) an adaptive number of mini-batch cycles are applied to the training of discriminator and
generator networks to avoid the occurrence of the so-called collapse mode and balance the learning speed of both networks, (ii)
different types of noise are added to the discriminator inputs to slow down its learning speed, (iii) a multi-point embedding of a
single class is added to the input layer of the generator for augmenting the variety of the latent noise vector and (iv) real traffic
of the class not modeled in the GAN is added jointly with the set of fake examples to slow down the learning process of the
discriminator.

3.3.1 Adaptive mini-batches on training
This heuristic aims to avoid the occurrence of the so-called collapse mode during training when one network learns faster than
the other, which finally produces that the slower network cannot learn any more. This anomaly was observed in preliminary
experiments when a generator was not able to fool the discriminator with any synthetic example or on the contrary, when the
discriminator could not identify any synthetic example as fake.

As previously described, the standard GAN training consists of a mini-batch stochastic gradient descent training algorithm
in which each mini-batch training consists of the execution of one train_batch for the discriminator followed by one train_batch
for the generator. In this way, the discriminator and generator networks are trained in such a way that when one network is
trained the learning of the other is blocked. We propose a modified training procedure to avoid the blocking problems that we
observed during preliminary experiments when we used such standard training process. The modified training procedure is
described in Figure 3 and consists on executing a variable number of train_batch for the discriminator and generator networks.
Each network is trained until a minimum value of successful elements are correctly classified at the end of the mini-batch
training. For the discriminator, we force extra train_batch cycles until the ratios of real and fake examples that are correctly
classified are greater than two pre-established thresholds. For the generator, the ratio of incorrectly classified samples (i.e.,
fake samples that are considered as real samples by the discriminator) must be greater than a predetermined threshold at the

10/29

end of the mini_batch training. Otherwise, additional training cycles are added. This heuristic avoids situations in which the
discriminator or the generator learns faster than its opponent and finally blocks the learning evolution of its counterpart. In this
situation, some of these ratios reach zero and the slow-learning network is no longer able to learn anymore during subsequent
training steps and therefore, improve these ratios.

During our experiments, we observed that using moderate ratios of 0.1 or greater for the generator produced oscillations in
the convergence of the training process that disappeared when smaller values were used (0.05 for the generator and 0.1 for both
ratios of the discriminator). Although no significant improvement on performance or convergence speed was observed in our
experiments when adaptive mini-batches were activated and these small ratios were used, the previously observed blocking
situations disappeared.

Figure 3 Enhanced GAN training procedure with adaptive mini-batches
1: procedure GAN_TRAIN_BATCH
2: repeat
3: train_batch(discriminator)
4: preds← discriminator.predict(sample(real,synthetic))
5: until T P(preds) and T N(preds) are in range
6: repeat
7: train_batch(generator)
8: preds← discriminator.predict(generator.predict(noise))
9: ratio_ f ake_pass← len(preds = real_label)/len(preds)

10: until ratio_ f ake_pass > min_ratio_ f ake_pass

3.3.2 Noise addition
This heuristic aims to slow down the learning rate of the discriminator in order that the generator can learn how to fool the
discriminator in each mini-batch training cycle. It is worth noting that this heuristic works in a complementary way to the
adaptive learning rates that the optimization algorithm applies to each mini-batch training.

In order to avoid disjoint distributions, the authors in [51] suggested to add continuous noises to the inputs of the
discriminator to artificially "spread out" the distribution and to create higher chances for two probability distributions to have
overlaps. To this end, we add several types of noises that are configured as hyperparameters during the training. Three different
types of noise (Uniform or Gaussian with mean 0 and configurable standard deviation) can be stacked: noise added to (i) fake
examples, (ii) to all (real and fake) examples; and (iii) a configurable percentage of fake and real labels are changed to its
opposite value.

Our preliminary experiments revealed that even moderate amounts of noise did not allow the generator to learn adequately
and the quality of the obtained synthetic data was really poor as reflected by the distance metrics with respect to the real data.
Moreover, when the synthetic data was used for substituting real data in the training of a traffic classifier, the F1-score obtained
was also smaller. When a large amount of noise is added, the rightmost values of the long tail distribution of real variables
tend to disappear in the discriminator and therefore, they will not be learnt by the generator. In fact, it can be observed that
the synthetic distributions of these variables tended to be grouped around the mean of the variables. On the contrary, small
amounts of noise did not produce any bad effect on the convergence or quality of synthetic data, but neither did they generate
any significant improvement.

3.3.3 Multi-point single-class embedding
We designed a new way to input latent noise to the generator. Instead of generating a noise vector from a uniform distribution
in a large interval of values [−K,K], we provided latent vectors generated uniformly at random from smaller intervals of values
and centered at different points in the latent space that also were selected uniformly at random. An additional hyperparameter
allows to also train the optimal location of the centroids in the latent space. The rationale of this heuristic was to explore
whether it was easier to train a GAN with small random bubbles of latent vectors than to use a single latent vector from a larger
range of random values.

We implemented the centroids of these random bubbles using an embedding layer of the same dimension than the latent
vector. The input to the embedding layer was a number representing the bubble and the output were the coordinates of this
bubble in the latent space. The latent noise is generated by drawing a sample from a normal or uniform distribution. This value
is added to the bubble centroid coordinates to generate a point (latent vector) around this location to be fed into the generator
network. The embedding layer weights can also be learnt during training to find an optimal location of the bubbles in the latent
space, or they can be chosen at random and frozen during GAN training.

Although this heuristic was only superficially investigated and we did not observe any significant improvement in conver-
gence or synthetic data quality, future work should explore more carefully the implications of using these latent bubbles.

11/29

3.3.4 Complementary data
When training the discriminator using network traffic of type X, it is possible to mix a configurable ratio of real examples of the
other type of traffic Y with fake examples obtained from the generator. The rationale of this heuristic was to avoid that the
discriminator overfitted on the fake data produced by the generator at each mini-batch as it has to also learn to differentiate the
other type of real traffic Y. During preliminary experiments, we did not observe any significant advantage when this heuristic
was included with different ratios of Y examples ranging from 0.1 to 0.5.

4 Performance metrics
We propose to evaluate GANs performance using two different types of metrics. The first set of metrics is inspired by the L1

functional distance and the Jaccard coefficient and aim to quantify the similarity of the synthetic data with respect to the real
data from a statistical perspective and considering the joint distribution of data features. On the other hand, the second set of
metrics attempts to quantify the performance of synthetic data when it is used as a substitute for real data in the training of a
ML classifier that is trained to distinguish between normal and cryptomining traffic. These two types of metrics will be used to
compare the similarity between real and synthetic distributions and will also be applied to implement a stopping criterion for
GAN training to select generators that produce high-quality synthetic data.

To the best of our knowledge, this is the first time that L1 metric and Jaccard coefficient are used for defining metrics to
compare synthetic and real data in GANs and furthermore, there is no other work that proposes to use the two types of metrics
to implement a stopping criterion for GAN training.

4.1 L1-metric and Jaccard index
The first two metrics we introduce try to measure the difference between the probabilistic distribution of the real data and
the one of the synthetic data. They are based on two well-known statistical coefficients applied for hypothesis testing and
probabilistic distances.

For the convenience of the reader, we briefly review some relevant definitions. Suppose that X and Y are two independent
continuous d-dimensional random vectors with probability density functions fX , fY : Rd →R. To measure the distance between
X and Y , we can consider the L1-metric between their density functions as

dL1(X ,Y) =
∫
Rd
| fX (s)− fY (s)|ds.

Notice that dL1(X ,Y) = 0 if and only if fX = fY almost sure and thus X = Y almost sure.
Additionally, we can also compare the supports of X and Y through the standard Jaccard coefficient [53]. Let supp(fX) be

the support of the function fX , that is, the closure of the set of points s ∈ Rd such that fX (s) 6= 0. Then, the Jaccard index of X
and Y is given by

J(X ,Y) =
|supp(fX)∩ supp(fY)|
|supp(fX)∪ supp(fY)|

,

where |A| denotes the Lebesgue measure of a measurable set A⊆ Rd . Notice that supp(fX)∩ supp(fY)⊆ supp(fX)∪ supp(fY)
so 0 ≤ J(X ,Y) ≤ 1 and, the larger the index, the more similar the supports. Indeed, perfect agreement of the supports is
achieved if and only if J(X ,Y) = 1.

Nevertheless, in this form these ideas can only be applied theoretically in a scenario where the density functions are perfectly
known. This obviously does not hold in a practical situation. However, the previous definitions can be straightforwardly
extended to the sampling setting by replacing the probability density function by the histogram of a sample.

Suppose that we have samples x1, . . . ,xn of a random vector X , with xi = (x1
i , . . . ,x

d
i). From them, we can estimate the

density function of X through the histogram function hX : Rd → R. For this purpose, choose a partition of supp(fX)∪ supp(fY)
into d-dimensional cubes

supp(fX)∪ supp(fY) =
⊔̀
k=1

Ck.

A common choice for this partition is constructed as follows. Let m j = mini(x
j
i) and M j = maxi(x

j
i) be the maximum and

minimum of the estimated support of the j-th component of X . Take an uniform partition m j = s j
0 < s j

1 < .. . < s j
w = M j of the

interval [m j,M j]. Then, the cubes of the partition are given by the product of intervals Ci1,i2,...,id = [s1
i1−1,s

1
i1)× [s2

i2−1,s
2
i2)×

. . .× [sd
id−1,s

d
id
) for 1 < i1, . . . id ≤ w.

In any case, given a partition Ck, we define the histogram function to be

hX (s) =
1
n

`

∑
k=1

(
n

∑
i=1

χCk(xi)

)
χCk(s), (1)

12/29

where χCk : R→ R is the characteristic function of the cube Ck, that is, χCk(s) = 1 if s ∈Ck and is 0 otherwise. In other words,
if s belongs to the bin Ck, then hX (s) is the average of the number of samples x j lying in the d-dimensional cube Ck. Recall that
the integral of hX is strongly related to the empirical cumulative probability function which, by the Glivenko-Cantelli theorem
[54], converges almost surely to the real cumulative probability function. In this way, for large samples, it may be expected that
hX estimates rather faithfully the real density function fX .

In particular, this histogram function allows us to estimate the aforementioned metrics. Suppose that we have samples
x1, . . . ,xn and y1, . . . ,ym of random variables X and Y , respectively. Choose a common partition {Ck}`k=1 of the union of the
supports of the samples. Then, we define the sampling L1-metric to be

dsmp
L1 (X ,Y) =

∫
Rd
|hX (s)−hY (s)|ds =

`

∑
k=1
|hX (Ck)−hY (Ck)|Vol(Ck) = L

`

∑
k=1
|hX (Ck)−hY (Ck)|.

Here, Vol(Ck) denotes the Lebesgue measure of the cube (its volume), hX (Ck) refers to the value of hX at any point of the cube
Ck (recall that hX is constant on the cubes). Finally, in the last equality, we have supposed that the partition is uniform and
we set L = ∏

d
j=1(M

j−m j)/w. In analogy with the the purely probabilistic case dsmp
L1 (X ,Y) = 0 if and only if the number of

samples of X and Y in each are equal, if the bins of the partition are the same.
In a similar vein, the Jaccard index can be estimated from the histograms. Let supp(hX),supp(fY) be the supports of the

histograms. Then we define the sampling Jaccard index as

Jsmp(X ,Y) =
|supp(hX)∩ supp(hY)|
|supp(hX)∪ supp(hY)|

.

Again, this coefficient takes values in the interval [0,1] and the larger the value of J(X ,Y) the more similar the empirical
supports.

In our particular case of GANs, we shall apply these coefficients to measure the similarity between the real and the
synthesized data. Let x1, . . . ,xn the real instances of the dataset X to be replicated. Given a generator network G, we extract a
sufficiently large sample yG

1 , . . . ,y
G
m of generated data Y . Then, the L1 metric and the Jaccard index of the generator G are just

dL1(G) = dsmp
L1 (X ,Y G), J(G) = Jsmp(X ,Y G).

4.2 Nested ML performance
The second set of metrics attempts to quantify the performance of synthetic data when it is used as a substitute for real data for
training a ML classifier to distinguish between normal and cryptomining internet traffic.

To be precise, let C : Rd →{0,1} be a binary classifier. It attempts to take an instance x = (x1, . . . ,xd) ∈ Rd (which, in our
case, represents the d features of a internet connection) and to predict its class C(x) ∈ {0,1} (the type of traffic in our setting).
Once the classifier C has been trained, its accuracy can be measured against the test split of the dataset, where the real classes
Ytest = (y1, . . . ,yn), with yi ∈ {0,1}, of a bunch of instances Xtest = (x1, . . . ,xn), with xi ∈Rd , are known. In that case, we define
precision and recall as the quantities

Precision(C) =
|{xi ∈ Xtest |C(xi) = 1 and yi = 1}|

|{xi ∈ Xtest |C(xi) = 1}|
, Recall(C) =

|{xi ∈ Xtest |C(xi) = 1 and yi = 1}|
|{xi ∈ Xtest |yi = 1}|

.

Here, |X | stands for the number of elements of the set X . In other words, 1−Precision(C) is the rate of false positives and
1−Recall(C) is the rate of false negatives of the class λ . In general, to combine both coefficients, it is customary to consider
the F1 as the harmonic mean

F1-score(C) = 2
Precision(C) ·Recall(C)

Precision(C)+Recall(C)
.

Additionally, these metrics can be complemented with the so-called confusion matrix. It is a 2×2 matrix that compares the
real labels of each instance with the predicted label, in the form(

|{xi |C(xi) = 0 and yi = 0}| |{xi |C(xi) = 1 and yi = 0}|
|{xi |C(xi) = 0 and yi = 1}| |{xi |C(xi) = 1 and yi = 1}|

)
In other words, the diagonal entries are the correct classified instances and the off-diagonal entries are the false positives
(upper-right corner) and the false negatives (botton-left corner). In this way, the confusion matrix allows us to identify more
precisely the flaws of the classifier C, in comparison with the precision, recall and F1 measures, which are raw means.

With this notions at hand, the quality of a GAN will be evaluated as follows. Suppose that, as explained in Section 3.1,
we have trained GANs (Λ0,G0,D0) and (Λ1,G1,D1) to synthesize data with label 0 (real traffic) and 1 (cryptomining traffic)

13/29

respectively. Choose N,M > 0 and draw samples x0
1, . . . ,x

0
N and x1

1, . . . ,x
1
M of the latent spaces Λ0 and Λ1 respectively. Then,

using the generators G0 and G1, we create a new fully synthetic training dataset

Xtrain =
{

G0(x0
1), . . . ,G0(x0

N),G1(x1
1), . . . ,G1(x1

M)
}
, Ytrain = {0, . . . ,0︸ ︷︷ ︸

N times

,1, . . . ,1︸ ︷︷ ︸
M times

},

with N +M instances.
With this new dataset (Xtrain,Ytrain), we train a standard ML classifier C (say, a random forest classifier). Then, screening the

precision, recall, and F1-score of C against a test split made of real data, we are able to measure the quality of the generated data:
the higher these measures, the better the synthetic data. Hence, large values of these coefficients point out that the synthetic
data generated by G0 and G1 can be used to faithfully substitute the real instances. Observe that no real traffic is used for such
training purposes, although real traffic is always used for testing. As previously stated, this is a differentiating characteristic of
our work with respect to existing solutions. Data augmentation solutions are proposed in these previous works, where synthetic
data is mixed with real data during training, generating data privacy breaches as real data is used.

Several variants of this proposal can be considered. First, instead of creating the dataset with fully-trained GANs (Λ0,G0,D0)
and (Λ1,G1,D1), we can compute these coefficients at each of the training epochs of the GAN. In this way, we are able to
screen the evolution of the training and to relate it to the quality of the generated data. In particular, this idea enables a stopping
criterion: when the GAN training epochs do not produce any significant enhancement, the training process is stopped. As
previously commented, one of the current open issues of GANS is how to optimize their training as oscillatory behaviours
appear frequently during training. Moreover, none of the related works listed in Section 1 explain what stopping criterion they
applied to obtain their fully trained GANs. Therefore, our proposal for measuring GAN performance in ML tasks at each epoch
provides a way to implement such stopping criterion.

Additionally, we can also evaluate the marginal quality of each of the generators. In the previous approach, we generated the
dataset (Xtrain,Ytrain) by using synthetic samples of both types of traffic, normal (label 0) and cryptomining (label 1). However,
if we want to test the quality when generating only one of the types of traffic, say label 0, the dataset (Xtrain,Ytrain) can be
also created by mixing synthetic samples of label 0 with real samples of label 1. In this way, the corresponding ML accuracy
coefficients will only measure the ability of G0 to generate synthetic traffic of label 0, regardless of the fitness of G1.

Regarding that we will use two different WGANs for each type of traffic, the first approach would imply to evaluate the ML
performance of G0 at each epoch with all generators obtained during G1 training and conversely, at each G1 epoch we should
combine its generator with all G0 generators to measure ML performance. Hence, assuming we trained a pair of GAN for j and
k epochs respectively, we would require j× k evaluations of the ML task (training and testing) to obtain the full set of metrics.

In order to implement the stopping criterion more efficiently, we opted for the second approach, in which we evaluate
separately the marginal quality of each of the generators. In this way, each WGAN can be trained in parallel without requiring
the other to evaluate their joint performance and therefore, each training can be stopped at different epochs when no significant
enhancement is observed. When both WGANs are trained and the joint performance has to be computed, instead of generating
the Cartesian product (j× k) of the two sets of generators and running the corresponding ML evaluations, we observed
experimentally that drawing roughly a dozen samples by choosing uniformly at random one generator of each type of traffic
tends to produce results equivalent to the brute force approach of trying all possible combinations. It is worth noting that
more elaborated strategies can be applied as ordering the generators of each type of traffic by some metric (e.g., F1-score) and
choosing generators at random only from the subset containing the best generators.

Finally, notice that there is plenty of freedom for choosing the number of generated samples N and M. A first decision
would be to choose N and M to be in the same range as the number of samples in the original dataset. This leads to a synthetic
dataset with very similar characteristics to the original one in terms of balancing between classes. However, other set-ups
can be tested like drastically increasing the number of samples in the generated dataset or to balance the number of instances
of each class to ease the task of the classifier. These possibilities will be explored in Section 5. It is worthy to mention that,
even though the potential balance between classes achieved with this method is similar to what can be obtained with data
augmentation procedures, the proposed solution is way stronger than standard data augmentation: the generated data is not a
simple enrichment of the original dataset but a completely new dataset.

5 Empirical evaluation
We designed a set of experiments to demonstrate that GANs can be utilised for generating high-quality synthetic data that
replicates the statistical properties of real data while maintaining their privacy. Furthermore, in these experiments we aim to
prove that synthetically generated data can be utilised for totally substituting real data in ML training processes while keeping
the same performance than ML models trained with real.

In this section, we first summarize the testbed on which we conducted our experiments and how we collected the data, then
the experimental setup is detailed and finally, the experimental results are depicted.

14/29

5.1 Testbed for data collection
The data sets used in our GAN experiments were previously generated in a realistic network scenario called the Mouseworld
lab [16]. The Mouseworld is a network digital twin created at Telefónica R+D facilities that allows deploying complex network
scenarios in a controlled way. In the Mouseworld, realistic labeled data sets can be generated to train supervised ML components
and validate both supervised and unsupervised ML solutions. The Mouseworld Lab provides a way to launch real clients and
servers, collect the traffic generated by them and the recipients outside the Mouseworld on the Internet, and add labels to the
traffic automatically.

To obtain the training and testing datasets used in our GAN experiments, we deployed in the Mouseworld thirty virtual
machines for the generation of regular traffic (i.e. web, video and shared-folder flows) to internal Mouseworld servers and
to external servers located in the Internet. The IXIA BreakingPoint tool was also configured to generate and inject synthetic
patterns of various Internet network services (web, multimedia, shared-folder, email and P2P). All traffic generated was
composed of encrypted and non-encrypted flows. In addition, we created three cryptomining Linux virtual machines in which
we installed well-known cryptomining clients for mining the Monero cryptocurrency, which is commonly used for illegal
purposes. The cryptomining clients were connected to public mining pools using non-encrypted TCP and encrypted TLS
connections.

We deployed in the Mouseworld four experiments with different cryptomining protocols [13]. Each experiment was run for
one hour with an average packet rate of approximately 1000 packets per second, which generated data sets with 8 millions of
flow-based entries containing statistics of the TCP connections of which 4 thousands were related to cryptomining connections.
Normal connections were labelled with 0 and cryptomining ones with 1. The four obtained data sets were split in two separate
subsets for training and testing purposes. Specifically, the data sets from experiments 1 and 4 were joined in DS1 (training) data
set and the other two data sets collected in experiments 2 and 3 were combined into DS2 (testing) data set. In this way, DS1 and
DS2 can be considered of the same nature as they contain similar percentages of encrypted and non-encrypted traffic, types of
internet services and cryptomining protocol flows. Considering the small amount of traffic generated by cryptomining protocols
compared to normal traffic, it is worth noting that an imbalance in the number of cryptomining flows versus normal traffic
appeared in both data sets. In each experiment, around 400K samples of label 0 (normal traffic) appeared against 4K instances
of label 1 (cryptomining traffic).

As previously commented, the goal of this work is to generate synthetic traffic that can substitute real traffic for training a
ML-based traffic classifier that predicts with similar performance than a model trained with real data. Nowadays, most machine
and deep learning techniques use flow descriptions as input to machine learning models. These descriptions are composed of
a set of features that are typically statistical data obtained from externally observable traffic attributes such as duration and
volume per flow, inter-packet arrival time, packet size and byte profiles. Therefore, our GAN experiments will try to generate
synthetic replicas of some statistical data that can be used as features to be input to a machine learning based network traffic
classifier. In the data gathering experiments, a set of 59 statistical features were extracted from each TCP connection.

We selected a reduced set of 4 of these 59 features for our GAN experiments (the rationale of this choice is detailed in
Section 2): (a) number of bytes sent from the client, (b) average round-trip time observed from the server, (c) outbound bytes
per packet, and (d) ratio of packets_inbound / packets_outbound.

Therefore, we obtained a reduced version of DS1 and DS2 containing only the 4 selected features for training and testing
our GANs. It is worth noting that other subsets of features were considered in preliminary experiments obtaining GANs with a
similar performance to the ones shown in this paper.

5.2 Experimental setup
To perform our experiments, we designed and trained independently two WGANs, one for each type of traffic (normal traffic
and cryptomining attacks), applying the set of hyperparameters detailed in Table 1. Using this table as a reference, and taking
into account that in general the training process of a single WGAN took one week on average, we performed a blind random
search in the hyperparameter space guided by the F1-score obtained in a nested ML-model that was executed after each train
epoch and evaluating the marginal quality of the generator at each epoch (see subsection 4.2). In this way, we were able to
independently adjust most of the parameters and observe whether or not the introduced modifications in a hyperparameter
generated an improvement in the F1-score of the classifier. The results are consistent throughout different executions, and the
top generative models in different runs of the random search algorithm return similar performance metrics.

As a nested ML classifier, we used a Random Forest model with 300 trees, which proved to be the best solution for
classification when trained with the original (non-synthetic) dataset (c.f. Section 5.3.1). As shown in a previous work that used
the real datasets DS1 and DS2 for training and testing[13], the performance of neural networks-based classifiers was quite poor
as these models showed significant overfitting even after applying regularization procedures. On the contrary, Random Forest
models exhibited very good performance.

For each type of traffic, the WGAN selected was the one that obtained the best F1-score for the nested classifier in any

15/29

Table 1. GAN hyperparameters.

Range of values
Generator/
Discriminator
FCNN architectures

layers [2..6]

units per layer [100..10000]
Generator Output Activation (linear,custom)

Output filtering with discriminator
(>0, percentile)

(True,False)
[0..100]

Latent vector
with Embedding (categories)

(True,False)
[1..20]

latent vector Fixed 123

noise for latent vector (distr,std) (normal, uniform)
std=[0.1..100]

batch normalization [True..False]
regularization: L2, dropout Fixed values (0,0)
learning rate Default value (0.001)
LeakyRelu alpha Fixed value (0.15)
Percentage of tanh/LeakyRelu
in internal units

[0..100]

Discriminator Noise in fakes
(distribution,std)

(normal,uniform)
[0..20]

Noise in all examples
(distribution,std)

(normal,uniform)
[0..20]

Ratio Label change [0..20]
batch normalization [True..False]
regularization: L2, dropout [0..2], [0..30]
LeakyRelu alpha Fixed value (0.2)
learning rate [0.0001..0.001]

Adaptive mini-batch generator. ratio fake pass Fixed (0.3)
discriminator. ratio TP Fixed (0.01)
discriminator. ratio TN Fixed (0.01)

of its epochs. It is worth noting that this method allows us to find the set of hyperparameter values that produces the best
performance on a single WGAN for a type of traffic and therefore, it is not guaranteed that the best WGAN for normal traffic
works well in combination with the best WGAN for cryptomining traffic. Moreover, we observed that combining the generators
of each WGAN that obtained the best F1-score during partial nested evaluations, did not guarantee to obtain the best synthetic
dataset when used in a nested evaluation of both types of traffic. To solve this issue, we ran a simple heuristic to select pairs of
generators that produced decent results during the nested evaluation without testing all possible combinations of generators
from the two WGANS. These limitations highlight that future works should explore methods that enable the search of the best
hyperparameters in both WGANs at the same time.

Hyperparameters in Table 1 are grouped in four categories: (1) common parameters of the FCNN architecture for generator
and discriminator, (2) generator parameters, (3) discriminator parameters and (4) adaptive mini-batch training parameters. The
hyperparameter space is detailed in "Range of values" column. The text "Fixed value" indicates that the hyperparameter was
explored in a preliminary phase before executing the random search and therefore, the value was previously determined and
no random search was performed on it. Ranges described by a list of values in brackets indicate that the random search was
performed by randomly choosing an element from the list. Conversely, two values in square brackets denote the minimum and
maximum of the range of values to be considered in the random selection.

As optimization algorithms, we used Adam for generators and RMSProp for discriminators. The typical binary cross-entropy
loss function was substituted by the Wasserstein loss. Assuming that the discriminator generates a positive value if an example
is classified as a real example or negative if the example is considered as fake, the Wasserstein loss multiplies the output of the
critic (i.e., the discriminator) by −1 (real examples) or 1 (fake examples). For normal traffic, we set the size of each minibatch
as a ratio (0.002) of the total number of examples (400,000) and for cryptomining traffic, we set this ratio to 0.02 of the total
number of samples (4,000).

Although it has been reported that activating batch normalization in generators can produce correlations in the generated
samples, we decided to include it as a hyperparameter after observing that generators without batch normalization exhibited a
lack of convergence on many occasions.

To provide the generator with more complex non-linear capabilities to learn how to cheat the discriminator, we used

16/29

Leaky-ReLU activation functions with their slope parameter set to α = 1.5 and hyperbolic tangent as activation functions in
the neurons of its hidden layers. The ratio of hyperbolic tangents over the total of activation functions was a configurable
hyperparameter. For the discriminator, we only used Leaky-ReLUs in the hidden layers setting a more aggressive value α = 0.2.

5.3 Experimental results
In this section, we review the results obtained in the conducted experiments when real data sets are replaced by fully synthetic
datasets. For this purpose, we shall compare the performance obtained by a ML classifier when trained with (1) real data
(DS1 dataset), (2) data generated through a simple mean-based generator (working as baseline) and (3) a synthetic dataset
generated with a standard WGAN (with no variants or improvements implemented). The effects of using an improved WGAN
are analysed in section 6. Recall that we denote normal traffic as Label "0" traffic and cryptomining attacks as Label "1" traffic.

5.3.1 Real data
A Random Forest was trained to classify the original real dataset into normal and cryptomining-based traffic. We chose Random
Forest due to its well-known good performance in classification tasks and in particular, when cryptomining and normal traffic
has to be classified[13]. A hyperparameter tuning was conducted through a grid search on the number of classification trees
used, ranging from 10 to 600 estimators. No depth limit was applied to trees. This performance was evaluated against a
validation split excerpted from the training data set. The experiments showed that using more than 300 estimators did not
produced any significant increase in F1-score. After this hyperparameter tuning, the model was re-trained with the whole
training dataset (DS1) and evaluated against the test dataset (DS2). In order to analyse the impact of the decision threshold of
the classifier on the number of false positives and negatives, several thresholds for the model to distinguish between the 0 and
the 1 class were tested, with possible values 0.2,0.4,0.5 (default value), 0.6 and 0.8.

The results obtained in testing are shown in Table 2 and Figure S1, and point out that the performance of the classifier against
the original dataset is very high, with a F1-score of 0.962 with the best threshold (and slightly worse with the default threshold).
Note that the confusion matrix shows that most of the wrongly classified instances are false negatives, i.e. cryptomining traffic
(class 1) samples that are classified as normal traffic (class 0). Only a few false positives were observed. It should be noted that
in certain scenarios this percentage of false positives may not be desirable as it would mean that users may be suffering from
surreptitious use of their resources that would not be detected. On the contrary, a non-negligible number of false negatives
could imply extra efforts as false alarms will be raised in the detection system, which could imply a individual treatment of
each of them.

Recall that the number of classes in the real dataset are greatly unbalanced, with around 400K samples of normal traffic
against 4K instances of cryptomining traffic. This is in perfect agreement with the fact that the previously trained model
might tend to predict more frequently class 0 than class 1, so there are few false positives. For this reason, additionally to the
standard training with the whole dataset, we tested the performance after applying a random subsampling strategy that extracts
a balanced training dataset with approximately 4K instances per class . However, with this strategy, the results of the Random
Forest model worsen. The best threshold for the balanced dataset achieves a F1-score significantly smaller than the default
value for the unbalanced one (and with the default value, the results are much worse). The confusion matrix in this case inverts
the trend, and most of the wrong classified instances are false negative (with a fairly high rate). It is worth mentioning that,
however, the number of false negatives drastically decreases with respect to the unbalance setting.

5.3.2 Naïve mean-based generator
In this section, we evaluate the performance of the previously described ML classifier when the training dataset is fully

substituted with a synthetic dataset generated through a simple mean-based generator. This will serve as a baseline for the
upcoming experiments.

This mean-based generator was created by computing the mean and variance of each of the four features of the dataset per
class. With these data, a completely new dataset was generated by drawing samples from a multivariate normal centered at
the means with diagonal covariance matrix (i.e., each feature is drawn independently) for each class. Afterwards, we fed the
Random Forest model with 300 classification trees with this synthetic dataset and we analyzed its performance on the (real) test
data set (DS2). The results are shown in Table 3 and in Figure S2.

Table 3 shows that the performance is much worse with this naïvely generated dataset. For the best setup (threshold 0.8
with the unbalanced dataset) the F1-score obtained is 0.732, significantly smaller than any result got with the real dataset. The
situation for the balanced dataset is even worse, with a best F1-score of 0.601. In both cases, the confusion matrix also shows a
concerning phenomenon: the number of false positives is very large, even greater than the number of true positives.

Since the generating method for the dataset is intrinsically stochastic (new instances are generated by sampling a random
vector), in Figure S2 we plot the histogram of the obtained F1-scores for several runs of the generative method. None of the
tested instances were able to reach a F1-score greater than 0.76. This strengthen the values shown in Table 3, showing that they
are actually statistically consistent and different runs of the generative method return similar results.

17/29

Table 2. Baseline results using real data for training.

Dataset Quality Measure Best Default

Training 400K/4K
Real dataset

Threshold 0.4 0.5
F1-score 0.962 0.928

Confusion
matrix

399817 183
459 3929

399877 123
1008 3380

Training 4K/4K
Real dataset

Threshold 0.8 0.5
F1-score 0.919 0.793

Confusion
matrix

398602 1398
197 4191

394172 5828
62 4326

Table 3. Baseline results using a naive mean-based
generator for training.

Dataset Quality Measure Best Default

Training 400K/4K
Mean-based generation

Threshold 0.8 0.5
F1-score 0.732 0.664

Confusion
matrix

396318 3682
1894 2493

390060 9940
1416 2971

Training 4K/4K
Mean-based generation

Threshold 0.8 0.5
F1-score 0.601 0.583

Confusion
matrix

377352 22648
839 3548

370528 29472
537 3850

Table 4. Performance of synthetic traffic generated by
standard WGANs. Results on testing using the best models
on training.

Dataset Quality Measure Best Default

Training 400K/4K
Policy 1) dataset

Threshold 0.4 0.5
F1-score 0.936 0.933

Confusion
matrix

399926 74
927 3461

399962 38
998 3390

Training 400K/4K
Policy 2) dataset

Threshold 0.8 0.5
F1-score 0.927 0.915

Confusion
matrix

399449 551
701 3687

399601 399
983 3405

Training 4K/4K
Policy 3) dataset

Threshold 0.8 0.5
F1-score 0.878 0.835

Confusion
matrix

399030 970
1108 3280

396381 3619
315 4073

Table 5. Performance of synthetic traffic when generators
use custom activation functions in the output. Results on
testing using the best models on training.

Dataset Quality Measure Best Default

Training 400K/4K
Policy 1) dataset

Threshold 0.8 0.5
F1-score 0.649 0.555

Confusion
matrix

382755 17245
241 4146

357385 42615
96 4291

Training 400K/4K
Policy 2) dataset

Threshold 0.8 0.5
F1-score 0.622 0.559

Confusion
matrix

377693 22307
163 4224

358897 41103
82 4305

Training 4K/4K
Policy 3) dataset

Threshold 0.8 0.5
F1-score 0.532 0.467

Confusion
matrix

345452 54548]
21 4366

298568 101432
0 4387

Table 6. Performance of synthetic traffic generated by
standard WGANs after filtering fake samples by
discriminator. Results on testing using the best models on
training.

Dataset Quality Measure Best Default

Training 400K/4K
Filtering out fakes

Threshold 0.6 0.5
F1-score 0.925 0.914

Confusion
matrix

399511 489
767 3621

399221 779
722 3666

Table 7. Performance of synthetic traffic generated by
standard WGANs by sampling generators with elitism
among the top 10 models in training sorted by F1-score.
Results on testing.

Dataset Quality Measure Best Default

Training 400K/4K
Top 10 in F1-score

Threshold 0.4 0.5
F1-score 0.951 0.950

Confusion
matrix

399800 200
608 3780

399832 168
658 3730

Table 8. Performance of synthetic traffic generated by
standard WGANs by sampling generators with elitism
among the top 10 models in training sorted by L1-distance
and Jaccard index. Results on testing.

Dataset Quality Measure Best Default

Training 400K/4K
Top 10 L1-distance

Threshold 0.8 0.5
F1-score 0.869 0.858

Confusion
matrix

399491 509
1506 2882

398536 1464
1094 3294

Training 400K/4K
Top 10 Jaccard index

Threshold 0.8 0.5
F1-score 0.884 0.826

Confusion
matrix

399033 967
1031 3357

396881 3119
720 3668

These results evince that the naïve mean-based generator is not a good approach for generating a synthetic dataset when the
data distributions are not easily separable as it happens in our scenario (Section 2). The means of the selected features are so
close that the generated features of different classes overlap and do not capture the real distribution of the data. Hence, these
results point out that a much subtler method of generation is required to obtain a compelling performance.

5.3.3 Standard GAN
In this section, we discuss the performance results attained by a simple WGAN with linear activation functions in the output
layer. No extension of the method is implemented. This kind of models are sometimes referred to as ‘vainilla GANs’ in the
literature due to their simplicity.

Recall from subsection 3.1 that two WGANs were trained to generate samples corresponding to normal traffic and

18/29

cryptomining attacks. Using the variables and intervals defined in table 1, the hyperparameter setup for the two WGANs was
conducted through a random search by screening the F1-score obtained by a nested Random Forest model that evaluated the
marginal quality of the generator in testing with respect to the corresponding type of traffic (subsection 5.2).

The evaluation of the marginal quality of each hyperparameter configuration was done at the end of each mini-batch training
phase, computing the marginal F1-score and saving the stage of the WGAN for later use. Hence, instead of a single trained
WGAN, we got many different WGAN models with the same hyperparameter setup but at different stages of the training. Thus,
each WGAN hyperparameter configuration generated as many F1-scores as mini-batch training steps. Finally, for each type of
traffic, we selected the WGAN configuration that obtained the best F1-score in any of its mini-batches.

For normal traffic, the set of hyperparameters that produced the best performing WGAN was as follows:

• Generator. Architecture: [123,200,500,3000,500,4], output activation: linear, latent vector size: 123, multipoint
single-class embedding: False, noise for latent vector: Normal (0,5), batch normalization: True, Percentage of tanh: 15%

• Discriminator. Architecture: [4,380,800,600,177,23,1], output filtering: False, noise in input (real and fakes): N(0,0.02),
noise in fakes: N(0,0), ratio label change: 0, batch normalization: True, regularization 0.02, dropout:0.1, learning rate
RMS-Prop:0.001.

For cryptomining connections, the set of hyperparameters that produced the best performing WGAN was as follows:

• Generator. Architecture: [123,600,3000,1000,4], output activation: linear, latent vector size: 123, multipoint single-class
embedding: False, noise for latent vector: uniform (0,3.5), batch normalization: True, Percentage of tanh: 5%

• Discriminator. Architecture: [4,280,903,500,23,1], output filtering: False, noise in input (real and fakes): N(0,0.01),
noise in fakes: N(0,0), ratio label change: 0, batch normalization: True, regularization 0.05, dropout:0.15, learning rate
RMS-Prop:0.001.

All WGANs were trained at least 1000 mini-batch steps for normal traffic (label "0") and 1400 for cryptomining attacks
(label "1"). Recall that we have around 400,000 samples of label "0" and only 4,000 of label "1" in DS1 and DS2 (training and
testing datasets). The size of label "1" mini-batches was configured 10 times less than label "0" mini-batches, and therefore, one
epoch of label "0" implied 500 mini-batch train steps, and one epoch of label "1" consisted of only 50 mini-batch train steps.
This is the reason label "1" WGANs were trained with more mini-batches than label "0" WGANs in the same period of time.

Having selected the best performing WGAN configurations for each type of traffic, and in order to compare the quality of
the synthetic traffic with respect to the real traffic, one generator of each type of traffic was chosen from all mini-batch models
previously saved during training. Using this pair of generators, we obtained a combination of samples of the two types of traffic
that formed a fully synthetic dataset. The synthetic dataset was used to feed the training of a nested Random Forest classifier
(with 300 trees) that was subsequently tested with real data (DS2 dataset). The selection of a pair of generators and the number
of samples produced by each of them was done by using the following three policies:

1. An unbalanced dataset (with 400K/4K instances) is generated by picking at random one model for each label among the
partially trained models.

2. An unbalanced dataset (with 400K/4K instances) is generated by picking at random two models for each label. The
instances of the synthetic dataset were obtained by mixing the outputs of the two chosen generative models, in the
expectancy of increasing the variety and diversity of the synthetic dataset.

3. A balanced dataset (with 4K/4K instances) is generated by picking at random one model for each label.

For each policy, the selection of the pair of generators (one for each type of traffic) was drawn 20 times uniformly at
random from the generators of each WGAN configuration. The F1-scores obtained at the end of these 20 experiments are shown
in Figure S3 (Supplementary material). It is worth noting that sampling pairs of generators allow us to study the statistical
distribution of the standard WGAN quality metrics without evaluating all possible combinations of generators.

The results reached by the best model in these experiments are shown in Table 4. The quality measures point out that the
best results were obtained when we applied policy 1), with a slightly better performance compared to the results got when real
data was used (Table 2) and much better performance than for the naïve mean-based generator (Table 3). In contrast, policy
2) reached a lower performance than the single-model policy. However, if we look at the histograms depicted in Figure S3
(subplots (a) and (b)), we observe that even though the best model is obtained with policy 1), the datasets obtained by mixing
two models, as provided by policy 2), tend to be less dependent on the sampled models, with a more uniform distribution of the
F1-scores.

This points out that the variety and diversity generated by using policy 1) tends to generate a large amount of information in
the dataset, which can be exploited by the nested ML model. Should we increase even more the variability of the dataset by

19/29

mixing two models as in policy 2), the results tend to be more consistent between executions, even though the best results are
slightly worse due to the added spurious noise. Moreover, in the line of the results obtained in subsection 5.3.1, the policy 3)
with a generated balanced dataset did not reach compelling results.

5.3.4 Evolution of the training process for standard GAN
To analyze more deeply the results of Section 5.3.3, in this subsection we shall evaluate the evolution of the different quality
measures of the best standard WGAN model throughout its training process.

In Figures 4 and 5, we show the evolution of the different metrics described in Section 4 for the different training epochs
of the best WGAN model for label 0 and label 1, respectively. In particular, Figure 4a shows the evolution of the F1-score in
testing when generated data for the label 0 (normal traffic) is mixed with real data for label 1 (cryptomining traffic), while
Figure 5a depicts the evolution of the F1-score when label 1 is generated and real data is used for label 0. As we can observe,
for both labels the obtained results are quite consistent along the training process (beware of the scale of the plots), with some
marked drops for label 0 that are rapidly recovered, probably due to drastic changes in the generator network.

However, this constant tendency in the F1-score is in sharp contrast with the evolution indicators described in Section 4 of
statistical nature, such as the L1-distance (Figures 4b and 5b) and the Jaccard index of the support (Figures 4c and 5c) with
respect to the original distribution. For these statistical coefficients, we observe that a longer training usually leads to generated
samples of better quality (smaller L1 distance and larger Jaccard index), as predicted by the theoretical convergence results for
GANs. This is a very interesting observation, since it evinces that a better performance of the generated data in a nested ML
is not directly related with a better fit with the original distribution. In this manner, classical measures of the goodness of fit
are not good estimators of the information contained in the generated data, as can be exploited by a nested ML model. This
observation leads us to conjecture that these metrics are not reflecting some quality parameter indicating that the synthetic data
lack some essential information that the real data does.

Analysing F1-scores of each type of traffic, it can be observed that label "0" WGAN generates synthetic data that performs
worse than label "1" WGAN when the synthetic data is used to train a Random Forest classifier. Label "0" synthetic traffic does
not achieve a F1-score greater than 0.58 but label "1" synthetic traffic obtains F1-scores greater than 0.9. Recall that label "0"
traffic is a complex mixture of web, video, shared-folder and other protocols and on the contrary, label "1" traffic is a more
homogeneous traffic generated by four types of cryptomining protocols. We conjecture that the complexity of the former is
more difficult to be learnt and generated by WGANs than the latter.

To strengthen these ideas, in Figure 6 we compare the histogram of real (red color) and synthetic (blue color) data along the
training process. In the x axis we order the intervals s0 < s1 < .. . < s` by hX (s) values (as defined in equation 1) of the real data
from smallest to largest. As we can observe, initially the fit to the target distribution is very poor but rapidly the GANs are able
to detect and replicate the most frequent values. It is worth noting that during the first epochs, WGANs generate a significant
number of nonexistent values (left side of the curves) that tend to disappear as training progresses. For large times, the real and
synthetic distributions are quite similar in agreement with the decrease of the L1-distance and the increase of the Jaccard index.

To finish this section, it is worth mentioning that, even though the theoretical results predict an asymptotic convergence
of the generated data to the original distribution, Figures 4b and 4c seem to point out that this evolution tends to stuck. This
stagnation of the quality measures may be caused by the complexity of the original data, which follow very complicated
distributions with domain constrains such as non-negativity of discreteness, in contrast with the usual graphical data that is
usually taken as input for GANs. However, further research is needed to clarify these issues.

6 Effects of improvements and variants
In this section, we shall discuss the effect of the different variants of GANs introduced in Section 3 for the problem of generating
synthetic traffic data. The setting will be the same as in Section 5.3.3, in which we shall use the performance of a nested ML
model as a quantitative metric to compare the variants with the standard WGAN architecture.

6.1 Custom activation function
In this section, we will evaluate the performance of the GAN after applying the improvement described in Section 3.2. Roughly
speaking, recall that this improvement consists in changing the activation function of the output layer of the generator network
to a Leaky-ReLU function with a small slope. Thanks to this plug-in, we are able to preserve the domain semantic constraints
such as non-negative values for counters. Recall that linear activation functions tend to produce bell-shaped data distributions
and so, negative values can be generated (left side of the data distribution curve). If the output variable in this linear activation
function is a counter or an accumulator, we would be generating nonexistent values.

The obtained results are shown in Table 5 and Figure S4. As we can observe, the results are clearly worse than the ones
obtained with the standard WGAN in subsection 5.3.4. In contrast to the observation of subsection 5.3.3, the performance of

20/29

(a) F1-score on testing (b) L1 distance

(c) Jaccard index (d) Jaccard index from percentile 1

Figure 4. Evolution of F1-score on testing, L1 distance and Jaccard index using GAN generator for label 0. The x-axis
represents the GAN training epochs.

the nested ML model seems to be independent of applying sampling policy 1) or 2). When the synthetic dataset is balanced
using policy 3), the performance slightly gets worse.

However, it is remarkable from these results that the number of false negatives suffered by the ML model drastically
decreases in this case in comparison with the standard GAN. The rationale behind this fact is that, even though the global
quality of the data is not as good as with the standard GAN, the preservation of the domain constraints allows the system to
be more aggressive in the distinction of cryptomining traffic (obviously, with the drawback of a large rate of false positives).
This output may be very useful in those scenarios in which the skipping a flow of cryptomining traffic is very penalized (e.g.,
due to security issues) but getting a high rate of false positives is not so serious (say, because the only consequence is that the
connection is artificially restarted). In these scenarios, the solution based on customized activation functions would be the
choice.

In addition, the use of custom activation functions in the generator output layer will be appropriate if our goal is not only to
use synthetic data to train a ML-based classifier (e.g., a cryptomining attack detector), but to obtain synthetic data that can be
used in other applications in which it is crucial that the data do not contain any nonexistent value (e.g. counters with negative
values).

6.2 Discriminator as quality assurance
Another interesting approach to obtain high-quality generated features is to use the discriminator network of the GAN as a
quality assessor. To be precise, after training the GAN, instead of using all samples synthesized by the generator network, we
add to the generated dataset only those that were classified as real samples by the discriminator agent (D(x)> 0), while the
samples judged as fake (D(x)≤ 0) are ruled out.

In this manner, only those samples that were competitive enough to cheat the discriminator were selected. Obviously, this

21/29

(a) F1-score on testing (b) L1 distance

(c) Jaccard index (d) Jaccard index from percentile 1

Figure 5. Evolution of F1-score on testing, L1 distance and Jaccard index using GAN generator for label 1. The x-axis
represents GAN training epochs.

(a) Label 0. Epoch 1 (b) Label 0. Epoch 5 (c) Label 0. Epoch 200 (d) Label 0. Epoch 800 (e) Label 0. Epoch 1000

(f) Label 1. Epoch 1 (g) Label 1. Epoch 5 (h) Label 1. Epoch 200 (i) Label 1. Epoch 800 (j) Label 1. Epoch 1500

Figure 6. Comparison of synthetic (blue) and real (red) data distributions using GAN generators for label 0 (6a, 6b, 6c, 6d and
6e) and label 1 (6f, 6g, 6h, 6i and 6j) in different epochs (1, 5, 200, 800 and 1500). The 4-dimensional vector has been flattened
into by sorting by frequency in ascending order on the x-axis.

requires to generate significantly more examples than the strictly needed since most of them will be filtered out. However,

22/29

notice that the generative process corresponds to a feedforward procedure and thus is quite fast, so the required time is not
significantly larger.

To test this idea, an experiment was carried out following the sampling policy 1. The results of this analysis are shown in
Table 6 and Figure S6. As we can observe, the F1-scores obtained by the nested ML model are similar to the ones obtained with
a simple GAN, even after applying this filtering. Maybe, high values are obtained slightly more consistently with this filtering
approach, but the results evince that the improvement is not significant.

6.3 Elitism by F1-score
Recall from subsection 5.3.3 that with the generation of synthetic data through standard WGANs for each type of traffic, models
were chosen randomly from all models obtained during the training phase. In this section, we shall explore a different strategy
for sampling more efficiently the pair of models for data generation. Instead of picking a random model among all epochs, we
will only draw samples from the top 10 models obtained throughout all the training epochs, in the sense that they achieved the
best F1-scores. With this strategy, we aim to apply some type of elitism that prevents a drastic fall of the performance due to a
random choice of a bad generator. In addition, this strategy significantly reduces the number of combinations that we have to
evaluate to find which pair of generators produces the best performing synthetic data.

For each type of traffic, we select the top 10 models sorted by F1-score. Drawing a sample uniformly at random from each
top 10 subset, we obtain a pair of generators with which we generate the synthetic dataset by following policy 1), as described
in subsection 5.3.3. The random selection of the pair of generators was done 20 times and the testing results obtained after
using the synthetic data for training the Random Forest classifier are shown in Table 7. These results evince that this strategy
is very effective to increase the performance of the nested ML method. The obtained level of F1-score outperforms the ones
obtained with the standard sampling (Table 4), and are slightly below the obtained results with real data (Table 2) for the best
choice of hyperparameter and even outperforms them with the default value. Additionally, the histograms plotted in Figure S5
evince that with the elitism strategy, the results are much more consistent among executions and most of the results are around
a F1-score value of 0.95 for any choice of the threshold.

Therefore, these results point out that this solution allows us to reach comparable results with fully synthetic datasets
with respect to the ones obtained with real data. Moreover, the obtained data are robust, consistently leading to high values
of F1-scores. This also allows us to speed up the method of choosing the right generators. It is not necessary to conduct an
exhaustive and long training with many epochs but, instead, it is better to save a small number of very good generators and to
mix their results. Furthermore, if the number of training epochs is sufficiently large, the exploration of the best combination
of the pair of generators of the two traffic types can be limited to the evaluation of the subset combinations of the best top-K
subsets of each traffic type.

6.4 Elitism by statistical measures
In this section, we shall explore a variant of the strategy used in the previous subsection 6.3 for sampling with elitism. Again,
we will sample the model used for generating the dataset from the top 10 models in training. However, now, instead of using
F1-score as quality measure, we shall use the statistical measures described in Section 4 of L1 distance and Jaccard index to sort
the models. This analysis is useful to determine whether the statistical measures are a faithful quality control of the performance
expected in a nested ML model.

As in subsection 6.3, policy 1 was used for generating the dataset. The results are shown in Table 8. As the results evince,
the use of these statistical coefficients as quality measures leads to a substantial fall in the observed performance. This trend
is also shown in the histograms plotted in Figure S7, where we observe that the F1-scores obtained with this strategy are
consistently lower than the ones reached with standard WGAN data (Figure S3 and Table 4) and with elitism by F1-score
(Figure S5 and Table 7). It is worth noting that the results obtained with L1 distance as a measure of quality tend to generalize
better to the test split than the one obtained using Jaccard index. This is compatible with the observation that measuring the L1

distance between the distributions is a much more complete comparison than just comparing their supports.
Consequently, the results of this section confirm the observation of subsection 5.3.4. Even though the theoretical results

presented in the literature guarantee the convergence of the synthetic distribution to the original distribution, this convergence
may not be correlated with a better performance of a nested ML model. Future works should explore new statistical metrics
that better capture the essence of the data that optimization algorithms utilise to train ML models.

7 Summary of the results
For the convenience of the reader, we summarise here the main experimental results and observations, as discussed in Sections
5.3, 6.1, 6.2, 6.3 and 6.4.

• A WGAN is able to generate synthetic samples that can fully substitute the real samples needed to train a nested ML
classifier. On this synthetic dataset, the performance of the nested ML is in some cases slightly better than the results

23/29

obtained with the original data, and widely outperforms the results with a mean-based generator. Combining the synthetic
data generated by two WGANs per label produces more consistent results between executions, even though the best
results are slightly worse than that of a single WGAN per label due to the added spurious noise of the mix.

• Measuring the quality of the synthetic data at the end of each epoch, evinces that although statistical measures (L1

distance and Jaccard index) show an asymptotic decrease during the GAN training, there is no direct correlation with
a better performance of the ML nested task. Therefore, these classical measures of the goodness of fit are not good
estimators of the information contained in the generated data with respect to the performance of a nested ML model.

• When a custom activation function at the output of the generator network is applied, the performance of the nested ML
model slightly decreases. However, the new samples can preserve some important domain constrains such as non-negative
values. This property is mandatory when we want to obtain data for use in applications in which it is crucial that the data
do not contain any nonexistent value. Additionally, with this approach the number of false negatives suffered by the
nested ML model drastically decreases.

• No significant improvement is detected when the generated samples are filtered out according to the prediction of the
discriminant agent.

• When the GAN models are selected according to F1-score elitism, the results improve slightly with respect to a standard
GAN and moreover, only a small number of samples are required to obtain a pair of WGANs that perform similarly to
real data in a nested ML task. However, when the GAN models are selected according to their statistical quality metrics
(L1 distance and Jaccard index), the performance of the models decreases. This results shows that these probability-based
coefficients are not suitable for assessing the quality of the synthetic samples.

8 Conclusions and future work
We propose a WGAN architecture to generate synthetic flow-based network traffic that can fully replace real traffic with two
complementary goals: (1) avoiding privacy breaches when sharing data with third parties or deploying data augmentation
solutions and (2) obtaining a nearly unlimited source of synthetic data that is similar to the real data from a statistical perspective
and can be utilised to fully substitute real data in ML training processes while keeping the same performance as ML models
trained with real data.

To demonstrate the feasibility of our solution, we adopted a recently appeared cryptomining attack scenario in which two
types of network traffic were considered: cryptomining attack connections and normal traffic consisting of web, video, P2P
and email among others. A set of four flow-based variables were selected to represent each connection in real-time. These
variables have previously demonstrated their usefulness in ML-based cryptomining attack detectors and allow to compare the
performance of GAN generators with respect to naive approaches.

Instead of convolutional or recurrent networks, fully connected neural networks were used in WGANs architectures as no
topological structure was present in the four selected features. Each type of traffic was modeled with two different WGAN
architectures and using a rich set of hyperparameters we run an extensive number of WGAN trainings. Several enhancements
were proposed to improve the simple WGAN performance: a custom activation function to better adapt the generator output to
the data domain, and several heuristics to apply during GAN training to adapt the learning speeds of the generator and the
discriminator. Although the quality of the resultant synthetic data is similar when custom activation functions were applied in
the output layer of the generator, the significant amount of non-existent synthetic data appearing in the simple GAN was almost
entirely eliminated when these custom functions were used. We observed on a few occasions during WGAN training that when
the learning process was temporarily blocked by one network, the adaptive mini-batches heuristic rapidly managed to rebalance
the learning process. However, in our experiments, none of the other heuristics showed a significant effect on the quality of the
synthetic data or the speed of convergence of the training process. Future work should investigate these heuristics more in
depth to determine whether they can modulate or speed up the ill-convergence of the GAN training.

Due to the lack of metrics to measure the similarity of synthetic and real data in the network traffic domain, we defined
two new metrics based on the L1 distance and the Jaccard index to measure the quality of our synthetic data by comparing the
join statistical distribution of synthetic and real data variables. Regarding the ill-convergence of GAN training, we propose
a simple heuristic to be used as stopping criterion for GAN training. This heuristic selects the intermediate generator that
produces the best performing synthetic data when used to train a ML-based cryptomining attack detector. In this context, the
synthetic data performance metric is the F1-score obtained by the ML-based attack detector in testing. For hyperparameter
search, this heuristic is naturally extended to select the best WGAN configuration as the one with the largest F1-score in any of
its intermediate generators.

24/29

It is worth noting that larger F1-scores were obtained when flow-based variables of cryptomining connections were generated
than when normal traffic connections were replicated. We conjecture that the data distribution of normal connections is by
far much complex as it is composed of many types of traffic (e.g., web, video, email, P2P) and on the contrary, cryptomining
connections although generated with four different protocols, share similar behaviour and therefore, their statistical patterns are
much easier to replicate by WGANs. We increased the size of the WGAN architecture (layers and units) and the number of
training epochs without being able to improve the F1-score to the levels we achieved with the cryptomining WGAN. Future
work should investigate how to break down such a complex data distribution into simpler distributions that can be easily
replicated by WGANs.

Although in our experiments decreases on L1 and Jaccard metrics coincided with increases in the performance of synthetic
data in ML tasks (F1-score), we did not observe a strong correlation between the two types of metrics and therefore, we
cannot apply the former instead of the latter, which entails greater computational costs. Future work should explore new
computationally simple metrics that can accurately replace the costly evaluation of synthetic data performance in ML tasks we
carried out during GAN training.

We experimentally observed that using the best generator of two WGANs trained with different real data distributions to
blend their synthetic data does not produce the best performance results when applied to the same ML task. Therefore, we
propose for each type of data to select one generator uniformly at random from the set of intermediate generators obtained
during the training of the GAN. Having obtained the blend of synthetic data to train the ML classifier, the F1-score is computed
on testing. Elitism on F1-score showed that the number of draws needed to achieve good performance decreased dramatically
with respect to pure random selection. Other elitisms based on L1 distance and Jaccard index were experimented with, but the
obtained results were not good and strengthen previous observations on the lack of strong correlation between these metrics and
F1-score. Future work should investigate why the combined synthetic data from the best performing generators of these two
GANs do not produce the best performance when applied to the same ML task.

In addition to the previous open questions, this manuscript points to several interesting challenges to be researched in future
works:

• Our custom activation functions only approximate exponential-like variable distributions using LeakyRelu functions.
Further research is needed to find more general activation functions that can fit any data distribution and in particular
discrete and noncontinuous.

• Synthetic data generated by a GAN provides a way to circumvent real data privacy restrictions, but a thorough and formal
study on the reverse engineering of synthetic data should be conducted.

• Ill-Convergence and oscillatory behaviour during GAN training is one of the key problems to be solved in GAN topic.
Minimizing and maximizing partially in turns the cost function with respect to different variables tends to generate such
oscillations and therefore, GAN optimization should be done in a more effective way.

• It is crucial to design computationally simple metrics that are strongly correlated with the performance of the synthetic
data in ML tasks. These metrics could be used to drive the cost function during the GAN learning process, which would
allow to implement an efficient stopping criterion. Furthermore, these metrics should be consistent when mixing synthetic
data from two different distributions. Contrary to what we have observed in our experiments, it would be desirable that if
the best generators from two different distributions are selected, the performance of the synthetic data obtained from the
mixture should still be the best when the combined synthetic data is applied to the same ML task.

• Synthetically generated flow-based variables represent the state of a connection at a specific instant in time. It would be
interesting to develop new GAN architectures to generate synthetic time series of these variables for use in the training of
more complex IDS.

References
1. Threat landscape for 5G networks report. https://www.enisa.europa.eu/publications/

enisa-threat-landscape-report-for-5g-networks. Accessed: 2021-04-30.

2. Dasgupta, D., Akhtar, Z. & Sen, S. Machine learning in cybersecurity: a comprehensive survey. The J. Def. Model. Simul.
1548512920951275 (2020).

3. Mahdavifar, S. & Ghorbani, A. A. Application of deep learning to cybersecurity: A survey. Neurocomputing 347, 149–176
(2019).

25/29

https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-for-5g-networks
https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-for-5g-networks

4. Malicious uses and abuses of artificial intelligence. https://www.europol.europa.eu/publications-documents/
malicious-uses-and-abuses-of-artificial-intelligence. Accessed: 2011-04-30.

5. Goodfellow, I. et al. Generative Adversarial Nets. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D. &
Weinberger, K. Q. (eds.) Advances in Neural Information Processing Systems 27, 2672–2680 (Curran Associates, Inc.,
2014).

6. Wang, Z., She, Q. & Ward, T. E. Generative Adversarial Networks in computer vision: A survey and taxonomy. arXiv
preprint arXiv:1906.01529 (2019).

7. Gao, N. et al. Generative Adversarial Networks for spatio-temporal data: A survey. arXiv preprint arXiv:2008.08903
(2020).

8. Jabbar, A., Li, X. & Omar, B. A survey on Generative Adversarial Networks: Variants, applications, and training. arXiv
preprint arXiv:2006.05132 (2020).

9. Pan, Z. et al. Recent progress on Generative Adversarial Networks (GANs): A survey. IEEE Access 7, 36322–36333
(2019).

10. Neville, S. W. & Li, K. F. The rational for developing larger-scale 1000+ machine emulation-based research test beds. In
2009 International Conference on Advanced Information Networking and Applications Workshops, 1092–1099 (IEEE,
2009).

11. Ferguson, B., Tall, A. & Olsen, D. National cyber range overview. In 2014 IEEE Military Communications Conference,
123–128 (IEEE, 2014).

12. Xenakis, C. et al. The SPIDER concept: A Cyber Range as a Service platform, DOI: 10.5281/zenodo.4030473 (2020).

13. Pastor, A. et al. Detection of encrypted cryptomining malware connections with machine and deep learning. IEEE Access
8, 158036–158055 (2020).

14. Arjovsky, M., Chintala, S. & Bottou, L. Wasserstein GAN (2017). arXiv:1701.07875.

15. Bengio, Y., Lecun, Y. & Hinton, G. Deep learning for ai. Commun. ACM 64, 58–65 (2021).

16. Pastor, A., Mozo, A., Lopez, D. R., Folgueira, J. & Kapodistria, A. The mouseworld, a security traffic analysis lab based
on nfv/sdn. In Proceedings of the 13th International Conference on Availability, Reliability and Security, 1–6 (2018).

17. Mozo, A., López-Presa, J. L. & Anta, A. F. A distributed and quiescent max-min fair algorithm for network congestion
control. Expert. Syst. with Appl. 91, 492–512 (2018).

18. Navidan, H. et al. Generative Adversarial Networks (GANs) in networking: A comprehensive survey & evaluation.
Comput. Networks 108149 (2021).

19. Rigaki, M. & Garcia, S. Bringing a GAN to a knife-fight: Adapting malware communication to avoid detection. In 2018
IEEE Security and Privacy Workshops (SPW), 70–75, DOI: 10.1109/SPW.2018.00019 (2018).

20. Hu, W. & Tan, Y. Generating adversarial malware examples for black-box attacks based on GAN. CoRR abs/1702.05983
(2017). 1702.05983.

21. Yin, C., Zhu, Y., Liu, S., Fei, J. & Zhang, H. An enhancing framework for botnet detection using Generative Adversarial
Networks. In 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD), 228–234, DOI: 10.1109/
ICAIBD.2018.8396200 (2018).

22. Vu, L., Bui, C. T. & Nguyen, Q. U. A deep learning based method for handling imbalanced problem in network traffic
classification. In Proceedings of the Eighth International Symposium on Information and Communication Technology,
SoICT 2017, 333–339, DOI: 10.1145/3155133.3155175 (Association for Computing Machinery, New York, NY, USA,
2017).

23. Wang, Z., Wang, P., Zhou, X., Li, S. & Zhang, M. FLOWGAN: unbalanced network encrypted traffic identification method
based on GAN. In 2019 IEEE Intl Conf on Parallel Distributed Processing with Applications, Big Data Cloud Computing,
Sustainable Computing Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom), 975–
983 (2019).

26/29

https://www.europol.europa.eu/publications-documents/malicious-uses-and-abuses-of-artificial-intelligence
https://www.europol.europa.eu/publications-documents/malicious-uses-and-abuses-of-artificial-intelligence
10.5281/zenodo.4030473
arXiv:1701.07875
10.1109/SPW.2018.00019
1702.05983
10.1109/ICAIBD.2018.8396200
10.1109/ICAIBD.2018.8396200
10.1145/3155133.3155175

24. Draper-Gil, G., Lashkari, A. H., Mamun, M. S. I. & Ghorbani, A. A. Characterization of encrypted and VPN traffic using
time-related. In Proceedings of the 2nd international conference on information systems security and privacy (ICISSP),
407–414 (2016).

25. Iliyasu, A. S. & Deng, H. Semi-supervised encrypted traffic classification with deep convolutional Generative Adversarial
Networks. IEEE Access 8, 118–126 (2020).

26. Salem, M., Taheri, S. & Yuan, J. S. Anomaly generation using Generative Adversarial Networks in host-based intrusion
detection. In 2018 9th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON),
683–687 (2018).

27. Lin, Z., Shi, Y. & Xue, Z. IDSGAN: Generative Adversarial Networks for attack generation against intrusion detection.
CoRR abs/1809.02077 (2018). 1809.02077.

28. Cheng, A. PAC-GAN: Packet generation of network traffic using Generative Adversarial Network. In 2019 IEEE
10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), 0728–0734, DOI:
10.1109/IEMCON.2019.8936224 (2019).

29. Ring, M., Schlör, D., Landes, D. & Hotho, A. Flow-based network traffic generation using Generative Adversarial
Networks. Comput. Secur. 82, 156 – 172, DOI: https://doi.org/10.1016/j.cose.2018.12.012 (2019).

30. Ring, M., Wunderlich, S., Grüdl, D., Landes, D. & Hotho, A. Creation of flow-based data sets for intrusion detection. J.
Inf. Warf. 16, 40–53 (2017).

31. Chauhan, R. & Heydari, S. S. Polymorphic adversarial ddos attack on ids using gan. In 2020 International Symposium on
Networks, Computers and Communications (ISNCC), 1–6 (IEEE, 2020).

32. Bai, T. et al. Ai-gan: Attack-inspired generation of adversarial examples. In 2021 IEEE International Conference on
Image Processing (ICIP), 2543–2547 (IEEE, 2021).

33. Chen, J., Zheng, H., Xiong, H., Shen, S. & Su, M. Mag-gan: Massive attack generator via gan. Inf. Sci. 536, 67–90 (2020).

34. Davis, J. & Magrath, S. A survey of cyber ranges and testbeds. Def. Tech. Inf. Cent. (2013).

35. Yamin, M. M., Katt, B. & Gkioulos, V. Cyber ranges and security testbeds: Scenarios, functions, tools and architecture.
Comput. & Secur. 88, 101636 (2020).

36. Ukwandu, E. et al. A review of cyber-ranges and test-beds: current and future trends. Sensors 20, 7148 (2020).

37. Yamin, M. M., Ullah, M., Ullah, H. & Katt, B. Weaponized AI for cyber attacks. J. Inf. Secur. Appl. 57, 102722 (2021).

38. Kamoun, F., Iqbal, F., Esseghir, M. A. & Baker, T. AI and machine learning: A mixed blessing for cybersecurity. In 2020
International Symposium on Networks, Computers and Communications (ISNCC), 1–7 (IEEE, 2020).

39. Kaloudi, N. & Li, J. The AI-based cyber threat landscape: A survey. ACM Comput. Surv. (CSUR) 53, 1–34 (2020).

40. Finamore, A. et al. Experiences of internet traffic monitoring with tstat. IEEE Netw. 25, 8–14 (2011).

41. Nagarajan, V. & Kolter, J. Z. Gradient descent GAN optimization is locally stable. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long
Beach, CA, USA, 5585–5595 (2017).

42. Mescheder, L. M., Geiger, A. & Nowozin, S. Which training methods for GANs do actually converge? In Proceedings of
the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018, 3478–3487 (2018).

43. Salimans, T. et al. Improved techniques for training GANs. arXiv preprint arXiv:1606.03498 (2016).

44. Sønderby, C. K., Caballero, J., Theis, L., Shi, W. & Huszár, F. Amortised MAP inference for image super-resolution. In
5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings (2017).

27/29

1809.02077
10.1109/IEMCON.2019.8936224
https://doi.org/10.1016/j.cose.2018.12.012

45. Arjovsky, M. & Bottou, L. Towards principled methods for training Generative Adversarial Networks. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings
(2017).

46. Roth, K., Lucchi, A., Nowozin, S. & Hofmann, T. Stabilizing training of Generative Adversarial Networks through
regularization. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, 2018–2028 (2017).

47. González-Prieto, Á., Mozo, A., Talavera, E. & Gómez-Canaval, S. Dynamics of Fourier modes in torus Generative
Adversarial Networks. Mathematics 9, 325 (2021).

48. Radford, A., Metz, L. & Chintala, S. Unsupervised representation learning with deep convolutional Generative Adversarial
Networks. In 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings (2016).

49. Odena, A., Olah, C. & Shlens, J. Conditional image synthesis with Auxiliary Classifier GANs. In International conference
on machine learning, 2642–2651 (PMLR, 2017).

50. Weng, L. From GAN to WGAN. arXiv preprint arXiv:1904.08994 (2019).

51. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. & Courville, A. Improved training of Wasserstein GANs. arXiv
preprint arXiv:1704.00028 (2017).

52. Maas, A. L., Hannun, A. Y., Ng, A. Y. et al. Rectifier nonlinearities improve neural network acoustic models. In Proc.
icml, vol. 30, 3 (Citeseer, 2013).

53. Tanimoto, T. T. Elementary mathematical theory of classification and prediction. Intern. IBM Tech. Rep. (1958).

54. van der Vaart, A. W. & Wellner, J. A. Glivenko-Cantelli theorems. In Weak Convergence and Empirical Processes,
122–126 (Springer, 1996).

Acknowledgements
This work was partially supported by the European Union’s Horizon 2020 Research and Innovation Programme under Grant
833685 (SPIDER) and Grant 101015857 (Teraflow). The second author acknowledges the hospitality of the Department of
Mathematics at Universidad Autónoma de Madrid, where part of this work was conducted. The second author has been partially
supported by Spanish Ministerio de Ciencia e Innovación through project PID2019-106493RB-I00 (DL-CEMG).

Author contributions statement
All authors conceived the experiments and A.M. conducted them. All authors analysed the results, wrote, and reviewed the
manuscript. A.M. managed the acquisition of funds.

Additional information
Competing interests: The authors declare no competing interests.

28/29

Supporting information

S1 File. F1-score histograms of all experiments.

29/29

	Related work
	Contribution

	Problem setting
	Proposed model
	Architecture
	Custom activation function for the real data domain
	Heuristics
	Adaptive mini-batches on training
	Noise addition
	Multi-point single-class embedding
	Complementary data

	Performance metrics
	L1-metric and Jaccard index
	Nested ML performance

	Empirical evaluation
	Testbed for data collection
	Experimental setup
	Experimental results
	Real data
	Naïve mean-based generator
	Standard GAN
	Evolution of the training process for standard GAN

	Effects of improvements and variants
	Custom activation function
	Discriminator as quality assurance
	Elitism by F1-score
	Elitism by statistical measures

	Summary of the results
	Conclusions and future work

