

Welcome to the PaNOSC closing event

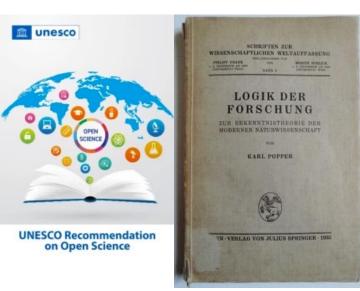
photon and neutron open science cloud

Vincent Favre-Nicolin

ESRF-Experiments Division Algorithms & scientific Data Analysis group

The European Synchrotron

EOSC DREAMS...


- Ubiquitous access to data and compute resources
- Standardise remote access to compute resources
- Open data for open science

- ... We do not (yet?) get *all* of that, because:
- (large) data transfers are not magical
- Lack of economical model for the resources

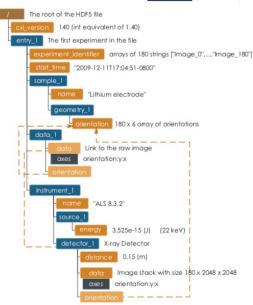
But we now have all essential tools/bricks available

OPEN SCIENCE, OPEN DATA

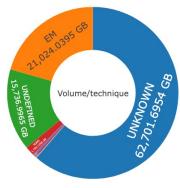
« non-reproducible single occurrences are of no significance to science »

Karl Popper

- The current period is less enlightened that most of us hoped from the open information era of the internet: "alternate facts", "filter bubbles", etc...
- We can't solve all those problems...
- But we have a duty to increase the trust in scientific outputs
- And the cornerstone for that is open reliable & FAIR- data



OPEN SCIENCE, OPEN DATA


My Data									
Filter between dates 🗧 Filter between dates					Search				
Proposal	Beamline	Start	Title	A-Form	Datasets	Files	Release	DOI	
BLC-13868	ID16B	14/06/2022	Test of inline reconstruction	BLC-13868				a	
MI-1352	ID01	09/12/2020	Magnetic Coherent Diffraction Imaging with hard X-rays	MI-1352	8 1.7 GB	60861	13/12/2023	a	
➔ HC-4050	ID01	04/11/2020	In situ and operando coherent diffraction imaging of nanostructures during chemical reactions: towards atomic resolution and time-resolved e	E <u>HC-4050</u>	2 1.3 GB	10767	07/11/2023	a	
BLC-12258	ID01	22/07/2020	ID01 KB alignment + test experiments	BLC-12258				A	
H-MA-69	ID01	18/11/2018	Coherent diffraction imaging of LNMO batteries, Si reference structures, Co microcrystals and Ge microdisks				20/11/2021	DOI 10.15151/ESRF-ES-1526113	
HC-3800	ID01	10/09/2018	Strain imaging in suspended GeSn micro-Bridges for laser application using multi-angle Bragg projection ptychography		0 O Bytes	0	14/09/2021	DOI 10.15151/ESRF-ES-1194643	
MI-1328	ID16A	08/05/2018	High resolution, high throughput pink beam far field Ptychography		209 9.1 MB	209	11/05/2021	DOI 10.15151/ESRF-ES-100129	
MA-3864	ID01	09/03/2018	Strain in operando AlGaN/GaN High-Electron-Mobility Transistor		13 12.4 GB	140	13/03/2021	DOI 10.15151/ESRF-ES-914215	
MA-3571	ID01	10/11/2017	Strain imaging in suspended GeSn micro-disks for laser application using Bragg ptychography		7 1.0 GB	73	14/11/2020	a	
MA-2625	ID01	10/02/2017	Strain fluctuations in strained, ultrathin Silicon and Silicon-Germanium layers and lines using pink beam nano-diffraction		6 92.6 MB	27		A	

3.3 A CXI file with raw tomograp

This file exemplifies the use of Scans.

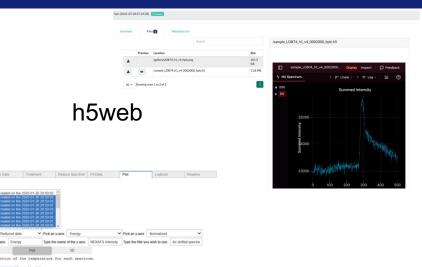
- ✓ Open science policies since the 2010s: ISIS, ILL, ESRF, EuXFEL…
- ✓ Data portals (institutions & federated)
- Hdf5 as standard data format (still painful for some communities) with rich data & metadata
- Progress needed on FAIR formats & their implementation

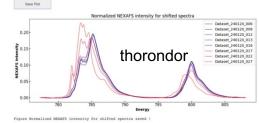
The European Synchrotron

Figure 3: Diagram of a CXI file for storing raw tomographic data.

BIG DATA SCIENCE

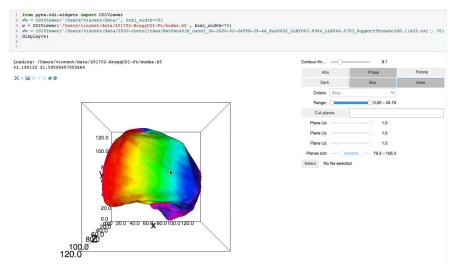
THIS IS YOUR MACHINE LEARNING SYSTEM? YUP! YOU POUR THE DATA INTO THIS BIG PILE OF LINEAR ALGEBRA, THEN COLLECT THE ANSWERS ON THE OTHER SIDE. WHAT IF THE ANSWERS ARE WRONG? JUST STIR THE PILE UNTIL THEY START LOOKING RIGHT.


- The next decade should see a large increase in Big Data analysis (combining many independent experiments)
- Feed open data to machine learning algorithms (or more classical ones)
- Need to work on FAIR / open data formats with the scientific communities, via:
 - Conferences
 - Scientific societies (IUCr,..)
 - ... & implement it on instruments



REMOTE DATA VIEWING & ANALYSIS

VISA – modern virtualisation + customised software environment + support regular desktop tools + ability to share remote environment


Toolkits & widgets for desktop or web data analysis in python

EOSC DREAMS (CTD)

http://eosc.eu/?doi=10.15151%2FESRF-ES-119464351

- From: anywhere (preferably Earth)
- Just give the DOI with your data
- Get an instance transparently paid by an institution (yours, another...)
- Analyse / develop !
- Economical model ?
- Most tools are there thanks to PaNOSC / EOSC developments
- Training material is there, too !
- Cloud resources to be adopted by researchers need to be:
 - *Simple* enough (not *applying* for non-big compute resources)
 - Ubiquitous enough so scientific software developers will adopt them

photon and neutron open science cloud

This is the PaNOSC closing event...

.. but now the exploitation of all the open data & computing tools *begins* !

Page 8 PaNOSC closing event I Vincent Favre-Nicolin I 29 Nov 2022