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1 Introduction

What are the symmetries of gravitational theories? Are these symmetries enough to determine
gravitational dynamics? These questions have proven central to the quest of uncovering the
nature of quantum gravity and revealed new connections among different areas of physics.
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In the presence of gravitational radiation, the asymptotic symmetry group of four-dimensional
asymptotically flat spacetimes (AFS) is necessarily infinite dimensional [1–3]. However, deter-
mining the set of boundary conditions and resulting asymptotic symmetries that accommodate
all physical gravitational phenomena is a challenging task. In recent years, an imprint of asymp-
totic symmetries in the gravitational S-matrix was discovered: the soft graviton theorem [4]
was shown to arise from conservation of BMS supertranslation charges [5, 6]. A wealth of sur-
prising connections followed, from new soft graviton theorems [7, 8], to new asymptotic sym-
metries [9–19] and memory effects [20–22]. The latter turned the art of choosing the “right”
boundary conditions into more of a science by providing physical criteria to single out asymp-
totic diffeomorphisms that should be promoted to symmetries. More generally, the link between
the S-matrix program and celestial holography – a recently proposed holographic description for
gravity in AFS – [23, 24] (see [25–27] for reviews) may lead to further constraints, in particular
by revealing and exploiting new symmetries [28–38].

On the asymptotic symmetry front, these developments emphasized the importance of prop-
erly accounting for boundary degrees of freedom [39–41] and led to a revision of the allowed
boundary conditions and resulting symmetry algebras [12, 17, 19, 42, 43]. At the same time a
considerable amount of progress was achieved at finite distance where, on the one hand, the cen-
tral concept of corner symmetry revealed new types of infinite dimensional symmetries playing
a key role in the decomposition of gravitational systems into subsystems [44–53]. On the other
hand, new approaches in analyzing the gravitational phase space of black hole horizons and null
surfaces [54–63] have been proposed. Finally, a new understanding of the gravitational renor-
malization procedure connecting finite to asymptotic surfaces has been achieved [17, 19, 53, 64].
On the celestial side, some of the highlights include the reformulation of scattering amplitudes
into a basis of asymptotic boost eigenstates [23,24,65–67], an ever-growing catalogue of celestial
symmetries [31,33,68–77] and their associated constraints [32,34–36,78], as well as a framework
amenable to the use of standard conformal field theory (CFT) methods [79–83] for gravity in
AFS. Intriguingly, a w1+∞ structure [84–86] was recently encountered in the algebra of the in-
finite tower of conformally soft graviton symmetries [37, 38]. The origin of this symmetry was
explained in the context of the ambitwistor string [87, 88] and self-dual gravity [89]. Never-
theless, the original derivation of the w1+∞ structure is agnostic to the type of gravitational
theory and should universally govern gravitational scattering at tree level. If true this suggests
that it should also constrain the classical gravitational dynamics. It seems therefore imperative
to look for such higher-spin symmetries in Einstein gravity and to understand their spacetime
interpretation.

As shown in [37], an entire tower of soft symmetries is generated as soon as the generalized
BMS symmetries [9, 69] are supplemented by the sub-subleading soft graviton symmetry. In
[90] we demonstrated that the sub-subleading soft graviton theorem arises as a consequence
of the conservation of a spin-2 charge whose evolution is dictated by one of the leading order
asymptotic Einstein’s equations in a large-r expansion. This is in close analogy with the leading
and subleading soft graviton theorems which were found to arise from conservation of Bondi
mass and angular momentum aspects [5,6,13] associated with the remaining components of the
asymptotic equations of motion at the same order. Equivalently, all universal soft theorems can
be understood as resulting from matching conditions on the leading asymptotic components of
the Newman–Penrose scalars [91–93].

The main goal of this work is to extend the analysis of [90] to a tower of higher-spin charges
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obeying the following recursion relations

Q̇s = DQs−1 +
(1 + s)

2
CQs−2 , s ≥ −1, s ∈ Z. (1)

Here C is related to the asymptotic shear, while for s = 0, 1, 2, Qs correspond to the Bondi mass
and angular momentum aspects, and the spin-2 tensor respectively [94]. Using results of [95],
we verify explicitly that Q3 appears as a subleading term in the asymptotic expansion of the
Weyl scalar Ψ0 that captures the incoming radiation. For s ≥ 4 we conjecture that the simple
evolution (1) corresponds to a truncation of the evolution equations for all subleading terms in
a large-r asymptotic expansion of Ψ0. In the linearized theory, the recursion relations (1) imply
an infinite set of conserved quantities associated with the presence of incoming radiation first
pointed out in [95]. We provide further evidence for the physical relevance of (1) and the role
of Ψ0 in capturing the correct gravitational dynamics by demonstrating that (1), truncated to
quadratic order in the fields, is precisely equivalent to the tower of soft higher-spin symmetries
found in [37,38] by CFT methods.

Motivated by this connection, we embark in a canonical analysis to derive the charge bracket
of a properly renormalized version of the higher spin charges, denoted Qs(τ) with τ a smearing
transformation parameter on the celestial sphere. We restrict our analysis to the linear (in the
radiative data) contribution to the bracket and show that the loop algebra Lw1+∞ is indeed
realized within the phase space of gravity. Explicitly, we find the bracket 1

{Qs(τ), Qs′(τ
′)}1 = Q1

s′+s−1 [(s′ + 1) τ ′Dτ − (s+ 1)τDτ ′] . (2)

This paper is organized as follows. In Section 2 we review the derivation of (1) for s ∈
{−1, 0, 1, 2} from symmetry arguments [94], namely relying on the re-organization of asymptotic
data in terms of primaries with respect to the homogeneous subgroup of the Weyl-BMS group
[19], as well as the boundary conditions necessary in order to establish the leading, subleading
and sub-subleading soft theorems. In Section 3, we discuss the generalization of these conditions
to higher spins. In Section 3.1 we identify the s = 3 charge in the gravitational asymptotic phase
space as the next-to-leading component in a large-r expansion of Ψ0 and recast the corresponding
evolution equation identified in [96] into (1). The same recursion relation is solved for arbitrary s
in terms of the news at linear and quadratic orders in the fields in Section 3.3, and the quadratic
action on the shear is computed. In Section 3.4 we use this action to derive the pseudo-vector
fields associated to the higher spin charge transformations, generalizing the result of [90] to
s ≥ 3.

In Section 4.1 we show that the conservation of these higher-spin charges truncated to
quadratic order is equivalent to the infinite tower of conformally soft theorems discussed in
[37, 38]. In Section 4.2 we prove that this action matches exactly the action of the infinity of
celestial soft symmetries implied by the celestial operator product expansion (OPE) block [37].
In Section 4.3 we review the celestial diamond structure pointed out in [37, 76, 77], extend this
structure to a general (sub)s-leading soft graviton and identify its dual as the order s sub-
leading component of Ψ0. In Section 4.4 we clarify the definition of the light transform of the
soft graviton, as well as its relation to the w-currents identified with the generators of the wedge

1The superscript 1 denotes the truncation to linear order, while D is the 2d covariant derivative on the celestial
sphere.
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subalgebra of w1+∞ symmetry in [97,98] and the canonical soft charges. The OPEs of the latter
two quantities are compared in Section 4.5, revealing an intriguing connection between the two
sets of global and canonical charges. Finally, in Section 4.6 the bracket (2) is derived. Some
technical details are collected in Appendices B, C,D, E, F and G.

2 Preliminaries

In [94] it was shown that the asymptotic Einstein’s equations can be recovered by identifying the
Weyl scalars at null infinity. Moreover, a well-defined notion of non-radiative corner phase space
was proposed. That analysis relies on the observation that asymptotic charges are primary fields
with respect to the homogeneous subgroup HS := (Diff(S) n Weyl) of the Weyl-BMS (BMSW)
group [19]. BMSW is an extension of the original BMS group [1–3] of gravitational symmetries
of null infinity by arbitrary diffeomorphisms on the celestial 2-sphere S. HS is generated by
vector fields Y A(σA) and local Weyl rescalings W (σA) on the sphere, while BMSW= HS n RS

also includes supertranslations parametrized by a function T (σA). We work in Bondi coordinates
where σA are coordinates on S and u is the retarded time along I+.

2.1 Asymptotic phase space

For a given cut u = 0 of I+, primary fields O(∆,s) are defined by their transformation law with
respect to HS,

δ(Y,W )O(∆,s) = (LY + (∆− s)W )O(∆,s), (3)

where LY is the Lie derivative along Y . They are labelled by their spin s and conformal dimension
∆. Some of the primary fields represent radiative degrees of freedom, namely the shear CAB and
the shifted news tensor N̂AB defined by

N̂AB := NAB − τAB . (4)

Here NAB := ĊAB and τAB is the symmetric traceless Geroch tensor [99] defined by the condition
DAτ

AB + 1
2
DBR = 0, where DA is the covariant derivative associated with the 2-sphere metric

and R is the 2d Ricci scalar. The time derivative of the news is also a primary field which we
denote by NAB := ∂uN̂

AB.
Other primary fields correspond to asymptotic charges and label the non-radiative corner

phase space when the no-radiation condition NAB = 0 is imposed [94]. They include the energy
current J A, the covariant mass M, the covariant dual mass M̃, the covariant momentum PA
and the spin-2 tensor TAB. The spinning primaries can be traded for helicity- or spin-weighted
scalars by contraction with frame fields, namely

C := CABm
AmB , N̂ := N̂ABm̄Am̄B , N := NABm̄Am̄B , J := J Am̄A ,
MC :=M+ iM̃ , P := PAmA , T := TABmAmB . (5)

We have introduced a holomorphic frame m = mA∂A with coframe m = mAdσA normalized such
that mAm̄A = 1. Contractions with mA and m̄A contribute helicity +1 and −1 respectively.2

2Both mA and m̄A have dimension-spin (∆, s) = (0, 1), but opposite helicity. Assigning helicity +1 to mA is
conventional.
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We use the same label s to denote the helicity of a spin s primary upon contraction with frame
fields, namely

Os = OA1···Asm
A1 · · ·mAs , O−s = OA1···Asm̄A1 · · · m̄As . (6)

We also define DOs = mAmA1 · · ·mAsDAOA1···As , where DA is the covariant derivative on
the sphere. One needs to recall that (D, ∂u) are operators that respectively raise the dimen-
sion/helicity by (1, 1) and (1, 0).

In the presence of radiation, the helicity scalars associated to the symmetry charges can then
be shown to obey the following evolution equations [11,22,90,94]

J̇ = 1
2
DN , (7a)

ṀC = DJ + 1
4
CN , (7b)

Ṗ = DMC + CJ , (7c)

Ṫ = DP + 3
2
CMC , (7d)

and their complex conjugates. It will be convenient to relabel the gravitational data according
to helicity and define

Q−2 :=
N
2
, Q−1 := J , Q0 :=MC, Q1 := P , Q2 := T . (8)

Then (7a)-(7d) simply become

Q̇s = DQs−1 +
(1 + s)

2
CQs−2 , (9)

for respectively s = −1, 0, 1, 2. The primary scalars (8) can be identified with the leading terms
in an asymptotic expansion of the 5 Weyl scalars (see [94] and Section 3.1 below). Note that the
dimension/helicity of the charges are (∆, J) = (3, s). We summarize all the helicity-weighted
scalars in Table 1.

Primary Scalars C N̂ N J MC P T Qs
Dimension-Helicity (∆, J) (1,2) (2,-2) (3,-2) (3,-1) (3,0) (3,1) (3,2) (3,s)

Table 1: Conformal dimension and helicity of primary scalars.

The asymptotic equations imply that the charges are functionals of the shear and the shifted
news (4), which represent a pair of conjugate variables on I+. Their bracket takes the form
[6,100–102]

{N̂(u, z), C(u′, z′)} =
κ2

2
δ(u− u′)δ(z, z′) , (10)

with κ =
√

32πG.
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2.2 Mode expansions

At I+, the shear C and its conjugate the (shifted) news N̂ := ∂uC̄ admit the mode expansions [5]3

C(u, x̂) =
iκ

8π2

∫ ∞
0

dω
[
aout†
− (ωx̂)eiωu − aout

+ (ωx̂)e−iωu
]
, (11)

N̂(u, x̂) = − κ

8π2

∫ ∞
0

dωω
[
aout†

+ (ωx̂)eiωu + aout
− (ωx̂)e−iωu

]
, (12)

for outgoing gravitons of momenta q = ωx̂. At the quantum level, the bracket (10) is then
replaced by the commutator

[N̂(u, z), C(u′, z′)] = −iκ
2

2
δ(u− u′)δ(z, z′) , (13)

which implies the standard commutation relations for the oscillators

[a−(ωx̂), a†−(ω′x̂′)] = (2π)3 2

ω
δ(ω − ω′)δ(z, z′). (14)

In [90] we used the commutator (13), together with the boundary conditions at the future of
I+

Qs = O(u1+s−α) , C = O(u−α) , with α > 3 when u→ +∞ , (15)

to show how the leading, subleading and, in particular, the sub-subleading soft graviton theo-
rems [4, 7] follow directly from the charge evolution equations (9). To this end, a charge renor-
malization procedure was necessary and antipodal matching conditions [5], as well as crossing
symmetry at the S-matrix level were used. In the sub-subleading case, we found that the evolu-
tion equation for T yields a tree-level collinear contribution to the soft graviton factor subleading
in κ which corrects the original analysis of [7, 103,104].

The main goal of this work is to show that the extension of (9) beyond s = 2 encodes,
after truncation to quadratic order, the tower of soft graviton symmetries [37, 38] uncovered by
completely different methods.

3 Higher spin symmetry

As reviewed in the previous section, the asymptotic Einstein’s equations at leading order in a
large-r expansion can be recast into the form (9) for s = −1, 0, 1, 2 [90]. One of the main results
of our paper is that the extension of (9) to all s ≥ 3 is responsible for the infinite tower of soft
symmetries studied in [37, 38]. In this section we use the results of [95] to explicitly verify this
proposal for s = 3 and argue that these equations appear as a truncation of the asymptotic
Einstein’s equations at subleading orders in a large-r expansion. Moreover, we compute the
action of the linear and quadratic components of Qs on C for all integer s ≥ 3. In the next
section we provide evidence for (9) from celestial holography for all other higher spins, s > 3. In

3 Polarisation factors are included in our definition of C = CABm
AmB .
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particular, we show that the truncation of (9) to quadratic order in the fields implies the w1+∞
algebra structure revealed by [37,38].

As a preliminary step to our analysis, we note that in order to integrate (9) for all higher
spins s, we need to assume that

N̂ = O(|u|−1−s−ε) , with ε > 0 , (16)

and that the geometry reverts to the vacuum at late retarded times, namely

lim
u→+∞

Qs = 0 . (17)

This allows us to integrate (9) resulting in the following recursion relations among the higher
spin charges

Qs = D∂−1
u (Qs−1) +

(s+ 1)

2
∂−1
u (CQs−2) . (18)

We introduced the symbolic notation

(∂−nu Q)(u) :=

∫ u

+∞
du1

∫ u1

+∞
du2 · · ·

∫ un−1

+∞
dunQ(un) , (19)

where the order of integral labels is tailored to the choice of boundary conditions (17). Since
∂−1
u D shift the dimension/helicity by (0, 1), Qs has (∆, J) = (3, s). All higher spin charges have

the same dimension ∆ = 3.
The recursion relation (18) can be solved by expanding each charge according to the number

of oscillator fields it contains, namely

Qs =

max[2,s+1]∑
k=1

Qks . (20)

In particular, Q1
s is the soft charge (linear in oscillators), while Q2

s is the hard charge including
the quadratic (or free) contributions to the charge. Qks for k ≥ 3 include collinear contributions
of order k. Such contributions are present due to the non-linearity of Einstein’s equations and
are suppressed by powers of GN . Nonlinear contributions to the spin s charge have degree at
most s+ 1 for s ≥ 1.

3.1 Higher spin symmetry from gravity

In this section we identify the spin-3 components from the gravity phase space. To this end, we
first recall how the covariant aspects (8) appear in the asymptotic expansion of the Weyl tensor.
Consider an asymptotically flat metric in the Bondi gauge 4

ds2 = −2e2βdu(dr + Φdu) + r2γAB

(
dσA − ΥA

r2
du

)(
dσB − ΥB

r2
du

)
, (21)

4The explicit large-r expansion of the metric coefficients is not crucial for the rest of our analysis and we refer
the reader to [90] for it.
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and introduce the null frame fields

` = ∂r, n = e−2β(∂u − Φ∂r + r−2ΥA∂A) . (22)

The Weyl scalars are defined by

Ψ0 = −C`m`m , Ψ1 = −C`n`m , Ψ2 = −C`mm̄n , Ψ3 = −Cnm̄n` , Ψ4 = −Cnm̄nm̄ , (23)

where Cabcd is the Weyl tensor, C`mm̄n := Cabcd`
ambm̄cnd and similarly for the other contractions.

Ψ4 represents the outgoing radiation at I+ while Ψ0 encodes the incoming radiation.
Their asymptotic expansions take the form

Ψ2−s =
1

r3+s
Qs −

1

r4+s
D̄Qs+1 + · · · . (24)

We see that the spin-3 charge Q3 appears in the next-to-leading order expansion of Ψ0. To
confirm this we use the result of [95] (see also [96]), where it was shown that that this coefficient
satisfies the evolution equation

Q̇3 = DQ2 + 2CQ1, (25)

in agreement with (9). We expect the higher spin charges to arise in the expansion of Ψ0 =
1
r5

∑∞
n=0 r

−nΨ
(n)
0 in the form

Ψ0 =
1

r5
Q2 −

1

r6
D̄Q3 +

∑
s≥4

1

r3+s

(−1)s

(s− 2)!

(
D̄s−2Qs + · · ·

)
, (26)

where the dots refer to terms that are either of cubic or higher order in C, C̄ or to terms purely
quadratic in the same helicity fields C̄. In that sense the higher spin charges Qs that we study
in the following are truncations of the Weyl tensor expansion coefficients for spin higher than 4.5

The fact that the Weyl tensor coefficients are not fully determined from the higher spin charges,
for s ≥ 4, is likely related to a puzzle in celestial holography appearing at spin-4 (see Section
4.2). We leave the precise relation between (9) and the vacuum Einstein’s equations for spin
s ≥ 4 to further studies.

3.2 Linearized Einstein equations

We now give a direct proof that the Ψ0 expansion (33) together with the evolution equations
(9) truncated to linear order in the shear field (i. e. keeping only the spatial derivative term on
the RHS) allow us to precisely recover the full content of the linearized Einstein vacuum theory
at all orders in the large-r expansion around null infinity. In order to do this, we rely on the
analysis of Newman and Penrose in [95] (in Section 4.3 we comment on the relation with the set
of conserved charges introduced there).

Given the asymptotic expansion of the Ψ0 Weyl scalar

Ψ0 =
∞∑
n=0

Ψ
(n)
0

r5+n
, (27)

5The results of [96] support our statement for s = 4.
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at linear order the Bianchi identities imply the following set of evolution equations [95]

Ψ̇
(n+1)
0 = − 1

(n+ 1)

(
D̄D +

1

2
n(n+ 5)

)
Ψ

(n)
0 . (28)

To compare with existing literature we evaluate the operators D and D̄ in complex coordinates
on the round sphere. For the round sphere metric ds2 = 2dzdz̄

P 2 , and we have the complex frame

m̂ := mA∂A = P∂z, where P := (1+zz̄)√
2

. As shown in Appendix A we find that

DOs = P 1−s∂z(P
sOs), D̄Os = P 1+s∂z̄(P

−sOs), (29)

which shows that these are proportional to the edth differential operator on the sphere [105–107].
In particular we have ð =

√
2D and ð̄ =

√
2D̄. These expressions imply that

[D̄,D]Os = sOs. (30)

It is important to remember that D raises the spin by one unit while D̄ lowers the spin by one
unit. The sphere Laplacian acting on spin s observables can be diagonalized in terms of spin
s spherical harmonics Y s

`,m of angular momenta ` ≥ |s|. The eigenvalues of the Laplacian are
given by

D̄DY s
`,m = −1

2
(`− s)(`+ s+ 1)Y s

`,m. (31)

This means that the set of fields of helicity s can be decomposed as

V s = ⊕∞`=sV s
` , (32)

where V s
` is of dimension 2` + 1 and it is spanned by the higher spin spherical harmonics Y s

`,m.
We can use this to decompose

Ψ
(n)
0 = Ψ

(n)
G0 + Ψ

(n)
L0 , (33)

where Ψ
(n)
G0 is the global component of Ψ0, while Ψ

(n)
L0 is its local component. Both components

are spin 2 fields, what differentiates them is the fact that the global component only contains
angular momenta of value ` = {2, · · · , n + 1} while the local component can be decomposed in
terms of fields with angular momenta ` ≥ 2 + n. Explicitly, this implies the expansion

Ψ
(n+1)
G0 =

n∑
k=0

[
Ψ

(n+1)
0

]
`=2+n−k

, with
[
Ψ

(n+1)
0

]
`=2+n−k

∈ V 2
2+n−k , (34)

where
[
Ψ

(n+1)
0

]
`

is the projection of Ψ0 onto V 2
` . Similarly

Ψ
(n+1)
L0 =

∞∑
k=0

[
Ψ

(n+1)
0

]
`=2+n+k

, with
[
Ψ

(n+1)
0

]
`=2+n+k

∈ V 2
2+n+k. (35)

Both components satisfy (28) since there is no mixing at the linear level.
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Now since the operator D̄n maps V 2+n = ⊕∞`=2+nV
2+n
` onto V 2

L := ⊕∞`=2+nV
2
` , the local

component is in the image of the map D̄n acting on spin s = n + 2 fields. This means that we
can express this component in terms of the the higher spin charges, namely

Ψ
(n)
L0 =

(−)n

n!
D̄nQn+2 , for n > 0 . (36)

We thus see that the evolution equation (28) becomes

D̄n+1Q̇n+3 =

(
D̄D +

1

2
n(n+ 5)

)
D̄nQn+2 = D̄n+1DQn+2 , (37)

where we used the commutator (30) to evaluate

D̄DD̄nQn+2 = −
(
n+2∑
`=3

`

)
D̄nQn+2 + D̄n+1DQn+2

= −1

2
n(n+ 5)D̄nQn+2 + D̄n+1DQn+2 . (38)

The equation Es := Q̇s+1 − DQs takes place in V s+1 and the map D̄s−1 : V s+1 → V 2 is injec-
tive. Therefore, the linearized time-development Bianchi identities yield the charge evolution
equations

Q̇s+1 = DQs , for s ≥ 2 , (39)

corresponding to the linear version of our recursion relation (9). The equations for the spins s =
−2,−1, 0, 1 can be obtained from the linearization of the Bianchi identity applied respectively
to Ψ

(0)
4 ,Ψ

(0)
3 ,Ψ

(0)
2 and Ψ

(0)
1 . This means that (9) captures the full content of Einstein’s equations

in the linearized theory for all spins, namely at all orders in the large-r expansion around null
infinity.

We are left with the analysis of the global component Ψ
(n+1)
G0 which contains the Newman-

Penrose global charges. The Newman-Penrose charges [95] are given as the ` = 2+n component

of Ψ
(n+1)
G0 . They are denoted by Gn :=

[
Ψ

(n+1)
0

]
`=2+n

∈ V 2
2+n. From the evolution equation

(28) and the fact that D̄D
∣∣
V 2
2+n

= −1
2
n(n + 5) one gets that they are conserved in time. More

generally the global components are polynomial in the time u and satisfy

∂nuΨ
(n)
G0 = 0, (40)

which follows directly from the evolution equation, and the eigenvalue equation

n∏
k=1

[
D̄D +

1

2
k(k + 5)

]
Y 2

2+p,m = 0, for p ≤ n. (41)

As shown in the Appendix A, these constants uniquely determine, through the evolution equa-
tion, the polynomials Ψ

(n+1)
G0 :

Ψ
(n+1)
G0 (u) =

n∑
k=0

αknGk u
n−k, (42)

11



where αkn are given by

αkn =
(−1)n−k

2n−k
(k + 1)!

(n+ 1)!

(n+ k + 5)!

(2k + 5)!
. (43)

Finally, an important point to appreciate is that Ψ0 captures, in the Bondi gauge, information
about the radial expansion of the sphere metric. In particular, an expansion γAB(r) = qAB −
1
r
CAB+

∑
n r
−nq

(n)
AB implies Ψ

(n)
0 ∝ q(n+3)+· · · . Moreover, the radial Einstein equation G〈AB〉 = 0,

with Gµν the Einstein’s tensor, implies that the r dependence of ∂uΨ0 is determined by its value
at r = ∞. On the other hand, the values of Ψ0 at any cut u = cst. are free data from the
point of view of I+. We expect these free data to be encoded into the higher spin charges Qs
for s ≥ 2.

3.3 Higher spin symmetry action

Having provided some motivation for considering the recursion relations (9), we now study their
implications for the symmetry algebra of null infinity. Substituting (20) into (18) and equating
terms with the same number of oscillators, we find a recursion relation at each order k,

Qks = D∂−1
u (Qks−1) +

(s+ 1)

2
∂−1
u (CQk−1

s−2). (44)

Recalling that

Q−2 = Q1
−2 =

1

2
N , (45)

(44) can be solved order by order in k for any s ≥ −1. We present the explicit solution for the
first two orders k = 1, 2. For the soft charge (k = 1), the second term in (44) drops out and we
simply find

Q1
s(u, z) = (∂−1

u D)s+2Q1
−2(u, z) =

1

2
(∂−1
u D)s+2N (u, z). (46)

This result can be used to evaluate the quadratic (k = 2) contribution for s ≥ 0

Q2
s(u, z) =

1

4

s∑
`=0

(`+ 1)∂−1
u (∂−1

u D)s−`
[
C(∂−1

u D)`N
]

(u, z). (47)

As explicitly shown in [90] for the cases s = 1, 2, the action of the charges Qs on C leads to
divergent contributions when u → −∞ and a renormalization procedure is required. Remark-
ably, as noted in [90] this renormalization yields charges parametrizing the non-radiative corner
phase space [94], meaning the charges are conserved in time when the no radiation conditions
N = 0 = J are imposed. Generalizing the renormalization procedure of [90] to all s, we define
the renormalized higher spin generators

q̂s(u, z) :=
s∑

n=0

(−u)s−n

(s− n)!
Ds−nQn(u, z) . (48)

12



The higher spin charge aspects are then obtained as the limit6

qs(z) = lim
u→−∞

q̂s(u, z). (49)

This limit is now well defined under the assumption (16). We next separately analyze the action
of the renormalized linear and quadratic higher spin generators on the gravitational phase space
variables.

3.3.1 Higher linear generators

The identity7

∂−1
u

(
uk

k!
f(u)

)
= (−1)k

k∑
n=0

(−u)(k−n)

(k − n)!
∂−(n+1)
u f(u) (51)

allows us to relate the the k = 1 contribution to the renormalized higher spin corner charge
aspects (49) to a negative-helicity soft graviton mode, namely

q1
s(z) := lim

u→−∞

s∑
n=0

(−u)s−n

(s− n)!
Ds−nQ1

n(u, z) = Ds+2Ns(z). (52)

Here we have introduced the (negative helicity) (sub)s-leading soft graviton operator

Ns(z) :=
1

2

(−1)s+1

s!

∫ ∞
−∞

duusN̂(u, z) . (53)

Ns can be expressed in terms of modes upon defining the Fourier transform

Nω(z) :=

∫ ∞
−∞

du eiωuN̂(u, z) . (54)

Then

Ns = −1

4

(−i)s
s!

lim
ω→0+

(−∂ω)s
(
Nω + (−1)sN−ω

)
=

κ

16π

(−i)s
s!

lim
ω→0+

(∂ω)s−1(1 + ω∂ω)
(
aout†

+ (ωx̂) + (−1)saout
− (ωx̂)

)
, (55)

where in the last line we used the mode expansion (12). One can check that for s = 0, 1, 2, (55)
reduce to the known expressions for the leading, subleading, and sub-subleading soft charges
[108,109].

6Note that here and in the following we use the short-cut notation F (z) to denote a function on the sphere
implicitly taken to depend on both coordinates z, z̄ on the sphere. We do not imply that F is holomorphic. When
explicitly needed, we restore the dependence on both coordinates.

7This follows from the generalized Leibniz rule

∂−1
u (fg) =

∞∑
n=0

(−1)n(∂nuf)∂−(n+1)
u g. (50)
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The definition (52) extends the result of [90] to all higher spins and relates the higher spin
soft charges to soft graviton modes. Note that since D is an operator of dimension/helicity (1, 1),
the relation q1

s(z) = Ds+2Ns(z) implies that Ns has dimension/helicity (∆, J) = (1− s,−2).8

3.3.2 Higher quadratic generators

For the quadratic contribution k = 2, the renormalized expression takes the form

q̂2
s(u, z) =

1

4

s∑
n=0

n∑
`=0

(`+ 1)(−u)s−n

(s− n)!
∂−(n−`+1)
u Ds−` [C(∂−1

u D)`N
]

(u, z) . (56)

Together with (10), this allows us to compute the action of q̂2
s on C, 9

{q̂2
s(u, z), C(u′, z′)} =

κ2

8

s∑
n=0

n∑
`=0

(−u)s−n

(s− n)!
(`+ 1)

× ∂−(n−`+1)
u

[
Ds−`
z

(
C(u, z)D`

zδ(z, z
′)
) (
∂−(`−1)
u δ(u− u′)

)]
=
κ2

8

s∑
n=0

n∑
`=0

(−)`(−u)s−n

(s− n)!
(`+ 1)

× ∂−(`−1)
u′

[
Ds−`
z

(
C(u′, z)D`

zδ(z, z
′)
) (u− u′)n−`

(n− `)! θ(u′ − u)

]
, (57)

where we have used the identities

∂−au f(u)∂−bu δ(u− u′) = (−1)b∂−bu′ f(u′)∂−au δ(u− u′),

∂−ku [f(u)δ(u− u′)] = −(u− u′)k−1

(k − 1)!
f(u′)θ(u′ − u) .

(58)

The second one follows by recurrence from our definition (19).
Switching the order of the sums and using that

s∑
n=`

(−u)s−n(u− u′)n−`
(s− n)!(n− `)! =

(−u′)s−`
(s− `)! , (59)

(57) becomes

{q̂2
s(u, z),C(u′, z′)} =

κ2

8

s∑
`=0

(−)`(`+ 1)∂
−(`−1)
u′

[
Ds−`
z

(
C(u′, z)D`

zδ(z, z
′)
)
θ(u′ − u)

(−u′)s−`
(s− `)!

]

=
κ2

8

s∑
`=0

∑̀
n=0

(−)s+n
(`+ 1)!

n!(`− n)!
∂
−(`−1)
u′

[(
Dn
z′C(u′, z′)Ds−n

z δ(z, z′)
) u′s−`θ(u′ − u)

(s− `)!

]
.

(60)

8We can also establish this directly since N̂(z) has dimension/helicity (∆, J) = (2,−2), and duus has (∆, J) =
(−s− 1, 0).

9Here and in the following, the subscripts z, z′ in the covariant derivative are added just to keep track of the
quantities they act upon, when this is necessary. They do not represent spatial indices.
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The last equality follows from

C(z)D`
zδ(z, z

′) =
∑̀
n=0

(−1)n

(
`

n

)
Dn
z′C(z′)D`−n

z δ(z, z′). (61)

Note that the action of the renormalized charge is manifestly finite in the limit u→ −∞, which
we can now take.

A final simplification occurs using the Leibniz rule from pseudo-differential calculus [84,110–
113] generalizing (51),

∂αu′

(
u′k

k!
C(u′)

)
=

k∑
n=0

(α)n
n!

u′(k−n)

(k − n)!
∂α−nu′ C(u′) =

1

k!
(∆ + α− 1)k∂

α−k
u′ C(u′), (62)

where the last equality can be proven by recurrence on k and we defined

∆− 1 := u′∂u′ , (63)

while (x)n = x(x− 1)...(x− n+ 1) is the falling factorial. Then10

∂
−(`−1)
u′

(
C(u′)

u′s−`

(s− `)!

)
=

(∆− `)s−`
(s− `)! ∂1−s

u′ C(u′) , (64)

and we conclude

{q2
s(z), C(u′, z′)} =

κ2

8

s∑
`=0

∑̀
n=0

(−)s+n
(`+ 1)!

n!(`− n)!

(∆− `)s−`
(s− `)! ∂1−s

u′ D
n
z′C(u′, z′)Ds−n

z δ(z, z′) . (65)

Evaluating the sum over ` first (see proof in Appendix E),

s∑
`=n

(`+ 1)!(∆− `)s−`
(`− n)!(s− `)! =

(n+ 1)!

(s− n)!
(∆ + 2)s−n, (66)

the bracket (65) becomes

{q2
s(z), C(u′, z′)} =

κ2

8

s∑
n=0

(−1)s+n
(n+ 1)(∆ + 2)s−n

(s− n)!
∂1−s
u′ D

n
z′C(u′, z′)Ds−n

z δ(z, z′). (67)

For the opposite helicity, we find after a similar analysis, presented in Appendix D, that

{q2
s(z), C̄(u′, z′)} =

κ2

8

s∑
n=0

(−1)s+n
(n+ 1)(∆− 2)s−n

(s− n)!
∂1−s
u′ D

n
z′C̄(u′, z′)Ds−n

z δ(z, z′) . (68)

These equations determine the action of the quadratic spin-s charge on the gravitational phase
space. They generalize the actions of the complex mass mC = 8

κ2
q0, momentum p = 1

2
8
κ2
q1 and

spin-2 charge t = 1
3

8
κ2
q2 worked out in [90].

10See Appendix F for a more direct proof in a conformal primary basis.
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The actions (67) and (68) allow us to straightforwardly evaluate the brackets of the quadratic
charges with soft gravitons. In particular, for negative-helicity soft gravitons, using the definition
(53) and the bracket (68), we find that (see Appendix B for a detailed derivation)

{q2
s(z), Ns′(z

′)} =
(−1)s

′+1

2

1

s′!

∫ ∞
−∞

duus
′{q2

s(z), N̂(u, z′)}

=
κ2

8

(−1)s
′+s+1

2

s∑
n=0

(−1)n(n+ 1)

s′!(s− n)!
Ds−n
z δ(z, z′)

×Dn
z′

∫ ∞
−∞

duus
′
∂u(∆− 2)s−n∂

1−s
u C̄(u, z′) . (69)

The terms inside the integral can be rearranged to give11

1

2

∫ ∞
−∞

duus
′
∂u(∆− 2)s−n∂

1−s
u C̄(u, z′) =

1

2

∫ ∞
−∞

du
(∆− s′ − 1)s−n
(∆− s′ − 1)s−1

us+s
′−1N̂(u, z′)

= (−1)s+s
′+n+1(s+ s′ − n)!Ns+s′−1. (70)

In the last equality we have used that the operator ∆ = ∂uu integrates to 0. Substituting this
into (69), we conclude that

{q2
s(z), Ns′(z

′)} =
κ2

8

s∑
n=0

(n+ 1)

(
s+ s′ − n

s′

)
(Dn

z′Ns+s′−1(z′))Ds−n
z δ(z, z′) . (71)

In Section 4 we show that (67) and (68) reproduce the action of the infinite tower of conformally
soft symmetries implied by the celestial OPE block [37], while (71) is equivalent to the special
case when both gravitons in the OPE are taken to be soft. We conclude our analysis of the
(truncated) charge action on phase space by showing that this can be written entirely in terms
of the action of a pseudo-differential operator, generalizing to higher spins one of the central
results of [90].

3.4 Higher spin pseudo-differential operators

In this section we show that the spin-s quadratic charge action is implemented on the gravity
phase space by the action of a pseudo-differential operator. We recall that according to [90] a
pseudo-vector of spin p is an operator of dimension/spin (1, p) given by Dp := Dp

z∂
1−p
u .

Integration of the higher spin charge aspects against a function τs(z) on the sphere yields the
higher spin charges 12

Qs(τ) :=
8

κ2

∫
S

d2z
√
q τs(z)qs(z) . (72)

11 The next equality uses the definition N̂ := ∂uC̄ given above, which is valid only in the spherical metric
frame where N̂ = N .

12 q is the determinant of the leading order 2-sphere metric γAB in asymptotically flat metrics (21).
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The action of the quadratic component of these charges on C is then given by

{Q2
s(τ), C(u, z′)} =

s∑
p=0

us−p

(s− p)!δ
p
Ds−pτs

C(u, z′) , (73)

where δpτp is the action of a spin-p pseudo-vector field on C. This takes the form

δpτpC :=

min[3,p]∑
k=0

(
3

k

)
(p+ 1− k)(Dkτp) [Dp−k∂1−p

u C]. (74)

Note that this action is such that δpτpC = (p + 1)τpDpC + · · · where the dots denote tensorial
corrections. For low spin (74) reduce to

δ0
τ0
C = τ0 ∂uC,

δ1
τ1
C = 2τ1DC + 3(Dτ1)C,

δ2
τ2
C = 3τ2D

2∂−1
u C + 6(Dτ2)D∂−1

u C + 3(D2τ2) ∂−1
u C. (75)

We recognize the action of the supertranslation, diffeomorphism and spin-2 transformations on
the shear [90].

Similarly, the action of the charge on C̄ is given by

{Q2
s(τ), C̄(u, z′)} =

s∑
p=0

us−p

(s− p)!δ
p
Ds−pτs

C̄(u, z′) , (76)

where spin-p pseudo-vector fields δpτp act on C̄ as

δpτpC̄ :=

p∑
k=0

(−1)k (p+ 1− k)(Dkτp) [Dp−k∂1−p
u C̄]. (77)

These identities can be proven by starting with the expression

{Q2
s(τ), C(u, z′)} =

s∑
n=0

(n+ 1)(∆ + 2)s−n
(s− n)!

(Ds−n
z τs)D

n
z′∂

1−s
u C(u, z′) (78)

and using the identity (see Appendix C)

(∆ + 2)s−n
(s− n)!

=

min[3,s−n]∑
k=0

(
3

k

)
us−n−k∂s−n−ku

(s− n− k)!
. (79)

Therefore, we find

{Q2
s(τ), C(u, z′)} =

s∑
n=0

min[3,s−n]∑
k=0

(
3

k

)
(n+ 1)us−n−k

(s− n− k)!
(Ds−n

z τs)D
n
z ∂

1−n−k
u C(u, z′)

=
s∑

p=0

us−p

(s− p)!

min[3,p]∑
k=0

(
3

k

)
(p+ 1− k)(Ds−p+k

z τs)[D
p−k∂1−p

u C(u, z′)]

=
s∑

p=0

us−p

(s− p)!δ
p
Ds−pτs

C(u, z′) (80)

as anticipated. The proof for the action on C̄ is analogous and is given in Appendix C.
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4 Tower of soft theorems and celestial symmetries

In this section we connect the asymptotic symmetry analysis in the previous sections to the
recently uncovered conformally soft theorems [32, 33, 37, 71]. In particular, we derive in Section
4.1 the Ward identities arising from the conservation of all higher spin charges truncated to
quadratic order in κ, that is neglecting all higher order collinear terms. We then demonstrate
that these conservation laws are equivalent to the tower of tree-level conformally soft graviton
theorems revealed by celestial holography. Furthermore, we demonstrate in Section 4.2 that the
quadratic action (67) remarkably reproduces the action of the infinity of celestial soft symmetries
whose algebra was computed holographically in [37]. After clarifying the relationship between
the soft graviton and the w-current in Sections 4.3 and 4.4, we argue in Section 4.5 that the
quadratic parts of qs provide a spacetime realization of the w1+∞ algebra identified in [37, 38].
Finally, we explicitly compute the higher spin charge bracket to linear order in Section 4.6 and
show that this yields a canonical representation of the w1+∞ algebra.

4.1 From conservation laws to soft theorems

We can extend the analysis of the leading, subleading and sub-subleading Ward identities [5,
13, 90, 109, 114] to all higher spin charges qs truncated to quadratic order. The truncated Ward
identity takes the form13

〈out|[q1
s ,S]|in〉 = −〈out|[q2

s ,S]|in〉. (81)

Using (52), (55), as well as crossing symmetry

lim
ω→0+

∂sω
(
ω〈out|aout

− (ωx̂)S|in〉
)

= (−1)s+1 lim
ω→0+

∂sω

(
ω〈out|Sain†

+ (−ωx̂)|out〉
)
, (82)

we have

〈out|[q1
s ,S]|in〉 =

κ

8π

is

s!
lim
ω→0+

(∂ω)sDs+2ω〈out|aout
− (ωx̂))S|in〉 . (83)

At the same time, replacing the bracket (67) with the quantum commutator and using the mode
expansion (11),

[q2
s(z), aout

± (ωx̂′)] = −iκ
2

8

s∑
`=0

(−1)s+`
(1 + `)(2h±)s−`

Γ(1− `+ s)
(−iω)−s+1D`

z′a
out
± (ωx̂′)Ds−`

z δ(z, z′) , (84)

where

2h± = −ω∂ω ± 2 . (85)

We refer the reader to Appendix D for the commutator with negative helicity modes.
The quadratic contribution to the charge conservation law thus yields

〈out|[q2
s ,S]|in〉 = is

κ2

8

n∑
k=1

s∑
`=0

(−1)s+`
(1 + `)(2hk)s−`

(s− `)! (εkωk)
−s+1Ds−`

z δ(z, zk)D
`
zk
〈out|S|in〉 ,

(86)

13Antipodal matching is implicit.
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with εk = +1 for outgoing particles and εk = −1 for incoming ones.
Hence, we see that each conservation law (81) implies a corresponding soft graviton theorem

Ds+2
(

lim
ω→0

(∂ω)sω〈out|aout
− (ωx̂)S|in〉

)
+ κπ

n∑
k=1

s∑
`=0

(−1)s+`(1 + `)(s)`(2hk)s−`(εkωk)
−s+1

×Ds−`
z δ(z, zk)D

`
zk
〈out|S|in〉 C= 0 , (87)

where the equality
C
= means modulo collinear terms. The soft theorems associated with positive

helicity soft graviton insertions can be obtained by considering the conjugate of the higher spin
charges (46), (47).

One can check that for s = 0, 1, 2 we recover the results of [6, 13, 90]. In analogy to the
sub-subleading soft theorem for the spin-2 charge, the full Ward identities for the higher spin
charges contain collinear contributions and induce higher order classical corrections to the soft
theorems (87) up to O(κs) for a given spin-s charge. The precise form of these collinear terms
in the case s = 2 has been derived in [90]. We leave the computation of these corrections for
s > 2 to the future.

4.2 Recovering the celestial soft symmetries

It is natural to suspect that the conservation of the higher spin charges (9) truncated to quadratic
order is related to the infinite tower of (tree-level) soft symmetries of the S-matrix found in [37].
In this section we show that this is indeed correct.

As shown in the previous section, the left hand side of (81) corresponds to a soft insertion at
O(ωs). Computing the right hand side by explicitly taking the O(ωs) soft limit of the scatter-
ing amplitude with a graviton insertion is cumbersome using standard amplitudes techniques.
Nevertheless, it was recently realized that celestial holography—a framework in which scatter-
ing observables are re-expressed in a basis of asymptotic boost rather than the conventional
energy-momentum eigenstates—allows one to make a prediction about the tree-level behavior
of arbitrarily subleading soft graviton insertions. The main tool used in this argument is the
celestial OPE [32,37,115,116] of conformal primary gravitons G±∆. These can be represented as
operators of dimension/helicity (∆,±2) and are simply given by

G−∆(z) := −Γ(∆− 1)

2

∫ +∞

−∞
duu−∆+1N̂(u, z),

G+
∆(z) := −Γ(∆− 1)

2

∫ +∞

−∞
duu−∆+1 ˆ̄N(u, z). (88)

Note that since N̂ (resp. ˆ̄N) is of dimension/helicity (2, 2) (resp. (2,−2)) and u is of dimen-
sion/helicity (1, 0), G±∆ indeed have the expected dimension/helicity (∆,±2). It is convenient to

express this operator in terms of N̂ and ˆ̄N , since these satisfy the asymptotic conditions (16).
Of crucial importance will be the fact that the residues of G−∆ at negative integer dimensions are
precisely the (sub)s-leading soft graviton modes (53),

Res∆=1−s
(
G−∆(z)

)
= Ns(z) =

(−1)s+1

2s!

∫ +∞

−∞
duusN̂(u, z). (89)

19



In Appendix F we show that the conformal gravitons defined in (88) are proportional to conformal
primary boost eigenstates denoted by O±∆ [23, 24] and related to asymptotic on-shell graviton
states by a Mellin transform

|p(ω, z, z̄)〉 → |∆, z, z̄〉 =

∫ ∞
0

dωω∆−1|p(ω, z, z̄)〉. (90)

The relationship is

O±∆ = i∆
8π

iκ
G±∆. (91)

For simplicity, in this and the following sections we work in coordinates where the celestial
sphere is flattened to a plane (the conventions are summarized for example in [32,90]). One can
compactly express the behavior of two gravitons in the antiholomorphic collinear limit.14 One
finds [32,116]

O−∆1
(z1)O±∆2

(z2) ∼ −κ
2

1

z̄12

∞∑
n=0

B(∆1 − 1 + n, 2h2± + 1)
zn+1

12

n!
∂nO±∆1+∆2

(z2) +O(z̄0
12) , (92)

with z12 = z1 − z2, z̄12 = z̄1 − z̄2, and where 2h2± = ∆2 ± 2 and J2 = ±2 for positive and
negative helicity gravitons respectively; we have also introduced the Euler beta function B(x, y).
These expansions resum the contribution from a conformal primary and all its SL(2,R)L descen-
dants [117] and can also be derived from symmetry arguments as shown in [97]. In particular,
the leading term (the primary) is determined by the soft-collinear behavior of scattering ampli-
tudes, while the infinity of (spinning) descendant contributions is required by Lorentz symmetry.
Similarly, in the holomorphic collinear limit one finds

O+
∆1

(z1)O±∆2
(z2) ∼ −κ

2

1

z12

∞∑
n=0

B(∆1 − 1 + n, 2h̄2± + 1)
z̄n+1

12

n!
∂̄nO±∆1+∆2

(z2) +O(z0
12) , (93)

where 2h̄2± = ∆2 ∓ 2.
As anticipated in (89), negative-helicity conformally soft gravitons of dimension ∆ = 1 − s

are defined as [33,116]

Ns(z1) := lim
∆1→1−s

(∆1 + s− 1)G−∆1
(z1), s ≥ 0, s ∈ Z. (94)

In this limit, only a finite number of terms survive on the RHS of (92) which amounts to
the statement that conformally soft gravitons are organized into finite-dimensional SL(2,R)L
representations of dimension s+ 1. Defining the spin s operators

q1
s(z1) := lim

∆1→1−s
(∆1 + s− 1)∂2+s

z1
G−∆1

(z1) = ∂2+s
z1

Ns(z1) (95)

and using (92) we find that

q1
s(z1)G±∆2

(z2) ∼ κ2

8i

s∑
n=0

(−1)n−s(n+ 1)

(2h2± + 1)B(1 + s− n, 2h2± + 1− s+ n)
∂s−nz1

δ(2)(z12)∂nz2G
±
∆2+1−s(z2) .

(96)

14Such a limit can be taken in bulk (2, 2) signature where z, z̄ are real independent variables.
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We have used

lim
ε→0

εB(ε+ n− s, 2h2± + 1) =
(−1)n−s

(2h2± + 1)B(1 + s− n, 2h2± − s+ n+ 1)
, (97)

which follows from the Euler’s reflection formula for the gamma function Γ(x)Γ(1 − x) =
π/sin(πx). It is straightforward to verify that in a conformal primary basis, (67) reduces to
the RHS of (96) for s = 0, 1, 2 [90]. To prove the equivalence between (96) and (67) for all s, we
perform one final manipulation to put (96) into the form

q1
s(z1)G±∆2

(z2) ∼ κ2

8i s!

s∑
n=0

(−1)n−s(2h2±)s−n(s)n(n+ 1)∂s−nz1
δ(2)(z12)∂nz2G

±
∆2+1−s(z2) . (98)

If we consider a negative helicity soft graviton operator and set ∆2 = 1 − s′, the OPE (98)
implies15

q1
s(z)Ns′(z

′) ∼ κ2

8i

s∑
n=0

(n+ 1)

(
s+ s′ − n

s′

)
∂nz′Ns+s′−1(z′)∂s−nz δ(2)(z − z′) . (100)

Therefore, (98) can be seen to be equivalent to the bracket (71), explicitly

q1
s(z)Ns′(z

′)↔ 1

i
{q2

s(z), Ns′(z
′)} . (101)

The OPE for a positive soft graviton can be recovered from the analogous bracket of q2
s with C̄

computed in Appendix D. Similarly, upon defining

q̄1
s(z1) := lim

∆1→1−s
(∆1 + s− 1)∂2+s

z̄1
G+

∆1
(z1) = ∂2+s

z̄1
N̄s(z1), (102)

one can show that (93) implies

q̄1
s(z1)G±∆2

(z2) ∼ κ2

8i s!

s∑
n=0

(−1)n−s(2h̄2)s−n(s)n(n+ 1)∂s−nz̄1
δ(2)(z12)∂nz̄2G

±
∆2+1−s(z2). (103)

To summarize, we have started from a pattern observed in a large-r expansion of Einstein’s
equations and demonstrated it implies the infinity of soft symmetries identified independently,
holographically in [37]. Conversely, we could have started from the celestial OPEs (92) implying
the symmetry action (98) and inferred the recursion relation (9) for the higher spin charges.
We find this perfect match, while perhaps expected, remarkable. It is prime evidence that
celestial holography not only provides a new organizing principle according to symmetry, but
also allows one to infer aspects of the asymptotic gravitational dynamics, which are otherwise
(perturbatively) much harder to access.

15 This can easily be seen by noticing

(−1)n−s(2h2−)s−n
(s)n
s!

= (−1)n−s
(−1− s′)s−n

(s− n)!
=

(s+ s′ − n)!

(s− n)!s′!
. (99)
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We conclude this section with a note of caution. From the celestial point of view, there is
an important caveat which we have so far avoided by treating z, z̄ as independent real variables
(corresponding to bulk theories analytically continued to (2, 2) signature). Our bulk analysis on
the other hand pertains to standard Lorentzian backgrounds corresponding to Euclidean celestial
theories in which z and z̄ are complex conjugates. In this case, as explained in [32], the second
OPE in (92) also receives a contribution with a pole in z12,

O−∆1
(z1)O+

∆2
(z2) ∼− κ

2

1

z̄12

∞∑
n=0

B(∆1 − 1 + n,∆2 + 3)
zn+1

12

n!
∂nO+

∆1+∆2
(z2)

− κ

2

1

z12

(
z̄12B(∆1 + 3,∆2 − 1)O−∆1+∆2

(z2) +O(z̄2
12)
)

+ · · · ,
(104)

where · · · denote terms regular in the limit z12, z̄12 → 0. As G−∆1
is taken conformally soft, the

z−1
12 terms drop out as long as ∆1 ≥ −2 since the OPE coefficients multiplying the z−1

12 term are
regular. This is precisely the order (up to and including s = 3) to which we could explicitly
verify the recursion relation (9). As such, the celestial OPE (104) suggests that (9) receives
corrections beyond s = 3. Further corrections arise from higher dimension operators in the low-
energy effective action [98, 118, 119]. We leave a complete understanding of this, as well issues
arising when mixing helicity sectors [28,29,32,34,36,116] to future work.

We conclude the section with a comment on self-dual gravity. The self-dual sector in the NP
formalism is characterized by the condition Ψ̄i = 0, i = 0, . . . , 4, while Ψ 6= 0 (see e.g. [120]).
In Lorentzian signature this implies, if we impose the reality conditions, the vanishing of the
full Weyl tensor and hence the vanishing of the charges discussed here. Otherwise the metric
is complex. In Euclidean and split signature, real solutions exist and the condition eliminates

one charge helicity sector. Explicitly, the self duality condition implies ˙̄C is constant while C is
arbitrary. Moreover, the mass is proportional to the dual mass. The self duality equations are
known to be integrable [121–124], so it would be interesting to write down the explicit solutions
of the non-perturbative evolution equations beyond s = 3 and show explicitly that our analysis
survives the imposition of the self-duality conditions, which are first class constraints for our
bracket. While we expect simplifications to appear in the full tower of equations of motion, we
still expect higher order corrections to the equations of motion beyond s = 3, yet these should
not modify the w1+∞ charge algebra [87, 89]. We leave a complete asymptotic analysis of the
equations of motion and symmetry algebra in this case to future studies.

4.3 Celestial diamonds

Conformal primary wavefunctions associated with the leading, subleading and sub-subleading
soft gravitons (i.e. with ∆ = 1, 0,−1 and J = ±2) are elements of finite-dimensional global
conformal multiplets [37,76,77]. The properties of these multiplets are summarized by celestial
diamonds16 in the (∆, J) plane [76, 77], where the left and right corners represent soft modes
related by a shadow transform, while the top and bottom corners17 represent generalized con-
formal primaries [125] the soft modes descend from and to respectively (see Fig. 1). Moreover,
the bottom corners of the negative helicity soft graviton diamonds can be shown to be primary

16At ∆ = −1 the diamond degenerates to a line.
17The ∆ axis is taken to be pointing downwards.
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descendants of ∆ = 3 and J = −1, 0, 1, 2 respectively. These coincide precisely with the spin-s
operators defined in (95) for s = −1, 0, 1, 2 or equivalently, the quadratic components q2

s of the
renormalized charges (48).

q̃s : (−1,−s)

∂2−s
z̄

∂2+s
z

Ns : (1 − s,−2)

∂2+s
z

S[Ns] : (1 + s, 2)

∂2−s
z̄

qs(z, z̄) : (3, s)

Ns : (1 − s,−2)

∂s−2
z̄

∂2+s
z

S[qs] : (−1,−s)

∂2+s
z

qs(z, z̄) : (3, s)

∂s−2
z̄

Ñs : (1 + s, 2)

1

Figure 1: Spin-s diamond associated with negative-helicity soft gravitons and s = −1, 0, 1, 2. Operators connected
by long edges have weights h = (∆ + J)/2, h̄ = (∆ − J)/2 related by (h, h̄) ↔ (1 − h, h̄). Operators connected
by short edges have (h, h̄)↔ (h, 1− h̄). Diagonally opposite corners are related by (h, h̄)↔ (1− h, 1− h̄).

q̃s : (−1,−s)

∂2−s
z̄

∂2+s
z

Ns : (1 − s,−2)

∂2+s
z

S[Ns] : (1 + s, 2)

∂2−s
z̄

qs(z, z̄) : (3, s)

Ns : (1 − s,−2)

∂s−2
z̄

∂2+s
z

S[qs] : (−1,−s)

∂2+s
z

qs(z, z̄) : (3, s)

∂s−2
z̄

Ñs : (1 + s, 2)

1

Figure 2: Diamond associated with a negative helicity soft graviton of dimension ∆ = 1−s for s ≥ 3. The weight
labels are (∆, J). Operators connected by long edges have weights related by (h, h̄) ↔ (1 − h, h̄). Operators
connected by short edges have (h, h̄)↔ (h, 1−h̄). Diagonally opposite corners are related by (h, h̄)↔ (1−h, 1−h̄).

For J ≥ 3 similar diamonds can be constructed, however negative (positive) helicity soft
graviton modes now lie at the top, while the corresponding charges (95) ((102)) lie at the right
(left) corner. Dimensional analysis reveals that for arbitrary s, the weights of opposite corner
entries are related by duality (∆, J) ↔ (2 − ∆,−J), while those of entries connected by long
and short edges are related by (∆, J)↔ (1− J, 1−∆) and (∆, J)↔ (1 + J,∆− 1) respectively.
This is summarized in Fig. 2.

While these relations are suggestive of shadow- and light-transforms respectively, a quick
analysis shows that only left and right corners can be mutually non-locally related by shadow
transforms. On the other hand, the spin-s charges can be obtained from conformally soft gravi-
tons by simply taking derivatives as in (95), (102). These features can be understood in terms
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of the representation theory of complex unimodular groups [126]. In the case of SL(2,C), the
weights (∆, J) label representations18 V(∆,J) acting on L2(C). These representations are irre-
ducible unless ∆ ∈ Z and either ∆ > |J | or ∆ ≤ −|J |. It can be shown that in these cases [126]
the representations admit invariant subspaces and hence are reducible or discrete.

Discrete representations admit decompositions of the form

V(∆,J) = P(∆,J) ⊕ F(∆,J), (108)

where P(∆,J) is finite dimensional while F(∆,J) = V(∆,J)/P(∆,J) is infinite dimensional. For negative
weights, the discrete representations P(∆,J) are simply the space of polynomials of degree (−∆−
J,−∆ + J) in (z, z̄). It follows that the maps

∂−∆−J+1
z : V(∆,J) → V(1−J,1−∆),

∂−∆+J+1
z̄ : V(∆,J) → V(1+J,∆−1), (109)

annihilate the polynomial subspaces. These maps therefore identify the quotient space with the
homogeneous space

F(∆,J) = V(1−J,1−∆)
S
= V(1+J,∆−1). (110)

The last isomorphism is given by the shadow transform denoted by S[·]. Finally we have a
duality pairing between F(∆,J) and F(2−∆,−J) given by

(φ|ψ) =

∫
C

d2z[∂−∆−J+1
z ∂−∆+J+1

z̄ φ]ψ , (111)

for for ψ, φ ∈ F(∆,J).
We see that the celestial diamonds compactly capture this general theory, with the top corners

labelled by discrete representations of negative weights and the bottom ones labelled by their

18 V(∆,J) where ∆ ∈ C and J ∈ Z/2 is the space of analytic functions φ(z) such that its inversion given by

φ̂(z) := z−2hz̄−2h̄φ(−z−1) is also analytic, where h = (∆ + J)/2 and h̄ = (∆ − J)/2. This means in particular
that φ(z) admits a Taylor expansion and an asymptotic expansion

φ(h,h̄)(z) ∼ z−2hz̄−2h̄
∞∑

n,m=0

φn,m
znz̄m

(105)

when |z| → ∞. These data allow us to construct a smooth function on C2
∗ homogeneous of degree (−2h,−2h̄) in

(zα, z̄α). This function is given by

Φ(h,h̄)(z0, z1) = z−2h
0 z̄−2h̄

0 φ(h,h̄)(z1/z0) = (−1)2Jz−2h
1 z̄−2h̄

1 φ̂(h,h̄)(−z0/z1). (106)

In celestial holography one often works in a more restrictive functional space Vh ⊗ Vh̄ ⊂ V(h+h̄,h−h̄) in which z
and z̄ are treated as independent variables. In this functional space φ(z) also admits expansions of the form

φ(h,h̄)(z, z̄) ∼ z−2h
∞∑
n=0

φ̄nh(z̄)

zn
∼ z̄−2h̄

∞∑
m=0

φm
h̄

(z)

z̄m
, (107)

where the first expansion is around z =∞ while φ̄nh is assumed to be analytic in z̄; similarly the second expansion
is around z̄ =∞ while φm

h̄
is analytic. The mode coefficients in these conventions are related to the ones of the

“conformally covariant” mode expansions by a shift n→ n+ h,m→ m+ h̄ for h, h̄ ∈ 1
2Z.
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duals. Moreover, the (sub)s-leading soft gravitons Ns are negative discrete when s ≥ 3 and the
corresponding polynomials are of degree (s + 1, s − 3). The long arrows connecting Ns and qs

in Fig. 1, 2 express the isomorphism F(1−s,−2) = V(3,s)
S
= V(−1,−s), while Ñs = ∂s+2

z ∂s−2
z̄ Ns is the

dual soft graviton.
Thanks to the analysis of Section 3.2, we can identify the dual soft graviton with subleading

components of Ψ0

Ñn = Ψ
(n−2)
0 , (112)

with the local component corresponding to the image of the map ∂n−2
z̄ and the global component

in the decomposition (33) corresponding to the kernel of the map ∂n−2
z̄ . More precisely, the

diamond in Fig. 2 contains two maps D2+s : V −2 → V s which is surjective but contains a kernel
Ks = ⊕−s+1

`=−2V
−2
` and the second map D̄s−2 : V s → V 2 which is injective but not surjective. It

contains a co-kernel K̃s = ⊕s−1
`=2V

2
` which corresponds to the global part of Ψ0. The fact that the

kernel of D2+s is isomorphic to the cokernel of D̄s−2 is due to the fact that the shadow transform
S : Ns → Ñs is an isomorphism of Lorentz modules. The dimension of the kernel can be easily
evaluated since Ks = ker[D̄s−2] is spanned by harmonics Ȳ 2

`,m of spin s− 1 ≥ ` ≥ 2. This means
that

dim
(
ker[D̄s−2]

)
=

s−1∑
`=2

(2`+ 1) = (s+ 2)(s− 2) , (113)

and this corresponds to the dimesnion of the free parameters in the parametrisation of the global
charges in (34).

4.4 Soft currents and w-currents

In this section we clarify the relationship between the soft graviton and the w-current as well as
the role of the light transform.

Soft gravitons Ns are operators of weights (h, h̄) =
(
−1+s

2
, 3−s

2

)
. As discussed in the previous

section, this implies that they fall into discrete SL(2,C) representations for s ≥ 3. Moreover,
according to (108) they admit a decomposition into irreducible components namelyNs = Hs+Ňs,
where Hs is a polynomial in z while Ňs has a Laurent series expansion

Hs(z, z̄) =
s+1∑
n=0

znN−ns (z̄), Ňs(z, z̄) =
∞∑
n=1

Nn
s (z̄)

zn
. (114)

On the one hand, since the derivative operator ∂s+2
z annihilates Hs, the soft charge is formally

encoded in the Laurent component as

q1
s = ∂s+2

z Ňs(z, z̄) =
∞∑
n=1

(−1)sNn
s (z̄)

z(s+2+n)

(s+ 1 + n)!

(n− 1)!
. (115)
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The polynomial component determines, on the other hand, the w-current19 [37, 38,97]

Ws(z, z̄) :=
s+1∑
n=0

(−1)(n+s)N−ns (z̄)

z(s+2−n)
n!(s+ 1− n)!. (116)

In [97] it is argued that these w-currents of dimension/helicity (∆, J) = (3, s) (the same
dimension as q1

s) are constructed from light transforms defined as 20

L[O(h,h̄)](z, z̄) :=

∫
R

dw

2πi

1

(z − w)2−2h
O(h,h̄)(w, z̄). (117)

Such transformations are justified upon analytic continuation to (2, 2) signature spacetimes.
Applying this transformation to the negative helicity graviton G−∆ yields a field of dimension
(3, 1 −∆). Nevertheless, it turns out that in the limit ∆ → 1 − s, singularities arise that have
not been properly accounted for in previous discussions. In particular, light transforms of fields
of negative weights are singular, meaning that Ws cannot be simply characterized as the limit
ε→ 0 of the the light transform of G−1−s+ε. What we find instead is that

(−1)(s+3)Γ(s+ 3)L
[
G−1−s+ε

]
(z, z̄) =

q1
s(z, z̄)

ε
+Ws(z, z̄) + o(ε). (118)

In other words, the w-current appears as the renormalized light transform

Ws = lim
ε→0

(
(−1)(s+3)Γ(s+ 3)L [G1−s+ε]−

q1
s

ε

)
:= L [Ns] . (119)

The proof of this statement is given in Appendix G. We see that the w-current and the soft
charge correspond to different mode projections of the soft graviton in the limit ∆ → 1 − s.
In particular, the soft charge q1

s arises from the singular component of L[G1−s+ε], while the w-
current is extracted from the regular component of L[G1−s+ε]. Moreover, as shown in [38], this
current is the image of the polynomial soft graviton of degree (s+ 1) in z.

4.5 w1+∞ structure from charge recursion

Despite these distinctions, in this section we demonstrate an intriguing relation between OPEs
involving the spin-s charges and OPEs involving the w-currents constructed from the light-
transform in [38,97].

We start with the delta-function identity

∂nxδ(x) =
(−1)nn!

xn
δ(x) (120)

or equivalently

∂s−nz1
δ(2)(z12) =

(−1)s−n(s− n)!

zs−n12

δ(2)(z12), (121)

19 Here we label current by their spin s while in [97] they are labelled by the half integer q = (s + 3)/2. In

other words W here
s = w

s+3
2

there.
20 In [97] the light transform for positive helicity graviton is considered.
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and re-express the symmetry action (98) of the soft graviton as

q1
s(z1)G±∆2

(z2, z̄2) ∼ κ2

8i

s∑
n=0

(n+ 1)(2h2±)s−n
zs−n12

δ(2)(z12)∂nz2G
±
∆2+1−s(z2, z̄2). (122)

We recall that the identities derived from same-helicity OPEs hold in general, while the ones ob-
tained from opposite helicity OPEs are only valid in holomorphic and antiholomorphic collinear
limits respectively as discussed in Section 4.2.

On the other hand, in [97] w-currents of the same spin were shown to obey the following
OPEs [97]21

Ws(z, z̄)O(h,h̄)(0, 0) ∼ − κ2

16πiz̄

s∑
n=0

(n+ 1)Γ(2h+ 1)

Γ(2h+ 1− s+ n)
zn−s−1∂nO((2h+1−s)/2,(2h̄+1−s)/2)(0, 0).

(123)

Simplifying the ratio of Gamma functions and letting O be a graviton, (123) reduces to

Ws(z, z̄)G±∆(0, 0) ∼ − κ2

16πizz̄

s∑
n=0

(n+ 1)(2h±)s−n
zs−n

∂nG±∆−s+1(0, 0). (124)

(∆, J) = (1 − s,−2)
Ns

(∆, J) = (3, s)
Ws

(∆, J) = (3, s)

q1s

L.T. ∂2+s
z1

1

Figure 3: There are two maps from a soft graviton Ns with (∆, J) = (1−s,−2) to an operator of (∆, J) = (3, s) :
the light transform defined in (119) and the action of s + 2 derivatives ∂2+s

z1 . The resulting operators have the

same OPE with massless celestial operators upon trading 2πδ(2)(z) for 1/(zz̄).

Remarkably, comparing (122) and (124), we see that while they differ in their singularity
structures, their OPE data are identical after the replacement of 1/zz̄ with the contact term
2πδ(2)(z). We summarize this in Figure 3. The w-currents (116) were shown to generate a w1+∞
algebra in [37,38,97], we take this as strong evidence that the higher spin charges (47) similarly
generate a w1+∞ symmetry. Remarkably, in the next section we show that this indeed turns out
to be true at the linear order in the algebra. We leave an explicit check to higher orders, as
well as the classical corrections arising from the collinear contributions (20) for k ≥ 3 to future
studies.

21To compare with [38, 97] one needs to set 2q = s + 3. Moreover, our normalization of the w-current differs

by a factor κ2i
8π from the one employed there.
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4.6 Charge bracket

We conclude our analysis by showing that the higher spin charge aspects (48), (49) provide a
realization of the w1+∞ algebra at linear order. We present here the main steps of the calculation
of the linear part of their Poisson bracket, namely we compute

{qs(z), qs′(z
′)}1 = {q2

s(z), q1
s′(z

′)}+ {q1
s(z), q2

s′(z
′)} . (125)

The details are deferred to Appendix E. To compute the algebra above we need to take and
extra derivative Ds′+2

z′ of (71). Starting with the first bracket in (125), this gives

{q2
s(z), q1

s′(z
′)} =

κ2

8

s∑
n=0

(n+ 1)

(
s′ + s− n

s′

)
Ds′+2
z′

(
Dn
z′Ns′+s−1(z′)Ds−n

z δ(z, z′)
)

=
κ2

8

s+s′+2∑
p=0

G(s, s′, p)
(
D1−p
z′ q1

s′+s−1(z′)
)
Dp
zδ(z, z

′) , (126)

where

G(s, s′, p) :=

min[p,s]∑
n=max[0,p−s′−2]

(−)p+n(s− n+ 1)

(
s′ + n

s′

)(
s′ + 2

p− n

)
. (127)

In Appendix E we show that

G(s, s′, p) = 0 , when 2 ≤ p ≤ s+ 1 , (128)

while

G(s, s′, 0) = 1 + s and G(s, s′, 1) = −(2 + s+ s′). (129)

Moreover, we find that when p ≥ s+ 2,

G(s, s′, p) =
(−)p+s(s+ s′ + 2)!

(p− s− 2)!(s+ s′ + 2− p)!s!
1

p(p− 1)
. (130)

Therefore we obtain the final expression

{q2
s(z), q1

s′(z
′)} =

κ2

8

[
(s+ 1)Dz′

(
q1
s′+s−1(z′)δ(z, z′)

)
− (s′ + 1)q1

s′+s−1(z′)Dzδ(z, z
′) (131)

+
s+s′+2∑
p=s+2

G(s, s′, p)
(
D1−p
z′ q1

s′+s−1(z′)
)
Dp
zδ(z, z

′)

]
.

The second bracket in (125) is obtained after the exchange s↔ s′, z ↔ z′ as

{q1
s(z), q2

s′(z
′)} = −κ

2

8

s+s′+2∑
p=0

G(s′, s, p)
(
D1−p
z q1

s′+s−1(z)
)
Dp
z′δ(z, z

′) . (132)
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An analogous split of the sums allows us to write the RHS as

{q1
s(z), q2

s′(z
′)} = −κ

2

8

s+s′+2∑
p=0

G(s′, s, p)
(
D1−p
z q1

s′+s−1(z)
)
Dp
z′δ(z, z

′)

= −κ
2

8

[
(s′ + 1)Dz(q

1
s′+s−1(z)δ(z, z′))− (s+ 1)q1

s′+s−1(z)Dz′δ(z, z
′)

+
s+s′+2∑
p=2

G(s′, s, p)
(
D1−p
z q1

s′+s−1(z)
)
Dp
z′δ(z, z

′)

]
. (133)

The last sum above can be recast as

s+s′+2∑
p=2

G(s′, s, p)
(
D1−p
z q1

s′+s−1(z)
)
Dp
z′δ(z, z

′)

=
s+s′+2∑
m=0

 s+s′+2∑
p=max[m,2]

(−)m

(
p

m

)
G(s′, s, p)

(D1−m
z′ q1

s′+s−1(z′)
)
Dm
z δ(z, z

′) , (134)

where we have used Leibniz rule to exchange the z and z′ derivatives and exchanged the sums.
It can be shown that the terms in (134) cancel exactly the RHS of (131) upon adding up the
two brackets in (125). This is due to the property (see proof in Appendix E)

s+s′+2∑
p=m

(−)m

(
p

m

)
G(s′, s, p) = G(s, s′,m) for 0 ≤ m ≤ s+ s′ + 2 . (135)

We are thus left only with the local terms p = 0, 1 in (133) and the final result is

{qs(z), qs′(z
′)}1 =

κ2

8

[
− (s′ + 1) q1

s′+s−1(z′)Dzδ(z, z
′) + (s+ 1)q1

s′+s−1(z)Dz′δ(z, z
′)
]
, (136)

corresponding to a w1+∞ algebra. In terms of the higher spin charges (72) the algebra (136)
takes the form

{Qs(τ), Qs′(τ
′)}1 = (s′ + 1)Q1

s′+s−1(τ ′Dτ)− (s+ 1)Q1
s′+s−1(τDτ ′) . (137)

It is important to note that the transformation parameters τs(z, z̄) belong to the SL(2,C) repre-
sentations V(−1,−s) with weights (h, h̄) = (− s+1

2
, s−1

2
). Similarly τ ′s′(z

′, z̄′) ∈ V(−1,−s′). This means
that we can perform an asymptotic expansion (see footnote 18)

τ(z, z̄) =
∑
m≥0

zs+1−mτms (z̄) , (138)

where τms (z̄) also admits an asymptotic expansion τms (z̄) =
∑

n≥0 z̄
1−s−nτm,ns and similarly for

τ ′m
′

s′ . We denote the charge associated with the mode function τm,ns (z, z̄) := zs+1−mz̄1−s−n by
Qs
m,n. From (137) we then find the loop algebra Lw1+∞

[Qs
m,n, Q

s′

m′,n′ ] = i [m(1 + s′)−m′(1 + s)]Qs+s′−1
m+m′−1,n+n′ , (139)
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where m,n ∈ N. The wedge subalgebra WLw1+∞ ⊂ Lw1+∞ is obtained by restricting to
parameters τ to be polynomials of degree s+ 1 in z. This amounts to the restriction m ≤ s+ 1.
This wedge subalgebra is described in [87] as the symmetry of the twistor formulation of self-dual
gravity.22 We see here that there is no need from the canonical analysis to make this restriction.

5 Conclusions

Motivated by the analysis of the gravitational phase space at null infinity in [90,94], we have pro-
posed a set of evolution equations for higher spin-s charges. We conjectured that this extension
encodes a truncation of the asymptotic gravitational dynamics at subleading orders in a large-r
expansion. After explaining how these charges should appear in the expansion of the Weyl scalar
encoding incoming radiation data (see Eq. (33)) and explicitly proving our conjecture in the case
s = 3, we have investigated the implications of (18) for the symmetry content of gravity. The
higher spin evolution equations define, after a regularization procedure, a representation of the
higher spin-s charges on the gravity phase space. This representation generalizes the leading,
subleading and sub-subleading Einstein’s evolution equations at I to the case s ≥ 3.

Upon introduction of a proper renormalization of the charges, we computed the action of
their quadratic contribution on the asymptotic shear (67), (68). On the one side, this result
has allowed us to obtain the pseudo-vector fields (74), (77) associated to the transformations
generated by the higher spin charges and to derive an infinite tower of soft graviton theorems (87)
(truncated at quadratic order, that is neglecting collinear terms) induced by their conservation
laws. This generalizes our previous results obtained in [90] to all s. On the other side, we have
shown that this action reproduces exactly the OPE (100) between soft charges and soft graviton
operators obtained through celestial holography techniques. Moreover, we have elucidated how
the same OPE structure is reproduced when replacing the soft charges with the w-currents of
the same spin introduced in [97]. To shed some light into this interesting feature, we clarified
how the light transform of the soft graviton (118) contains both a singular component given by
the soft current, corresponding to the local charge, and a regular one given by the w-current and
corresponding to the global charge.

As the w-currents have been shown to generate an infinite higher spin celestial symmetry
algebra [38, 97], we have completed our canonical analysis by proving to linear order that the
loop algebra Lw1+∞ has a canonical realisation in the gravitational phase space in terms of
the Poisson bracket of the higher spin charges (137). This provides evidence of a spacetime
interpretation of such a new infinite dimensional symmetry beyond the self-dual gravitational
sector.

To fully understand the role of the Lw1+∞ algebra in gravity we need to extend our analysis
in two intertwined directions. On the one hand, the relevance of the recursion relation (9) in
encoding the expression of the vacuum Einstein’s equations at subleading orders in a large-r
expansion needs to be firmly established beyond the s ≤ 3 case. On the other hand, one needs
to investigate whether the Lw1+∞ algebra structure survives the inclusion of the non-linear
corrections, which include quadratic same helicity contributions and higher order contributions.
More precisely, we have pointed out in Section 3.1 that the recursion relation for Qs (9) acquires

22 To compare with [87], we need to use that qsm(z̄) = w
s+3
2

s+1
2 +m

(z̄). In particular, mhere = s+1
2 +mthere.
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corrections purely quadratic in the same helicity fields C̄ in order to correctly reproduce the
vacuum Einstein’s equations for spin s ≥ 4. This extra quadratic corrections do not affect
the same helicity linear bracket (137) {qs, qs′}1 and {q̄s, q̄s′}1. However, the presence of these
quadratic corrections will affect the mixed helicity charge bracket {qs, q̄s′} already at linear order.
Such corrections are in fact expected also from the point of view of the celestial OPE calculation,
as recalled at the end of Section 4.2. Moreover, one needs to show explicitly that the loop algebra
Lw1+∞ for the same helicity charges is valid at quadratic order as well. Evidence that this is the
case has already been given in [97] but a direct derivation is still needed from our perspective.

Our analysis suggests that contact terms should play an important role in celestial conformal
field theories. It would be interesting to revisit the analyses relying on celestial OPE expansions
carefully accounting for potential contact terms. Relatedly, one can wonder whether the Lw1+∞
survives or not the introduction of the higher order colinear contributions. In fact, demand-
ing that the symmetry is preserved through the introduction of non-linearities would result in
powerful constraints on the (sub)s-leading dynamics.

Despite these open issues, what we find remarkable is the so far perfect match and the emer-
gence of a precise dictionary between the two side of the asymptotic symmetry story, namely the
celestial CFT description of the S-matrix scattering amplitudes and the structure of Einstein’s
equations expanded around null infinity.
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A Linearized Einstein equations

In this appendix we relate the conventions in this paper with those of [95]. We establish a
relation between D and the edth operator by considering the action

DOs ≡ mAmA1 · · ·mAsDAOA1···As = (Dm − smADmm̄A)Os

= (P∂z + s(∂zP ))Os = P 1−s∂z (P sOs) ,
(140)

where Dm = mADA and we used

mADmm̄A = mAmB(∂Bm̄A − ΓCABm̄C) = P 2∂zP
−1 − Γz̄zzP = −∂zP. (141)

Similarly, it can be shown that

D̄Os = P 1+s∂z̄(P
−sOs). (142)

Since the action of the edth operator can be written as [105–107]

ðηs =
√

2P 1−s [∂z(P
sηs)] , ð̄ηs =

√
2P 1+s

[
∂z̄(P

−sηs)
]
, (143)
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we thus recover the relations

ð =
√

2D , ð̄ =
√

2D̄ . (144)

We now show how to determine the global solution (42), (43). Starting with the Ansatz (42),
on the one hand we have that

∂uΨ
(n+1)
G0 (u) =

n−1∑
k=0

(n− k)αknGk u
n−1−k, (145)

while on the other hand, using that Gk ∈ V 2
2+k where V s

` is the module of spin s and angular
momentum `,

− 1

(n+ 1)

(
D̄D +

1

2
n(n+ 5)

)
Ψ

(n)
G0 (u) = −

n−1∑
k=0

(n(n+ 5)− k(k + 5))

2(n+ 1)
αkn−1Gk u

n−1−k

= −
n−1∑
k=0

(n− k)(n+ k + 5)

2(n+ 1)
αkn−1Gk u

n−1−k. (146)

In the last equality we used that

n(n+ 5)− k(k + 5) = (n− k)(n+ k + 5). (147)

The constraint equations (28) then imply the recursion relation

αkn = −n+ k + 5

2(n+ 1)
αkn−1, (148)

which subject to the boundary condition Gn =
[
Ψ

(n+1)
G0

]
l=2+n

(ie. αnn = 1) yields

αkn = (−2)k−n
(k + 1)!(n+ k + 5)!

(n+ 1)!(2k + 5)!
. (149)

B Soft graviton bracket

In this appendix, we spell out in detail the computation of the bracket of a positive helicity spin-
s′ soft graviton operator with a spin-s charge. Since positive helicity soft gravitons commute
with the linear component of the charge (49), we only need to consider the bracket with the
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quadratic component. By means of (67), we have

{q2
s(z), N̄s′(z

′)} =
(−1)s

′+1

2

1

s′!

∫ ∞
−∞

duus
′{q2

s(z), ˆ̄N(u, z′)}

=
κ2

8

s∑
n=0

(−1)s
′+s+1

2

∫ ∞
−∞

du
(−1)n(n+ 1)

s′!(s− n)!

× us′∂u(∆ + 2)s−n(∂−1
u )s−1Dn

z′C(u, z′)Ds−n
z δ(z, z′)

=
κ2

8

s∑
n=0

(−1)s
′+s+1

2

∫ ∞
−∞

du
(−1)n(n+ 1)

s′!(s− n)!
(∆− s′ + 3)s−n

× us′(∂−1
u )s−1Dn

z′
ˆ̄N(u, z′)Ds−n

z δ(z, z′)

=
κ2

8

s∑
n=0

(−1)s
′+s+1

2

∫ ∞
−∞

du
(−1)n(n+ 1)

s′!(s− n)!
(∆− s′ + 3)s−n

× us′+s−1u−s+1∂−s+1
u Dn

z′
ˆ̄N(u, z′)Ds−n

z δ(z, z′)

=
κ2

8

s∑
n=0

(−1)s
′+s+1

2

∫ ∞
−∞

du
(−1)n(n+ 1)

s′!(s− n)!

(∆− s′ + 3)s−n
(∆− s′ − 1)s−1

× us′+s−1Dn
z′

ˆ̄N(u, z′)Ds−n
z δ(z, z′) , (150)

where we used the relations

un∂nu = (∆− 1)n , ∂nuu
n = (∆ + n− 1)n , u−n∂−nu = (∆ + n− 1)−1

n ,

∂u(∆ + α)n = (∆ + α + 1)n∂u , ∂−1
u (∆ + α)n = (∆ + α− 1)n∂

−1
u ,

u(∆ + α)n = (∆ + α− 1)nu , u(∆ + n− 1)−1
n = (∆ + n− 2)−1

n u , (151)

valid ∀ n ≥ 0 , α ∈ Z. We now notice that the operator ∆ = ∂uu and any analytic function of it
integrate to zero, given our choice of boundary conditions (16). More precisely in order for the
charge qs+s′−1 to be defined we need to demand that N̂ = O(us+s

′−1−ε). This means that we can
write the bracket in the final form

{q2
s(z), N̄s′(z

′)} = −κ
2

8

s∑
n=0

(−1)s
′+s+1

2(s′ + s− 1)!
(n+ 1)

(s′ + s− n− 4)!

(s− n)!(s′ − 4)!

×
∫ ∞
−∞

duus
′+s−1Dn

z′
ˆ̄N(u, z′)Ds−n

z δ(z, z′)

=
κ2

8

s∑
n=0

(n+ 1)

(
s′ + s− n− 4

s′ − 4

)
Dn
z′N̄s′+s−1(z′)Ds−n

z δ(z, z′) . (152)

A similar calculation for the negative helicity spin-s′ soft graviton operator, by means of
(68), yields

{q2
s(z), Ns′(z

′)} =
κ2

8

s∑
n=0

(n+ 1)

(
s′ + s− n

s′

)
Dn
z′Ns′+s−1(z′)Ds−n

z δ(z, z′) . (153)
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C Pseudo-vectors

We provide some technical details of the spin-p pseudo-vector action on the shear presented in
Section 3.4. Using the relation (151) we get that

(∆ + 2)s−n
(s− n)!

∂3
u = ∂3

u

(∆− 1)s−n
(s− n)!

= ∂3
u

us−n

(s− n)!
∂s−nu

=

min[3,s−n]∑
k=0

(
3

k

)
us−n−k

(s− n− k)!
∂s−n+3−k
u . (154)

Similarly, we evaluate

(∆− 2)s−n
(s− n)!

= ∂−1
u

(∆− 1)s−n
(s− n)!

∂u = ∂−1
u

us−n∂s−nu

(s− n)!
∂u

=
s−n∑
k=0

(−1)k
us−n−k∂s−n−ku

(s− n− k)!
. (155)

Therefore

{Q2
s(τ), C̄(u′, z′)} =

s∑
n=0

(n+ 1)(∆− 2)s−n
(s− n)!

(Ds−n
z τs)D

n
z′∂

1−s
u′ C̄(u′, z′)

=
s∑

n=0

s−n∑
k=0

(−1)k
(n+ 1)u′s−n−k

(s− n− k)!
(Ds−n

z τs)D
n
z ∂

1−n−k
u′ C̄(u′, z′)

=
s∑

p=0

u′s−p

(s− p)!δ
p
Ds−pτs

C̄(u′, z′). (156)

D C̄ bracket

By means of the bracket

{C(u, z), C̄(u′, z′)} = −κ
2

2
θ(u′ − u)δ(z, z′) , (157)
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we have

{q̂2
s(u, z), C̄(u′, z′)} =

1

4

s∑
n=0

n∑
`=0

(−u)s−n

(s− n)!
(`+ 1)(∂−1

u )n−`+1Ds−` [{C(u, z), C̄(u′, z′)}(∂−1
u D)`N (u, z)

]
= −κ

2

8

s∑
n=0

n∑
`=0

(−u)s−n

(s− n)!
(`+ 1)(∂−1

u )n−`+1Ds−` [θ(u′ − u)δ(z, z′)(∂−1
u D)`N (u, z)

]
= −κ

2

8

s∑
n=0

n∑
`=0

(−u)s−n

(s− n)!
(`+ 1)

× ∂−1
u′

[
(∂−1
u )n−`+1δ(u′ − u)Ds−`

z δ(z, z′)(∂′−1
u )`−2D`

z′C̄(u′, z′)
]

=
κ2

8

s∑
n=0

n∑
`=0

(−u)s−n

(s− n)!
(`+ 1)

× ∂−1
u′

[
(u− u′)n−`

(n− `)! Ds−`
z δ(z, z′)(∂′−1

u )`−2D`
z′C̄(u′, z′)

]
,

(158)

where we have used (58). We can now switch sums and evaluate
∑s

n=` first. This step makes it
explicit that bracket is well defined in the limit u→ −∞ and the renormalized charge yields

{q2
s(z), C̄(u′, z′)} =

κ2

8

s∑
n=0

(n+ 1)∂−1
u′

[
(−u′)s−n
(s− n)!

Ds−n
z δ(z, z′)(∂−1

u′ )n−2Dn
z′C̄(u′, z′)

]
=
κ2

8

s∑
n=0

(−)s−n
(n+ 1)

(s− n)!
(∆− 2)s−nD

s−n
z δ(z, z′)(∂−1

u′ )s−1Dn
z′C̄(u′, z′) , (159)

where in the last passage we have used again the generalized Leibniz rule (62).
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E Charge bracket

The bracket (153) allows us to compute the linear charge algebra

{q2
s(z), q1

s′(z
′)} =

κ2

8

s∑
n=0

(s− n+ 1)

(
s′ + n

s′

)
Ds′+2
z′

(
Ds−n
z′ Ns′+s−1(z′)Dn

z δ(z, z
′)
)

=
κ2

8

s∑
n=0

s′+2∑
m=0

(s− n+ 1)

(
s′ + n

s′

)(
s′ + 2

m

)
×
(
Ds′+s−n−m+2
z′ Ns′+s−1(z′)Dm

z′D
n
z δ(z, z

′)
)

=
κ2

8

s∑
n=0

s′+2∑
m=0

(−)m(s− n+ 1)

(
s′ + n

s′

)(
s′ + 2

m

)
×
(
D1−n−m
z′ q1

s′+s−1(z′)Dn+m
z δ(z, z′)

)
=
κ2

8

s+s′+2∑
p=0

min[p,s]∑
n=max[0,p−s′−2]

(−)p+n(s− n+ 1)

(
s′ + n

s′

)(
s′ + 2

p− n

)
×
(
D1−p
z′ q1

s′+s−1(z′)Dp
zδ(z, z

′)
)

=
κ2

8

s+s′+2∑
p=0

G(s, s′, p)
(
D1−p
z′ q1

s′+s−1(z′)Dp
zδ(z, z

′)
)
, (160)

where we defined

G(s, s′, p) :=

min[s,p]∑
n=max[0,p−s′−2]

(−)p+n(s− n+ 1)

(
s′ + n

s′

)(
s′ + 2

p− n

)
. (161)

We can establish, from this expression, an important symmetry property of G(s, s′, p) valid when
p 6= 0, 1. We have that under the exchange s′ + 2↔ p while keeping s + s′ and (p− s) fixed G
satisfies

G(s, s′, p) =
(s′ + 2)(s′ + 1)

p(p− 1)
G(s+ s′ + 2− p, p− 2, s′ + 2). (162)

To evaluate (161) there are four different cases to consider: i)s′ + 2, s ≥ p, ii)s ≥ p ≥ s′ + 2,
iii)s′ + 2 ≥ p ≥ s, iv)p ≥ s, s′ + 2, each of which leads to different summation ranges. In case i)
we have

G(s, s′, p) :=
(−1)p(s′ + 2)!

p!s′!

p∑
n=0

(−)n(s− n+ 1)

(
p

n

)
Γ(s′ + 1 + n)

Γ(s′ + 3− p+ n)

=
(−1)p(s′ + 2)!

p!
(s+ 1− δ) 2F̃1[−p, s′ + 1; s′ + 3− p; 1] , (163)
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where 2F̃1 is the regularized hypergeometric function given by 2F̃1[a, b; c; z] := 2F1[a,b;c;z]
Γ(c)

. In the

last line above, δ = z∂z is a derivative operator,23 that can be evaluated using Gauss’s summation
formula

2F1[a, b, c; 1] =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) , Re(c) > Re(a+ b) , (164)

and δ2F1[a, b; c; 1] = ab
c−a−b−1 2F1[a, b; c; 1]. When a = −p is a negative integer we have

2F̃1[−p, b; c; 1] =
1

Γ(b)

p∑
n=0

(−1)n

(
p

n

)
Γ(b+ n)

Γ(c+ n)
. (165)

We thus find

G(s, s′, p) =
(−1)p(s+ 1 + p(s′ + 1))

p!Γ(2− p) , (166)

which is non-vanishing only for p = 0, 1.
Similarly, in case ii) we have that

G(s, s′, p) :=
(−1)s

′

s′!

s′+2∑
m=0

(−)m(s+ s′ + 3− p−m)

(
s′ + 2

m

)
Γ(m+ p− 1)

Γ(m+ p− s′ − 1)
(167)

=
(−1)s

′
(p− 2)!

s′!
(s+ s′ + 3− p− δ) 2F̃1[−(s′ + 2), p− 1; p− s′ − 1; 1]

= 0 for all s ≥ p ≥ s′ + 2 . (168)

After an analogous analysis one finds that for both cases iii) and iv)

G(s, s′, p) =
(−1)p+sΓ(3 + s+ s′)

p(p− 1)Γ(p− 1− s)Γ(1 + s)Γ(3 + s+ s′ − p) . (169)

Putting everything together, the coefficient G takes the form

G(s, s′, p) =
(−)p(s+ 1 + p(s′ + 1))

p!Γ(2− p) if p ≤ s, (170)

G(s, s′, p) =
(−)p+s(s+ s′ + 2)!

Γ(p− s− 1)(s+ s′ + 2− p)!s!
1

p(p− 1)
if p ≥ s+ 1. (171)

This result is suggestive of the split of the sums in (160) as

s+s′+2∑
p=0

min[p,s]∑
n=max[0,p−s′−2]

=
s∑

p=0

p∑
n=max[0,p−s′−2]

+
s+s′+2∑
p=s+1

s∑
n=max[0,p−s′−2]

. (172)

23 The notation means δ2F̃1[a, b; c; 1] := (z∂z2F1[a, b; c; z])|z=1.
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The first sum over n is given in (170) and it thus gives non-zero contribution only for p = 0, 1.
The second sum over n corresponds to the case (171). Finally, this allows us to write the charge
bracket as24

{q2
s(z), q1

s′(z
′)} =

κ2

8

[
(s+ 1)Dz′q

1
s′+s−1(z′)δ(z, z′)− (s+ s′ + 2)q1

s′+s−1(z′)Dzδ(z, z
′)

+
s+s′+2∑
p=s+2

(−)p+s(s+ s′ + 2)!

(p− s− 2)!(s+ s′ + 2− p)!s!
1

p(p− 1)

(
D1−p
z′ q1

s′+s−1(z′)
)
Dp
zδ(z, z

′)

]
.

(173)

In order to compute the charge bracket at linear order we need the antisymmetrize in s, s′

and z, z′, namely we need also the bracket

{q1
s(z), q2

s′(z
′)} = −{q2

s′(z
′), q1

s(z)}

= −κ
2

8

s+s′+2∑
p=0

min[p,s′]∑
n=max[0,p−s−2]

(−)p+n(s′ − n+ 1)

(
s+ n

s

)(
s+ 2

p− n

)
×
(
D1−p
z q1

s′+s−1(z)Dp
z′δ(z, z

′)
)
. (174)

In this case the two sums can be split as

s+s′+2∑
p=0

min[p,s′]∑
n=max[0,p−s−2]

=
s′∑
p=0

p∑
n=max[0,p−s−2]

+
s+s′+2∑
p=s′+1

s′∑
n=max[0,p−s−2]

. (175)

The first sum over n again gives non-zero contribution only for p = 0, 1. Antisymmetrizing
(170), (171), we find

{q1
s(z), q2

s′(z
′)} = −κ

2

8

[
(s′ + 1)Dzq

1
s′+s−1(z)δ(z, z′)− (s+ s′ + 2)q1

s′+s−1(z)Dz′δ(z, z
′)

+
s+s′+2∑
p=s′+2

(−)p+s
′
(s+ s′ + 2)!

(p− s′ − 2)!(s+ s′ + 2− p)!s′!
1

p(p− 1)

(
D1−p
z q1

s′+s−1(z)
)
Dp
z′δ(z, z

′)

]
.

(176)

Combining the two brackets,

{q2
s(z), q1

s′(z
′)}+ {q1

s(z), q2
s′(z

′)}

=
κ2

8

[ s+s′+2∑
p=0

G(s, s′, p)
(
D1−p
z′ q1

s′+s−1(z′)
)
Dp
zδ(z, z

′)

− (s′ + 1)Dzq
1
s′+s−1(z)δ(z, z′) + (s+ s′ + 2)q1

s′+s−1(z)Dz′δ(z, z
′)

−
s+s′+2∑
p=s′+2

(−)p+s
′
(s+ s′ + 2)!

(p− s′ − 2)!(s+ s′ + 2− p)!s′!
1

p(p− 1)

(
D1−p
z q1

s′+s−1(z)
)
Dp
z′δ(z, z

′)

]
. (177)

24The second sum over n vanishes for p = s+ 1.

38



Let us rewrite(
D1−p
z q1

s′+s−1(z)
)
Dp
z′δ(z, z

′) = Dp
z′

[(
D1−p
z q1

s′+s−1(z)
)
δ(z, z′)

]
= Dp

z′

[(
D1−p
z′ q1

s′+s−1(z′)
)
δ(z, z′)

]
=

p∑
m=0

(−)mp!

m!(p−m)!

(
D1−m
z′ q1

s′+s−1(z′)
)
Dm
z δ(z, z

′) , (178)

so that the last term in (177) becomes

s+s′+2∑
p=s′+2

(−)p+s
′
(s+ s′ + 2)!

(p− s′ − 2)!(s+ s′ + 2− p)!s′!
1

p(p− 1)

(
D1−p
z q1

s′+s−1(z)
)
Dp
z′δ(z, z

′)

=
s+s′+2∑
p=s′+2

p∑
m=0

(s+ s′ + 2)!

s′!m!

(−)p+s
′+m(p− 2)!

(p− s′ − 2)!(s+ s′ + 2− p)!(p−m)!

(
D1−m
z′ q1

s′+s−1(z′)
)
Dm
z δ(z, z

′)

=
s+s′+2∑
m=0

s+s′+2∑
p=max[m,s′+2]

(−)s
′+m(s+ s′ + 2)!

s′!m!

(−)p(p− 2)!

(p− s′ − 2)!(s+ s′ + 2− p)!(p−m)!

×
(
D1−m
z′ q1

s′+s−1(z′)
)
Dm
z δ(z, z

′)

=
s+s′+2∑
m=0

G̃(s′, s,m)
(
D1−m
z′ q1

s′+s−1(z′)
)
Dm
z δ(z, z

′) , (179)

where we have introduced the coefficient

G̃(s′, s,m) :=
s+s′+2∑

p=max[m,2]

(−)m

(
p

m

)
G(s′, s, p)

=
s+s′+2∑

p=max[m,s′+2]

(−)mp!

m!(p−m)!

(−)p+s
′
(s+ s′ + 2)!

(p− s′ − 2)!(s+ s′ + 2− p)!s′!
1

p(p− 1)

=
(−)m(s+ s′ + 2)!

m!s′!

s+s′+2∑
p=max[m,s′+2]

(−)p+s
′
(p− 2)!

(p− s′ − 2)!(s+ s′ + 2− p)!(p−m)!

=


(−)m(s+s′+2)!

m!s! 2F̃1[−s, s′ + 1; s′ + 3−m; 1], if m ≤ s′ + 2

(−)s
′
(s+s′+2)!(m−2)!

m!s′!(s+s′+2−m)! 2F̃1[−(s+ s′ + 2−m),m− 1;m− s′ − 1; 1], if m ≥ s′ + 2 .

(180)

The evaluation of the regularized hypergeometric functions for m ≤ s′ + 2 and m ≥ s′ + 2 gives
respectively

2F̃1[−s, s′ + 1; s′ + 3−m; 1] =
Γ(s+ 2−m)

Γ(2−m)Γ(s+ s′ + 3−m)
,

2F̃1[−(s+ s′ + 2−m),m− 1;m− s′ − 1; 1] =
Γ(s+ 2−m)

Γ(−s′)Γ(s+ 1)
, (181)
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where we used that 2F̃1[a, b, c; 1] = Γ(c−a−b)
Γ(c−a)Γ(c−b) . This means that G̃(s′, s,m) = 0 if 2 ≤ m ≤

s+ 1.25 It also implies that

G̃(s′, s,m) =
(−)s−m

m(m− 1)

(s+ s′ + 2)!

(s+ s′ + 2−m)!s!(m− s− 2)!
, (182)

if m ≥ s+ 2, and

G̃(s′, s, 0) = (s+ 1), G̃(s′, s, 1) = −(s+ s′ + 2). (183)

In other words, we can establish the identity

G̃(s′, s,m) = G(s, s′,m) for all m. (184)

Therefore, the bracket (177) finally becomes

{q2
s(z), q1

s′(z
′)}+ {q1

s(z), q2
s′(z

′)}

=
κ2

8

[ s+s′+2∑
p=0

(
G(s, s′, p)− G̃(s′, s, p)

) (
D1−p
z′ q1

s′+s−1(z′)
)
Dp
zδ(z, z

′)

− (s′ + 1)Dzq
1
s′+s−1(z)δ(z, z′) + (s+ s′ + 2)q1

s′+s−1(z)Dz′δ(z, z
′)

]
=
κ2

8

[
− (s′ + 1) q1

s′+s−1(z′)Dzδ(z, z
′) + (s+ 1)q1

s′+s−1(z)Dz′δ(z, z
′)
]
, (185)

where we have used (184) in the last passage. This concludes the proof of (136).
We conclude this appendix with a proof for the relation (66). We have

s∑
`=n

(`+ 1)!(∆− `)s−`
(`− n)!(s− `)! =

s∑
`=n

(`+ 1)!Γ(∆− `+ 1)

(`− n)!(s− `)!Γ(∆− s+ 1)

=
s−n∑
p=0

(p+ n+ 1)!Γ(∆− p− n+ 1)

p!(s− p− n)!Γ(∆− s+ 1)

=
s−n∑
p=0

(−)p+n+s

(s− n)!

(
s− n
p

)
Γ(p+ n+ 2)Γ(s−∆)

Γ(p+ n−∆)

=
(−)n+s(n+ 1)!

(s− n)!
Γ(s−∆)2F̃1[n− s, n+ 2;n−∆; 1]

=
(−)n+s(n+ 1)!

(s− n)!

Γ(s−∆− n− 2)

Γ(−2−∆)

=
(n+ 1)!

(s− n)!

Γ(∆ + 3)

Γ(∆ + 3− s+ n)

=
(n+ 1)!

(s− n)!
(∆ + 2)s−n , (186)

where we used (164), (165), and twice the property

Γ(α− n) = (−)n−1 Γ(−α)Γ(1 + α)

Γ(n+ 1− α)
, n ∈ Z . (187)

25Irrespective of whether m ≥ s′ + 2 or m ≤ s′ + 2.
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F Normalization

The (outgoing) conformal primary gravitons are typically defined as Mellin transforms of asymp-
totic particle states,

O±∆(z, z̄) =

∫ ∞
0

dωω∆−1〈ω, z, z̄| =
∫ ∞

0

dωω∆−1〈0|aout
± (ω, z, z̄). (188)

Then using

C̃(ω, z) =

∫
dueiωuC(u, z) =

iκ

4π

[
aout†
− (ωx̂)θ(−ω)− aout

+ (ωx̂)θ(ω)
]
, (189)

we find that

O+
∆(z, z̄) = −4π

iκ

∫ ∞
0

dωω∆−1C̃(ω, z) = −4π

iκ

∫ ∞
0

dωω∆−1

∫ ∞
−∞

dueiω(u+iε)C(u, z)

= −i∆ 4π

iκ
Γ(∆)

∫ +∞

−∞
du(u+iε)−∆C(u, z) = i∆

8π

iκ
G+

∆(z).

(190)

where

G+
∆(z) = −Γ(∆)

2

∫ +∞

−∞
du(u+ iε)−∆C(u, z) (191)

Similarly, O−∆(z, z̄) = i∆ 8π
iκ
G−∆(z, z̄), where

G−∆(z, z̄) = −Γ(∆)

2

∫ +∞

−∞
du(u+iε)−∆C̄(u, z). (192)

Pseudo-differential calculus identities can be easily proven in a conformal primary basis,
where for instance C → ∂uC corresponds to G∆ → G∆+1, while C → uC corresponds to
G∆ → G∆−1. For example, this allows us to have a simple proof of the identity (64)

∂1−`
u

(
C(u)

us−`

(s− `)!

)
→ Γ(∆)

∫
duu−∆∂1−`

u

(
C(u)

us−`

(s− `)!

)
= Γ(∆− `+ 1)

∫
duu−∆+`−1

(
C(u)

us−`

(s− `)!

)
=

Γ(∆− `+ 1)

(s− `)!Γ(∆− s+ 1)
G+

∆+1−s =
(∆− `)s−`

(s− `)! G+
∆+1−s. (193)

G w-current

In this appendix we give the proof of (118). We start from the expansion

εG−1−s+ε(z, z̄) = zs+1−ε
∞∑
m=0

Nm−s−1
s (z̄)

zm
, (194)
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which implies that

(−1)(s+3)Γ(s+ 3)L [G1−s+ε] (z, z̄)

=
1

ε

∞∑
n=−(s+1)

Nn
s (z̄)

∫
R

dw

2πi

(−1)(s+3)Γ(s+ 3)

(z − w)s+3−εw(n+ε)

=
∞∑

n=−(s+1)

Nn
s

z(s+2+n)

(−1)sΓ(s+ 2 + n)

εΓ(n+ ε)

∼
(s+1)∑
n=0

(−1)(n+s)N−ns
z(s+2−n)

n!(s+ 1− n)!︸ ︷︷ ︸
Ws

+
1

ε

∞∑
n=0

(−1)sNn
s

z(s+2+n)

(s+ 1 + n)!

(n− 1)!︸ ︷︷ ︸
q1s

. (195)

In the second equality we have used the relation [97]∫
R

dw

2πi

1

(1− w)awb
= −Γ(a+ b− 1)

Γ(a)Γ(b)
, (196)

valid after analytic continuation from the domain Re(a) < 1, Re(b) < 1 and Re(a+ b) > 1. Note
that in the last term we have neglected terms that arises from ∂εNs+ε|ε=0.
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