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Abstract

We develop the covariant phase space formalism allowing for non-vanishing flux,
anomalies, and field dependence in the vector field generators. We construct a charge
bracket that generalizes the one introduced by Barnich and Troessaert and includes
contributions from the Lagrangian and its anomaly. This bracket is uniquely deter-
mined by the choice of Lagrangian representative of the theory. We then extend the
notion of corner symmetry algebra to include the surface translation symmetries and
prove that the charge bracket provides a canonical representation of the extended cor-
ner symmetry algebra. This representation property is shown to be equivalent to the
projection of the gravitational equations of motion on the corner, providing us with an
encoding of the bulk dynamics in a locally holographic manner.
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1 Introduction

The notion of corner symmetry algebra represents an essential tool to study the subdivi-
sion of space into local subsystems, and their gluing and coarse-graining properties [1]. It
also permits the reformulation of geometrical observables in an algebraic language amenable
to quantization. Overall, the program of local holography provides a clear pathway toward
quantization, where the geometry is encoded into a charge algebra, the quantum kinematics
into the algebra’s representations, and the quantum dynamics into the algebra’s fusion prop-
erties. So far, the study of the corner symmetry algebra has been limited to the kinematical
sector, namely to transformations that do not move the corner [2–10]. The natural next
step in this program is to consider the so-called extended corner symmetry group which also
includes the possibility to translate the corner along its normal directions.

The previous investigations are relevant to constructing a Hilbert space of quantum
geometry labeled by quantum numbers associated with the corner symmetry algebra repre-
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sentation. From the perspective of local holography, the gravitational dynamic is encoded in
general conservation laws, called flux-balance laws, for the corner charges. While the exact
form of the extended corner symmetry group can depend on the gravity formulation (see [7,8]
for a classification), this group always contains a subfactor that descends from the whole dif-
feomorphism group. This subfactor is the extended symmetry group of the Einstein-Hilbert
formulation of gravity. Its corner component, studied in [1, 10], is given by the semi-direct
product of diffeomorphisms tangent to the sphere and surface boosts. The fully extended
version also contains sphere’s normal translations and it is given by the semi-direct sum1

gext
S =

(
diff(S) i sl(2,R)S

)
i (R2)S . (1.1)

This symmetry algebra has been shown, in a very recent work of Ciambelli and Leigh [11],
to be the maximal closed subalgebra of the full bulk diffeomorphism group associated to
isolated corners. From our perspective, this means that its representation theory should
appear as a universal component of any quantization of gravity.

We are interested in a canonical representation of this algebra using covariant phase space
methods [12–17]. This introduces a non-trivial problem because the normal translations
move the surface, and the corresponding infinitesimal Hamiltonian charges are in general
non-integrable. Suppose one restricts the normal translations to be tangent to a timelike or
null boundary. In that case, the non-integrability of charges is related to a non-vanishing
symplectic flux along the boundary and the corner symmetry algebra reduces to a boundary
symmetry algebra. Understanding the meaning of non-integrable charges in the presence of
boundaries is not a new problem and has been the subject of extended studies, starting with
Ashtekar et al. [14, 18, 19], Wald–Zoupas [17], Barnich et al. [20–26], Compere et al. [27, 28]
in the context of asymptotic infinity, by Donnay et al. [29–31], Hopfmüller and one of us
[32,33], Grumiller et al. [34–36], Chandrasekaran et al. [37,38], from the perspective of finite
boundaries. Recent developments include the presence of a cosmological constant [28,39–41],
the issue of field dependency in lower-dimensional gravity by Adami et al. [42] and Ruzziconi
and Zwickel [43], and the relationship between flux and edge mode dynamics along null
surfaces by Wieland [44, 45]. Our paper generalizes these analyses to the case where the
normal translations span the full two-dimensional subspace of normal directions, not just a
one-dimensional subspace along a given boundary. The results obtained here were already
announced in [46].

The presence of non-vanishing symplectic and more generally Hamiltonian fluxes, leads
to two issues that one has to resolve: one technical and one conceptual. The technical issue
stems from the fact that when Hamiltonian fluxes are present, it is not clear how to extract
from the formalism a Hamiltonian charge. More precisely, there is an ambiguity on defining
a split between an integrable term and a Hamiltonian flux term of the field space one-form
obtained by contracting an infinitesimal diffeomorphism along the symplectic two-form. The
conceptual issue is that in the presence of fluxes, the physical system under consideration is
an open system that does not possess a canonical Poisson bracket.

1The corner subalgebra is gS = diff(S) i sl(2,R)
S

where GS denotes the sets of functions from S → G.

In general the full symmetry group contains a gl(2,R)
S

factor. Only sl(2,R)S is represented non-trivially in
Einstein-Hilbert, while the diagonal component is pure gauge.
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In the “Belgian school” approach [24–28] the choice of split between the Hamiltonian
charge and the flux component is left arbitrary. Barnich and Troessaert have proposed
a resolution of the conceptual issue though. They introduced, initially in the context of
asymptotically flat spacetimes, a flux-dependent bracket [25] which reduces to the usual
Poisson bracket when there are no fluxes. This bracket leads to two concerns: first, the
charge algebra defined by this bracket admits field-dependent cocycles, which depend on the
split ambiguity. And second, the Jacobi identity for the Barnich–Troessaert bracket [25] has
to be postulated rather than proven.

We are proposing a new perspective on these questions which builds on the Wald–Zoupas
approach [17] and on the recent work of Chandrasekaran and Speranza [38]. It also builds
upon the results of [7] which proved that one can assign a unique symplectic potential
given a specific Lagrangian. Our first main result is the construction, given a Lagrangian,
of an unambiguous split between charge and flux, with the Hamiltonian flux chosen to
be Noetherian, and a definition of a bracket that allows for the inclusion of all normal
translations and which satisfies the Jacobi identity from first principles.

To describe our result, let us introduce the notion of Lagrangian equivalence class [L] =
[L + d`] to be the equivalence class of Lagrangians modulo boundary terms. Our approach
relies on the fact [7,15,47] that, given a representative Lagrangian L in a given class, we can
uniquely construct its symplectic potential θL, the Noether charge QL

ξ and the Noetherian
flux FLξ associated with a vector field ξ. The choice of Noether charge and Noetherian
flux resolves the split ambiguity described earlier. The centerpiece of our construction is a
definition of a bracket {·, ·}L uniquely associated to L and free of any boundary conditions
and corner ambiguities. This bracket provides a generalization of the Barnich–Troessaert
bracket [25], in that it is also defined for the extended corner symmetry group at finite
corners, and it takes into account the presence of Lagrangian anomalies (as defined in Section
2.3).

The second main result of the paper is to show that, when evaluated on-shell, the new
charge bracket provides a representation of the extended corner symmetry algebra. More-
over the logic can be inverted and we show that demanding this bracket to form a faithful
representation of extended corner symmetry algebra implies the validity of the Einstein’s
equations, as explicitly shown for null infinity in [46]. This statement is encoded in our main
formula derived in Section 3.3

{QL
ξ , Q

L
χ}L +QL

Jξ,χK +

∫
S

ιξCχ = 0 , (1.2)

where Cξ is the Einstein constraint 3-form along ξ (see (3.30)). This reveals the locally
holographic nature of gravity at any given corner, by recasting Einsteins’s equation into an
algebraic statement.

The fact that we have a bracket that depends on the choice of Lagrangian sounds sur-
prising at first. However, it is well known that when we have a Lagrangian system in the
presence of a boundary one needs to specify boundary conditions to make the system closed
and thus obtain a canonical bracket. This specification of boundary conditions is a crucial
ingredient in the definition of the non-leaking phase space. The integrable charges and the
canonical bracket, therefore, depend on the choice of boundary condition.

An important point, realized already by Harlow and Wu in [48], is that the specification
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of boundary conditions corresponds to a choice of boundary Lagrangian. In other words, a
selection of Lagrangian representative L within a given class specifies a boundary condition.
The way this work is as follows: a choice of boundary conditions amounts to a choice
of which phase space variables qi, forming a Lagrangian submanifold, to keep fixed at the
spatial boundary Γ. In a Lagrangian framework, this requires to identify also their conjugate
momentum pi, so that the symplectic potential θ = piδq

i vanishes on Γ once the boundary
condition

δqi
Γ
= 0 (1.3)

is imposed. Changing the boundary conditions is done by a canonical transformation im-
plemented at the Lagrangian level by adding a boundary Lagrangian. In this way, the
Poisson bracket for a given choice of boundary conditions is uniquely determined by the
choice of boundary Lagrangian, while the symmetries of the system appear as canonical
transformations that do not change the boundary conditions. In our language, a Lagrangian
L determines the symplectic potential θL and the boundary condition BL : θL = 0. The
canonical bracket therefore depends on the choice of Lagrangian. An important technical
aspect of our analysis, which was missing in [48], is that we have extended the construction
of Noether charge and flux for Lagrangians admitting anomalies (see also [38] and [49]) and
to the case of leaking phase spaces without restricting to Dirichlet boundary conditions as
in [48]. In Section 3.4 we prove that the Lagrangian bracket we construct reduces to the
canonical bracket when BL is imposed. We also show that the Noether charge QL

ξ reduces
to the Hamiltonian charge.2

Finally, in Section 4 we study the momentum map of the Einstein–Hilbert formulation of
gravity representing the extended corner algebra (1.1), and we compare our results with [11].
To investigate the physical meaning of the charges associated with this quasi-local symmetry,
we study their limit to future null infinity in Bondi coordinates. This reveals that the
extended corner symmetry algebra tends to the BMSW group, the generalization of the
BMS group we recently proposed in [46]. In particular, the corner symmetry charges tend
to the arbitrary tangent diffeomorphism and the local Weyl rescaling part of the BMSW
Lie algebra, the new normal charges tend to the super-translation charges, and one of these
quasi-local charges vanishes in the limit.

The paper starts with the introduction of the concept of anomaly in the covariant phase
space formalism in Sec. 2. Section 3 is devoted to the construction of the new charge
bracket, and its relation to the flux-balance laws and Einstein’s equations. Section 4 extends
the kinematical corner symmetry algebra to include the dynamical contribution, and discuss
its application at null infinity. We conclude with Sec. 5. The technical steps to prove the
results in Sec. 2 and Sec. 3 are collected in the appendix.

2 Covariant phase space in the presence of anomalies

The natural arena to develop the covariant phase space formalism is the jet bundle, where
fields and their derivatives can be viewed as section of a fiber bundle over the base manifold

2In the following, we drop the index L denoting the dependence of all the phase space quantities on the
choice of Lagrangian in order to lighten the notation. It will later reappear in the definition of the bracket
in Section 3.2 and in Section 3.4.
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provided by the spacetime M . We introduce a set of local coordinates (xµ, ϕi) on UM ×UF ,
where UM , UF are open sets on M and the fiber F , respectively. By taking a section of the
fiber, we can view fields as maps ϕ : UM → UF given by x→ ϕi(x). On the jet bundle then,
the horizontal derivative provides a notion of spacetime differential, which we denote by d,
and the vertical derivative a notion of field space differential, which we denote by δ. These
are two key ingredients of the bi-covariant Cartan’s calculus that we are going to review
briefly in Section 2.3. More details can be found in [7, 47, 50]. The next crucial element
is a Lagrangian top form L, which defines the physics of the fields and the symmetries of
spacetime, whose deep relation is the subject of our investigation.

2.1 Symplectic Flux

As shown in [7,15], using Anderson’s homotopy operators [47,50], it is possible to associate
a unique symplectic potential θ = θL to a given Lagrangian L. This potential is such that

δL = dθ − E, (2.1)

where δ is the variational Cartan differential and E are the equations of motion.3 As em-
phasized in [7], this identity should not be taken as a definition of the symplectic potential,
but as a consequence of the definition of θ from L. The (pre)-symplectic form4 of the theory
is a variational 2-form, obtained after integration of δθ on a codimension-1 hypersurface Σ,

Ω :=

∫
Σ

δθ. (2.2)

In this paper, we assume that Σ is a spacelike or null hypersurface with boundary S := ∂Σ.
The boundary is not required to be connected, and can generally be decomposed as a disjoint
union S = ∪iSi, where the individual codimension-2 components Si can be surfaces of
arbitrary genus, see Fig. 1. Most of the results presented below apply to any topology of Σ
and S.

Figure 1: Different topologies of the hypersurface Σ.

One exception is the construction of the bracket in Section 3.2, for which we will restrict
the topology of Σ to insure that closed 3-forms are exact. The simplest set-up is when Σ is

3For metric gravity, we have E = Gµνδgµν
√
|g|d4x, where Gµν is the Einstein tensor.

4It is symplectic before we impose equations of motion and pre-symplectic upon doing so.
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a 3-ball and S is a single two-sphere. We refer to this sphere as the entangling sphere, since
this is usually the place where the entanglement entropy of the two regions separated by S
lives. If a black hole is present, the region Σ connected to spacetime infinity cannot be a
3-ball, but additional internal boundaries are needed to exclude singularities.

As a consequence of the fundamental relation (2.1), the symplectic current ω := δθ
is conserved on-shell since dω = δE. However, this does not necessarily mean that the
symplectic form (2.2) is independent of Σ. The conservation of the symplectic form depends
on what happens at its boundary. The simplest case is when the topology is such that all
Σ’s are hinging at the same codimension-2 corner; see left panel of Fig 2. In the following we
are interested in a more general situation in which there is a non-trivial time development of
the slices Σ that translates the boundary S. When this happens, the initial and final slices
are connected by a 3d boundary Γ, which represents the time development of the corner S;
see right panel of Fig 2. In this case, (2.2) can differ at the initial and final slices due to the
presence of symplectic flux going through the 3d boundary.

To be concrete, let us assume that we choose a collection of time-dependent slices Σt

with boundaries St (they do not have to be complete Cauchy hypersurfaces). If we denote
ξ = ∂t the time translation vector field and Φξ = exp ξ the associated diffeomorphism, we
have that Σt = Φtξ(Σ) and similarly St = Φtξ(S), while ∂tΦtξ = ξ ◦Φtξ, and Σ with boundary
S are reference initial slices. The time dependent symplectic form is

Ωt :=

∫
Σt

ω =

∫
Σ

Φ∗tξ(ω) , (2.3)

where Φ∗tξ denotes the pull back of forms by the diffeomorphism Φtξ. This formula shows
that we can view the active displacement of a hypersurface inside spacetime in a passive way
as the transformation of fields leaving on a single slice.

The two cases evoked above can now be represented as follows: either the time foliation
leaves the boundary fixed, i.e. St = S, or the diffeomorphism Φtξ moves the boundary surface
and the union ∪tSt forms a foliation of the codimension-1 boundary Γ (see Fig. 2). In the
first case, we have that the symplectic structure is conserved in time and that the action
of ξ admits a canonical representation on the gravity phase space. This is the case studied
in [1,10], where the sets of admissible vector fields form a corner symmetry algebra with the
semidirect sum structure gS = diff(S) i sl(2,R)S. In the second case, the symplectic form
is not conserved in general. Its non-conservation is encoded into the presence of a non-zero
flux at the boundary S

∂tΩt =̂ δF θξ −F θδξ, (2.4)

where F θξ :=
∫
S
ιξθ will be referred to as the symplectic flux associated with ξ, and we use

the symbol =̂ when the equations of motions are imposed, namely E =̂ 0. Eq. (2.4) is the
infinitesimal version of Stokes’ theorem:

Ωt − Ω0 =̂ ΩΓt , (2.5)

where Γt is the portion of Γ between Σ = Σ0 and Σt, and ΩΓt =
∫

Γt
ω is the integrated sym-

plectic flux which measures the loss of symplectic information going through the boundary.
To prove (2.4) one uses (2.3) and the fundamental variational formula (2.1) to establish that
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(a) Entangling sphere S = St where all
the spacelike Cauchy hypersurfaces Σt are
joined.

(b) Codimension-1 timelike or null boundary
Γ foliated by spacelike Cauchy hypersurfaces
Σt through the union ∪tSt.

Figure 2: Foliation leaves Σt with boundaries St.

∂tΩt =

∫
Σ

Lξω =

∫
Σ

Lξδθ =

∫
S

ιξδθ +

∫
Σ

ιξδdθ

= δ

(∫
S

ιξθ

)
−
∫
S

ιδξθ +

∫
Σ

ιξδE. (2.6)

2.2 Boundary Lagrangian shift

As recalled in the introduction, the nature of the symmetry algebra has been the subject
of extensive studies by [14, 17–20, 22–28, 40, 41] in the context of asymptotic infinity, and
by [29–37] from the perspective of finite null boundaries. Since the understanding the nature
of the corner symmetry algebra in the presence of non-zero flux is the goal of this paper, we
extend previous analyses to the case where the the normal translations are not restricted to
be along a given boundary.

The first key ingredient to achieve this is the fact that the symplectic potential is uniquely
determined by the Lagrangian [7], and the following important consequence. Let us suppose
that we modify the original Lagrangian by a boundary term, so that the two Lagrangians
have the same equations of motion. We then get two distinct symplectic potentials θ and
θ′, respectively associated to L and L′ = L+ d`. The difference between the two symplectic
potentials can be understood as the equations of motion for the boundary Lagrangian. In
other words, we have that [7]

L′ − L = d`, θ′ − θ = δ`− dϑ, (2.7)

where ` is the boundary Lagrangian, while ϑ is the corner symplectic potential for `.
The fact that one can assign a unique symplectic form to the pair (L, `) is an important

point which was overlooked in the early references, such as [17], where this type of changes in
Lagrangian and symplectic potential are often considered to be ambiguities of the covariant
phase space. Instead, in [7] it was shown to be a feature of a gauge theory that can lead
to different representations of the corner symmetry algebra. More precisely, the new insight
of [7] is that the symplectic form is modified by the addition of a boundary Lagrangian
through its corner symplectic potential

Ω′ = Ω−
∫
S

δϑ. (2.8)
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A clear way to appreciate the relevance of the property (2.8) is to realize its key role in
the asymptotic renormalisation of the charges [27,28,46,51–53], as it allows one to reabsorb
the divergences of the covariant symplectic form entirely in terms of the corner symplectic
potential. Augmenting the definition of the covariant phase space with this prescription,
one gets a better handle of physical quantities than working with an equivalence class of
symplectic potentials, as clearly exhibited in [46]. We remark also that the transformations
(2.7) were originally shown in [48] to be related to a choice of boundary conditions; we will
come back to this important point more in detail in Section 3.4.

2.3 Noether theorem, Noether charges and Anomalies

Once the pair (L, θ) is chosen, we can apply the Noether theorems to construct the symmetry
charges Qξ. By the second Noether theorem, the Noether charges for local gauge symmetries
are really corner charges on-shell. This means that Qξ =

∫
S
qξ, where qξ is a codimension-2

form called the charge aspect. It is important to appreciate that the charge aspect and the
charge Qξ are uniquely determined from the choice of a Lagrangian.5 This is what we call
the Noether charge associated with (L, θ). Of course, an important part of the construction
requires understanding how the charges and fluxes transform under changes of Lagrangians
giving the same equations of motion.

The explicit construction requires introducing the notion of field space interior product
and Lie derivative. Given a vector field ξ in spacetime, we denote Lξ the Lie derivative
and δξ the corresponding field variation.6 We also denote ιξ the vector field contraction on
spacetime forms and Iξ the field space contraction on field space forms. The field space
contraction Iξ is such that when acting on simple forms δφ, with φ a scalar, it gives the
variation Iξδφ = δξy δφ = δξφ.

In the following we will be interested in field-dependent diffeomorphisms, hence δξ 6= 0. In
this case, it is necessary to consider also the operator Iδξ which denotes the field contraction
along a form-valued vector. While Iξ is a derivation that lowers the form degree by 1, Iδξ
is a derivation of degree 0, like δξ. And while the contractions commute7 [Iχ, Iξ] = 0, the
form-valued contraction satisfies [Iχ, Iδξ] = Iδχξ; see [1] and [54] for more details on these
notations. The Lie derivatives and interior products are related by Cartan’s formula and its
field space analog

Lξ = dιξ + ιξd, δξ = δIξ + Iξδ. (2.9)

For the gravitational field space, we have δξgµν = Lξgµν .
In this work, we are specifically interested in the construction of charges associated

with Lagrangians which are semi-covariant under diffeomorphisms. Semi-covariant under
diffeomorphisms simply means that the variation of the Lagrangian is a total derivative,

δξL = d`ξ . (2.10)

We also call covariant the Lagrangians for which `ξ = ιξL. This is the case when the
Lagrangian transforms under field diffeomorphism as a top form: δξL = LξL = d(ιξL).

5With the use of the homotopy operators [7].
6Strictly speaking the proper notation should be ILξ

= Lξy which refers to the interior product along
the field variation. For simplicity we use Iξ := ILξ

and δξ := δLξ
.

7All commutators are bi-graded commutators (see Appendix A in [7] for more details).
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Noether’s remarkable8 paper [57] establishes two fundamental results from this covari-
ance. First, it shows that the equations of motion have to satisfy a Bianchi identity associated
with each gauge symmetry and this implies, in our language, that there exists a constraint
Cξ, which vanishes when E =̂ 0, given by

IξE = dCξ. (2.11)

Furthermore, it also establishes9 that the Noether current is the sum of the constraints and
a total differential

jξ := Iξθ − `ξ = Cξ + dqξ. (2.12)

The main limitation of the usual application of Noether’s theorems is the assumption that
the action of a diffeomorphism in field space coincides with the Lie derivative in spacetime,
namely that δξ = Lξ. In this case, we say that the formalism is free of anomalies. In the
presence of gauge-fixings and boundary conditions, this is not necessarily true anymore. For
instance, the use of the Gibbons–Hawking boundary term in the definition of the Lagrangian,
to enforce Dirichlet’s boundary conditions, introduces Lagrangian anomalies because of the
appearance of the boundary normal. Moreover, anomalies naturally appear in the presence
of background structures that break covariance. Such structures are necessary to define
the notion of infinity. For instance, suppose that we choose a foliation of our spacetime
such that the normal to the foliation is the one form Nµdxµ = dr. The coordinate r is
a preferred coordinate (which allows, for instance, the definition of the asymptotic limit
r → ∞ or of the factor for the the conformal compactification) that can be used to define
a vector field Nµ = grµ normal to the foliation. The transformation of this vector under
diffeomorphisms is given by LξNµ = [ξ,N ]µ. The field transformation remembers, on the
other hand, that this vector is the component of a tensor.10 That creates an anomaly given
by ∆ξN

µ = (δξ − Lξ)Nµ = −Nµ∂rξ
r.

This means that the derivation of the Noether charges, Noetherian fluxes and Poisson
brackets needs to be revisited in the presence of anomalies. This is especially crucial in order
to define symplectic renormalization [46]. The goal of this section is to further develop the
consequences of anomalies in the covariant phase space formalism.

The concept of anomaly in the covariant phase space formalism was studied by one of
us in [33]. Earlier works on anomalies in covariant phase space formalism include [60, 61].
The fact that boundary Lagrangians introduce anomalies was also noted by Harlow and Wu
in [48]. Moreover, the symplectic formalism in the presence of anomalies has been recently
developed by Chandrasekaran and Speranza in [38]. In this work we develop further their
results and generalize their analysis.

Given a form in spacetime and field space ω, we define its anomaly by the difference
between the field space action and the spacetime Lie derivative:

∆ξω, with ∆ξ := (δξ − Lξ − Iδξ). (2.13)

8It is quite remarkable that Noether’s paper is already about the covariant phase space and it already
contains all the elements necessary to construct the bicovariant calculus! It took more than 60 years for the
rest of theoretical physics to catch up to the depth of this paper. It is only in the very recent years that we
are starting to outgrow it. For the wonderful history see [55,56].

9To continue on the historical note. The formula for the Noether charge that includes the boundary term
`ξ was first proposed by Bessel–Hassel in 1921 [58,59].

10Explicitly, we have δξN
µ = Lξgrµ = ξν∂νg

rµ − grν∂νξµ − gνµ∂νξr = [ξ,N ]µ −Nµ∂rξ
r.
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The anomaly operator ∆ξ is a graded derivation of degree 0 which satisfies the commutation
relations

d∆ξ = ∆ξd δ∆ξ = ∆ξδ + ∆δξ . (2.14)

When acting on the Lagrangian, a scalar in field space, the anomaly is simply ∆ξL =
δξL− LξL.

As said above, following Noether and Bessel-Hassel [57–59], we are interested in theories
with a semi-covariant Lagrangian, i. e. such that the Lagrangian anomaly is a pure boundary
term. It then follows that the symplectic anomaly is also determined by the sum of a pure
boundary term and a pure variational term:

∆ξL = daξ, ∆ξθ = δaξ − aδξ + dAξ . (2.15)

The first equation is the definition of semi-covariance, the second is a postulate for the most
general anomaly allowed by the relation δL = dθ − E.11 The term aξ is the Lagrangian
anomaly, while Aξ will be referred to as the symplectic anomaly. For gravity we have
formulations, such as Einstein–Hilbert or Einstein–Cartan, where both anomalies vanish.
These are understandably the most studied formulations. This means that in the gravity
case all anomalies enters through the choice of a boundary Lagrangian which is needed when
dealing with boundaries and infinities.

In light of these considerations, it will be important for us to decompose the component
`ξ which enters the Lagrangian variation (2.10) as follows,

`ξ = ιξL+ aξ. (2.17)

The first term on the RHS is the usual expression that arises when the Lagrangian transforms
covariantly under diffeomorphisms. Hence, for a covariant Lagrangian aξ = 0. As shown in
Appendix A.1, the Noether charge in the presence of anomalies is given by

Qξ =

∫
S

qξ, dqξ =̂ Iξθ − ιξL− aξ. (2.18)

The hallmark of Noether theorems is not only that the Noether charges are conserved, thanks
to djξ =̂ 0, but also that the Noether charge is the canonical generator of symmetry under
certain conditions. More precisely, we need to consider the fundamental canonical relation12

− IξΩ = δ

(∫
Σ

Cξ

)
+ δQξ −Fξ. (2.19)

We refer to Fξ as the Noetherian flux. It appears simply as the component of IξΩ not
contained in the total variation of the total Noether charge of diffeomorphism. The explicit
on-shell expression of the flux is given in equation (2.20). Its off-shell expression is given in

11One simply evaluates

∆ξ(δL− dθ) = δ∆ξL−∆δξL− d∆ξθ = d(δaξ − aδξ −∆ξθ) = 0, (2.16)

using the commutation relations (2.14).
12The contraction IξΩ = δξyΩ is also sometimes denoted Ω(δξ, δ).
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(3.33). The qualifier Noetherian, for the flux, indicates that the split between charge and
flux on the RHS is not arbitrary13 but associated with the Noether charge, which in turns
is associated to a unique choice of Lagrangian as explained above.

When Fξ = 0, we have that the Noether charge is the Hamiltonian charge, that is the
canonical generator of symmetry. This happens, for instance, for corner symmetries [1–3,7–9]
which are field-independent diffeomorphisms leaving the corner surface S fixed. It can also
happen when there is a boundary and boundary conditions are imposed. More precisely,
when there is no anomaly and ξ is field independent, we have that the Noetherian flux is the
symplectic flux Fξ = F θξ . In this case, imposing boundary conditions that requiring that no
symplectic flux leaks through the boundary also implies that the Noetherian flux vanishes.
These points are developed in Section 3.4.

2.4 Noetherian flux

In this section we investigate the structure of the Noetherian flux Fξ. It is important to
appreciate that this flux is, like the symplectic potential θ and the Noether charge Qξ,
uniquely determined by the choice of Lagrangian. It is supported, on-shell, at the corner
and given by

Fξ =̂

∫
S

(ιξθ + qδξ + Aξ) , (2.20)

that is the sum of three terms. The first term is the symplectic flux given by the contraction
ιξθ. As we have seen, this terms is due to the fact that there can be leak of symplectic flux
through the motion of the boundary S when it is translated along ξ. The second term appears
if the vector field ξ is field dependent, while the third term appears if there are symplectic
anomalies. In the usual case of field-independent transformations and a choice of symplectic
potential with no anomaly, such as Einstein–Hilbert or Einstein–Cartan formulations, only
the first term contributes.

The proof of (2.20) goes as follows. One first evaluates the symplectic anomaly from first
principle using repeatedly the equations Iξθ =̂ dqξ+ ιξL+aξ and δL =̂ dθ, valid on-shell. One
gets

∆ξθ = (δξ − Lξ − Iδξ)θ
= Iξδθ + δIξθ − ιξdθ − dιξθ − Iδξθ
=̂ Iξδθ + δ(Iξθ − ιξL)− (Iδξθ − ιδξL)− dιξθ
=̂ Iξδθ + δ(dqξ + aξ)− (dqδξ + aδξ)− dιξθ
= Iξδθ + δaξ − aδξ + d [δqξ − (ιξθ + qδξ)] . (2.21)

One can then use the definition (2.15) of the symplectic anomaly Aξ to rewrite this identity
as

− Iξδθ =̂ d [δqξ − (ιξθ + qδξ + Aξ)] , (2.22)

13This prescription is closer to the Wald–Zoupas approach [17] and should be contrasted with the approach
in [24,25,27,28]. In the latter, there is no a priori prescription for the split between the charge and the flux.
This ambiguity is also reflected in the Barnich–Troessaert bracket which yields the appearance of cocycles.
As we are going to show in Section 3.2, our Noetherian prescription allows us to define a charge bracket
which represents the symmetry algebra faithfully.
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which gives us (2.19), (2.20) after integration over a slice Σ with boundary S.
Note that the flux expression (2.20) can be used to give a more elaborate proof of the

symplectic flux equation (2.4). This is obtained as follows,

∂tΩt =

∫
Σ

Lξω =

∫
Σ

(δξ −∆ξ − Iδξ)ω

= δFξ −
∫

Σ

(∆ξ + Iδξ)ω

= δFξ −
∫

Σ

Iδξω −
∫

Σ

(δ∆ξθ −∆δξθ)

=̂ δ

(
Fξ −Qδξ −

∫
S

Aξ

)
−
(
Fδξ −

∫
S

Aδξ

)
=̂ δF θξ −F θδξ , (2.23)

where in the first line we have used the definition of the anomaly (2.13), in the second
line

∫
Σ
δξω = δ

∫
Σ
Iξω = δFξ due to the fundamental canonical relation (2.19), in the third

the commutation relation (2.14), in the fourth line we have used the fundamental canonical
relation (2.19) for a degree-one (or “fermionic”) vector field δξ14 and the symplectic anomaly
(2.15) to establish that

δ∆ξθ −∆δξθ = δdAξ − dAδξ . (2.25)

This alternative proof shows explicitly how the Lagrangian anomaly drops out and does not
contribute.

2.5 Changing the Noetherian split

In the previous sections we have performed a decomposition of the symplectic contraction in
terms of an integrable component given by the Noether charge Qξ and a flux component Fξ.
This decomposition depends on the choice (L, θ). It is therefore natural to wonder how this
decomposition changes under a change of boundary Lagrangian L′ = L+ d` with associated
symplectic potential θ′ defined in (2.7). To be general, we will not assume that the boundary
Lagrangian is covariant. The Lagrangian and symplectic anomalies transform as follows,

a′ξ = aξ + ∆ξ`, A′ξ = Aξ −∆ξϑ . (2.26)

The first shift follows immediately from (2.14) and the first relation in (2.15); the second
follows from the expression (2.7) for the shifted potential, using (2.14), the second relation
in (2.15), and the first shift.

So we see that even if we start with a fully covariant formulation where aξ = Aξ = 0,
boundary shifts can create anomalies. The new charges and fluxes are

Q′ξ =

∫
Σ

(
Iξθ
′ − ιξL′ − a′ξ

)
, F ′ξ =

∫
S

(
ιξθ
′ + q′δξ + A′ξ

)
. (2.27)

14Beware of the sign changes when the vector field is a field-space one-form,

−
∫

Σ

Iδξω = −δQδξ −Fδξ , ∆δξθ = −δaδξ + dδAξ , (2.24)

whereas δ∆ξθ = −δaδξ + δdAξ.
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We show in Appendix A that these are related to the old ones by the following shifts

Q′ξ −Qξ =

∫
S

(ιξ`− Iξϑ), F ′ξ −Fξ =

∫
S

(διξ`− δξϑ) . (2.28)

These shifts of charge and flux preserve the fundamental canonical relation (2.19), since
the symplectic form is shifted by the corner potential as in (2.8). What is remarkable in
these formulae is the fact that all the anomaly contributions have finally dropped out of the
shifts. In particular, notice that as a consequence of (2.28), if one starts with a covariant
bulk Lagrangian, the final expression for the charge is anomaly-free even if the boundary
Lagrangian is anomalous.

3 Charge bracket

The previous section introduced the notion of Noetherian split in order to clearly distinguish
what we call charge from what we call flux. It is also convenient to define the notion of an
equivalence L ∼ L + d` when two Lagrangians are related by a boundary shift. We denote
such a class of Lagrangians by [L] = [L + d`]. The equivalence class [L] characterizes the
equations of motion. We will say that a class is covariant when there exists a representative
Lc of the class with no anomaly. For gravity we have that the class is covariant with covariant
representative the Einstein–Hilbert Lagrangian. The choice of Lagrangian representative L
within an equivalence class can be related, as we will see in Section 3.4, to a choice of
boundary condition. The choice of Lagrangian L also determines uniquely, as we have seen,
the Noetherian charges and fluxes.

In this section we show that it is possible to define a charge bracket associated with a
given Lagrangian that takes into account the presence of a non-vanishing flux. This bracket
defines flux-balance laws which encode the dynamics of the theory, and is used to provide a
canonical representation of the extended corner symmetry algebra derived below.

3.1 Brackets and symmetric flux-balance law

We are interested in constructing the bracket in the more general framework that includes
field-dependent symmetry generators as well as anomalies, since both features arise com-
monly when dealing with boundaries. More precisely, we have emphasized in Section 2.4
that the equality δξ = Lξ is not always satisfied in the presence of background structures
which create Lagrangian and symplectic anomalies. Another instance where the equality is
also not satisfied is when we allow the vector fields to be field dependent. In these cases,
anomalies appear in the construction of the symmetry bracket. The field dependency of
the generators also affects the construction of the Noetherian flux as shown in (2.20). The
presence of field dependent vector fields is unavoidable when we work in a fixed gauge. The
introduction of field dependent vector fields ξ is also an integral part of the construction of
an extended phase space that includes edge modes [1,7–9]. Finally it is a central part in the
recent construction of [42,43], which involves a field dependent redefinition of the symmetry
generators in order to reabsorb fluxes.

14



By construction the commutator of two symmetry transformations is itself a symmetry
transformation. This means that there exists a bracket J·, ·K such that

[δξ, δχ] = −δJξ,χK . (3.1)

For field independent transformations the bracket is simply the Lie bracket. In general,
however, we have that the bracket is given by [24]15

Jξ, χK := [ξ, χ]Lie + δχξ − δξχ. (3.3)

This bracket also enters
[δξ, Iχ] = −IJξ,χK , (3.4)

as well as the commutation relations of the anomaly operator

[∆ξ,∆χ] = −∆Jξ,χK, [∆ξ, Iχ] = Iδχξ − IJξ,χK, [∆ξ, ιχ] = ιδχξ − ιJξ,χK. (3.5)

These identities are proven in Appendix A.3.
If one starts with the fundamental equation (2.19) and contracts it with a field variation

δχ we get the equation
Ω(δξ, δχ) := IχIξΩ =̂ δξQχ − IξFχ. (3.6)

It is important to appreciate that the freedom of choice between charge and flux is restricted
by demanding that the charge and the flux are Noetherian as in (2.18), (2.20). This means
that they descend from a symplectic potential θ and a Lagrangian L, as explained above.

Now we can present the symmetric flux-balance relation. Since the symplectic structure
is antisymmetric, we have that Ω(δξ, δχ) = −Ω(δχ, δξ), which in turn implies that we have
the on-shell equality

δξQχ − IχFξ =̂ − (δχQξ − IξFχ) . (3.7)

Two facts are remarkable about this identity. First, it is independent of the split between
charge and flux and therefore invariant under asymptotic renormalization. Indeed, under a
change of boundary Lagrangian, we have that the LHS of (3.7) transforms as

δξ(ιχ`− Iχϑ)− Iχ(διξ`− δξϑ) = 2δ[ξιχ]`+ IJξ,χKϑ, (3.8)

which is manifestly antisymmetric and is equivalent to the skew-symmetry of the bracket.
Second, the symmetric flux-balance relation is obtained by using the field equations. What
is remarkable is that the reverse is also true: given the flux and the symplectic potential, the
kinematical flux-balance law (3.7) implies the validity of the Einstein’s equations selected by
the symmetry vectors, as shown below in (3.32). This has already been verified at asymptotic
null infinity in [46].

15The proof follows from

δξδχgµν = δξ(Lχgµν) = Lδξχgµν + Lχ(δξgµν) = Lδξχgµν + LχLξgµν . (3.2)

Antisymmetrizing this equation and using [Lχ,Lξ] = L[χ,ξ]Lie
we obtain (3.1).
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3.2 An invariant Poisson bracket

While the symmetric flux-balance relation (3.7) provides a very useful and powerful tool to
recover some of the Einstein’s equations on S, it does not provide access to the structure of
the symmetry group, as it is not written in terms of a bracket providing a representation
of the symmetry algebra on the corner sphere. We will now show how the Noetherian split
we advocate for allows us to go one step further and define a second flux-balance relation in
terms of a bracket available for open Hamiltonian systems and in the presence of anomalies.

Before doing so, we need to establish a technical lemma. Let us assume that a d-
dimensional spacetime M is such that Hd−1(M) = 0. Then there exists a two form c(ξ,χ)

which is such
dc(ξ,χ) = ∆ξaχ −∆χaξ + aJξ,χK. (3.9)

Moreover, c(ξ,χ) is independent of the choice of representative within a class [L].
To prove this, one first notices that the RHS of (3.9) is a closed 3-form, which follows

from the definition (2.15) of the Lagrangian anomaly,

d(∆ξaχ −∆χaξ + aJξ,χK) = ([∆ξ,∆χ] + ∆Jξ,χK)L = 0. (3.10)

The fact that the 2-form c is independent of the choice of boundary Lagrangian follows from
the shift (2.26) of the Lagrangian anomaly, namely a′ξ = aξ + ∆ξ`, from which

c′(ξ,χ) = c(ξ,χ) + [∆ξ,∆χ]`+ ∆Jξ,χK` = c(ξ,χ). (3.11)

Hence, if the class [L] admits a representative Lagrangian free of anomaly, like in the case
of gravity,16 we have c(ξ,χ) = 0. This simplifies the definition of the bracket, as we are about
to see.

We are now in a position to define the following corner symmetry bracket suggested by
the identity (3.7):

{Qξ, Qχ}L := δξQχ − IχFξ +KL
(ξ,χ) , (3.12)

where KL
(ξ,χ) is given by

KL
(ξ,χ) :=

∫
S

ιξιχL+

∫
S

(ιξaχ − ιχaξ) +

∫
S

c(ξ,χ) , (3.13)

and it reduces simply to the Lagrangian contraction term when there is no anomaly. This
bracket, whose label L is meant to stress its dependence on the Lagrangian and not just
Lagrangian class, represents a generalization of the Barnich–Troessaert bracket [23–25, 63],
in that it is modified by the Lagrangian term, and it is extended to include the case of
anomalies and all normal translations. It also generalizes the work of [38] to the case of
field dependent vector fields. The Lagrangian term is non-zero only when we consider vector
fields (ξ, χ) which are transverse to S and form a 2-dimensional basis of the normal bundle

16Note that if we have a non-zero cosmological constant then the Einstein–Hilbert Lagrangian is infinite
on-shell. If we restrict the admissible class [L]finite of Lagrangians to the ones that are finite on-shell, we
will have a residual anomaly c(ξ,χ) associated to the equivalence class, which could be the source of Brown–
Henneaux central charges [62].

16



(TS)⊥. The relevance of such a term was first noticed by Speranza in [54]. The symmetric
flux-balance relation is simply the statement that this bracket is antisymmetric since KL

(ξ,χ)

is manifestly skew.
The bracket (3.12) satisfies two essential properties:

1. It satisfies the Jacobi identity,

2. It provides a representation of the commutator (3.1) for any L in the class [L].

The second property implies the first one, so we focus on the second property first. To
prove it one computes, using the definition (2.18) of Qχ and the commutation relations (3.5),
the charge anomaly:

∆ξQχ = Qδχξ −QJξ,χK +

∫
S

(IχAξ + iχaξ)−
∫
S

c(ξ,χ) , (3.14)

where we have used (3.9). We can now get the flux-balance equation from

IχFξ −
∫
S

iξiχL =̂

∫
S

(
iξ(Iχθ − iχL) + qδχξ + IχAξ

)
=

∫
S

(
Lξqχ + iξaχ + qδχξ + IχAξ

)
= δξQχ −∆ξQχ +Qδχξ +

∫
S

(iξaχ + IχAξ)

= δξQχ +QJξ,χK +

∫
S

(iξaχ − iχaξ + c(ξ,χ)) . (3.15)

Plugging this equality in (3.12) shows that the bracket provides, even in the presence of
anomalies, the fundamental charge commutation relation

{Qξ, Qχ}L =̂ −QJξ,χK . (3.16)

The second aspect of the second property means that the charge bracket relation (3.16)
is independent of the split between charges and fluxes. To see this, let us consider how
this bracket transforms under a change of Lagrangian L′ = L+ d` and symplectic potential
δθ′ = δθ − dδϑ. We have already seen that the 2-form c(ξ,χ) is independent of the choice of
boundary Lagrangian. Then, from the transformations (2.28), we can evaluate that the new
bracket is related to the old one as follows:17

{Q′ξ, Q′χ}L′ = {Qξ, Qχ}L +

∫
S

(δξιχ`− δξIχϑ)−
∫
S

(δχιξ`− Iχδξϑ) +

∫
S

ιξιχd`

+

∫
S

(ιξ∆χ`− ιχ∆ξ`) (3.18)

= {Qξ, Qχ}L +

∫
S

(IJξ,χKϑ− ιJξ,χK`) , (3.19)

17We use the commutator (3.4) and that

ιχLξ`− ιξLχ`+ ιδξχ`− ιδχξ` = −ιJξ,χK`− ιξιχd`+ d(iξiχ`) . (3.17)
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from which we finally get

{Q′ξ, Q′χ}L′ +Q′Jξ,χK = {Qξ, Qχ}L +QJξ,χK . (3.20)

This relationship shows that the canonical relation (3.16) is preserved under the change of
boundary Lagrangian and (3.16) shows that the Jacobi’s identity is always satisfied by the
bracket (3.12).

It is important to appreciate that the canonical commutation relation can also be written
as a fundamental flux-balance law. Explicitly, if one uses the bracket and charges that come
from a covariant Lagrangian, we see that (3.16) is equivalent to

δξQχ +QJξ,χK =̂ IχFξ +

∫
S

ιχιξL. (3.21)

This equation describes the change of Qχ as it is moved along ξ. The first component of the
motion is a rotation inside the symmetry orbit, while the Noether flux and the contracted
Lagrangian appear as source terms which prevent the charge evolution to be purely along
the coadjoint orbit.

Finally, in Appendix A.5 we give the proof of the relation

Ω(δξ, δχ) =̂ δξQχ − δχQξ +QJξ,χK +KL
(ξ,χ). (3.22)

A direct derivation of the formula (3.22) can be obtained by plugging (3.6) into (3.16) with
the definition (3.12).

As usual, the fact that the symplectic form is closed, i.e. δΩ = 0, is equivalent to the
identity

δξΩ(δχ, δζ) + Ω(δJξ,χK, δζ) + cycl. = 0 , (3.23)

where cycl. refers to the cyclic permutation of (ξ, χ, η). We can also see that the charge
dependent terms in (3.22) drop out of (3.23), which therefore yields a cocycle identity for
the contribution KL

(ξ,χ), namely

δξK
L
(χ,ζ) +KL

(Jξ,χK,ζ) + cycl. = 0. (3.24)

This cocycle identity for the anomaly terms inside KL
(ξ,χ) was proven in [38], for the case

where the Lagrangian L belonged to a covariant class. That is when aξ = ∆ξ` and c(ξ,χ) = 0.
Our proof generalizes this result.

This suggests that we could have defined, following Barnich–Troessaert, a bracket that
does not include the contribution from the Lagrangian and its anomaly:

{Qξ, Qχ}BTL := δξQχ − IχFξ. (3.25)

The relationship between the two brackets is through the Lagrangian 2-cocycle

{Qξ, Qχ}BTL = {Qξ, Qχ}L −KL
(ξ,χ). (3.26)

This shows that the cocycles attached to the Barnich–Troessaert bracket in [28] can all be
derived from the non-covariance of the boundary Lagrangian (an explicit example of this
statement was given in [46]).
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It is not clear to us that the Barnich–Troessaert bracket {·, ·}BTL satisfies the Jacobi
identity, since this requires proving two key properties:

{Qζ , K
L
(ξ,χ)}BTL

?
= δζK

L
(ξ,χ), {KL

(ξ,χ), K
L
(ξ′,χ′)}BTL

?
= 0. (3.27)

While the first identity is plausible, the second one seems far less obvious as KL
(ξ,χ) is a

field dependent cocycle. These identities are usually postulated but, as far as we can tell,
never proven. A proof of these identities would require showing that the Barnich–Troessaert
bracket can be extended to the entire gravitational phase space and not just to the subset
of observables associated with symmetry charges.

3.3 Algebra and constraints

What we have proven so far is the fact that the fundamental commutation relation (3.16)
is satisfied, provided we assume the validity of the bulk constraint equations. We now want
to ask: what happens if we do not assume that? The main claim of our work is that the
demand of the validity of (3.16) implies Einstein’s equations. In other words, we are saying
that the demand that the corner charges form a faithful and centerless representation of the
boundary symmetry algebra at any corner is the essence of Einstein’s equations.

The first step of the argument requires the computation of the anomaly of the constraint
Cξ. One first establishes that

C(ξ,χ) := ∆ξCχ − Cδχξ + CJξ,χK = 0. (3.28)

To see this, one uses the fact that the constraints are related to the equations of motion by
dCξ = IξE and, since the equations of motion have no anomaly (∆ξE = 0), one gets, using
(3.5), that

d(∆ξCχ) = ∆ξIχE = [∆ξ, Iχ]E = IδχξE − IJξ,χKE = d(Cδχξ − CJξ,χK). (3.29)

This establishes that C(ξ,χ) = dρ(ξ,χ), where ρ(ξ,χ) is a codimension-2 form which depends
linearly on ξ and χ. We can integrate this identity on Σ and use that ξ and χ can be
chosen arbitrarily in the bulk of Σ while they can be chosen to vanish on S. This means
that the bulk and the boundary identities need to be satisfied independently, i.e. one has
C(ξ,χ) = 0 = dρ(ξ,χ). One can also establish the identity (3.28), in a pedestrian manner, by
using the explicit expression

Cχ = χµGµ
νεν , εµ = ι∂µε, (3.30)

where ε is the 4-volume form and Gµν is the Einstein tensor. One has

∆ξCχ = (∆ξχ)µGµ
νεν = Cδξχ − C[ξ,χ]Lie

, (3.31)

which is equivalent to (3.28). One now has to evaluate the form ρ(ξ,χ) explicitly. We find
that the identity dρ(ξ,χ) = 0 gives, after integration over the hypersurface Σ, the remarkable
off-shell bracket identity:

{Qξ, Qχ}L +QJξ,χK +

∫
S

ιξCχ = 0. (3.32)
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To establish this relation, we use that the dependency on the constraints can be restored
through the shifts of the charge and flux

Qχ → Qχ +

∫
Σ

Cχ , Fξ → Fξ +

∫
Σ

(Cδχξ + ιξE). (3.33)

The shift for the charge goes back to the original definition (2.12). The fact that there is
a bulk contribution to the Noetherian flux is surprising and often overlooked. This bulk
contribution vanishes off-shell when ξ is field independent and ξ is tangent18 to Σ. It is
thus only relevant for the Hamiltonian constraint, that is when considering vector fields ξ
which are transverse to the slice Σ. This shows that the Hamiltonian constraint is in fact
Hamiltonian only on-shell of the equations of motion!

These shifts imply in turn that the combination entering the definition of the bracket
bracket is given by

(δξQχ − IχFξ)→ (δξQχ − IχFξ)−
∫
S

ιξCχ +

∫
Σ

(∆ξCχ − Cδχξ) , (3.34)

from which we get

{Qξ, Qχ}L +QJξ,χK +

∫
S

ιξCχ = −
∫

Σ

(∆ξCχ − Cδχξ + CJξ,χK) = 0, (3.35)

as promised. More details about these calculations are given in the appendix A.4.

3.4 Noether versus Hamiltonian charges

We have constructed a canonical algebra for the Noether charges in the general case of
an open system with non-zero symplectic flux. There are two instances however where
we already know what the bracket of charge is. The first instance is when the system
is Hamiltonian, i.e. admits no symplectic flux and F θξ = 0, and the second is when the

symmetry transformations are integrable, i.e. F θξ is δ-exact. In both cases we can define a
phase space on which the charges act as canonical transformations and the bracket is simply
the canonical Poisson bracket obtained by inverting the conserved symplectic form. The goal
of this section is to show that we can recover from the bracket (3.12) the usual canonical
Poisson bracket of Hamiltonian charges in both cases.

In both cases we will need to assume that δξ = 0. The prototypical example of this
recovery, studied in detail by Harlow and Wu in [48], is the case of gravity with Dirichlet
boundary conditions δḡab = 0, where ḡab is the metric induced on a timelike surface. In
this case, it is well known [64] that the Einstein–Hilbert Noether charge, associated with
a diffeomorphism that translates the boundary along itself, and also known as the Komar
charge, is not the Hamiltonian charge. We know, however, that the system is Hamiltonian,
in the sense of a conserved symplectic form, due to the Dirichlet boundary conditions. This
means that we can define an Hamiltonian generator which differs form the Einstein–Hilbert
Noether charge. This Hamiltonian generator is the Brown–York generator. In [7] it is shown
that the difference between the Komar and the Brown–York charges comes entirely from

18If ξ is tangent to Σ, then ιξE is a three form that integrates to zero when pulled back on Σ.

20



the presence of a boundary Lagrangian given by the Gibbons–Hawking term [65]. This
proves that the Hamiltonian charges associated with Dirichlet boundary conditions are in
fact Noether charges for the Gibbons–Hawking Lagrangian19 and that the canonical bracket
for the Dirichlet Hamiltonian charges is the same as the Gibbons–Hawking bracket {·, ·}LGH

.
This phenomenon is absolutely general. Given a Lagrangian L within a class [L] we

construct a symplectic potential current θL, a symplectic form current ωL, and a collection
of charges QL

ξ . Most importantly, and as explained in detail in [7], we can also associate to
the Lagrangian a boundary condition BL given by

BL : θL
Γ
= 0 , (3.37)

where Γ is a time-like or null boundary with normal sµ and
Γ
= means that the equality is

considered as a pull-back of forms on Γ. For instance, since the symplectic potential of

Einstein–Hilbert is θEH
Γ
=
√
g

2
(gαβsµ − sαδβµ)δΓµαβ, the Einstein–Hilbert boundary condition

is of Neumann type, which imposes certain connection coefficient to be fixed on Γ. While

the Gibbons–Hawking symplectic symplectic potential is θGH
Γ
=
√
g

2
(Kḡαβ −Kαβ)δḡαβ, with

boundary condition δḡαβ = 0. Another metrical example is studied in [66] and it is given by
the Lagrangian Lmixed = 1

2
R− 2

3
∇µ(sµK +∇ss

µ) which imposes mixed boundary conditions
δK = 0 = δ˜̄gab, where ˜̄gab is the unimodular metric.

In any case, the main point is that there exists a correspondence L → BL between La-
grangians and boundary conditions via (3.37). Once the boundary condition BL is imposed,
the symplectic form ΩL

Σt
for slices Σt that intersect Γ at St, is conserved. This means that

we have a phase space structure PL and that we can construct the canonical Poisson bracket
{·, ·}canL on PL by inverting the symplectic structure ΩL

Σt
. It also means that we have a

Hamiltonian generator HL
ξ on PL which is such that −IξΩL

Σ = δHL
ξ .

It is now natural to ask what is the relationship between our bracket {·, ·}L and the
canonical bracket {·, ·}canL ? What is the relationship between the Noether charge QL

ξ and the
Hamiltonian charge HL

ξ ? The answer is very simple, at least in the absence of anomalies. If
we assume that the symmetries ξ that preserve20 BL also satisfy aξ = Aξ = 0, then

{·, ·}L = {·, ·}canL , QL
ξ = HL

ξ , (3.38)

where the equality is valid when the boundary condition BL is imposed. See also [49] for a
discussion of the relation between Noether and Hamiltonian charges with anomalies included.

To prove this, let us consider a timelike or null boundary Γ and let us denote St = Σt∩Γ
the corner intersections at time t. Let us assume that we have a covariant class [L] and
that L is the covariant Lagrangian representative of the class [L]. As already pointed out in
(2.4), the demand of having a conserved symplectic form, is equivalent to the vanishing of
the symplectic flux at the corners St = Σt ∩ Γ, namely

δF θLξ = 0 . (3.39)

19Which is the Einstein–Hilbert Lagrangian augmented by the Gibbons–Hawking term. Explicitly,

LGH = 1
2R−∇µ(sµK +∇ssµ) , (3.36)

with sµ a unit spacelike normal.
20This is the case for the diffeomorphisms tangent to Γ.
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Since F θLξ =
∫
St
ιξθ

L, imposing (3.39) for all vectors ξ tangent to Γ means that there exists
a boundary Lagrangian ` and a corner potential ϑ such that

(θL + δ`)
Γ
= dϑ . (3.40)

This is the result of [48], which framed in our context can be understood as fact that the
symplectic potential θL

′
= θL + δ` − dϑ associated with the new Lagrangian L′ = L + d`

satisfies the condition (3.37), that is θL
′ Γ

= 0. This means that we can rewrite the condition
(3.39) as the condition that the symplectic flux associated with the new Lagrangian vanishes

BL′
: F θL

′

ξ = 0. (3.41)

In the case of interest where we start from a covariant boundary Lagrangian and we assume
that the pair (`, ϑ) defining BL possess no anomaly under the boundary symmetries,21 we

have that the Hamiltonian flux vanishes FL′
= F θL

′
= 0. We also have that the cocycle

KL′

(ξ,χ) vanishes, as for vector fields (ξ, χ) tangent to Γ the contraction
∫
S
ιξιχL = 0. From

(2.19) and (3.12) this means that

− IξΩ = δQL
ξ , {QL

ξ , Q
L
χ}L = δξQ

L
χ = −QJξ,χK. (3.42)

This establishes that QL
ξ is the Hamiltonian charge and the bracket the canonical bracket.22

The case where the boundary Lagrangian is anomalous under the boundary symmetries
is more involved and will be investigated elsewhere. What we can say is that the preservation
of the boundary condition BL′

means that δξθ
L′

= 0 = LξθL
′

which implies, given (2.15),
that the vector ξ satisfies the condition

δa′ξ + dA′ξ = 0. (3.43)

In this case, we expect the bracket {·, ·}L to be related to the canonical bracket with the
addition of central charges produced by the boundary anomalies. This is what happens in
the asymptotic AdS case [62] and has also be demonstrated for the null case in [38].

A third possibility to obtain integrable Noether charges is to achieve the condition Fξ = 0
by a choice of “slicing” [42, 43], i.e. a choice of field dependency for the vector fields ξ. A
direct way to see how this can work is to recall the expression (2.20) for the Noetherian flux.
By a judicious choice of field-dependent diffeomorphism generators, one can seek to fine-tune
the second term qδξ to cancel the other two (or simply the symplectic potential contribution
in the case where this has no anomaly), namely to impose∫

S

qδξ = −
∫
S

(ιξθ + Aξ) . (3.44)

This procedure has been shown to yield integrable charges in 2d and 3d gravity theories
[42,43], where there are no local propagating degrees of freedom.

21This is the case for the Gibbons–Hawking boundary term which is covariant under diffeomorphism
tangent to Γ.

22The double-Lie bracket in the last equality can also be replaced with the basic Lie bracket since we are
only considering field-independent diffeomorphisms.
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4 Extended corner symmetry

We now explicitly derive the form of the Noether charges of the corner symmetry algebra
extension in the Einstein–Hilbert gravity formulation and compare with the study of null
infinity performed in [46].

4.1 Extended corner symmetry algebra

As first revealed in [1], the gravitational symmetry revealed by the presence of a corner
decomposes into the sum of surface diffeomorphisms, surface boosts and surface translations.
The corner symmetry group is the subgroup of transformations that do not move the surface.
It comprises of the surface diffeomorphism and surface boosts and has the semidirect sum
structure

gS = diff(S) i sl(2,R)S . (4.1)

As shown in [10], this algebra appears as the Automorphism group of the normal bundle
associated with the embedding of S into spacetime. The surface translations, which move
the surface along the normals create non-zero flux. Including them results in the extended
corner symmetry algebra

gext
S =

(
diff(S) i sl(2,R)S

)
i (R2)S . (4.2)

This extended algebra has recently been shown to be a universal subgroup component of the
bulk diffeomorphism group in the presence of an embedded surface [11].

The expression for the charges can be worked out by first decomposing a given vector
field ξ into its tangential component ξ‖ = ξA‖ ∂A and normal component ξ⊥ = ξa⊥∂a, where σA

are coordinates on the sphere while xa denotes normal coordinates. The sphere being located
at xa = 0. The surface boosts corresponds to normal fields that vanish on S: ξb⊥|S=0, while
∂aξ

b
⊥|S 6=0. The surface translations corresponds to normal vector fields that do not vanish

on S.
We introduce a 2 + 2 decomposition of the metric in a neighbourhood of S, with A,B

labeling coordinates tangent to S and a, b coordinates in the normal direction. In coordinates
(xa, σA) adapted to the 2 + 2 decomposition, the metric reads

ds2 = habdx
adxb + γAB(dσA − UA

a dxa)(dσB − UB
b dxb), (4.3)

where γAB is the induced metric on S with determinant γ, hab a generalized lapse matrix
defining the metric on the normal plane with determinant h, and UA

a a generalized shift,
that can be also viewed as a normal connection. A basis for normal vectors to S is provided
by ∂̂a = ∂a + UA

a ∂A, while hab = g(∂̂a, ∂̂b). We work with a parametrization where ξ =
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ξa∂a + ξA∂A, with (ξa, ξA) field independent,23 and we can write

ξa = habξ
b − γABUA

a (ξB − UB
b ξ

b) , (4.4a)

ξA = γAB(ξB − UB
a ξ

a). (4.4b)

Let us introduce the bivector normal N := 1
2
Nµνdx

µ ∧ dxν = n0 ∧ n1. Its component in the

coordinate basis are given by Nab = n
[a
0 n

b]
1 = εab, NAB = εabUA

a U
B
b , NaB = εabUB

b , where εab

is the normal Levi–Civita tensor.24 The Komar charge is given by

QK
ξ =

1

2

∫
S

√
γNµν∂νξµ

=
1

2

∫
S

√
γ
{
ξc
[
εab∂̂bhac − UB

c γBA(εab∂̂aU
A
b )−DC(hcaε

abUC
b )
]

+ ξAγAB(εab∂̂aU
B
b ) + ∂bξ

c(hcaε
ab)
}
, (4.5)

where DA is the covariant derivative compatible with γAB.
We see that no component ∂aξ

B appears in this expression, which is why we have a semi-
direct product structure. More explicitly, if one introduces the following sphere coefficients

Y A := ξA
∣∣
xa=0

, Wa
b = ∂aξ

b
∣∣
xa=0

, T a = ξa|xa=0 , (4.6)

it can be checked that they satisfy the following commutation relations

[Y, Y ′]A = Y B∂BY
′A − Y ′B∂BY

A , [Y,W ]a
b = Y A∂AWa

b , [Y, T ]a = Y A∂AT
a ,

[W,W ′]a
b = Wa

cW ′
c
b −W ′

a
cWc

b , [W,T ]a = −T bWb
a , [T, T ′]a = 0 , (4.7)

which reproduce the Lie algebra structure (4.2). The Komar charge is given by QK
ξ =

Q(T,W,Y ), where

Q(T,W,Y ) =

∫
S

(
Y AP̃A +Wa

bÑb
a + T aQ̃a

)
. (4.8)

In the expression above, P̃A =
√
γPA is the sphere’s momentum density with

PA =
1

2
γABε

ab∂̂aU
B
b =

1

2
√
|h|
γAB(∂1U

B
0 − ∂0U

B
1 + [U1, U0]B), (4.9)

which is proportional to the curvature of the normal connection. It gives the generators
of the diff(S) algebra and this is precisely the twist, or non-integrability of the time-like
screens. The second term is given by the bivector normal density Ñb

a =
√
γNb

a with

Nb
a =

1

2
hbcε

ca, (4.10)

23 There are two alternative parametrizations that can be naturally considered. The first is ξ = ξa∂̂a +
ξ̂A∂A, which is related to the one we have by a field-dependent redefinition ξ̂A = ξA − ξaUAa . The second
is ξ = ξ̃a∂a + ξA∂̃A with ∂̃A = ∂A + AA

a∂a and ξ̃a = ξa − ξAAaA, where AaA = γABU
B
b h̃

ba with h̃ab =
hab + γABU

A
a U

B
b . One needs to be aware that the field dependent parametrization changes the algebra from

the Lie bracket to the Lie algebroid bracket J·, ·K.
24We use the fact that, introducing the timelike unit normal nµ0 = (na0 , n

a
0U

A
a ) and spacelike unit normal

nµ1 = (na1 , n
a
1U

A
a ) to S. The normal Levi-Civita tensor is a skew-symmetric tensor such that ε01 =

√
|h|, and

ε01 = −1/
√
|h|.
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and it yields the sl(2,R)S algebra generators. Finally, the generators of normal translations
are given by Q̃a =

√
γQa with

Qa =
1

2
εcb∂̂bhac − UB

a PB −DC(Na
bUC

b ) , (4.11)

and they yield the new (R2)S algebra component corresponding to translations along the 2
normal directions.

The algebra (4.2) for a corner of a finite region of spacetime has been very recently derived
in [11]. Their construction, based on a parametrization of the metric in a neighbourhood of S
different from (4.3), accounts for the normal translations in the charge bracket by extending
the phase space including the embedding information. This construction can be understood
in terms of edge modes, in line with the strategy laid out in [1] for symmetry transformations
of the corner, with the embedding map playing the role of the edge modes. The embedding
map allows to reabsorb the field translation into the transformation of the embedding field,
which insures that no flux appears in the construction of the Poisson bracket; in this way,
the algebra could be canonically represented.

In our work, the bracket is instead constructed using the covariant phase space formalism
and we need to work with the generalized Barnich–Troessaert bracket in order to take into
account the presence of symplectic flux and anomalies. This provides a representation of the
algebra (4.2) for a finite region, and the same method provides a representation of the BMSW
algebra at null infinity [46]. We notice also that the expression for the charges obtained in [11]
differs from ours. In particular, the normal translation charges (4.11) of the extended corner
symmetry coincide with those of [11] only in the case UA

a = 0. In our context, this choice
amounts to a partial gauge-fixing of some metric components at the location of the surface,
and preservation of this gauge-fixing would require using a field-dependent parametrization
of the diffeomorphisms, as described in footnote 23. In the case where the embedding map is
part of the phase space, the step of gauge-fixing is replaced by a choice of special embedding
map. However, we believe that a deeper analysis of the extended phase space including the
embedding map and the role of gauge-fixing is still needed.

4.2 Null infinity

The set of results presented so far unravels in a clear and precise way the deep connection
between Einstein’s equations for gravity and the algebra of symmetry transformations pre-
serving some given boundary geometrical data. An explicit application of this holographic
derivation of Einsteins equations in the case of asymptotic null infinity has been worked out
in detail in [46]. This required an extension of the BMS group [67–69], named BMSW group,
that includes also local Weyl rescalings and arbitrary diffeomorphisms of the 2d sphere met-
ric, in addition to super-translations, and encompasses previous extensions [23,25,27,70]. At
the same time, the general framework developed here puts the analysis of finite distance and
asymptotic charges and their algebra on equal footing; this uniformity of treatment then
provides an efficient and clear method for investigating the nature of the celestial sphere
symmetry group and possibly reveal its most extended structure. In this perspective, it
is illustrative to understand how the bmsw algebra of residual diffeomorphisms revealed
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in [46],25

bmsw = (diff(S) i RS
W ) i RS

T , (4.12)

relates to the extended corner symmetry algebra (4.2): the term RS
W corresponds to the

sl(2,R) algebra generator that preserves the null generator of I, while RS
T is one of the two

normal time (super-)translation generators, namely the one along I. Therefore, the bmsw
Lie algebra represents a subalgebra of the maximal closed subalgebra gext

S of the full bulk
diffeomorphisms.

This can be seen explicitly as follows. The Bondi metric can be recast as in (4.3) and it
reads as

ds2 = −2e2βdu (Fdu+ dr) + r2qAB(dσA − UAdu)(dσB − UBdu). (4.13)

To be more explicit, upon comparison with (4.3), one has x0 = u, x1 = r and

h00 = −2e2βF, h01 = −e2β, h11 = 0 γAB = r2qAB, UA
a dxa = UAdu (4.14)

and
√
γ = r2√q,

√
|h| = e2β. Thus, the asymptotic expressions for the Komar charge aspects

(4.8) are given as follows. The generators of the normal translations give (see Appendix A.6)

Q̃0 =
√
q̄

(
M +

1

2
D̄CŪ

C − ˙̄β

)
+ o(1), Q̃1 = −1

r

√
q̄ β̄ + o(r−1) . (4.15)

We see that they admit a finite limit when r →∞ and that Q̃1 vanishes in this limit. This is
consistent with the fact that the corner symmetry group restricts in this limit to the BMSW
group investigated in [46]. The generators of the diff(S) algebra read

P̃A =
√
q̄
[
−rŪA +

(
P̄A + ∂Aβ̄

)]
+ o(1). (4.16)

They exhibit a divergent contribution. As shown in [46] the renormalization procedure simply
selects the finite part of the momenta as the renormalised symmetry generator. Finally, the
generators of sl(2,R)S are given by

Ñ 0
0 = −r

2

2

√
q̄, Ñ 1

0 =
√
q̄
(
r2F̄ − rM

)
+ o(r), Ñ 0

1 = 0, Ñ 1
1 = −Ñ 0

0 . (4.17)

These generators diverge and need to be renormalized. From this analysis, one expects
that after renormalization only one of the sl(2,R)S charges and one the super-translation
charges are left non-vanishing,26 reducing the extended corner symmetry algebra to the bmsw
one [46]. This expectation is related to the fact that, while the entanglement sphere at finite
distance has two null normals, there is a preferred null super-translation generator ruling
null infinity which plays a central role. Let us emphasize that this result suggests that
the extended corner symmetry group can be bigger than the asymptotic symmetry group,
contrary to the expectation based e.g. on the notion of asymptotic isometries, which have
no finite analogue in general spacetimes. It would be interesting to perform a more in depth
analysis to see if one can recover, in some gravity theories, more than the BMS-like subgroups

25Here W,T correspond to arbitrary functions on the celestial sphere labelling respectively Weyl rescalings
(boosts normal to the sphere) and super-translations.

26Notice in fact that the sl(2,R)
S

charge Ñ 0
0 has no finite contribution.
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and have access to some other sl(2,R)S and super-translation components (see also footnote
1).

We warn the reader that some care is needed in comparing this limit with the BMS
charges, because those require a specific field dependence of the asymptotic Killing vectors,
which was not included here, see discussion in footnote 23.

It is interesting to notice that in [37] it was shown that the semi-direct sum structure
(4.2) arises also as the algebra of symmetries at a general non-stationary null surface at
finite distance. In this case, the symmetry group preserves a thermal Carrollian geometric
structure on the null surface—defined by the equivalence class associated with the null surface
generator and the non-affinity smooth function— with the two R terms in (4.2) representing
angle-dependent displacements of affine parameter and as angle-dependent rescalings of affine
parameter (see also [32,38,44,71]). This universality features of the symmetry group of a null
boundary, being this at finite or infinite distance, is remarkable and, at the same time, not
surprising from the local holography point of view developed here. In fact, this framework
can be applied to define a renormalization procedure in a systematic manner, as in [46],
putting the study of finite and infinite surfaces on equal footing. In this way, I in the Bondi
gauge can be understood as a particular null surface with vanishing non-affinity.

5 Conclusions

In this work we have extended the study of the corner symmetry algebra associated with local
subsystems of space initiated in [1,7–9]. We have included the normal super-translations that
move the location of the corner 2-sphere. Including this extension to the corner symmetry
group is crucial to study the time evolution of subregions. Time evolution is usually encoded
into a boundary and a choice of boundary condition, here we have freed ourselves from these
restrictions and looked at the evolution of the corner charges along any normal deformation.
This means that we have an open Hamiltonian system where the symmetry charges are
in general non-integrable and we cannot rely on a canonical Poisson bracket to study the
extended corner symmetry algebra because of the presence of non-trivial symplectic and
Hamiltonian fluxes.

In this paper, we have tackled these issues by introducing a Noetherian split for the
charges and fluxes. Our analysis is done for the general case where we allow for Lagrangian
and symplectic anomalies and an arbitrary dependence of the diffeomorphism generators on
the phase space fields. Inclusion of anomalies [33] is essential when working with boundaries
and the anomaly operator (2.13) represents a key technical tool to develop a consistent
covariant phase space formalism. Our analysis extends the work done in [38] to the case
where the Lagrangian class is non-covariant and the case where the vector fields are field
dependent.

One of the key aspect of our construction is the definition of a Lagrangian dependent
charge bracket which extends the Barnich-Troessaert bracket [24] with a cocycle contribution
constructed from the Lagrangian and its anomaly. This bracket presents three striking fea-
tures. First, it can be proven that it satisfies Jacobi’s identity. Second, it provides a canonical
faithful representation (3.16) of the field-dependent symmetry transformations commutator
(3.1), avoiding the appearance of cocycles, for any choice of boundary Lagrangian. Third,
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when evaluated off-shell, the identity (3.32) shows how the canonical representation of the
extended corner symmetry algebra is clearly related to the projection on the sphere of the
bulk equations of motion. This remarkable connection could be understood as a definition
of local holography.

We have also shown that the Lagrangian-dependent charge bracket coincides with the
canonical bracket. This follows from the realization that a choice of Lagrangian within a
given class determines a choice of boundary condition and hence that the canonical bracket
is also dependent on L.

We have then exploited the notion of Noether charge to reveal the fully extended structure
of the corner symmetry algebra (4.2), which includes an additional contribution associated
to the translation transformations along the two directions normal to the corner.

In spite of these remarkable properties, key open questions remain about this bracket,
and should be the goal of future work. First and foremost the central question is whether
this bracket can be used as a guide for quantization and realized as a commutator. One
strategy to do this is to relate the Lagrangian-dependent charge bracket with a canonical
bracket for an extended phase space. This means to establish an analog of (3.38) for a more
relaxed set of boundary conditions. Relaxing the boundary conditions requires introducing
boundary edge modes as described in [8] in order to extend the phase space. Preliminary
investigations of this strategy of using edge modes to absorb the flux part of our bracket
into a Dirac bracket have appeared in [11] using the sphere embedding maps and in [45]
using null data. Understanding the relations between these different approaches is of crucial
importance for the quantization program.
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A Proofs of the canonical formulae

In this appendix we provide the proof of the evaluation (2.18), (2.20) for the Lagrangian
and symplectic anomalies, the proof of the commutation relations (3.5), the proof of the
shift property (2.27) of the charge and flux, and the proof of the main formula (3.32) for
the charge bracket. We do not assume here that E or Cξ = 0 and keep track of all the bulk
contributions.
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A.1 Lagrangian and symplectic anomalies

One first evaluates the Lagrangian anomaly

∆ξL = δξL− LξL = dIξθ − IξE − dιξL = d(Iξθ − ιξL− Cξ) . (A.1)

The condition ∆ξL = daξ implies that the Noether current is

Iξθ − ιξL− aξ = Cξ + dqξ. (A.2)

One then evaluates the symplectic anomaly:

∆ξθ = (δξ − Lξ − Iδξ)θ
= Iξδθ + δIξθ − ιξdθ − dιξθ − Iδξθ
= Iξδθ + δ(Iξθ − ιξL)− (Iδξθ − ιδξL)− dιξθ − ιξE
= Iξδθ + δ(Cξ + dqξ + aξ)− (Cδξ + dqδξ + aδξ)− dιξθ − ιξE , (A.3)

where in the third line we used that ιξdθ = ιξδL + ιξE = διξL − ιδξL + ιξE. Using the
definition (2.15) of the symplectic anomaly means that

dAξ = Iξδθ + δ(Cξ + dqξ)− (Cδξ + dqδξ)− dιξθ − ιξE. (A.4)

After integration over Σ this means that

− IξΩ =

∫
Σ

(δCξ − Cδξ − ιξE) +

∫
S

(δqξ − qδξ − ιξθ − Aξ). (A.5)

This equation can be written as the sum of an integrable piece and a flux component

− IξΩ = δ

(∫
Σ

Cξ +

∫
S

qξ

)
−
∫

Σ

(Cδξ + ιξE)−
∫
S

(qδξ + ιξθ + Aξ) . (A.6)

The total charge is a sum of a constraint and a boundary charge and similarly the flux is
also the sum of a bulk contribution and a boundary contribution. It is interesting to note
that the bulk contribution of the flux vanishes if ξ is field independent and is tangent to
Σ. These are the kinematical symmetries. It was already noted in [8] that the kinematical
symmetries plays a special role in the canonical analysis.

A.2 Lagrangian shift

Here we provide the proof of the expressions (2.27) in the case where the Lagrangian is
modified by a boundary term such that

L′ − L = d`, θ′ − θ = δ`− dϑ , (A.7)

and
∆ξθ

′ = ∆ξθ + ∆ξδ`−∆ξdϑ . (A.8)

We have
δL′ = δL+ dδ` = dθ + d(θ′ − θ) + EL = dθ′ + EL , (A.9)
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and, on-shell of the equations of motion, we have

∆ξθ
′ = IξΩ

′ + δ(Iξθ
′ − ιξL′)− dιξθ

′ + ιδξL
′ − Iδξθ′ . (A.10)

Therefore, the balance formula
− IξΩ′ = δQ′ξ −F ′ξ (A.11)

yields the modified charge

dq′ξ = Iξθ
′ − ιξL′ − aξ −∆ξ`

= dqξ + Iξδ`− Iξdϑ− ιξd`−∆ξ`
= d(qξ + ιξ`− Iξϑ) , (A.12)

which implies that
q′ξ − qξ = ιξ`− Iξϑ. (A.13)

The difference in flux is given

F ′ξ −Fξ =

∫
S

(
ιξ(θ

′ − θ) + q′δξ − qδξ −∆ξϑ
)

=

∫
S

(ιξδ`− ιξdϑ+ ιδξ`− Iδξϑ−∆ξϑ)

=

∫
S

(διξ`− (∆ξ + Lξ + Iδξ)ϑ)

=

∫
S

(διξ`− δξϑ) . (A.14)

A.3 Cartan commutators

Let us also derive the commutation relations (3.5). By means of (2.14), (3.3), and

[Iδξ, Iχ] = −Iδχξ , [Lξ, Iχ] = 0 , [δξ, Iχ] = −IJξ,χK ,

[Iδξ, ιχ] = 0 , [Lξ, ιχ] = ι[ξ,χ]Lie
, [δξ, ιχ] = ιδξχ , (A.15)

we have

[∆ξ, Iχ] = [δξ, Iχ]− [Iδξ, Iχ] = Iδχξ − IJξ,χK ,
[∆ξ, ιχ] = [δξ, ιχ]− [Lξ, ιχ] = ιδξχ − ι[ξ,χ]Lie

= ιδχξ − ιJξ,χK , (A.16)

The two commutators above also yield

[∆ξ, δχ] = δ[∆ξ, Iχ] + [∆ξ, Iχ]δ + [∆ξ, δ]Iχ + Iχ[∆ξ, δ] (A.17)

= δδχξ − δJξ,χK −∆δχξ

= Lδχξ − δJξ,χK ,
[∆ξ,Lχ] = d[∆ξ, ιχ] + [∆ξ, ιχ]d = Lδχξ − LJξ,χK , (A.18)

from which follows
[∆ξ,∆χ] = −∆Jξ,χK . (A.19)
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A.4 Main formula

Here we derive (3.32). We first provide the proof of (3.14). One starts by the evaluation of

∆ξIχθ = [∆ξ, Iχ]θ + Iχ∆ξθ
= Iδχξθ − IJξ,χKθ + δχaξ − aδχξ + dIχAξ. (A.20)

Similarly

∆ξιχL = [∆ξ, ιχ]L+ ιχ∆ξL
= ιδχξL− ιJξ,χKL+ Lχaξ − dιχaξ (A.21)

Therefore, taking the difference and using (A.1) we obtain that

∆ξ(Cχ + aχ + dqχ) = (Cδχξ + dqδχξ)− (CJξ,χK + aJξ,χK + dqJξ,χK)
+ ∆χaξ + d(IχAξ + ιχaξ). (A.22)

which can be recast as

∆ξ(Cχ + dqχ) = (Cδχξ + dqδχξ)− (CJξ,χK + dqJξ,χK)
− (∆ξaχ −∆χaξ + aJξ,χK) + d(IχAξ + ιχaξ). (A.23)

From which we conclude using the definition of c(ξ,χ) that

∆ξ(Cχ + dqχ)− (Cδχξ + dqδχξ) = −(CJξ,χK + dqJξ,χK) + d(IχAξ + ιχaξ − c(ξ,χ)).(A.24)

One then uses that F̃ξ =
∫

Σ
f̃ξ with

f̃ξ = Cδξ + ιξE + d(qδξ + ιξθ + Aξ). (A.25)

Therefore

Iχf̃ξ − dιξιχL = Cδχξ + ιξIχE + d(qδχξ + ιξ(Iχθ − ιχL) + IχAξ)
= (Cδχξ + dqδχξ) + dιξ(Cχ + dqχ + aχ) + d(IχAξ) + ιξdCχ
= (Cδχξ + dqδχξ) + Lξ(Cχ + dqχ) + d(ιξaχ + IχAξ)
= δξ(Cχ + dqχ) + (Cδχξ + dqδχξ)−∆ξ(Cχ + dqχ) + d(ιξaχ + IχAξ)
= δξ(Cχ + dqχ) + (CJξ,χK + dqJξ,χK) + d(ιξaχ − ιχaξ + c(ξ,χ)), (A.26)

which gives us

δξ(Cχ + dqχ)− Iχf̃ξ + d(ιξιχL+ ιξaχ − ιχaξ + c(ξ,χ)) = −CJξ,χK − dqJξ,χK. (A.27)

We can split this contribution into a bulk contribution depending on Cξ and a boundary
contribution. The bulk contribution of the LHS reads

δξCχ − Cδχξ − ιξdCχ = ∆ξCχ − Cδχξ + dιξCχ. (A.28)

The boundary flux 2-form is

fξ := qδξ + ιξθ + Aξ (A.29)

and the differential form of the bracket is

{qξ, qχ} := δξqχ − Iχfξ + (ιξιχL+ ιξaχ − ιχaξ + c(ξ,χ)). (A.30)

The previous equation therefore reads

d
(
ιξCχ + {qξ, qχ}+ qJξ,χK

)
= −

(
∆ξCχ − Cδχξ + CJξ,χK

)
. (A.31)

The RHS of this equation contains the anomaly of the constraint. By means of the relation
(3.28), we thus recover the main formula (3.32).
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A.5 Relation bracket-symplectic form

Here we provide the derivation of the relation (3.22). For this proof we go back on-shell and
use E =̂ 0. As we are going to use the relation

δχιξL− δξιχL+ ιJχ,ξKL = ιξdaχ − ιχdaξ − dιξιχL , (A.32)

let us first prove this. By means of

[Lξ, ιχ] = ι[ξ,χ] , [δξ, ιχ] = ιδξχ , Jξ, χK := [ξ, χ]Lie + δχξ − δξχ , (A.33)

we have

δχιξ − δξιχ + ιJχ,ξK = ιξδχ + ιδχξ − ιχδξ − ιδξχ + ιJχ,ξK
= ιξLχ + ιξ∆χ + ιξIδχ − ιχLξ − ιχ∆ξ − ιχIδξ + ι[χ,ξ] + ιξIδχ − ιχIδξ
= Lχιξ − ι[χ,ξ] − ιχLξ + ιξ∆χ − ιχ∆ξ + ι[χ,ξ] + ιξIδχ − ιχIδξ
= dιχιξ + ιχdιξ − ιχdιξ − ιχιξd + ιξ∆χ − ιχ∆ξ + ιξIδχ − ιχIδξ
= dιχιξ − ιχιξd + ιξ∆χ − ιχ∆ξ + ιξIδχ − ιχIδξ , (A.34)

from which

δχιξL− δξιχL+ ιJχ,ξKL = dιχιξL− ιχιξdL+ ιξ∆χL− ιχ∆ξL
= ιξdaχ − ιχdaξ − dιξιχL . (A.35)

We can now use the commutator (3.4) and the relation (A.32) to compute

IξIχΩ =̂

∫
Σ

Iξδχθ −
∫

Σ

Iξδ(dqχ + ιχL+ aχ)

=

∫
Σ

δχIξθ +

∫
Σ

IJχ,ξKθ −
∫
S

δξqχ −
∫

Σ

δξιχL−
∫

Σ

δξaχ

=̂

∫
S

δχqξ +

∫
Σ

δχιξL+

∫
Σ

δχaξ

+

∫
S

qJχ,ξK +

∫
Σ

ιJχ,ξKL+

∫
Σ

aJχ,ξK

−
∫
S

δξqχ −
∫

Σ

δξιχL−
∫

Σ

δξaχ

=

∫
S

(
δχqξ − δξqχ + qJχ,ξK + ιχιξL

)
+

∫
Σ

(ιξdaχ − ιχdaξ) +

∫
Σ

(Lχaξ − Lξaχ) +

∫
Σ

(∆χaξ −∆ξaχ + aJχ,ξK)

=

∫
S

(
δχqξ − δξqχ + qJχ,ξK + ιχιξL

)
+

∫
S

(
ιχaξ − ιξaχ − c(ξ,χ)

)
, (A.36)

which thus proves (3.22).
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A.6 Super-translation charges

We use the expression for the time translation charges

Q̃a =
√
γ

(
1

2
εcb∂̂bhac − UB

a PB −DC(Na
bUC

b )

)
, (A.37)

with

Nb
a =

1

2
hbcN

ca , (A.38)

and (using the convention of [46] for the metric in Bondi–Sachs coordinates)

h00 = −2e2βF, h01 = −e2β, h11 = 0 , γAB = r2qAB ,

UA
a dxa = UA

0 du , ε01 = −e−2β ,
√
γ = r2√q ,

√
|h| = e2β ,

UA
0 =

ŪA

r2
− 2

3r3
q̄AB

(
P̄B + CBCŪ

C + ∂Bβ̄
)

+ o(r−3) , UA
1 = 0 ,

β =
β̄

r2
+ o(r−2) , F = F̄ − M

r
+ o(r−1) , (A.39)

to compute the two super-translation charges in the limit r →∞

Q̃0 =
√
γ

(
1

2
ε01∂̂1h00 +

1

2
ε10∂̂0h01 − UA

0 PA −DC(N0
0UC

0 )

)
=

1

2

√
γ√
|h|

(
∂̂0h01 − ∂̂1h00

)
− UA

0 P̃A −
1

2

√
γDC

(
1√
|h|
h01U

C
0

)
=

1

2

√
γ√
|h|
(
∂0h01 + UA

0 ∂Ah01 − ∂1h00

)
+

1

2

√
γDAU

A
0 + o(1)

=
1

2
r2√q

(
−2β̇ − 2UA

0 ∂Aβ + 2(∂rF + 2F∂rβ)
)

+
1

2

√
qDAŪ

A + o(1)

=
√
q

(
M − ˙̄β +

1

2
DAŪ

A

)
+ o(1) , (A.40)

and

Q̃1 =
√
γ

(
1

2
N01∂̂1h10 −DC(N1

0UC
0 )

)
=

r2

2

√
qN01∂1h10

= −1

r

√
qβ̄ . (A.41)
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