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Several methods for outlier detection in Atomic Displacement Parameters – B value is applied to one 
particular macromolecular structure. It is demonstrated that outliers in B values give good indication 
errors in the atomic models. In this particular example it is demonstrated that a hypothesis that atomic 
B values distribution is shifted inverse gamma distribution. Removal of outliers from the set of B values 
improves the estimation of the parameters of the distribution. Local outliers in B values indicate errors 
in atomic models: validity of the assumption that neighbouring atoms must have similar B values has 
been verified. It is expected that local and global outlier detection program and modelling of B values 
as inverse gamma distribution will help to select the reliable atomic models. We suggest that such outlier 
detection and modelling should be part of model building and refinement of macromolecular structures 
using crystallographic diffraction data and single particle cryo electron microscopy maps. 
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1. INTRODUCTION 
 

There are three main methods to derive atomic 
models of biological macromolecules (Berman et al., 
2012; Cavagnero, 2003): crystallography, electron 
microscopy and nuclear magnetic resonance (NMR) 
(Rupp, 2010; Frank, 2006; Clayden et al., 2001). 
Both crystallography and electron microscopy use 
scattering of particles whereas NMR uses various 
spectroscopic measurements to derive structural 
information. Atomic models are derived using 
software packages that use different assumptions 
about the nature of experiment as well as molecules 
under study. The resulting atomic structures should 
be considered as statistical models and they have to 
be validated using as independent as possible 
validation tools (Rupp, 2010; Papageorgiou, 
Mattsson, 2014; Henderson et al., 2012). Validations 
must be done against experimental data as well as 
against prior knowledge about macromolecules. 
There is a number of software tools dealing with the 
problem of validation of atomic structures (Chen et 
al., 2010). In this work we would like to address one 
of the problems standard validation programs 
usually ignore – validation of atomic displacement 
parameters (ADP). After all, if atomic displacement 
parameters can indicate the level of accuracy of 
atomic positions, validation of atomic positions and 
interatomic distances should be adapted 
accordingly; there is no point of validating wrong 
atoms against chemical and structural information.  

In crystallography and electron microscopy 
studies of molecules observed densities are modelled 

as a sum of Gaussians centred at the atomic positions 
(Rupp, 2010): 
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Where ui is the property of the observed atoms in the 
molecule, uij are properties of chemical elements or 
atom types. Each atomic type is described by Ngauss 

Gaussians, usually Ngauss = 5. ci are weights of 
Gaussians. xi are vectors of atomic positions, x is a 
vector of position in the three-dimensional space. 
These models, although are approximations to true 
densities, work sufficiently well in practice. They do 
not account such fine electronic details as bonding 
electrons or charge redistribution as a response to 
interactions with the environment. 𝜌ሺ𝑥ሻ has different 
meaning for different scattering methods: if X-rays 
are used then 𝜌ሺ𝑥ሻ is the electron density, if 
electrons are used then it is the electrostatic potential 
of the molecule. As it can be seen from the formula 
when ui becomes large then the density 
corresponding to this atom become smeared out or 
blurred. If different atoms have wildly different 
ADPs then it can be expected that these atoms will 
have very different densities corresponding to their 
ADPs. If ADPs would represent only oscillation of 
atoms around their centre then it would reflect the 
relative mobility of atoms. In general, it can be 
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expected that oscillations are different in different 
directions resulting in anisotropic ADPs. In this 
work we consider only isotropic ADPs. 

Fourier space counterpart of the expression (1) 
is: 

𝐹ሺ𝑠ሻ ൌ ∑ 𝑓௜ሺ𝑠ሻ𝑒ିଶగమ௨೔|௦|మ/ସ𝑒ିଶగఐ௦௫೔ே
௜ୀଵ    (2) 

Where F(s) is the Fourier transformation of the 
density, s is the vector of positions in the Fourier 
space, fi is the scattering factor of the atom: 
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In both representations we essentially assume that 
the contribution from atoms to the density is 
convolutions of Gaussians describing atomic 
mobility or uncertainty and atoms at rest. 
Uncertainty associated with the Gaussians is called 
atomic displacement parameters. There are several 
contributors to the ADP including: 1) dynamic and 
static disorder in crystals that combine such factors 
as atomic mobility, crystal lattice disorder: 2) errors 
in atomic positions, these have the effect of 
increasing atomic displacement parameters to 
compensate for errors in the atomic positions; 3) 
misidentified atom types, this can either increase or 
decrease ADPs. It would be very difficult to 
disentangle these contributions without additional 
information, therefore when dealing and trying to 
interpret atomic models with the models from the 
PDB we have to bear this in mind. 

Since every atom is linked with the 
neighbouring atoms either via covalent bond or via 
non-bonding interactions we can assume that 
neighbouring atoms have similar oscillation, if they 
deviate from each other too much then such atoms 
should be considered as suspicious and they must be 
revised with care using the observed/estimated 
density. It should also be mentioned that ADPs of 
atoms define their relative contribution to the Fourier 
coefficients via Debye-Waller factor (Debye, 1913) 
which essentially states that this contribution can be 
described as a Gaussian in three-dimensional space. 

Since ADPs are directly related to the 
oscillation or uncertainties of the atoms which are 
modelled as Gaussian that means that ADPs are 
proportional to the second central moments or 
variance of the normal probability distribution. In 
Bayesian statistics it is usual to model the 
distribution of variances of the normal distribution 
as an Inverse Gamma distribution (Witkovsky, 2001; 
Cook, 2008). This distribution has been used 
successfully as natural conjugate priors for Bayesian 
modelling of data with Gaussian population 
distribution (Murphy, 2007).  

Since B values are related to the errors in the 
atomic model they sometimes are used to select 
reliable set of atoms for further analysis (Chen et al., 

2010), therefore it is important to design a procedure 
that would allow reliable detection of atoms with 
unusual ADPs; if ADP is too high then it is likely 
that this atom has been wrongly placed, if it is too 
small then this atom may have been misidentified, 
i.e. it might be heavier than that in the PDB file.  

In this paper we will describe several outlier 
detection algorithms for isotropic ADPs for a single 
entry from the PDB. We will discuss the global and 
local outliers. We will also demonstrate that removal 
of outliers improves the estimation of the parameters 
of shifted inverse gamma distribution proposed as a 
model for B value distributions.  
 
2. METHODS 
 

There is a number of outlier detection methods 
described in the literature (Barnett, 1994; Iglewicz, 
1993; High, 2000). In this paper we will discuss the 
methods we managed to use successfully for 
analyses of ADP distribution.   

Tukey’s box and whisker plot method (Hartwig, 
1979): It is a widely used method in descriptive and 
exploratory statistical data analysis. In this method 
such statistics as the median, 1st and 3rd quartile, 
lower and upper extreme values are plotted on the 
same plot. Such plots help to visually inspect the 
data and see if there are outliers. Tukey's rule of 
determining outliers consists of the following steps: 
1) calculate the interquartile range as IQR = 3rd 
quartile– 1st quartile; 2) calculate the upper fence as 
UpperFence = 3rd quartile + k*IQR; 3) calculate the 
lower fence as LowerFence = 1st quartile – k*IQR. 
Points that fall below the lower or above the upper 
fence are considered outliers. Here k is a factor used 
to identify outliers with various severities:  k=1.5 is 
used for “mild” and k=3 is used for “extreme” 
outliers. In our application we need to remove only 
extreme outliers. 

Z-score: Another standard method is Z-score 
(Shiffler, 1988) that is used to detect outliers in the 
data with using standard deviation and mean. For 
each data point Z values are calculated using the 
formula: 

 𝑍௜ ൌ
௫೔ି௫̄

௦ௗ
 

where 𝑥̅ and sd are the and standard deviation of the 
data. Z-scores with an absolute value greater then k 
are generally considered as outliers. Usually k=3 is 
taken as default which works in practice sufficiently 
well. In this paper Z-score method was used with the 
parameter k=3. This method is not robust to outliers, 
existence of outliers affects the mean and the 
standard deviation calculated from the sample. 
Moreover this method works well with the data 
points sampled from the population with symmetric 
distribution. 

Modified Z-score: Iglewicz and Hoaglin 
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(Iglewicz, 1993) recommend using: 

𝑀௜ ൌ
0.6745ሺ𝑥௜ െ 𝑥෤ሻ

𝑀𝐴𝐷
 

where 𝑥෤ and 𝑀𝐴𝐷 are the median and the median 
absolute deviation respectively. MAD is the median 
of the absolute differences between the data points 
and the median of the data. These statistics are often 
used in robust statistical estimations: median 
replaces the mean and MAD replaces the standard 
deviation. If the population from which the data have 
been drawn has the normal distribution then median 
is equal to the mean and MAD/0.6745 is equal to the 
standard deviation (Venables, 1999). Although the 
authors recommend that modified Z-scores with an 
absolute value of greater than k=3.5 to be considered 
outliers, in practice to detect outliers with various 
severity different values of k should be used. 

For local analysis first for each atom the list of 
its neighbours was calculated using the efficient cell 
algorithm (Mattson, 1999). For this 4.2Å radius was 
used, although the radius is a tuneable parameter. 
Then for each atom B values of its neighbourhood 
was analysed. 
 
3. RESULTS 
  

3.1. Global analyses and outliers. B values of 
the macromolecular structures are proxies for atomic 
mobility as well as errors in the model. The 
modelling of the B value distribution is important for 
understanding of fundamental properties of 
positional errors and atomic mobility. They can also 
be used for outlier detection and in future for map 
calculation.  As it was mentioned in [Masmaliyeva, 
Murshudov 2017, Dauter 2006], the distribution of 
B values can be approximated by a shifted Inverse 
Gamma (IG) distribution. In this paper, as an 
example we used the protein structure with the PDB 
code 4XKT (resolution 1.82, R factor 0.17, Rfree 
0.19) [Bradley et.al. 2015]. Since it is likely that the 
structures in the PDB have been under-refined, 
before any further analysis such as outlier removal 
and estimation of the parameters of the distribution, 
the structure was re-refined using the maximum 
likelihood refinement program Refmac5 
(Murshudov et al., 2004) from the CCP4 (Wimm et 

al., 2011). We applied above described methods to 
determine outliers and to calculate the parameters of 
the distribution before and after removal of outliers. 
The results of the estimations are given on Table 1. 
Figure 1 illustrates the histogram and the fitted 
density plot of the initial B value distribution of the 
protein structure.  Figure 1 and Table 1 show that the 
initial distribution has a long right tail and low shape 
parameter respectively. As it was mentioned in 
(Masmaliyeva, Murshudov, 2017) the shape 
parameter alpha should be around 3.5.  

In Tukey's method for detection of “mild” 
outliers determined with the factor = 1.5 are too 
sensitive for B value distribution as shown in the 
Table 1 and Figure 2 (a). As it is described in (High, 
2000; Hartwig, Dearing, 1979), for asymmetric 
distributions, data values below InnerFence are not 
always outliers and the values higher than 
OuterFences  are almost always outliers. 

It is known (Leys et al., 2013) that the methods 
based on median absolute deviation instead of mean 
and standard deviation are more robust to outlier 
methods because median and median absolute 
deviation themselves are not affected by few outliers 
in contrast to mean and standard deviation. Median 
is robust to 50% outliers meaning that its breakdown 
point is at 50%, MAD is robust to up to 40%.  In our 
application the method using standard Z-score 
method seems to give more sensible answers. The 
reason for this will be a part of future detailed 
analysis.  

The number of outliers detected with each 
method mentioned above is given on Table 1. There 
are 610 atoms with outlying B value which is 
detected by all methods mentioned above. In respect 
that these atoms were detected by all considered 
methods, we expect them to be true outliers. Figure 
5 drawn by the model building program Coot 
(Emsley, 2010) shows the electron density of two the 
amino acid residues detected as outliers. It is clear 
there is no electron density for these atoms 
indicating that these residues have been modelled 
incorrectly. There are just 51 B values which 
determined as an outlier by just one method and all 
them are results of Tukey’s method with k=1.5 
factor. This means that k=1.5 is very low and should 
be treated carefully. 

 
Table 1. Number of outliers detected with different methods in B value distribution of 4XKT protein 

4XKT 
Outliers 
number 

B0 Min Max Mean Median Variance Skewness Kurtosis 1st Q alpha beta

Initial distribution -- 5.356 5.94 131.33 15.98 12.35 154.3 4.52 27.65 10.26 2.77 17.89
Tukey’s method (factor=1.5) 1271 4.828 5.94 26.78 13.22 11.96 17.621 1.11 3.64 10.12 4.5 30.23
Tukey’s method (factor=3) 610 4.9 5.94 36.68 13.96 12.16 29.99 1.63 5.64 10.2 3.87 26.45
Z-score method 383 5.01 5.94 53.24 14.39 12.22 42.16 2.22 9.36 10.22 3.54 23.99
Modified Z-score method 819 4.86 5.94 32.66 13.7 12.09 24.76 1.43 4.86 10.17 4.1 27.94
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Fig. 1. Initial B value distribution of the  
protein 4XKT. 

 

 
(a) 

 

 
(b) 

 
Fig. 2. B value distribution of the protein 4XKT after 
removing outliers with Tukey's method with (a) k=1.5 

and (b) k=3. 

 
 

Fig. 3. Box-plot of initial B value distribution  
of the protein 4XKT. 

 

 
(a) 

 

 
(b) 

 
Fig. 4.  B value distribution of the protein 4XKT after 

removing outliers with (a) Z-score  and (b) modified Z-
score method 
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3.2. Local analysis and outlier detection. When 
atoms are incorrectly placed, the atomic B values 
become much larger than those of neighbouring atoms, 
reflecting errors in the model. It is generally expected 
that neighbouring atoms should have similar B values 
in regions where modelled atoms are positioned 
accurately. If neighbouring atom have wildly different 
B value after refinement, then it usually means that 
some of the atoms are either 1) in the wrong place; or 
2) incorrectly parameterised, for example, occupancies 
and/or element types for some of the atoms are wrong 
(Masmaliyeva, Murshudov, 2017).  

To detect outliers of atoms in their local 
environment modified standard deviation was used. 
As it is mentioned above 𝑠𝑑௠௢ௗ௜௙௜௘ௗ  ൎ  𝑀𝐴𝐷/
0.6745 was used. In the local analysis we detected 
4117 atoms with outlying value of B factor value. 
The largest outlier with B value 
98. 96𝑠𝑑௠௢ௗ௜௙௜௘ௗ corresponded to OE1 of 157th 
GLU residue of the chain D (Figure 5 b). In Figure 6 
residues with a local outliers described in ball-and-
stick mode. With 4.2 radius and modified SD 10.7, 
4117 atoms with outlying B value were detected. 

 
(a) 

 
(b) 

Fig. 5. Electron density of some residues containing an 
atom with outlier B value. (a) 39th residue ARG of A 
chain;  (b) 157th GLU residue of D chain. This figure 
was drawn using coot [Emsley 2010] (Map sigma = 

0.343415). 

 

 
(a) 

 

 
(b) 

Fig. 6. Examples of local outliers; electron density of K and J chains  
of the protein 4XKT with labelled “outliers”.  

This figure was drawn using ccp4mg (Nicholas, 2011) (Map sigma = 0.49). 
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4. CONCLUSION AND FUTURE 
PERSPECTIVES 
 

Outliers are the data points which strongly 
deviate from the centre of the distribution. In this 
paper, global and local B value outliers of three-
dimensional structures of macromolecules are 
discussed. Outliers of B values in a structural model 
indicate errors and/or misinterpretation of the 
scattering data during model building and 
refinement. Several outlier detection techniques 
have been used. These are Tukey’s boxplot, Z-score 
and modified Z-score methods. Removing the 
extreme values of B values improves statistical 
estimation of the B value distribution – shifted 
inverse gamma distribution. B value outlier 
detection should be used as a part of model building 
and refinement. It will ensure that atoms are 
positioned correctly resulting in more accurate 
atomic models that are usually used for drug design 
and bioinformatics analysis purposes.  

When B values are larger than that of the rest of 
the atoms then it means that either these atoms are in 
wrong place or wrongly parametrized. However, 
during refinement of atomic models using scattering 
data it is better to assume that the B-values reflect 
atomic mobility. Therefore, in such cases it is better 
to restrain the B-values of neighbour atoms to be 
similar to each other. If they differ wildly it is usually 
an indication that model contains errors; these errors 
should be detected and corrected during modelling 
stage – if it is done on time and with care then 
accuracy of the resulting atomic models can be 
increased substantially.  

The results of this paper will in future be 
implemented in a python language based program 
and distributed to the structural biology community 
to help them to correct atomic models during model 
building and refinement.  

In future we also plan to extend of B value 
analyses for modelling of the distributions and 
detection of outliers for anisotropic B value cases. It 
seems that by analogy with the isotropic B value 
distribution the distribution of anisotropic B values 
should be modelled using the inverse Wishart 
distribution [Haff 1979] which is used as conjugate 
priors for multivariate normal distribution. We will 
also design new methods for anisotropic B value 
outlier detection: one potential candidate for this is 
BACON algorithm (Nedret, 2000) which seems to 
be able to detect with sufficient accuracy outliers in 
multivariate data. 
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Atomik Temperatur Faktoru – B Qiymәti Paylanmasında Autlayerlәrin Axtarışı 
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Bu mәqalәdә atom yerdәyişmә parametrlәrindә (AYP) vә ya B qiymәtlәrinә uyğun olan ehtimal 
paylanmasından kәnar qiymәtlәri – autlayerlәri müәyyәn edәn bir neçә üsul bir zülal quruluşuna tәdbiq 
olunmuşdur. Bu mәqalәdә göstәrilir ki, belә kәnar qiymәtlәr atom modelindә olan sәhvlәri müәyyәn etmәyә 
kömәk edir. Bundan әlavә AYP-lәrin sürüşәn tәrs qamma paylanmasına uyğun olması hipotezi dә bir zülal 
tәdbiq ilә tәsdiqlәnmişdir. Biz göstәrdik ki, AYP-dә olan kәnar qiymәtlәrin aradan götürülmәsi ehtimal 
paylanmasının parametrlәrinin qiymәtlәrinin dәqiqliyini dә artırır. AYP-dәki lokal kәnar qiymәtlәr bu zülal 
quruluşunda olan sәhvlәrin harada olduğunu göstәrir. Gәlәcәkdә kәnar qiymәtlәrin tapılması nisbәtәn yaxşı 
zülal qurluşlarının seçilmәsinә dә kömәk edәcәk. Bundan әlavә әgәr bu proqram kristalloqrafiya vә tәk 
hissәcik cryo elektron mikroskopiyası vasitәsi ilә model qurulması mәrhәlәsindә istifadә edliәrsә onda alınan 
modelin etibarlılığı daha yüksәk olar. 
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Несколько методов обнаружения выбросов в параметрах атомного смещения - значения B были 
применены к одной конкретной макромолекулярной структуре. Показано, что выбросы в значениях 
“B” указывают на ошибки в атомных моделях. Этот конкретный пример доказывает верность гипотезы 
о скользящем обратном гамма-распределении значений “В”. Удаление выбросов из набора значений 
“B” улучшает оценку параметров распределения. Локальные выбросы в значениях B указывают на 
ошибки в атомных моделях. Нами была проверена справедливость предположения о том, что соседние 
атомы должны иметь одинаковые значения “B”. Ожидается, что локальная и глобальная программы 
обнаружения выбросов и моделирование значений “В” в качестве обратного гамма-распределения 
помогут выбрать надежные атомные модели. Мы предполагаем, что такое обнаружение и 
моделирование выбросов должно быть частью построения модели и уточнения макромолекулярных 
структур с использованием данных кристаллографической дифракции и карт одноэлектронной 
криоэлектронной микроскопии. 
 
Ключевые слова: Макромолекулы, валидация, макромолекулярная кристаллография, обнаружение 
выбросов, обратное гамма-распределение 
 


